JP2005133127A - Plasma processing apparatus and method - Google Patents

Plasma processing apparatus and method Download PDF

Info

Publication number
JP2005133127A
JP2005133127A JP2003368408A JP2003368408A JP2005133127A JP 2005133127 A JP2005133127 A JP 2005133127A JP 2003368408 A JP2003368408 A JP 2003368408A JP 2003368408 A JP2003368408 A JP 2003368408A JP 2005133127 A JP2005133127 A JP 2005133127A
Authority
JP
Japan
Prior art keywords
plasma processing
cylindrical substrate
reaction vessel
auxiliary member
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003368408A
Other languages
Japanese (ja)
Inventor
Daisuke Tazawa
大介 田澤
Kunimasa Kawamura
邦正 河村
Yukihiro Abe
幸裕 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003368408A priority Critical patent/JP2005133127A/en
Publication of JP2005133127A publication Critical patent/JP2005133127A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma processing apparatus and a method therefor which enable uniformity in the distribution of electric power in a reaction vessel to be increased to realize the more uniform quality of a deposited film, and consequently realize the formation of the deposited film of excellent quality with high productivity. <P>SOLUTION: In the plasma processing apparatus in which a cylindrical substrate installed in a reaction vessel is subjected to plasma processing, a high frequency electrode and a plurality of auxiliary members different from the cylindrical substrate are installed around the cylindrical substrate within the reaction vessel, and at least a part of the auxiliary members is formed of a conductive material, and is also electrically grounded. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、反応容器内に設置された円筒状基体に、プラズマによって、処理を施すプラズマ処理装置及び方法に関するもので、とりわけプラズマCVD法により、円筒状基体に堆積膜形成を施す際に有効な装置及び方法に関するものである。   The present invention relates to a plasma processing apparatus and method for processing a cylindrical substrate placed in a reaction vessel with plasma, and is particularly effective when a deposited film is formed on a cylindrical substrate by plasma CVD. The present invention relates to an apparatus and a method.

堆積膜形成方法の一つとして放電エネルギーを利用するプラズマCVD法があり、この方法により形成される非晶質薄膜 (例えば水素又は/及びハロゲンによって補償されたアモルファスシリコン) は電子写真感光体、半導体デバイス、TFT等の半導体素子への応用が提案され、その中のいくつかは実用に至っている。特に13.56MHzのRF帯の高周波電力を用いたプラズマCVD法は基板材料、堆積膜材料等が導電体、絶縁体に関わらず処理でき、又、その取り扱いが比較的容易であるため広く用いられている。又、近年においては、VHF帯の高周波電力を用いたプラズマCVD法が注目を浴びており、これを用いた各種堆積膜形成方法の開発も積極的に進められている。これは、VHF−PCVD法では膜堆積速度が速く、また高品質な堆積膜が得られるため、製品の低コスト化、高品質化を同時に達成し得るものと期待されるためである。(例えば、特許文献1参照)
図3Aに従来のVHF−PCVD法による電子写真感光体の製造装置の代表例を示す模式的な構成図を示す。図3Aは製造装置を横からみた概略断面図であり、図3Bは図3Aの切断線X−X’に沿う真上から見た概略断面図である。
One method of forming a deposited film is a plasma CVD method using discharge energy. An amorphous thin film (for example, amorphous silicon compensated by hydrogen or / and halogen) formed by this method is used for an electrophotographic photoreceptor, a semiconductor. Applications to semiconductor elements such as devices and TFTs have been proposed, and some of them have been put to practical use. In particular, the plasma CVD method using RF power in the RF band of 13.56 MHz is widely used because the substrate material, the deposited film material, etc. can be processed regardless of the conductor or insulator, and the handling is relatively easy. ing. In recent years, the plasma CVD method using high-frequency power in the VHF band has attracted attention, and development of various deposited film forming methods using this method has been actively promoted. This is because in the VHF-PCVD method, the film deposition rate is high and a high-quality deposited film can be obtained, so that it is expected that the cost reduction and the quality improvement of the product can be achieved at the same time. (For example, see Patent Document 1)
FIG. 3A is a schematic configuration diagram showing a typical example of a conventional electrophotographic photoreceptor manufacturing apparatus using the VHF-PCVD method. FIG. 3A is a schematic cross-sectional view of the manufacturing apparatus as viewed from the side, and FIG. 3B is a schematic cross-sectional view as viewed from right above the cutting line XX ′ of FIG. 3A.

図3に示した装置は、反応容器(101)中央に回転機構(図示せず)によって回転可能な基体下部支持手段(102)が設置され、前記基体下部支持手段(102)及び基体キャップ(103)によって円筒状基体(104)が基体加熱ヒーター(105)を内包するように固定される。さらに、前記円筒状基体(104)を中心軸とした円周上に複数の高周波電極(106)及び原料ガス導入手段(107)が設置される。   In the apparatus shown in FIG. 3, a lower substrate support means (102) that can be rotated by a rotation mechanism (not shown) is installed at the center of the reaction vessel (101), and the lower substrate support means (102) and the substrate cap (103) are arranged. ) To fix the cylindrical substrate (104) so as to enclose the substrate heater (105). Further, a plurality of high-frequency electrodes (106) and source gas introduction means (107) are installed on the circumference with the cylindrical base (104) as the central axis.

