JP2005298873A - Plasma treatment device - Google Patents

Plasma treatment device Download PDF

Info

Publication number
JP2005298873A
JP2005298873A JP2004114220A JP2004114220A JP2005298873A JP 2005298873 A JP2005298873 A JP 2005298873A JP 2004114220 A JP2004114220 A JP 2004114220A JP 2004114220 A JP2004114220 A JP 2004114220A JP 2005298873 A JP2005298873 A JP 2005298873A
Authority
JP
Japan
Prior art keywords
frequency power
reaction vessel
plasma processing
processing apparatus
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004114220A
Other languages
Japanese (ja)
Inventor
Daisuke Tazawa
大介 田澤
Yoshio Seki
好雄 瀬木
Tomohito Ozawa
智仁 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004114220A priority Critical patent/JP2005298873A/en
Publication of JP2005298873A publication Critical patent/JP2005298873A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma treatment device capable of enhancing uniformity of the power distribution in a reaction vessel, realizing uniform quality of a film to be deposited, and forming the deposit film of excellent quality with excellent productivity. <P>SOLUTION: The plasma treatment apparatus to perform plasma treatment to a base body installed in a reaction vessel has a power divider unit to divide the high frequency power to a plurality of high frequency power transmission units, a plurality of high frequency electrodes to be connected to each high frequency power transmission unit, and a power divider vessel which houses the power divider unit and the plurality of high frequency power transmission units and is made of conductive members. At least a part of the reaction vessel is made of conductive members, at least a part of the conductive members of the reaction vessel form a part of the power divider vessel. A shield member made of the conductive member is installed in the power divider vessel, and the shield member is installed between the power divider unit and the plurality of high frequency power transmission units, and a conductive part of the reaction vessel to form a part of the power divider vessel. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、反応容器内に設置された基体にプラズマ処理を施すプラズマ処理装置に関するものである。   The present invention relates to a plasma processing apparatus for performing plasma processing on a substrate installed in a reaction vessel.

堆積膜形成方法の一つとして放電エネルギーを利用するプラズマCVD法があり、この方法により形成される非晶質薄膜(例えば水素又は/及びハロゲンによって補償されたアモルファスシリコン)は電子写真用感光体、半導体デバイス、TFT等の半導体素子への応用が提案され、その中のいくつかは実用に至っている。特に13.56MHzのRF帯の高周波電力を用いたプラズマCVD法は基板材料、堆積膜材料等が導電体、絶縁体に関わらず処理でき、又、その取り扱いが比較的容易であるため広く用いられている。又、近年においては、VHF帯の高周波電力を用いたプラズマCVD法が注目を浴びており、これを用いた各種堆積膜形成方法の開発も積極的に進められている。これは、VHF−PCVD法では膜堆積速度が速く、また高品質な堆積膜が得られるため、製品の低コスト化、高品質化を同時に達成し得るものと期待されるためである(例えば、特許文献1参照)。又、VHF−PCVD法における生産性をより高めるために、複数の電極を用いて複数の基体上に同時に堆積膜を形成する技術の開発も積極的に進められている。その結果、複数の電極への均一な電力分割を実現することによって、複数基体を均一に処理することが可能となってきており、より高い生産性が実現されてきている(例えば、特許文献2参照)。   As one of the deposited film forming methods, there is a plasma CVD method using discharge energy. An amorphous thin film (for example, amorphous silicon compensated by hydrogen or / and halogen) formed by this method is an electrophotographic photoreceptor, Applications to semiconductor elements such as semiconductor devices and TFTs have been proposed, and some of them have been put into practical use. In particular, the plasma CVD method using high-frequency power in the 13.56 MHz RF band is widely used because the substrate material, deposited film material, etc. can be processed regardless of the conductor or insulator, and the handling is relatively easy. ing. In recent years, the plasma CVD method using high-frequency power in the VHF band has attracted attention, and development of various deposited film forming methods using this method has been actively promoted. This is because in the VHF-PCVD method, the film deposition rate is high and a high-quality deposited film can be obtained, so that it is expected that cost reduction and high quality of the product can be achieved at the same time (for example, Patent Document 1). In addition, in order to further increase the productivity in the VHF-PCVD method, development of a technique for simultaneously forming a deposited film on a plurality of substrates using a plurality of electrodes has been actively promoted. As a result, by realizing uniform power division into a plurality of electrodes, it has become possible to treat a plurality of substrates uniformly, and higher productivity has been realized (for example, Patent Document 2). reference).

図3Aに従来のVHF−PCVD法による電子写真用感光体の製造装置の代表例を示す模式的な構成図を示す。図3Aは製造装置を横からみた概略断面図であり、図3Bは図3Aの切断線X−X’に沿う真上から見た概略断面図である。   FIG. 3A is a schematic configuration diagram showing a typical example of a conventional electrophotographic photoreceptor manufacturing apparatus using the VHF-PCVD method. FIG. 3A is a schematic cross-sectional view of the manufacturing apparatus as viewed from the side, and FIG. 3B is a schematic cross-sectional view as viewed from directly above along the cutting line X-X ′ in FIG. 3A.

図3に示した製造装置を使用した場合の電子写真用感光体の製造方法の一例を以下に示す。   An example of a method for producing an electrophotographic photoreceptor when the production apparatus shown in FIG. 3 is used is shown below.

高周波電源113より出力された高周波電力は、整合回路114を介した後、導電性部材で構成される電力分割容器115内に導入される。次に、電力分割容器115内に導入された高周波電力は、電力分割容器115内に設置された電力分割部116によって複数の高周波電力伝送部117へと分割された後、高周波電極109を介して反応容器101内に導入される。原料ガスは原料ガス導入手段103より反応容器101内に導入されプラズマによって分解され、基体102上に堆積膜が形成される。   The high frequency power output from the high frequency power supply 113 is introduced into the power dividing container 115 made of a conductive member after passing through the matching circuit 114. Next, the high frequency power introduced into the power dividing container 115 is divided into a plurality of high frequency power transmission units 117 by the power dividing unit 116 installed in the power dividing container 115, and then via the high frequency electrode 109. It is introduced into the reaction vessel 101. The source gas is introduced into the reaction vessel 101 from the source gas introduction means 103 and decomposed by plasma, and a deposited film is formed on the substrate 102.

このような製造装置を使用することにより、VHF−PCVD法によって、速い堆積膜形成速度でも高品質な堆積膜が得ることができ、さらには、複数の基体を同時に均一処理することが可能となり、製品の低コスト化、高品質化を実現することができる。
特開平06−287760号公報(第17頁、第1図) 特開2001−316829号公報(第17頁、第1図)
By using such a manufacturing apparatus, it is possible to obtain a high-quality deposited film even at a high deposition film forming speed by the VHF-PCVD method, and it becomes possible to uniformly treat a plurality of substrates simultaneously. Product cost and quality can be reduced.
Japanese Patent Laid-Open No. 06-287760 (page 17, FIG. 1) Japanese Patent Laid-Open No. 2001-316829 (page 17, FIG. 1)

しかしながら、上記した製造装置では形成される堆積膜の品質を向上する上で更なる工夫の余地が存在する。その一つとして、反応容器内でのプラズマの分布が不均一となり、基体に形成される堆積膜に品質のむらが生じる場合があることが挙げられる。   However, there is room for further improvement in improving the quality of the deposited film formed in the manufacturing apparatus described above. One of them is that the plasma distribution in the reaction vessel becomes non-uniform, and quality unevenness may occur in the deposited film formed on the substrate.

図3に示した装置においては、高周波電極109と基体102を略並行に設置することによって、反応容器101内における、基体102軸方向のプラズマ分布を極力均一化にするようにしている。又、反応容器101の一部である上蓋107を導電性部材で構成することにより、電力分割部116や高周波電力伝送部117から直接反応容器101内へと高周波電力が導入されることを防止し、反応容器101内の基体102軸方向のプラズマ分布を極力均一化にするようにしている。   In the apparatus shown in FIG. 3, the plasma distribution in the axial direction of the substrate 102 in the reaction vessel 101 is made as uniform as possible by installing the high-frequency electrode 109 and the substrate 102 substantially in parallel. Further, the upper lid 107 which is a part of the reaction vessel 101 is made of a conductive member, thereby preventing high frequency power from being directly introduced into the reaction vessel 101 from the power dividing unit 116 or the high frequency power transmission unit 117. The plasma distribution in the axial direction of the substrate 102 in the reaction vessel 101 is made as uniform as possible.