上記の製造装置を使用することにより、VHF−PCVD法によって、速い堆積膜形成速度でも高品質な堆積膜が得ることができ、製品の低コスト化、高品質化を実現することができる。
特開平06−287760(第17頁、第1図) 特開平10−183354(第19頁、第1図)
By using the above manufacturing apparatus, a high-quality deposited film can be obtained even at a high deposition film forming speed by the VHF-PCVD method, and the cost and quality of the product can be reduced.
JP 06-287760 (page 17, Fig. 1) JP-A-10-183354 (page 19, FIG. 1)

しかしながら、上記した製造装置は、形成される堆積膜の品質を向上する上で、或いはより生産性の高い堆積膜形成を実現する上で更なる工夫の余地が存在する。その原因の一つとして、反応容器内でのプラズマの分布が不均一となることが挙げられる。   However, the above-described manufacturing apparatus has room for further improvement in improving the quality of the deposited film to be formed or realizing a deposited film with higher productivity. One of the causes is that the plasma distribution in the reaction vessel becomes non-uniform.

図3に示した製造装置においては、高周波電力は円筒状基体の周囲に配置された高周波電極より反応容器内に導入される。   In the manufacturing apparatus shown in FIG. 3, high-frequency power is introduced into the reaction vessel from a high-frequency electrode disposed around the cylindrical substrate.

そして、反応容器内でのプラズマの分布を極力均一にするために、高周波電極は円筒状基体を中心軸とした円周上に等間隔に配置されている。   In order to make the plasma distribution in the reaction vessel as uniform as possible, the high-frequency electrodes are arranged at equal intervals on the circumference with the cylindrical substrate as the central axis.

しかしながら、円筒状基体を中心として反応容器内の水平面方向のプラズマ分布を見た場合、高周波電極に面する方向と、そうでない方向ではプラズマ特性が異なり、その結果、円筒状基体に形成される堆積膜の品質にむらが生じることとなる。   However, when looking at the plasma distribution in the horizontal plane inside the reaction vessel centering on the cylindrical substrate, the plasma characteristics differ between the direction facing the high-frequency electrode and the other direction, and as a result, the deposition formed on the cylindrical substrate. The film quality will be uneven.

そのような問題に対して、従来までは、堆積膜形成中に円筒状基体を回転させることによって、品質のむらを抑制してきた。   In the past, for such problems, unevenness in quality has been suppressed by rotating the cylindrical substrate during the formation of the deposited film.

しかしながら、そのようにして形成された堆積膜は不均一な品質の堆積膜を重ね合わせた構成となるため、品質の低い部分の堆積膜が悪影響を及ぼし、堆積膜全体の品質をより高くすることが容易ではない場合がある。特に近年においては、電子写真感光体に求められる品質レベルはますます高くなってきており、従来の手法では対処しきれない場合が出てきている。   However, since the deposited film formed in this way is composed of a stack of non-uniform quality deposited films, the deposited film in the lower quality part has an adverse effect, and the quality of the deposited film as a whole is further improved. May not be easy. Particularly in recent years, the level of quality required for electrophotographic photoreceptors is increasing, and there are cases where conventional methods cannot cope with them.

この問題に対しては、導入する高周波電力値をより高くすることによって、電極に面しない円筒状基体部分に形成される堆積膜の品質を高くすることは可能であるが、そうした場合、電力が導入されやすい空間には過剰な電力が導入されてしまう場合があり、逆に形成する堆積膜にダメージを与え、品質の低下やさらには膜剥がれの原因となる場合がある。   For this problem, it is possible to increase the quality of the deposited film formed on the cylindrical substrate portion not facing the electrode by increasing the high-frequency power value to be introduced. Excessive electric power may be introduced into the space where it is easily introduced, and on the contrary, the deposited film to be formed may be damaged, resulting in deterioration of quality and further film peeling.

又、プラズマの均一化を実現するために、高周波電極の本数を増加させた装置構成、或いは、図3に示すような棒状の高周波電極を用いるのではなく、図4に示すように、反応容器の外壁自体に高周波電力を印加し、反応容器外壁を高周波電極として用いるような装置構成が考えられるが、VHF帯の高周波電力を使用する場合、電極の表面積が大きくなりすぎると、電極表面を高周波電力が伝播する際に強度が減衰してしまい、逆にプラズマの分布を不均一にしてしまう場合がある。   Further, in order to realize the uniform plasma, an apparatus configuration in which the number of high-frequency electrodes is increased or a rod-shaped high-frequency electrode as shown in FIG. 3 is not used, but as shown in FIG. An apparatus configuration in which high-frequency power is applied to the outer wall itself and the outer wall of the reaction vessel is used as a high-frequency electrode is conceivable. However, when high-frequency power in the VHF band is used, if the surface area of the electrode becomes too large, When electric power propagates, the intensity is attenuated, and the plasma distribution may be uneven.

又、反応容器中に少なくとも一部が導電性材料で構成された電気的にフローティングの補助部材をプラズマの強度が弱い位置に設置することによって、反応容器内に導入された高周波電力の一部を前記補助部材に伝播させ、あたかも直接電力が印加される高周波電極と同様の働きをもたせる構成も提案されており(特許文献2参照)、そのような装置構成とすることによって、プラズマの不均一性は大幅に改善される。しかしながら、そのように反応空間内に電気的にフローティングの補助部材を設置した場合、理由は定かではないが、堆積膜形成条件によっては、安定な放電を長時間維持することが容易ではない場合あった。   In addition, by installing an electrically floating auxiliary member at least partially made of a conductive material in the reaction vessel at a position where the plasma intensity is weak, a part of the high-frequency power introduced into the reaction vessel is reduced. There has also been proposed a configuration that propagates to the auxiliary member and has a function similar to that of a high-frequency electrode to which power is directly applied (see Patent Document 2). By adopting such a device configuration, plasma non-uniformity is proposed. Is greatly improved. However, when an electrically floating auxiliary member is installed in the reaction space in this way, the reason is not clear, but depending on the deposition film formation conditions, it may not be easy to maintain a stable discharge for a long time. It was.

[発明の目的]
従って本発明の目的は、上述したような従来の問題点を克服し、反応容器内におけるプラズマの均一性を高め、形成される堆積膜の品質をより均一にし、その結果、優れた品質の堆積膜を生産性良く形成することを可能とするプラズマ処理装置を提供することにある。
[Object of the invention]
Therefore, the object of the present invention is to overcome the conventional problems as described above, to improve the uniformity of plasma in the reaction vessel, to make the quality of the deposited film formed more uniform, and as a result, to deposit excellent quality. An object of the present invention is to provide a plasma processing apparatus capable of forming a film with high productivity.

本発明者らは上記目的を達成すべく鋭意検討を行なった結果、VHF帯近辺の高周波電力を使用する場合においては、反応容器内に設置する補助部材が電気的に接地されていたとしても、前記補助部材には高周波電力が伝播し、その結果、あたかも直接電力が印加される高周波電極と同様に周囲の空間に高周波電力を放射する働きをもたせることが可能であること見出した。さらには、前記補助部材は電気的に接地することにより、安定な放電を長時間維持することが可能となることを見出し、本発明を完成させるに至った。即ち、本発明のプラズマ処理装置は、高周波電源、前記高周波電源から出力された高周波電力が印加される高周波電極を備え、反応容器内に設置された円筒状基体にプラズマ処理を施すプラズマ処理装置において、前記反応容器内の前記円筒状基体の周囲には、前記高周波電極及び前記円筒状基体とは異なる複数の補助部材が設置され、前記補助部材は少なくとも一部が導電性材料で形成され、かつ電気的に接地されていることを特徴としている。   As a result of intensive studies to achieve the above object, the present inventors have found that when using high-frequency power near the VHF band, even if the auxiliary member installed in the reaction vessel is electrically grounded, It has been found that high-frequency power propagates through the auxiliary member, and as a result, it is possible to have a function of radiating high-frequency power to the surrounding space in the same manner as a high-frequency electrode to which power is directly applied. Furthermore, the auxiliary member was found to be able to maintain a stable discharge for a long time by being electrically grounded, and the present invention was completed. That is, the plasma processing apparatus of the present invention includes a high-frequency power source, a high-frequency electrode to which a high-frequency power output from the high-frequency power source is applied, and performs plasma processing on a cylindrical substrate installed in a reaction vessel. A plurality of auxiliary members different from the high-frequency electrode and the cylindrical substrate are provided around the cylindrical substrate in the reaction vessel, and the auxiliary member is at least partially formed of a conductive material; and It is characterized by being electrically grounded.

本発明においては、補助部材を電気的に接地することによって、安定な放電を長時間維持することを実現しているが、その理由は定かではないが以下のように考えている。補助部材を電気的にフローティングの状態でプラズマ空間に設置した状況で、長時間にわたってプラズマによる処理を続けた場合、堆積膜形成条件によっては、補助部材に電荷が蓄積されるため表面電位が不安定になり、放電が不安定になる場合があるが、補助部材を電気的に接地することによって、そのような電荷の蓄積を防止することができ、安定な放電を長時間維持できるのではないかと考えている。   In the present invention, it is possible to maintain a stable discharge for a long time by electrically grounding the auxiliary member, but the reason is not clear but is considered as follows. If the auxiliary member is installed in the plasma space in an electrically floating state and the plasma treatment is continued for a long time, the surface potential may be unstable due to accumulation of charge in the auxiliary member depending on the deposition film formation conditions. The discharge may become unstable, but by electrically grounding the auxiliary member, such charge accumulation can be prevented and stable discharge can be maintained for a long time. thinking.

又、補助部材を電気的にフローティングの状態でプラズマ空間に設置した状況でa-Si膜のような半導体膜を形成する場合、堆積膜形成が進むにつれ補助部材を電気的にフローティングにするための絶縁部の表面にも堆積膜が形成され、そのため絶縁部の導電性が変化してしまい、堆積膜形成中に補助部材への高周波電力の伝播状況が変化してしまう場合があるが、補助部材を電気的に接地することによって、そのような高周波電力の伝播状況の変化を抑制することができ、安定な放電を長時間維持できるのではないかと考えている。   In addition, when a semiconductor film such as an a-Si film is formed in a state where the auxiliary member is placed in the plasma space in an electrically floating state, the auxiliary member is placed in an electrically floating state as the deposited film is formed. A deposited film is also formed on the surface of the insulating part, so that the conductivity of the insulating part changes, and the propagation state of high-frequency power to the auxiliary member may change during the formation of the deposited film. It is considered that such a change in the propagation state of high-frequency power can be suppressed by electrically grounding and that stable discharge can be maintained for a long time.

次に、図1に示した装置を使用して実施される、本発明による堆積膜形成方法の一例を以下に詳述する。   Next, an example of the deposited film forming method according to the present invention, which is performed using the apparatus shown in FIG. 1, will be described in detail below.