しかしながら、このような装置でVHF帯の高周波電力を使用して堆積膜形成を行うと、基体に形成される堆積膜の品質において、十分な均一性が得られない場合がある。   However, when a deposited film is formed using high frequency power in the VHF band with such an apparatus, sufficient uniformity may not be obtained in the quality of the deposited film formed on the substrate.

その理由は定かではないが、以下のように推察している。VHF帯の高周波電力を使用する場合においては、高周波電力が反応容器の導電性部分に伝播してしまう場合がある。それは、たとえ当該導電性部分が接地されていても起こりうる場合がある。そして、そのようにして高周波電力が伝播した反応容器の導電性部分はあたかも高周波電極のような働きを持つため、本来の高周波電極以外の部分からも反応容器内に高周波電力が導入される場合がある。その結果、反応容器内のプラズマの分布が不均一になり、基体に形成される堆積膜に品質むらが生じてしまう場合があるのである。   The reason is not clear, but I guess as follows. When using high frequency power in the VHF band, the high frequency power may propagate to the conductive portion of the reaction vessel. It may happen even if the conductive part is grounded. The conductive portion of the reaction vessel through which the high-frequency power is propagated in this way functions as if it were a high-frequency electrode, so that high-frequency power may be introduced into the reaction vessel from a portion other than the original high-frequency electrode. is there. As a result, the distribution of plasma in the reaction vessel becomes non-uniform, and quality unevenness may occur in the deposited film formed on the substrate.

例えば、図3に示した製造装置においては、上蓋107に高周波電力が伝播してしまい、上蓋107を通じて反応容器101内に高周波電力が導入される場合がある。その結果、反応容器101上部のプラズマが強くなってしまい、形成される堆積膜の基体軸方向に品質のむらが生じてしまう場合がある。   For example, in the manufacturing apparatus shown in FIG. 3, high-frequency power may propagate to the upper lid 107 and high-frequency power may be introduced into the reaction vessel 101 through the upper lid 107. As a result, the plasma in the upper part of the reaction vessel 101 becomes strong, and quality unevenness may occur in the substrate axial direction of the deposited film to be formed.

このような問題に対して、高周波電力が伝送部以外の導電性部材に極力伝播しないようにするためには、例えば図4に示す様な製造装置が考えられる。図4に示した製造装置においては、図3に示した装置と同様に、導電性部材で構成された電力分割容器115内に電力分割部116が設置され、複数の高周波電力伝送部117へと高周波電力を分割する構成となっている。図3と異なる点は、高周波電力伝送部117が電力分割容器115の外部に設置された同軸ケーブル419へ接続され、その後高周波電極109へと接続されている部分である。   In order to prevent the high-frequency power from propagating as much as possible to the conductive member other than the transmission unit with respect to such a problem, for example, a manufacturing apparatus as shown in FIG. 4 can be considered. In the manufacturing apparatus shown in FIG. 4, similarly to the apparatus shown in FIG. 3, a power dividing unit 116 is installed in a power dividing container 115 made of a conductive member, and a plurality of high-frequency power transmission units 117 are connected. The high frequency power is divided. 3 differs from FIG. 3 in that the high-frequency power transmission unit 117 is connected to the coaxial cable 419 installed outside the power dividing container 115 and then connected to the high-frequency electrode 109.

本発明者らは、図4に示した装置を用いて検討を行った結果、基体軸方向におけるプラズマの均一性は改善され、基体に形成される堆積膜の品質むらも大幅に改善されることがわかった。しかしながら、図4に示した装置を使用した場合、異なる基体間の堆積膜の品質にむらが生じる場合があるという弊害も同時に発生する場合があることも確認された。その原因は現段階では定かではないが、図4に示した装置においては、電力分岐後の伝送部を個別にシールドするために、それぞれの伝送部のインピーダンスがわずかながらでもばらつき、そのため電力を均一に分割することが容易ではない場合があり、その結果、反応容器の水平方向でのプラズマの分布にむらが生じてしまうのではないかと考えている。   As a result of investigations using the apparatus shown in FIG. 4, the present inventors have improved the uniformity of plasma in the axial direction of the substrate and greatly improved the quality unevenness of the deposited film formed on the substrate. I understood. However, when the apparatus shown in FIG. 4 is used, it has also been confirmed that there may be a problem that the quality of the deposited film between different substrates may be uneven. Although the cause is not clear at this stage, in the apparatus shown in FIG. 4, in order to individually shield the transmission parts after power branching, the impedance of each transmission part varies slightly, so the power is uniform. In some cases, it may not be easy to divide into two, and as a result, the plasma distribution in the horizontal direction of the reaction vessel may be uneven.

このような問題に対して、本発明者らは鋭意検討を行った結果、高周波電力伝送部のシールドの構成を最適化することによって、反応容器内のプラズマ分布の均一性を高めることを実現し、本発明を完成させるに至った。   As a result of intensive investigations on such problems, the present inventors have realized that the uniformity of the plasma distribution in the reaction vessel is improved by optimizing the shield configuration of the high-frequency power transmission unit. The present invention has been completed.

即ち、本発明のプラズマ処理装置は、反応容器内に設置された基体にプラズマ処理を施すプラズマ処理装置において、整合回路、前記整合回路を介した後の高周波電力を複数の高周波電力伝送部へと分割する電力分割部、前記複数の高周波電力伝送部各々と接続される複数の高周波電極、前記電力分割部及び前記複数の高周波電力伝送部を内包し、導電性部材で形成される電力分割容器を備え、前記反応容器は少なくとも一部が導電性部材で形成され、前記電力分割部及び前記複数の高周波電力伝送部と、前記電力分割容器の一部を形成する前記反応容器の導電性部分との間に導電性部材で形成されるシールド部材が設置されていることを特徴としている。   That is, the plasma processing apparatus of the present invention is a plasma processing apparatus for performing plasma processing on a substrate installed in a reaction vessel. A matching circuit, and high-frequency power after passing through the matching circuit are transferred to a plurality of high-frequency power transmission units. A power dividing container formed of a conductive member, including a power dividing unit to be divided, a plurality of high frequency electrodes connected to each of the plurality of high frequency power transmitting units, the power dividing unit and the plurality of high frequency power transmitting units. The reaction vessel is formed of at least a part of a conductive member, and includes the power dividing unit and the plurality of high frequency power transmission units, and a conductive part of the reaction vessel forming a part of the power dividing vessel. A shield member formed of a conductive member is provided between them.

このような本発明の効果について、以下詳述する。   The effects of the present invention will be described in detail below.

図1に本発明で使用される電子写真用感光体の製造装置の模式図の一例を示す。図1に示した装置においては、電力分割部116及び電力分割後の高周波電力伝送部117の形態は図3に示した装置と同様である。図3に示した装置と異なる点は、電力分割容器115内に新たにシールド部材119が設置される部分である。そして、前述したシールド部材119は、電力分割部116及び高周波電力伝送部117と、反応容器の導電性部分である上蓋107との間に上蓋107全体を覆うように設置されている。   FIG. 1 shows an example of a schematic view of an electrophotographic photoreceptor manufacturing apparatus used in the present invention. In the apparatus shown in FIG. 1, the forms of the power dividing unit 116 and the high-frequency power transmission unit 117 after power division are the same as those of the apparatus shown in FIG. A difference from the apparatus shown in FIG. 3 is a portion where a shield member 119 is newly installed in the power dividing container 115. The shield member 119 described above is installed so as to cover the entire upper lid 107 between the power dividing unit 116 and the high-frequency power transmission unit 117 and the upper lid 107 which is a conductive portion of the reaction vessel.

これにより、反応容器内の基体軸方向におけるプラズマ分布のむらは解消され、基体に形成される堆積膜の品質むらは大幅に改善される。その原因は定かではないが、電力分割部116及び高周波電力伝送部117と、上蓋107の間にシールド部材119を設置することにより、高周波電力が上蓋107に伝播することが防止され、高周波電極109以外の部材から反応容器101内に高周波電力が導入されるといった弊害が防止されたからではないかと推察している。   As a result, the uneven plasma distribution in the axial direction of the substrate in the reaction vessel is eliminated, and the uneven quality of the deposited film formed on the substrate is greatly improved. Although the cause is not certain, by installing the shield member 119 between the power dividing unit 116 and the high frequency power transmission unit 117 and the upper cover 107, high frequency power is prevented from propagating to the upper cover 107, and the high frequency electrode 109 is prevented. It is presumed that the adverse effect of introducing high-frequency power into the reaction vessel 101 from other members was prevented.

又、図1に示した装置を使用した場合においては、図4に示した装置を使用した場合と比較して、異なる基体間の品質むらも大幅に低減することができることも併せて確認できた。その原因は定かではないが、高周波電力分割後の複数の高周波電力伝送部117を個別にシールドしないことが、より高い精度での電力の均一分割を可能にしているのではないかと推察している。   Further, when the apparatus shown in FIG. 1 was used, it was also confirmed that the quality unevenness between different substrates could be greatly reduced as compared with the case where the apparatus shown in FIG. 4 was used. . The reason for this is not clear, but it is speculated that the plurality of high-frequency power transmission units 117 after the high-frequency power division are not individually shielded to enable even power division with higher accuracy. .

又、本発明における反応容器の導電性部分とは、即ち、反応容器を構成する導電性部分における、プラズマに直接さらされる部分を指す。例えば、図2は、図1におけるの上蓋107近傍の拡大図であるが、図2における反応容器を構成する導電性部分とは、図中斜線部で示した部分である。   Further, the conductive portion of the reaction vessel in the present invention refers to a portion directly exposed to plasma in the conductive portion constituting the reaction vessel. For example, FIG. 2 is an enlarged view of the vicinity of the upper lid 107 in FIG. 1, but the conductive portion constituting the reaction vessel in FIG. 2 is the portion indicated by the hatched portion in the drawing.

又、本発明においては、前記反応容器の少なくとも一部が誘電体部材で構成され、前記高周波電極が反応容器の外に設置される構成がより好ましい。そのような構成とすることで、反応容器の内のプラズマにさらされる導電性部分の面積を制限することが容易な場合があるからである。   In the present invention, it is more preferable that at least a part of the reaction vessel is made of a dielectric member, and the high-frequency electrode is installed outside the reaction vessel. This is because it may be easy to limit the area of the conductive portion exposed to the plasma in the reaction vessel.

又、本発明においては、周波数が50MHz以上250MHz以下のVHF帯の高周波電力を供給可能である高周波電源を使用する場合において、その効果が顕著に現れる。その理由は定かではないが、周波数が50MHz以上の高周波においては、高周波電力が装置の導電性部分に伝播しやすい。よって、50MHz以上の高周波においては、本発明によって達成される、反応容器の導電性部分に対するシールド効果が顕著に現れるのではないかと推察している。また、周波数が250MHz以上の高周波においては、伝送部を伝播する際に高周波電力の減衰が顕著なため、反応容器中に均一なプラズマを生成することが容易ではなく、本発明の効果を十分に得ることができないのではないかと推察している。   In the present invention, when using a high-frequency power source capable of supplying high-frequency power in the VHF band having a frequency of 50 MHz or more and 250 MHz or less, the effect appears remarkably. The reason for this is not clear, but at a high frequency of 50 MHz or higher, high-frequency power tends to propagate to the conductive portion of the device. Therefore, it is presumed that the shielding effect for the conductive portion of the reaction vessel, which is achieved by the present invention, appears remarkably at a high frequency of 50 MHz or higher. Further, at a high frequency of 250 MHz or higher, since the attenuation of the high frequency power is significant when propagating through the transmission section, it is not easy to generate uniform plasma in the reaction vessel, and the effects of the present invention are sufficiently obtained. I guess I can't get it.

又、本発明においては、異なる周波数の高周波電力を供給可能である複数の高周波電源を使用し、周波数の異なる複数の高周波電力を重畳して使用する場合において、その効果が顕著に現れる。その理由は定かではないが、複数の周波数の高周波電力を使用する場合においては、周波数によって導電性部分への伝播の程度に違いがでる場合がある。そのため、反応容器の導電性部分を介して反応容器内に高周波電力が導入されてしまう場合においては、基体軸方向に周波数毎にプラズマのむらが生じてしまい、複数の周波数を重畳する効果が得にくい場合がある。よって、複数の周波数の高周波電力を使用するような場合においては、本発明の効果が顕著に現れるのではないかと考えている。   In the present invention, when a plurality of high-frequency power sources capable of supplying high-frequency powers having different frequencies are used and a plurality of high-frequency powers having different frequencies are used in a superimposed manner, the effect is remarkable. The reason is not clear, but in the case of using high-frequency power of a plurality of frequencies, the degree of propagation to the conductive portion may vary depending on the frequency. Therefore, when high-frequency power is introduced into the reaction vessel through the conductive portion of the reaction vessel, plasma unevenness occurs for each frequency in the base axis direction, and it is difficult to obtain the effect of superimposing a plurality of frequencies. There is a case. Therefore, it is considered that the effect of the present invention appears remarkably in the case where high frequency power of a plurality of frequencies is used.

又、本発明においては、使用する基体が円筒状である場合において、より顕著な効果を得ることができる。   In the present invention, more remarkable effects can be obtained when the substrate used is cylindrical.

以上、本発明についてその詳細を説明したが、これを下記に整理して記述する。   Although the details of the present invention have been described above, this will be organized and described below.

(1)反応容器内に設置された基体にプラズマ処理を施すプラズマ処理装置において、整合回路、前記整合回路を介した後の高周波電力を複数の高周波電力伝送部へと分割する電力分割部、前記複数の高周波電力伝送部各々と接続される複数の高周波電極、前記電力分割部及び前記複数の高周波電力伝送部を内包し、導電性部材で形成される電力分割容器を備え、前記反応容器は少なくとも一部が導電性部材で形成され、前記電力分割部及び前記複数の高周波電力伝送部と、前記電力分割容器の一部を形成する前記反応容器の導電性部分との間に導電性部材で形成されたシールド部材が設置されていることを特徴とするプラズマ処理装置。   (1) In a plasma processing apparatus for performing plasma processing on a substrate installed in a reaction vessel, a matching circuit, a power dividing unit that divides high-frequency power after passing through the matching circuit into a plurality of high-frequency power transmission units, A plurality of high-frequency electrodes connected to each of a plurality of high-frequency power transmission units, including the power dividing unit and the plurality of high-frequency power transmission units, and including a power dividing container formed of a conductive member, A part is formed of a conductive member, and is formed of a conductive member between the power dividing unit and the plurality of high-frequency power transmission units and a conductive part of the reaction vessel forming a part of the power dividing container. A plasma processing apparatus, wherein the shield member is installed.

(2)前記反応容器の少なくとも一部が誘電体部材で構成され、前記高周波電極が反応容器の外に設置されることを特徴とする前記(1)に記載のプラズマ処理装置。   (2) The plasma processing apparatus according to (1), wherein at least a part of the reaction vessel is made of a dielectric member, and the high-frequency electrode is installed outside the reaction vessel.

(3)前記高周波電力の周波数が50MHz以上250MHz以下の高周波電力を供給可能である高周波電源を備えることを特徴とした、前記(1)または(2)のいずれかに記載のプラズマ処理装置。   (3) The plasma processing apparatus according to any one of (1) and (2), further comprising a high frequency power source capable of supplying high frequency power having a frequency of the high frequency power of 50 MHz to 250 MHz.

(4)前記高周波電源は、互いに異なる周波数の高周波電力を供給可能である複数の高周波電源を備え、複数の互いに異なる周波数の高周波電力を重畳する電力重畳部が、前記整合回路と前記電力分割部の間に設置されることを特徴とする前記(1)乃至(3)のいずれか1項に記載のプラズマ処理装置。   (4) The high-frequency power source includes a plurality of high-frequency power sources capable of supplying high-frequency power having different frequencies, and a power superimposing unit that superimposes a plurality of high-frequency powers having different frequencies includes the matching circuit and the power dividing unit. The plasma processing apparatus according to any one of (1) to (3), wherein the plasma processing apparatus is installed between the two.

(5)前記電力分割容器の一部を形成する前記反応容器の導電性部分は、前記基体の堆積膜形成面と平行でないことを特徴とする前記(1)乃至(4)のいずれか1項に記載のプラズマ処理装置。   (5) Any one of (1) to (4) above, wherein the conductive portion of the reaction vessel forming a part of the power dividing vessel is not parallel to the deposited film formation surface of the substrate. The plasma processing apparatus according to 1.