反応容器(101)内に円筒状基体(104)を設置した後、排気装置(例えば真空ポンプ)を用いて反応容器(101)内を真空引きする。反応容器(101)内を十分排気した後、ガス供給装置(図示せず)内のHe、N2、Ar及びH2等のガスボンベ(図示せず)から供給される内の必要とされる加熱用ガスが、圧力調整器(図示せず)及びマスフローコントローラー(図示せず)等を介することにより適切な流量に調節され、ガス配管(108)、原料ガス導入手段(107)を介して反応容器(101)内に送り込まれる。加熱用ガス導入後の反応容器(101)内圧力は圧力測定手段(109)によってモニターされ、スロットルバルブ(110)の開度を調節すること等によって、所定の値に制御される。所定の基体加熱環境が整ったところで、円筒状基体(104)は基体加熱ヒーター(105)によって間接的に所定の温度にまで加熱される。 After the cylindrical substrate (104) is installed in the reaction vessel (101), the inside of the reaction vessel (101) is evacuated using an exhaust device (for example, a vacuum pump). After sufficiently evacuating the inside of the reaction vessel (101), it is required for heating that is supplied from a gas cylinder (not shown) such as He, N 2 , Ar and H2 in a gas supply device (not shown). The gas is adjusted to an appropriate flow rate via a pressure regulator (not shown), a mass flow controller (not shown), and the like, and a reaction vessel (via a gas pipe (108) and a source gas introduction means (107)). 101). The pressure in the reaction vessel (101) after the introduction of the heating gas is monitored by the pressure measuring means (109) and is controlled to a predetermined value by adjusting the opening of the throttle valve (110). When the predetermined substrate heating environment is prepared, the cylindrical substrate (104) is indirectly heated to a predetermined temperature by the substrate heater (105).

所定の加熱終了後、ガス供給装置(図示せず)内のSiH4、H2、CH4、B26、PH3等のガスボンベ(図示せず)から供給される内の必要とされる堆積膜形成用ガスが、圧力調整器(図示せず)及びマスフローコントローラー(図示せず)等を介することにより適切な流量に調節され、ガス配管(108)、原料ガス導入手段(107)を介して、反応容器(101)内に送り込まれる。堆積膜形成用ガス導入後の反応容器(101)内圧は圧力測定手段(109)によってモニターされ、スロットルバルブ(110)の開度を調節すること等によって、所定の値に制御される。所定の堆積膜形成環境が整ったところで、高周波電源(111)より出力された高周波電力が、整合回路(112)を介した後に、電気的に接地された壁面からなる電力分割容器(113)内に導入される。その後高周波電力は電力分割容器(113)内の電力分割部(114)において複数の導体線路(115)へと分割され、反応容器(101)内に設置された高周波電極(106)を介して、反応容器(101)内に導入されプラズマを生起する。該プラズマにより堆積膜形成用ガスが分解され、円筒状基体(104)上に堆積膜を形成する。この際に、反応容器(101)内に導入された高周波電力の一部は、電気的に接地された補助部材(116)に伝播し、該補助部材(116)は伝播された高周波電力を周囲の空間に放射することによって、周囲の空間に生起されたプラズマの強度を強め、プラズマの均一化を実現することができる。 After completion of the predetermined heating, it is necessary to be supplied from a gas cylinder (not shown) such as SiH 4 , H 2 , CH 4 , B 2 H 6 , PH 3 etc. in a gas supply device (not shown). The deposition film forming gas is adjusted to an appropriate flow rate via a pressure regulator (not shown), a mass flow controller (not shown), etc., and is passed through a gas pipe (108) and a raw material gas introduction means (107). Into the reaction vessel (101). The internal pressure of the reaction vessel (101) after introducing the deposition film forming gas is monitored by the pressure measuring means (109), and is controlled to a predetermined value by adjusting the opening of the throttle valve (110). When a predetermined deposition film forming environment is prepared, the high frequency power output from the high frequency power source (111) passes through the matching circuit (112) and then is electrically grounded in the power dividing container (113). To be introduced. Thereafter, the high frequency power is divided into a plurality of conductor lines (115) in the power dividing section (114) in the power dividing container (113), and via the high frequency electrode (106) installed in the reaction container (101), It is introduced into the reaction vessel (101) to generate plasma. The deposited film forming gas is decomposed by the plasma to form a deposited film on the cylindrical substrate (104). At this time, a part of the high-frequency power introduced into the reaction vessel (101) propagates to the electrically grounded auxiliary member (116), and the auxiliary member (116) surrounds the propagated high-frequency power around. By radiating into the space, it is possible to increase the intensity of the plasma generated in the surrounding space and to achieve uniform plasma.

又、本発明においては、高周波電極(106)及び複数の補助部材(116)が円筒状基体と略平行であることによって、より均一なプラズマを得ることが可能となり、本件の効果を十分に得ることができより好ましい。   Further, in the present invention, since the high-frequency electrode (106) and the plurality of auxiliary members (116) are substantially parallel to the cylindrical substrate, it is possible to obtain a more uniform plasma and sufficiently obtain the effects of the present invention. More preferred.

又、本発明においては、図2に示すように、高周波電極(106)が、少なくとも一部が誘電体で構成された反応容器(201)の外部に設置されていることにより、より均一なプラズマを得ることが可能となり、本件の効果を十分に得ることができより好ましい。その理由は定かではないが、高周波電極(106)が放電空間の外に設置されているために、プラズマへの直接的な寄与が低減し、放電空間内において高周波電力が部分的に強くなるような空間が低減されるからでないかと考えている。   Further, in the present invention, as shown in FIG. 2, the high-frequency electrode (106) is disposed outside the reaction vessel (201) at least partially made of a dielectric material, so that a more uniform plasma can be obtained. It is possible to obtain the above effect, and the effect of the present case can be sufficiently obtained, which is more preferable. The reason is not clear, but since the high-frequency electrode (106) is installed outside the discharge space, the direct contribution to the plasma is reduced, and the high-frequency power is partially increased in the discharge space. I think that this is because the space is reduced.

又、本発明における補助部材(116)の導電性部分の材質としては、特に制限はないが、ある程度の高温及びプラズマ中での使用に耐えうる材料であるものが好ましく、例えば、Al、Ti、Cr、Fe、Ni、Cu等の金属、或いはステンレス等の合金が挙げられる。   The material of the conductive portion of the auxiliary member (116) in the present invention is not particularly limited, but is preferably a material that can withstand use in a certain high temperature and plasma. For example, Al, Ti, Examples thereof include metals such as Cr, Fe, Ni and Cu, and alloys such as stainless steel.

又、本発明においては、補助部材(116)表面と円筒状基体(104)表面間の距離は、20mm以上100mm以下であることが好ましい。補助部材(116)表面と円筒状基体(104)表面間の距離が20mm以下となると、プラズマ処理条件によっては、補助部材(116)と円筒状基体(104)の間にプラズマが生起されない場合があり、本発明の効果が十分に得られない場合があるからである。又、補助部材(116)表面と円筒状基体(104)表面間の距離が100mm以上となると、プラズマ処理条件によっては、補助部材(116)から放射される高周波電力が、円筒状基体(近傍まで影響を及ぼさない場合があり、本発明の効果を十分に得ることができない場合があるからである。   In the present invention, the distance between the surface of the auxiliary member (116) and the surface of the cylindrical substrate (104) is preferably 20 mm or more and 100 mm or less. If the distance between the surface of the auxiliary member (116) and the surface of the cylindrical substrate (104) is 20 mm or less, plasma may not be generated between the auxiliary member (116) and the cylindrical substrate (104) depending on the plasma processing conditions. This is because the effects of the present invention may not be sufficiently obtained. Further, when the distance between the surface of the auxiliary member (116) and the surface of the cylindrical substrate (104) is 100 mm or more, the high frequency power radiated from the auxiliary member (116) may be increased depending on the plasma processing conditions. This is because there is a case where the effect of the present invention cannot be sufficiently obtained.

又、本発明においては、前記円筒状基体(104)全長にわたって前記補助部材(116)の導電性部分が対向する構成とすることによって、本発明の効果をより顕著に得ることができる。ここでいう、前記円筒状基体(104)全長にわたって前記補助部材(116)の導電性部分が対向する構成とは、図5Aに示すLの部分が導電性である場合であり、図5Bのような構成は含まれない。   In the present invention, the effect of the present invention can be obtained more remarkably by adopting a configuration in which the conductive portions of the auxiliary member (116) face each other over the entire length of the cylindrical base body (104). Here, the configuration in which the conductive portions of the auxiliary member (116) face each other over the entire length of the cylindrical substrate (104) is a case where the portion L shown in FIG. 5A is conductive, as shown in FIG. 5B. This configuration is not included.

又、本発明において、使用される高周波電力周波数としては、20MHz以上250MHz以下の範囲で効果的である。その理由は定かではないが、高周波電力の周波数が20MHzよりも小さい場合、充分な高周波電力が補助部材に伝播せず、本発明の効果を充分に得られない場合があるからであると考えている。又、高周波電力の周波数が250MHzよりも高い場合では、高周波電力が高周波電極や補助部材を伝播する際に著しく減衰してしまい、均一なプラズマを実現することが困難な場合があるからであると考えている。   In the present invention, the high frequency power frequency used is effective in the range of 20 MHz to 250 MHz. The reason is not clear, but it is considered that when the frequency of the high frequency power is smaller than 20 MHz, sufficient high frequency power does not propagate to the auxiliary member, and the effects of the present invention may not be sufficiently obtained. Yes. In addition, when the frequency of the high frequency power is higher than 250 MHz, the high frequency power is significantly attenuated when propagating through the high frequency electrode or the auxiliary member, and it may be difficult to realize uniform plasma. thinking.

(実施例)
以下、本発明の堆積膜形成装置及び方法について、実施例及び比較例により更に詳しく説明するが、本発明はこれらにより限定されるものではない。
(Example)
Hereinafter, the deposited film forming apparatus and method of the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

(実施例1)
図1に示したプラズマ処理装置において、高周波電源(111)として発振周波数105MHzのものを使用し、表1に示す条件で、直径80[mm]、長さ358[mm]の円筒状アルミニウムシリンダ(104)上に、電荷注入阻止層、光導電層及び表面層を堆積し電子写真感光体を作製した。
(Example 1)
In the plasma processing apparatus shown in FIG. 1, a high frequency power source (111) having an oscillation frequency of 105 MHz is used, and under the conditions shown in Table 1, a cylindrical aluminum cylinder having a diameter of 80 [mm] and a length of 358 [mm] ( 104) A charge injection blocking layer, a photoconductive layer and a surface layer were deposited thereon to produce an electrophotographic photoreceptor.

尚、本例においては、補助部材(116)として、直径30[mm]、長さ500[mm]のアルミニウム製の円柱状部材を使用した。   In this example, an aluminum columnar member having a diameter of 30 [mm] and a length of 500 [mm] was used as the auxiliary member (116).

尚、本例においては、円筒状アルミニウムシリンダ(104)は静止させた状態で、プラズマ処理を実施した。   In this example, the plasma treatment was performed while the cylindrical aluminum cylinder (104) was stationary.

Figure 2005133127
Figure 2005133127

(比較例1)
本例では、図3に示したプラズマ処理装置を使用し、実施例1と同様の条件で、円筒状アルミニウムシリンダ(104)上に、電子写真感光体を作製した。
尚、本例においては、実施例1で使用した補助部材(116)は使用していない。
尚、本例においても、円筒状アルミニウムシリンダ(104)は静止させた状態で、プラズマ処理を実施した。
(Comparative Example 1)
In this example, an electrophotographic photosensitive member was produced on a cylindrical aluminum cylinder (104) under the same conditions as in Example 1 using the plasma processing apparatus shown in FIG.
In this example, the auxiliary member (116) used in Example 1 is not used.
In this example as well, the plasma treatment was performed with the cylindrical aluminum cylinder (104) stationary.