(6)前記基体が円筒状であることを特徴とする前記(1)乃至(5)のいずれか1項に記載のプラズマ処理装置。   (6) The plasma processing apparatus according to any one of (1) to (5), wherein the base is cylindrical.

(7)前記プラズマ処理装置が電子写真用感光体の堆積膜形成に用いられることを特徴とする前記(1)乃至(6)のいずれか1項に記載のプラズマ処理装置。   (7) The plasma processing apparatus according to any one of (1) to (6), wherein the plasma processing apparatus is used for forming a deposited film of an electrophotographic photoreceptor.

本発明のプラズマ処理装置は、反応容器内に設置された基体にプラズマ処理を施すプラズマ処理装置において、整合回路、前記整合回路を介した後の高周波電力を複数の高周波電力伝送部へと分割する電力分割部、前記複数の高周波電力伝送部各々と接続される複数の高周波電極、前記電力分割部及び前記複数の高周波電力伝送部を内包し、導電性部材で形成される電力分割容器を備え、前記反応容器は少なくとも一部が導電性部材で形成され、前記電力分割部及び前記複数の高周波電力伝送部と、前記電力分割容器の一部を形成する前記反応容器の導電性部分との間に導電性部材で形成されるシールド部材を設置することにより、電力の均一分割を維持した状態で、反応容器内の基体軸方向におけるプラズマ分布のむらは解消し、基体に形成される堆積膜の品質むらを大幅に改善することが可能となる。   The plasma processing apparatus of the present invention is a plasma processing apparatus for performing plasma processing on a substrate installed in a reaction vessel, and divides a high-frequency power after passing through the matching circuit into a plurality of high-frequency power transmission units. Including a power dividing unit, a plurality of high frequency electrodes connected to each of the plurality of high frequency power transmission units, the power dividing unit and the plurality of high frequency power transmission units, and a power dividing container formed of a conductive member, The reaction vessel is at least partially formed of a conductive member, and is between the power dividing unit and the plurality of high-frequency power transmission units and the conductive part of the reaction vessel forming a part of the power dividing vessel. By installing a shield member formed of a conductive member, the uneven plasma distribution in the axial direction of the substrate in the reaction vessel is eliminated while maintaining the uniform division of power, and the substrate is shaped. Quality unevenness of the deposited film to be made can be significantly improved.

次に、上記のような効果が得られる本発明を以下で図を用いて詳述する。   Next, the present invention capable of obtaining the above effects will be described in detail with reference to the drawings.

図1は本発明で使用されるプラズマCVD法による電子写真用感光体製造装置の模式図の一例であり、この製造装置を横から見た概略断面図である。又、図2は図1の上蓋近傍の拡大図であり、図中斜線部は上蓋のうちの直接プラズマにさらされる部分を示す。   FIG. 1 is an example of a schematic view of an electrophotographic photoreceptor manufacturing apparatus using a plasma CVD method used in the present invention, and is a schematic sectional view of the manufacturing apparatus as viewed from the side. FIG. 2 is an enlarged view of the vicinity of the upper lid of FIG. 1, and a hatched portion in the drawing indicates a portion of the upper lid that is directly exposed to plasma.

図1及び図2で示す電子写真用感光体製造装置は、堆積膜が形成される円筒状の基体102を内部に設置する反応容器101を有する。基体102は基体下部支持手段105及び基体キャップ106により反応容器101内に支持される。基体102の内部には基体102を加熱する基体加熱ヒーター108が基体102の長手方向に沿って配置されている。基体102は回転機構104によって回転可能である。反応容器101の側壁を構成する円筒部が誘電体部材で構成されている。反応容器101内には、反応容器101外のガス供給装置(不図示)、圧力調整器及びマスフローコントローラー等と原料ガス導入配管110を介して繋がった原料ガス導入手段103が配置されている。さらに、反応容器101は内部圧力をモニターする圧力測定手段111を有し、また、開度調節可能なバルブを開くことで容器内部を容器外と連通させるスロットルバルブ112も備えている。   The electrophotographic photoreceptor manufacturing apparatus shown in FIGS. 1 and 2 includes a reaction vessel 101 in which a cylindrical substrate 102 on which a deposited film is formed is installed. The substrate 102 is supported in the reaction vessel 101 by a substrate lower support means 105 and a substrate cap 106. A substrate heater 108 for heating the substrate 102 is disposed along the longitudinal direction of the substrate 102 inside the substrate 102. The base 102 can be rotated by a rotation mechanism 104. A cylindrical portion constituting the side wall of the reaction vessel 101 is made of a dielectric member. In the reaction vessel 101, a raw material gas introduction unit 103 connected to a gas supply device (not shown) outside the reaction vessel 101, a pressure regulator, a mass flow controller, and the like via a raw material gas introduction pipe 110 is disposed. Furthermore, the reaction vessel 101 has a pressure measuring means 111 for monitoring the internal pressure, and also includes a throttle valve 112 for communicating the inside of the vessel with the outside of the vessel by opening a valve whose opening degree can be adjusted.

反応容器101の側壁の外側にはアースシールド118が反応容器101の周りを囲むように設けられている。反応容器101の側壁とアースシールド118との間には複数の高周波電極109が反応容器101の周りに均等に配置されている。   An earth shield 118 is provided outside the side wall of the reaction vessel 101 so as to surround the reaction vessel 101. A plurality of high-frequency electrodes 109 are evenly arranged around the reaction vessel 101 between the side wall of the reaction vessel 101 and the earth shield 118.

複数の高周波電極109はそれぞれ、電力分割部116で分割された高周波電力伝送部117に接続され、電力分割部116は高周波電力伝送部117を介して整合回路114に接続され、整合回路114は高周波電力伝送部117を介して高周波電源109に接続されている。   Each of the plurality of high-frequency electrodes 109 is connected to the high-frequency power transmission unit 117 divided by the power dividing unit 116, and the power division unit 116 is connected to the matching circuit 114 via the high-frequency power transmission unit 117. The power transmission unit 117 is connected to the high frequency power supply 109.

電力分割部116及び複数の高周波電力伝送部117は電力分割容器115内に内包され、電力分割部116及び複数の高周波電力伝送部117と、上蓋107の内の少なくともプラズマにされされる部分(図2斜線部)の間にはシールド部材119が設置されている。   The power dividing unit 116 and the plurality of high-frequency power transmission units 117 are included in the power dividing container 115, and at least a portion of the power dividing unit 116 and the plurality of high-frequency power transmission units 117 and the upper lid 107 that are converted to plasma (see FIG. A shield member 119 is installed between the two hatched portions.

次に、図1及び図2に示した装置を使用して実施される、本発明による堆積膜形成方法の一例を以下に詳述する。   Next, an example of the deposited film forming method according to the present invention, which is performed using the apparatus shown in FIGS. 1 and 2, will be described in detail below.

少なくとも一部が誘電体部材で構成された反応容器101内に基体102を設置した後、排気装置(例えば真空ポンプ)を用いて反応容器101内を真空引きする。反応容器101内を十分排気した後、ガス供給装置(図示せず)内のHe、N、Ar及びH等のガスボンベから供給される内の必要とされる加熱用ガスが、不図示の圧力調整器及びマスフローコントローラー等を介することにより適切な流量に調節され、原料ガス導入配管110、原料ガス導入手段103を介して反応容器101内に送り込まれる。加熱用ガス導入後の反応容器101内の圧力は圧力測定手段111によってモニターされ、スロットルバルブ112の開度を調節すること等によって、所定の値に制御される。所定の基体加熱環境が整ったところで、基体102は基体加熱ヒーター108によって間接的に所定の温度にまで加熱される。 After the base body 102 is installed in the reaction vessel 101 at least partially made of a dielectric member, the inside of the reaction vessel 101 is evacuated using an exhaust device (for example, a vacuum pump). After the reaction vessel 101 is sufficiently evacuated, the required heating gas supplied from a gas cylinder such as He, N 2 , Ar and H 2 in a gas supply device (not shown) is not shown. The flow rate is adjusted to an appropriate flow rate via a pressure regulator, a mass flow controller, and the like, and fed into the reaction vessel 101 via the raw material gas introduction pipe 110 and the raw material gas introduction means 103. The pressure in the reaction vessel 101 after the introduction of the heating gas is monitored by the pressure measuring means 111 and controlled to a predetermined value by adjusting the opening of the throttle valve 112 or the like. When the predetermined substrate heating environment is prepared, the substrate 102 is indirectly heated to a predetermined temperature by the substrate heater 108.

所定の加熱終了後、ガス供給装置(図示せず)内のSiH、H、CH、B、PH等のガスボンベから供給される内の必要とされる堆積膜形成用ガスが、圧力調整器及びマスフローコントローラー等を介することにより適切な流量に調節され、原料ガス導入配管110、原料ガス導入手段103を介して、反応容器101内に送り込まれる。堆積膜形成用ガス導入後の反応容器101内の圧力は圧力測定手段111によってモニターされ、スロットルバルブ112の開度を調節すること等によって、所定の値に制御される。所定の堆積膜形成環境が整ったところで、高周波電源113より出力された高周波電力が、整合回路114を介した後に、所定の電位に維持された壁面からなる電力分割容器115内に導入される。その後、高周波電力は電力分割容器115内の電力分割部116において複数の高周波電力伝送部117へと分割され、電力分割容器115外へと出力された後、少なくとも一部が誘電体部材で構成された反応容器101とアースシールド118との間に設置された複数の高周波電極109を介して、反応容器101内に導入されプラズマを生起する。該プラズマにより堆積膜形成用ガスが分解され、基体102上に堆積膜を形成する。 After completion of the predetermined heating, the required deposition film forming gas is supplied from a gas cylinder such as SiH 4 , H 2 , CH 4 , B 2 H 6 , and PH 3 in a gas supply device (not shown). However, the flow rate is adjusted to an appropriate flow rate via a pressure regulator, a mass flow controller, and the like, and is fed into the reaction vessel 101 via the raw material gas introduction pipe 110 and the raw material gas introduction means 103. The pressure in the reaction vessel 101 after the deposition film forming gas is introduced is monitored by the pressure measuring means 111 and controlled to a predetermined value by adjusting the opening of the throttle valve 112 or the like. When a predetermined deposition film forming environment is prepared, the high frequency power output from the high frequency power supply 113 is introduced into the power dividing container 115 formed of the wall surface maintained at a predetermined potential through the matching circuit 114. Thereafter, the high-frequency power is divided into a plurality of high-frequency power transmission units 117 in the power dividing unit 116 in the power dividing container 115, and after being output to the outside of the power dividing container 115, at least a part thereof is made of a dielectric member. Introduced into the reaction vessel 101 through a plurality of high-frequency electrodes 109 installed between the reaction vessel 101 and the earth shield 118, plasma is generated. The deposited film forming gas is decomposed by the plasma to form a deposited film on the substrate 102.

以下、実施例により本発明の効果を具体的に説明する。   Hereinafter, the effect of the present invention will be specifically described with reference to examples.

[実施例1]
図1に示したプラズマ処理装置において、発振周波数105MHzの高周波電源113を用い、前記した方法により、反応容器101内に設置された、直径80mm、長さ358mmの円筒状アルミニウムシリンダである基体102上に、表1に示す条件で電荷注入阻止層、光導電層、表面層からなる電子写真用感光体を作成した。
[Example 1]
In the plasma processing apparatus shown in FIG. 1, on the substrate 102 which is a cylindrical aluminum cylinder having a diameter of 80 mm and a length of 358 mm installed in the reaction vessel 101 by the above-described method using the high-frequency power source 113 having an oscillation frequency of 105 MHz. In addition, an electrophotographic photoreceptor comprising a charge injection blocking layer, a photoconductive layer, and a surface layer was prepared under the conditions shown in Table 1.

Figure 2005298873
Figure 2005298873

[比較例1]
本例では、実施例1で使用したプラズマ処理装置に代えて、図3に示したプラズマ処理装置を使用し、発振周波数105MHzの高周波電源113を用い、実施例1と同様の方法により、反応容器101内に設置された、直径80mm、長さ358mmの円筒状アルミニウムシリンダである基体102上に、表1に示す条件で電荷注入阻止層、光導電層、表面層からなる電子写真用感光体を作成した。
[Comparative Example 1]
In this example, instead of the plasma processing apparatus used in the first embodiment, the plasma processing apparatus shown in FIG. 3 is used, and a high frequency power source 113 with an oscillation frequency of 105 MHz is used. An electrophotographic photoreceptor comprising a charge injection blocking layer, a photoconductive layer, and a surface layer under the conditions shown in Table 1 on a substrate 102, which is a cylindrical aluminum cylinder having a diameter of 80 mm and a length of 358 mm, installed in 101. Created.

[比較例2]
本例では、実施例1で使用したプラズマ処理装置に代えて、図4に示したプラズマ処理装置を使用し、発振周波数105MHzの高周波電源113を用い、実施例1と同様の方法により、反応容器101内に設置された、直径80mm、長さ358mmの円筒状アルミニウムシリンダである基体102上に、表1に示す条件で電荷注入阻止層、光導電層、表面層からなる電子写真用感光体を作成した。
[Comparative Example 2]
In this example, instead of the plasma processing apparatus used in the first embodiment, the plasma processing apparatus shown in FIG. 4 is used, and a high frequency power supply 113 with an oscillation frequency of 105 MHz is used. An electrophotographic photoreceptor comprising a charge injection blocking layer, a photoconductive layer, and a surface layer under the conditions shown in Table 1 on a substrate 102, which is a cylindrical aluminum cylinder having a diameter of 80 mm and a length of 358 mm, installed in 101. Created.

[実施例1、比較例1及び2の評価]
実施例1、比較例1及び2において作製した、各6本の電子写真用感光体の電子写真特性を以下に記載した方法で評価し、実施例1で作製した電子写真用感光体と比較例1及び2で作製した電子写真用感光体との比較を行った。
[Evaluation of Example 1 and Comparative Examples 1 and 2]
The electrophotographic characteristics of each of the six electrophotographic photoreceptors produced in Example 1 and Comparative Examples 1 and 2 were evaluated by the method described below, and the electrophotographic photoreceptor produced in Example 1 and the comparative example. Comparison with the electrophotographic photoreceptor prepared in 1 and 2 was performed.

『電子写真特性むら評価方法』
作成した各々の電子写真用感光体を本テスト用に改造されたキヤノン製の複写機iR−5000に設置し、評価項目は、『帯電能母線方向むら』、『感度母線方向むら』、『画像濃度むら』の三項目とし、以下の具体的評価法により各項目の評価を行った。
"Evaluation method for unevenness of electrophotographic characteristics"
Each of the electrophotographic photoconductors prepared was installed in a Canon iR-5000 photocopier modified for this test. Evaluation items were “Charging capacity unevenness in the bus direction”, “Unevenness in sensitivity bus direction”, “Image” Each item was evaluated by the following specific evaluation method.

『帯電能母線方向むら』
複写機の主帯電器に一定の電流を流したときの現像器位置での暗部電位を『帯電能』とする(ただし、周方向一周の平均値とする)。電子写真用感光体の母線方向全域にわたって『帯電能』を測定し、平均値に対する最大値と最小値の差を帯電能むらとして評価した。従って、数値が小さいほど良好である。実施例1、比較例1及び2において作成した、それぞれ6本の電子写真用感光体の『帯電能母線方向むら』を測定し、それぞれにおいて6本間の平均値を求め、比較例1と比較し、比較例1の値を100%として以下のランクに区分した。
Uneven charging busbar direction
The dark portion potential at the position of the developing device when a constant current is passed through the main charger of the copying machine is defined as “charging ability” (however, the average value of one round in the circumferential direction). “Chargeability” was measured over the entire area of the electrophotographic photosensitive member in the busbar direction, and the difference between the maximum value and the minimum value with respect to the average value was evaluated as unevenness in chargeability. Therefore, the smaller the value, the better. “Electricity in the charging ability bus line direction” of each of the six electrophotographic photoreceptors prepared in Example 1 and Comparative Examples 1 and 2 was measured, and an average value between the six was obtained for each of them, and compared with Comparative Example 1. The value of Comparative Example 1 was set as 100%, and was classified into the following ranks.