(実施例1及び比較例1評価)
実施例1及び比較例1において作製した、電子写真感光体の電子写真特性を以下に記載した方法で評価し、実施例1で作製した電子写真感光体と比較例1で作製した電子写真感光体との比較を行った。
(Evaluation of Example 1 and Comparative Example 1)
The electrophotographic characteristics of the electrophotographic photoreceptors produced in Example 1 and Comparative Example 1 were evaluated by the methods described below, and the electrophotographic photoreceptors produced in Example 1 and Comparative Example 1 were produced. And compared.

『電子写真特性評価方法』
作成した各々の電子写真感光体を本テスト用に改造されたキヤノン製の複写機iR−5000に設置し、評価項目は、『残留電位周ムラ』とし、以下の具体的評価法により各項目の評価を行った。
"Electrophotographic characteristic evaluation method"
Each created electrophotographic photosensitive member is installed in a Canon copying machine iR-5000 modified for this test, and the evaluation item is “residual potential circumferential unevenness”. Evaluation was performed.

『残留電位周ムラ』
現像器位置における暗部電位の周方向一周分の平均値が所定の値となるように、主帯電器の電流値を調整した後、所定の光量の像露光を照射し、そのときの現像器位置における表面電位を測定し、その値を『残留電位』とする。実施例1及び比較例1で作製した電子写真感光体の軸方向中位置において、図1及び図3に示すA方向を0°方向として『残留電位』を周方向一周分10°刻みに測定し、それぞれの値を最小値で割った値を『周ムラ』の評価指針とする。よって値が小さく、1に近い程『周ムラ』は良好である。
"Residual potential circumferential unevenness"
After adjusting the current value of the main charger so that the average value of the dark portion potential in the circumferential direction at the developing unit position becomes a predetermined value, the image is irradiated with a predetermined amount of light, and the developing unit position at that time Measure the surface potential at and set the value as the “residual potential”. At the position in the axial direction of the electrophotographic photosensitive member produced in Example 1 and Comparative Example 1, the “residual potential” was measured in 10 ° increments in the circumferential direction with the A direction shown in FIGS. 1 and 3 as the 0 ° direction. A value obtained by dividing each value by the minimum value is used as an evaluation guideline for “circumference unevenness”. Therefore, the smaller the value is and the closer to 1, the better the “circumference unevenness”.

実施例1及び比較例1の結果をそれぞれ、図6及び図7に示す。図6では周方向で大きなムラは観測されないが、図7では、周方向で120°周期で大きなムラが観測される。図7の結果を図3における装置構成と対比させると、電極の配置とムラの周期が一致し、電極に面しない部分が電極に面する部分よりも『残留電位』が大きくなっているが、図1に示すように、補助部材(116)を設置することにより、『残留電位周ムラ』が大幅に改善されることがわかる。   The results of Example 1 and Comparative Example 1 are shown in FIGS. 6 and 7, respectively. In FIG. 6, large unevenness is not observed in the circumferential direction, but in FIG. 7, large unevenness is observed with a period of 120 ° in the circumferential direction. When the result of FIG. 7 is compared with the apparatus configuration in FIG. 3, the arrangement of the electrodes and the period of unevenness match, and the portion that does not face the electrode has a larger “residual potential” than the portion that faces the electrode. As shown in FIG. 1, it is understood that “residual potential circumferential unevenness” is significantly improved by installing the auxiliary member (116).

(実施例2)
図1に示したプラズマ処理装置において、高周波電源(111)として発振周波数105MHzのものを使用し、実施例1で使用した表1に示す条件に変えて、表2に示す条件で、直径80[mm]、長さ358[mm]の円筒状アルミニウムシリンダ(104)上に、電荷注入阻止層、光導電層及び表面層を堆積し電子写真感光体を作製した。
(Example 2)
In the plasma processing apparatus shown in FIG. 1, a high-frequency power source (111) having an oscillation frequency of 105 MHz is used, and instead of the conditions shown in Table 1 used in Example 1, the diameter of 80 [ A charge injection blocking layer, a photoconductive layer and a surface layer were deposited on a cylindrical aluminum cylinder (104) having a length of mm] and a length of 358 [mm] to produce an electrophotographic photoreceptor.

尚、本例においては、補助部材(116)として、直径30[mm]、長さ500[mm]のアルミニウム製の円柱状部材を使用した。   In this example, an aluminum columnar member having a diameter of 30 [mm] and a length of 500 [mm] was used as the auxiliary member (116).

尚、本例においては、円筒状アルミニウムシリンダ(104)は回転させた状態で、プラズマ処理を実施した。   In this example, the plasma treatment was performed while the cylindrical aluminum cylinder (104) was rotated.

Figure 2005133127
Figure 2005133127

(比較例2)
本例では、図3に示したプラズマ処理装置を使用し、実施例2と同様の条件で、円筒状アルミニウムシリンダ(104)上に、電子写真感光体を作製した。
(Comparative Example 2)
In this example, an electrophotographic photosensitive member was produced on a cylindrical aluminum cylinder (104) under the same conditions as in Example 2 using the plasma processing apparatus shown in FIG.

尚、本例においても、円筒状アルミニウムシリンダ(104)は回転させた状態で、プラズマ処理を実施した。   In this example as well, the plasma treatment was performed with the cylindrical aluminum cylinder (104) rotated.

(比較例3)
本例では、図1に示したプラズマ処理装置において、補助部材(116)を電気的にフローティングに設置した構成で、実施例2と同様の条件で、円筒状アルミニウムシリンダ(104)上に、電子写真感光体を作製した。
(Comparative Example 3)
In this example, in the plasma processing apparatus shown in FIG. 1, the auxiliary member (116) is installed in an electrically floating state, and on the cylindrical aluminum cylinder (104) under the same conditions as in the second embodiment, A photographic photoreceptor was prepared.

尚、本例においても、円筒状アルミニウムシリンダ(104)は回転させた状態で、プラズマ処理を実施した。   In this example as well, the plasma treatment was performed with the cylindrical aluminum cylinder (104) rotated.

(実施例2、比較例2及び比較例3評価)
実施例2、比較例2及び比較例3において作製した、電子写真感光体の電子写真特性を以下に記載した方法で評価し、実施例2で作製した電子写真感光体と比較例2及び比較例3で作製した電子写真感光体との比較を行った。
(Evaluation of Example 2, Comparative Example 2 and Comparative Example 3)
The electrophotographic characteristics of the electrophotographic photoreceptors produced in Example 2, Comparative Example 2 and Comparative Example 3 were evaluated by the methods described below, and the electrophotographic photoreceptor produced in Example 2 and Comparative Examples 2 and Comparative Examples were evaluated. Comparison with the electrophotographic photosensitive member prepared in 3 was performed.

『電子写真特性評価方法』
作成した各々の電子写真感光体を本テスト用に改造されたキヤノン製の複写機iR−5000に設置し、評価項目は、『感度』及び『光メモリー』とし、以下の具体的評価法により各項目の評価を行った。
"Electrophotographic characteristic evaluation method"
Each created electrophotographic photosensitive member is installed in a Canon copier iR-5000 modified for this test, and the evaluation items are “sensitivity” and “optical memory”. Items were evaluated.

『感度』
現像器位置における暗部電位が所定の値となるように、主帯電器の電流値を調整した後、像露光を照射する。ついで像露光光源の光量を調整して、現像器位置における表面電位が所定の値となるようにし、そのときの露光量を測定する。実施例2、比較例2及び比較例3で作製した電子写真感光体の軸方向中位置における前記露光量を測定し、その値を『感度』とする。従って、数値が小さいほど良好である。
"sensitivity"
After adjusting the current value of the main charger so that the dark portion potential at the developing unit position becomes a predetermined value, image exposure is performed. Next, the light quantity of the image exposure light source is adjusted so that the surface potential at the developing device position becomes a predetermined value, and the exposure amount at that time is measured. The exposure amount at the middle position in the axial direction of the electrophotographic photosensitive member produced in Example 2, Comparative Example 2 and Comparative Example 3 is measured, and the value is defined as “sensitivity”. Therefore, the smaller the value, the better.

実施例2、比較例2及び比較例3毎に『感度』を測定し、それぞれについて比較例2と比較し、比較例2の値を100%として以下のランクに区分した。   “Sensitivity” was measured for each of Example 2, Comparative Example 2 and Comparative Example 3, and each was compared with Comparative Example 2. The value of Comparative Example 2 was set as 100%, and was classified into the following ranks.

A 比較例2と比較して90%未満
B 比較例2と比較して90%以上100%未満
C 比較例2と比較して100%以上110%未満
D 比較例2と比較して110%以上
『光メモリー』
現像器位置における暗部電位が所定の値となるように、主帯電器の電流値を調整した後、像露光を照射する。電子写真感光体の現像器位置での表面電位が所定の値になるように像露光光源の光量を調整する。この像露光条件において、現像器位置での非露光状態での表面電位と、一旦露光した後に再度帯電した時の表面電位とを測定し、両者の電位差を算定し、その値を『光メモリー』とする。従って、数値が小さいほど良好である。
A Less than 90% compared with Comparative Example 2 B 90% or more but less than 100% compared with Comparative Example 2 C 100% or more less than 110% compared with Comparative Example 2 D 110% or more compared with Comparative Example 2 "Optical memory"
After adjusting the current value of the main charger so that the dark portion potential at the developing unit position becomes a predetermined value, image exposure is performed. The light amount of the image exposure light source is adjusted so that the surface potential at the developing device position of the electrophotographic photosensitive member becomes a predetermined value. Under this image exposure condition, the surface potential in the non-exposure state at the developing unit position and the surface potential when recharged after being exposed once are measured, the potential difference between them is calculated, and the value is calculated as “optical memory”. And Therefore, the smaller the value, the better.

実施例2、比較例2及び比較例3毎に『感度』を測定し、それぞれについて比較例2と比較し、比較例2の値を100%として以下のランクに区分した。   “Sensitivity” was measured for each of Example 2, Comparative Example 2 and Comparative Example 3, and each was compared with Comparative Example 2. The value of Comparative Example 2 was set as 100%, and was classified into the following ranks.

A 比較例2と比較して80%未満
B 比較例2と比較して80%以上100%未満
C 比較例2と比較して100%以上120%未満
D 比較例2と比較して120%以上
その結果を表3に示す。
A Compared with Comparative Example 2 Less than 80% B Compared with Comparative Example 2 80% or more and less than 100% C Compared with Comparative Example 2 100% or more and less than 120% D Compared with Comparative Example 2 120% or more The results are shown in Table 3.

Figure 2005133127
Figure 2005133127

表3より明らかな様に、本発明のプラズマ処理装置及び方法を実施することにより、優れた品質の電子写真感光体を作製することができることがわかる。   As is apparent from Table 3, it can be seen that an electrophotographic photosensitive member of excellent quality can be produced by implementing the plasma processing apparatus and method of the present invention.