A:比較例1と比較して50%未満に良化
B:比較例1と比較して50%以上75%未満に良化
C:比較例1と比較して75%以上同等以下に良化
D:比較例1と比較して悪化
A: Improvement to less than 50% compared to Comparative Example 1 B: Improvement to 50% or more and less than 75% compared to Comparative Example 1 C: Improvement to 75% or more compared to Comparative Example 1 or less D: Deteriorated compared to Comparative Example 1

『感度母線方向むら』
現像器位置における暗部電位が所定の値となるように、主帯電器の電流値を調整した後、像露光を照射する。ついで像露光光源の光量を調整して、現像器位置における表面電位(明電位)が所定の値となるようにし、そのときの露光量を『感度』とする(ただし、周方向一周の平均値とする)。電子写真用感光体の母線方向全域にわたって『感度』を測定し、平均値に対する最大値と最小値の差を感度むらとして評価した。従って数値が小さいほど良好である。実施例1、比較例1及び2において作成した、それぞれ6本の電子写真用感光体の『感度母線方向むら』を測定し、それぞれにおいて6本間の平均値を求め、比較例1と比較し、比較例1の値を100%として以下のランクに区分した。
"Unevenness of sensitivity bus direction"
After adjusting the current value of the main charger so that the dark portion potential at the developing unit position becomes a predetermined value, image exposure is performed. Next, the amount of light from the image exposure light source is adjusted so that the surface potential (bright potential) at the position of the developing device becomes a predetermined value, and the exposure amount at that time is defined as “sensitivity” (however, the average value in one circumferential direction) And). “Sensitivity” was measured over the entire area of the electrophotographic photosensitive member in the busbar direction, and the difference between the maximum value and the minimum value with respect to the average value was evaluated as sensitivity unevenness. Therefore, the smaller the value, the better. The “sensitivity in the direction of the sensitivity bus line” of each of the six electrophotographic photoreceptors prepared in Example 1 and Comparative Examples 1 and 2 was measured, and the average value between the six was determined in each case, and compared with Comparative Example 1. The value of Comparative Example 1 was set as 100%, and was classified into the following ranks.

A:比較例1と比較して50%未満に良化
B:比較例1と比較して50%以上75%未満に良化
C:比較例1と比較して75%以上同等以下に良化
D:比較例1と比較して悪化
A: Improvement to less than 50% compared to Comparative Example 1 B: Improvement to 50% or more and less than 75% compared to Comparative Example 1 C: Improvement to 75% or more compared to Comparative Example 1 or less D: Deteriorated compared to Comparative Example 1

『画像濃度むら』
現像器位置での暗部電位が一定値となるよう主帯電器の電流値を調整した後、原稿に所定の白紙を用い、現像器位置での明部電位が所定の値となるよう像露光光量を調整した。ついで中間調チャートを原稿台に置き、コピーしたときに得られたコピー画像上全領域における反射濃度の最高値と最低値の差により評価した。従って数値が小さいほど良好である。実施例1、比較例1及び2において作成した、それぞれ6本の電子写真用感光体の『画像濃度むら』を測定し、それぞれにおいて6本間の平均値を求め、比較例1と比較し、比較例1の値を100%として以下のランクに区分した。
"Image density unevenness"
After adjusting the current value of the main charger so that the dark part potential at the developing unit position becomes a constant value, use a predetermined white paper for the original, and the image exposure light quantity so that the bright part potential at the developing unit position becomes the predetermined value Adjusted. Next, the halftone chart was placed on the platen and evaluated by the difference between the maximum value and the minimum value of the reflection density in the entire area on the copy image obtained when copying. Therefore, the smaller the value, the better. The “image density unevenness” of each of the six electrophotographic photoreceptors prepared in Example 1 and Comparative Examples 1 and 2 was measured, and the average value between the six was measured for each of them, and compared with Comparative Example 1 for comparison. The value of Example 1 was set to 100%, and was classified into the following ranks.

A:比較例1と比較して50%未満に良化
B:比較例1と比較して50%以上75%未満に良化
C:比較例1と比較して75%以上同等以下に良化
D:比較例1と比較して悪化
A: Improvement to less than 50% compared to Comparative Example 1 B: Improvement to 50% or more and less than 75% compared to Comparative Example 1 C: Improvement to 75% or more compared to Comparative Example 1 or less D: Deteriorated compared to Comparative Example 1

『電子写真特性ばらつき評価方法』
作成した各々の電子写真用感光体を本テスト用に改造されたキヤノン製の複写機iR−5000に設置し、評価項目は、『帯電能ばらつき』、『感度ばらつき』の二項目とし、以下の具体的評価法により各項目の評価を行った。
"Electrophotographic characteristics variation evaluation method"
Each of the electrophotographic photoconductors prepared was installed in a Canon copier iR-5000 modified for this test, and the evaluation items were “chargeability variation” and “sensitivity variation”. Each item was evaluated by a specific evaluation method.

『帯電能ばらつき』
実施例1、比較例1及び2で作製したそれぞれ6本の電子写真用感光体の軸方向中位置における『帯電能』を測定する。6本の電子写真用感光体の『帯電能』の平均値に対する最大値と最小値の差を『帯電能ばらつき』として評価する。従って、数値が小さいほど良好である。実施例1及び比較例2について比較例1と比較し、比較例1の値を100%として以下のランクに区分した。
"Chargeability variation"
The “charging ability” of each of the six electrophotographic photoreceptors produced in Example 1 and Comparative Examples 1 and 2 at the middle position in the axial direction is measured. The difference between the maximum value and the minimum value with respect to the average value of the “chargeability” of the six electrophotographic photoreceptors is evaluated as “chargeability variation”. Therefore, the smaller the value, the better. Example 1 and Comparative Example 2 were compared with Comparative Example 1, and the value of Comparative Example 1 was set to 100%, and was classified into the following ranks.

A:比較例1と比較して75%未満
B:比較例1と比較して75%以上同等未満
C:比較例1と比較して同等
D:比較例1と比較して増加
A: Less than 75% compared to Comparative Example 1 B: 75% or more less than equivalent compared to Comparative Example 1 C: equivalent to Comparative Example 1 D: increased compared to Comparative Example 1

『感度ばらつき』
実施例1、比較例1及び2で作製したそれぞれ6本の電子写真用感光体の軸方向中位置における『感度』を測定する。6本の電子写真用感光体の『感度』の平均値に対する最大値と最小値の差を『感度ばらつき』として評価する。従って、数値が小さいほど良好である。実施例1及び2について比較例1と比較し、比較例1の値を100%として以下のランクに区分した。
"Sensitivity variation"
The “sensitivity” of each of the six electrophotographic photoreceptors produced in Example 1 and Comparative Examples 1 and 2 is measured at the axial center position. The difference between the maximum value and the minimum value with respect to the average value of “sensitivity” of the six electrophotographic photoreceptors is evaluated as “sensitivity variation”. Therefore, the smaller the value, the better. Examples 1 and 2 were compared with Comparative Example 1, and the value of Comparative Example 1 was set to 100%, and was classified into the following ranks.

A:比較例1と比較して75%未満
B:比較例1と比較して75%以上同等未満
C:比較例1と比較して同等
D:比較例1と比較して増加
A: Less than 75% compared to Comparative Example 1 B: 75% or more less than equivalent compared to Comparative Example 1 C: equivalent to Comparative Example 1 D: increased compared to Comparative Example 1

その結果を表2に示す。   The results are shown in Table 2.

Figure 2005298873
Figure 2005298873

表2より明らかな様に、実施例1で用いた装置、即ち、電力分割容器115内の電力分割部116及び高周波電力伝送部117と、反応容器の導電性部分である上蓋107との間にシールド部材119を設置することにより、電子写真用感光体特性むら及び、異なるシリンダ間の電子写真用感光体特性のばらつきを抑えることができた。   As is apparent from Table 2, the apparatus used in Example 1, that is, between the power dividing unit 116 and the high frequency power transmission unit 117 in the power dividing container 115, and the upper lid 107 which is a conductive part of the reaction container. By installing the shield member 119, it was possible to suppress unevenness in electrophotographic photoreceptor characteristics and variations in electrophotographic photoreceptor characteristics between different cylinders.

[実施例2]
本例では実施例1と同様に、図1に示したプラズマ処理装置において、発振周波数が
イ)30MHz
ロ)50MHz
ハ)250MHz
ニ)300MHz
の高周波電源113を用意し、それぞれの高周波電源113を使用して、実施例1と同様に、表1に示す条件で電荷注入阻止層、光導電層、表面層からなる電子写真用感光体を、計四種類作成した。
[Example 2]
In this example, as in Example 1, in the plasma processing apparatus shown in FIG.
B) 50 MHz
C) 250 MHz
D) 300 MHz
In the same manner as in Example 1, an electrophotographic photoreceptor comprising a charge injection blocking layer, a photoconductive layer, and a surface layer was prepared using each of the high frequency power supplies 113 under the conditions shown in Table 1. A total of four types were created.

[比較例3]
本例では、実施例2で使用した図1の真空処理装置に代えて、比較例1と同様に図3に示したプラズマ処理装置を使用し、高周波電源113として、発振周波数がイ)〜ニ)のものを用意し、
イ)30MHz
ロ)50MHz
ハ)250MHz
ニ)300MHz
それぞれの高周波電源を使用して、比較例1と同様に、表1に示す条件で電荷注入阻止層、光導電層、表面層からなる電子写真用感光体を、計四種類作成した。
[Comparative Example 3]
In this example, instead of the vacuum processing apparatus of FIG. 1 used in Example 2, the plasma processing apparatus shown in FIG. 3 is used as in Comparative Example 1, and the oscillation frequency is a) to ni. )
B) 30 MHz
B) 50 MHz
C) 250 MHz
D) 300 MHz
Using each high-frequency power source, a total of four types of electrophotographic photoreceptors comprising a charge injection blocking layer, a photoconductive layer, and a surface layer were prepared under the conditions shown in Table 1, as in Comparative Example 1.

[実施例2及び比較例3の評価]
実施例2の(イ)〜(ニ)及び比較例3の(イ)〜(ニ)において作製した電子写真用感光体の『帯電能母線方向むら』、『感度母線方向むら』、『画像濃度むら』を評価し、上記三項目について、(1)実施例2の(イ)と比較例3の(イ)、(2)実施例2の(ロ)と比較例3の(ロ)、(3)実施例2の(ハ)と比較例3の(ハ)、(4)実施例2の(ニ)と比較例3の(ニ)をそれぞれ比較し、比較例3の値を100%として以下のランクに区分した。その結果を表3に示す。
[Evaluation of Example 2 and Comparative Example 3]
“Electricity bus direction unevenness”, “sensitivity bus direction unevenness”, “image density” of the electrophotographic photoreceptors prepared in (a) to (d) of Example 2 and (a) to (d) of Comparative Example 3 For the above three items, (1) (b) of Example 2 and (b) of Comparative Example 3, (2) (b) of Example 2 and (b) of Comparative Example 3 ( 3) (c) of Example 2 and (c) of Comparative Example 3 and (4) (d) of Example 2 and (d) of Comparative Example 3 were respectively compared, and the value of Comparative Example 3 was taken as 100% It was divided into the following ranks. The results are shown in Table 3.

A:比較例3と比較して75%未満
B:比較例3と比較して75%以上同等未満
C:比較例3と比較して同等
D:比較例3と比較して増加
A: Less than 75% compared to Comparative Example 3 B: 75% or more less than equivalent compared to Comparative Example 3 C: equivalent to Comparative Example 3 D: increased compared to Comparative Example 3

Figure 2005298873
Figure 2005298873

表3より明らかな様に、発振周波数が50MHz以上250MHz以下の高周波電源を使用して、電子写真用感光体を作製した場合、本発明の効果を顕著に得ることができ、電子写真用感光体特性むらを抑えることができる。   As is apparent from Table 3, when an electrophotographic photoreceptor is produced using a high frequency power source having an oscillation frequency of 50 MHz or more and 250 MHz or less, the effects of the present invention can be remarkably obtained, and the electrophotographic photoreceptor is obtained. Unevenness of characteristics can be suppressed.

[実施例3]
本例では、実施例2で使用した図1のプラズマ処理装置に代えて、図5に示すように、異なる周波数の高周波電力を供給可能である二つの高周波電源513A、513Bを使用した。高周波電源A:513Aの発振周波数を105MHz、高周波電源B:513Bの発振周波数を70MHzとし、表4に示す条件で電荷注入阻止層、光導電層、表面層からなる電子写真用感光体を作成した。
[Example 3]
In this example, instead of the plasma processing apparatus of FIG. 1 used in Example 2, two high frequency power supplies 513A and 513B capable of supplying high frequency power of different frequencies were used as shown in FIG. An electrophotographic photoreceptor comprising a charge injection blocking layer, a photoconductive layer, and a surface layer was prepared under the conditions shown in Table 4 with an oscillation frequency of the high frequency power source A: 513A being 105 MHz and an oscillation frequency of the high frequency power source B: 513B being 70 MHz. .

Figure 2005298873
Figure 2005298873

[比較例4]
本例では、実施例3で使用した図5のプラズマ処理装置に代えて、図6に示す装置を使用した。高周波電源A:513Aの発振周波数を105MHz、高周波電源B:513Bの発振周波数を70MHzとし、表4に示す条件で電荷注入阻止層、光導電層、表面層からなる電子写真用感光体を作成した。
[Comparative Example 4]
In this example, the apparatus shown in FIG. 6 was used instead of the plasma processing apparatus of FIG. 5 used in Example 3. An electrophotographic photoreceptor comprising a charge injection blocking layer, a photoconductive layer, and a surface layer was prepared under the conditions shown in Table 4 with an oscillation frequency of the high frequency power source A: 513A being 105 MHz and an oscillation frequency of the high frequency power source B: 513B being 70 MHz. .

[実施例3及び比較例4の評価]
実施例3及び比較例4において作製した電子写真用感光体の『帯電能母線方向むら』、『感度母線方向むら』、『画像濃度むら』を評価し、上記三項目について、実施例3と比較例4をそれぞれ比較し、比較例4の値を100%として以下のランクに区分した。その結果を表5に示す。
[Evaluation of Example 3 and Comparative Example 4]
The “photosensitive busbar direction unevenness”, “sensitivity busbar direction unevenness”, and “image density unevenness” of the electrophotographic photoreceptor produced in Example 3 and Comparative Example 4 were evaluated, and the above three items were compared with Example 3. Example 4 was compared with each other, and the value of Comparative Example 4 was set to 100%, and was classified into the following ranks. The results are shown in Table 5.

A:比較例4と比較して75%未満
B:比較例4と比較して75%以上同等未満
C:比較例4と比較して同等
D:比較例4と比較して増加
A: Less than 75% compared to Comparative Example 4 B: 75% or more less than equivalent compared to Comparative Example 4 C: Equivalent compared to Comparative Example 4 D: Increased compared to Comparative Example 4

Figure 2005298873
Figure 2005298873

表5より明らかな様に、異なる周波数の高周波電力を供給可能である二つの高周波電源113A、113Bを使用した場合においても、本発明の効果を得ることができる。さらには、実施例2及び比較例3の結果と比較すると、本例のように、異なる周波数の高周波電力を供給可能である複数の高周波電源を使用し、周波数の異なる複数の高周波電力を重畳して使用する場合において、本発明の効果を顕著に得ることができ、電子写真用感光体特性むらを抑えることができることがわかる。   As is apparent from Table 5, the effect of the present invention can be obtained even when two high-frequency power supplies 113A and 113B capable of supplying high-frequency power of different frequencies are used. Furthermore, when compared with the results of Example 2 and Comparative Example 3, as in this example, a plurality of high frequency power sources capable of supplying high frequency power of different frequencies are used, and a plurality of high frequency powers having different frequencies are superimposed. It can be seen that the effects of the present invention can be remarkably obtained and the unevenness of the characteristics of the electrophotographic photoreceptor can be suppressed.

図1A,図1Bは、本発明におけるプラズマ処理装置の一例で、プラズマCVD法による電子写真用感光体の製造装置を横から見た概略断面図である。1A and 1B are schematic cross-sectional views of an example of a plasma processing apparatus according to the present invention as seen from the side of an electrophotographic photoreceptor manufacturing apparatus using a plasma CVD method. 図2A,図2Bは、本発明におけるプラズマ処理装置の一例で、図1に示した装置の上蓋近傍の拡大図である。2A and 2B are enlarged views of the vicinity of the upper lid of the apparatus shown in FIG. 1 as an example of the plasma processing apparatus according to the present invention. 図3A,図3Bは、従来のプラズマ処理装置の一例で、プラズマCVD法による電子写真用感光体の製造装置の模式的説明図である。3A and 3B are schematic explanatory views of an example of a conventional plasma processing apparatus and an apparatus for manufacturing an electrophotographic photoreceptor by a plasma CVD method. 図4A,図4Bは、従来のプラズマ処理装置の一例で、プラズマCVD法による電子写真用感光体の製造装置の模式的説明図である。FIG. 4A and FIG. 4B are schematic explanatory diagrams of an apparatus for manufacturing an electrophotographic photoreceptor by a plasma CVD method as an example of a conventional plasma processing apparatus. 図5A,図5Bは、本発明におけるプラズマ処理装置の一例で、プラズマCVD法による電子写真用感光体の製造装置を横から見た概略断面図である。5A and 5B are schematic cross-sectional views of an example of a plasma processing apparatus according to the present invention, as seen from the side of an electrophotographic photoreceptor manufacturing apparatus using a plasma CVD method. 図6A,図6Bは、従来のプラズマ処理装置の一例で、プラズマCVD法による電子写真用感光体の製造装置の模式的説明図である。6A and 6B are schematic explanatory views of an apparatus for manufacturing an electrophotographic photoreceptor by a plasma CVD method as an example of a conventional plasma processing apparatus.

符号の説明Explanation of symbols

101 反応容器
102 基体
103 原料ガス導入手段
104 回転機構
105 基体下部支持手段
106 基体キャップ
107 上蓋
108 基体加熱ヒーター
109 高周波電極
110 原料ガス導入配管
111 圧力測定手段
112 スロットルバルブ
113 高周波電源
114 整合回路
115 電力分割容器
116 電力分割部
117 複数の高周波電力伝送部
118 アースシールド
119 シールド部材
419 同軸ケーブル
513A 高周波電源A
513B 高周波電源B
101 reaction vessel 102 base 103 source gas introduction means 104 rotation mechanism 105 base lower support means 106 base cap 107 upper lid 108 base heater 109 high frequency electrode 110 source gas introduction pipe 111 pressure measurement means 112 throttle valve 113 high frequency power supply 114 matching circuit 115 power Division container 116 Power division unit 117 Plural high frequency power transmission unit 118 Earth shield 119 Shield member 419 Coaxial cable 513A High frequency power source A
513B High frequency power supply B

Claims (7)

反応容器内に設置された基体にプラズマ処理を施すプラズマ処理装置において、整合回路、前記整合回路を介した後の高周波電力を複数の高周波電力伝送部へと分割する電力分割部、前記複数の高周波電力伝送部各々と接続される複数の高周波電極、前記電力分割部及び前記複数の高周波電力伝送部を内包し、導電性部材で形成される電力分割容器を備え、前記反応容器は少なくとも一部が導電性部材で形成され、前記電力分割部及び前記複数の高周波電力伝送部と、前記電力分割容器の一部を形成する前記反応容器の導電性部分との間に導電性部材で形成されたシールド部材が設置されていることを特徴とするプラズマ処理装置。   In a plasma processing apparatus for performing plasma processing on a substrate installed in a reaction vessel, a matching circuit, a power dividing unit that divides high-frequency power after passing through the matching circuit into a plurality of high-frequency power transmission units, and the plurality of high-frequency waves A plurality of high-frequency electrodes connected to each of the power transmission units, the power dividing unit and the plurality of high-frequency power transmission units are included, and a power dividing container formed of a conductive member is provided, and the reaction container is at least partially A shield formed of a conductive member and formed of a conductive member between the power dividing unit and the plurality of high-frequency power transmission units and a conductive part of the reaction vessel forming a part of the power dividing vessel A plasma processing apparatus in which a member is installed. 前記反応容器の少なくとも一部が誘電体部材で構成され、前記高周波電極が反応容器の外に設置されることを特徴とする請求項1に記載のプラズマ処理装置。   The plasma processing apparatus according to claim 1, wherein at least a part of the reaction vessel is made of a dielectric member, and the high-frequency electrode is installed outside the reaction vessel. 前記高周波電力の周波数が50MHz以上250MHz以下の高周波電力を供給可能である高周波電源を備えることを特徴とした、請求項1または2のいずれかに記載のプラズマ処理装置。   3. The plasma processing apparatus according to claim 1, further comprising a high-frequency power source capable of supplying a high-frequency power having a frequency of the high-frequency power of 50 MHz to 250 MHz. 4. 前記高周波電源は、互いに異なる周波数の高周波電力を供給可能である複数の高周波電源を備え、複数の互いに異なる周波数の高周波電力を重畳する電力重畳部が、前記整合回路と前記電力分割部の間に設置されることを特徴とする請求項1乃至3のいずれか1項に記載のプラズマ処理装置。   The high-frequency power source includes a plurality of high-frequency power sources capable of supplying high-frequency power having different frequencies, and a power superimposing unit that superimposes a plurality of high-frequency powers having different frequencies is disposed between the matching circuit and the power dividing unit. The plasma processing apparatus according to claim 1, wherein the plasma processing apparatus is installed. 前記電力分割容器の一部を形成する前記反応容器の導電性部分は、前記基体の堆積膜形成面と平行でないことを特徴とする請求項1乃至4のいずれか1項に記載のプラズマ処理装置。   5. The plasma processing apparatus according to claim 1, wherein a conductive portion of the reaction vessel that forms a part of the power dividing vessel is not parallel to a deposition film formation surface of the substrate. 6. . 前記基体が円筒状であることを特徴とする請求項1乃至5のいずれか1項に記載のプラズマ処理装置。   The plasma processing apparatus according to claim 1, wherein the base is cylindrical. 前記プラズマ処理装置が電子写真用感光体の堆積膜形成に用いられることを特徴とする請求項1乃至6のいずれか1項に記載のプラズマ処理装置。   7. The plasma processing apparatus according to claim 1, wherein the plasma processing apparatus is used for forming a deposited film on an electrophotographic photosensitive member.
JP2004114220A 2004-04-08 2004-04-08 Plasma treatment device Withdrawn JP2005298873A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004114220A JP2005298873A (en) 2004-04-08 2004-04-08 Plasma treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004114220A JP2005298873A (en) 2004-04-08 2004-04-08 Plasma treatment device

Publications (1)

Publication Number Publication Date
JP2005298873A true JP2005298873A (en) 2005-10-27

Family

ID=35330785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004114220A Withdrawn JP2005298873A (en) 2004-04-08 2004-04-08 Plasma treatment device

Country Status (1)

Country Link
JP (1) JP2005298873A (en)

Similar Documents

Publication Publication Date Title
JPH06287760A (en) Plasma treating device and treatment
JP3745095B2 (en) Deposited film forming apparatus and deposited film forming method
JP4109861B2 (en) Vacuum processing method
JP2005298873A (en) Plasma treatment device
JP2005015884A (en) Vacuum treatment system
JP2005133127A (en) Plasma processing apparatus and method
JP2003024772A (en) Plasma processing apparatus and plasma processing method
JP2004353051A (en) Apparatus and method for forming deposited film
JP2003213431A (en) Vacuum processor and vacuum processing method
JP4656628B2 (en) Plasma processing method and method for producing electrophotographic photosensitive member
JP2005142150A (en) Plasma processing apparatus and plasma processing method
JP2008179862A (en) Apparatus and method for forming deposited film
JP2005163161A (en) Apparatus and method for forming deposition film
JP2008209748A (en) Method for producing electrophotographic photoreceptor
JP2005163166A (en) Deposition film forming system and deposition film forming method
JP2005015879A (en) Deposition film forming system and deposition film forming method
JP2001316829A (en) Device and method of vacuum treatment
JP2008214659A (en) Method for forming deposition film
JP2001023909A (en) Manufacture of functional deposited film and manufacturing apparatus of the functional deposited film
JP2003313668A (en) Process for fabricating semiconductor device
JP2003041369A (en) Method and apparatus for vacuum treatment
JP2004134457A (en) Method for plasma treatment
JPH08277472A (en) Apparatus for production of deposited film and its production
JP2004149825A (en) Vacuum treatment system, and vacuum treatment method
JP2005068455A (en) Method and apparatus for forming deposition film

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070703