(実施例3)
実施例2と同様の装置及び条件で、20本の電子写真感光体を作成した。
(Example 3)
Twenty electrophotographic photoreceptors were prepared using the same apparatus and conditions as in Example 2.

(比較例4)
比較例3と同様の装置及び条件で、20本の電子写真感光体を作成した。
(Comparative Example 4)
Twenty electrophotographic photosensitive members were prepared using the same apparatus and conditions as in Comparative Example 3.

(実施例3及び比較例4評価)
実施例3及び比較例4において作製した、電子写真感光体の電子写真特性を以下に記載した方法で評価し、実施例3で作製した電子写真感光体と比較例4で作製した電子写真感光体との比較を行った。
(Evaluation of Example 3 and Comparative Example 4)
The electrophotographic characteristics of the electrophotographic photoreceptors produced in Example 3 and Comparative Example 4 were evaluated by the methods described below, and the electrophotographic photoreceptor produced in Example 3 and the electrophotographic photoreceptor produced in Comparative Example 4 were used. And compared.

『電子写真特性評価方法』
作成した各々の電子写真感光体を本テスト用に改造されたキヤノン製の複写機iR−5000に設置し、評価項目は、『感度ばらつき』及び『光メモリーばらつき』とし、以下の具体的評価法により各項目の評価を行った。
"Electrophotographic characteristic evaluation method"
Each created electrophotographic photosensitive member is installed in a Canon copier iR-5000 modified for this test, and the evaluation items are “sensitivity variation” and “optical memory variation”. The evaluation of each item was performed.

『感度ばらつき』
実施例3、比較例4で作製したそれぞれ20本の電子写真感光体の軸方向中位置における『感度』を測定する。20本の電子写真感光体の『感度』の平均値に対する最大値と最小値の差を『感度ばらつき』として評価する。従って、数値が小さいほど良好である。実施例3について比較例4と比較し、比較例4の値を100%として以下のランクに区分した。
"Sensitivity variation"
The “sensitivity” of each of the 20 electrophotographic photosensitive members produced in Example 3 and Comparative Example 4 at the middle position in the axial direction is measured. The difference between the maximum value and the minimum value with respect to the average value of “sensitivity” of the 20 electrophotographic photosensitive members is evaluated as “sensitivity variation”. Therefore, the smaller the value, the better. Example 3 was compared with Comparative Example 4, and the value of Comparative Example 4 was set to 100%, and was classified into the following ranks.

A 比較例4と比較して80%未満
B 比較例4と比較して80%以上100%未満
C 比較例4と比較して100%以上120%未満
D 比較例4と比較して120%以上
『光メモリーばらつき』
実施例3、比較例4で作製したそれぞれ20本の電子写真感光体の軸方向中位置における『光メモリー』を測定する。20本の電子写真感光体の『光メモリー』の平均値に対する最大値と最小値の差を『光メモリーばらつき』として評価する。従って、数値が小さいほど良好である。実施例3について比較例4と比較し、比較例4の値を100%として以下のランクに区分した。
A Compared with Comparative Example 4 Less than 80% B Compared with Comparative Example 4 80% or more and less than 100% C Compared with Comparative Example 4 100% or more and less than 120% D Compared with Comparative Example 4 120% or more "Optical memory variation"
The “optical memory” at the middle position in the axial direction of each of the 20 electrophotographic photosensitive members produced in Example 3 and Comparative Example 4 is measured. The difference between the maximum value and the minimum value with respect to the average value of the “optical memory” of the 20 electrophotographic photosensitive members is evaluated as “optical memory variation”. Therefore, the smaller the value, the better. Example 3 was compared with Comparative Example 4, and the value of Comparative Example 4 was set to 100%, and was classified into the following ranks.

A 比較例4と比較して80%未満
B 比較例4と比較して80%以上100%未満
C 比較例4と比較して100%以上120%未満
D 比較例4と比較して120%以上
A Compared with Comparative Example 4 Less than 80% B Compared with Comparative Example 4 80% or more and less than 100% C Compared with Comparative Example 4 100% or more and less than 120% D Compared with Comparative Example 4 120% or more

Figure 2005133127
Figure 2005133127

表4より明らかな様に、本発明の堆積膜形成装置及び方法を実施することにより、優れた品質の電子写真感光体を再現性良く作製することができることがわかる。   As is apparent from Table 4, it can be seen that by implementing the deposited film forming apparatus and method of the present invention, an electrophotographic photosensitive member of excellent quality can be produced with good reproducibility.

(実施例4)
本例では、実施例3で使用した図1に示したプラズマ処理装置に変えて、図2に示したプラズマ処理装置を使用し、表5に示す条件で、直径80[mm]、長さ358[mm]の円筒状アルミニウムシリンダ(104)上に、電荷注入阻止層、光導電層及び表面層を堆積し電子写真感光体を作製した。
Example 4
In this example, instead of the plasma processing apparatus shown in FIG. 1 used in the third embodiment, the plasma processing apparatus shown in FIG. 2 is used. Under the conditions shown in Table 5, the diameter is 80 [mm] and the length is 358. A charge injection blocking layer, a photoconductive layer and a surface layer were deposited on a [mm] cylindrical aluminum cylinder (104) to produce an electrophotographic photoreceptor.

尚、本例においては、円筒状アルミニウムシリンダ(104)は回転させた状態で、プラズマ処理を実施した。   In this example, the plasma treatment was performed while the cylindrical aluminum cylinder (104) was rotated.

作成した電子写真感光体を、実施例2及び実施例3と同様の評価を行ったところ、実施例2及び3と同様の特性が得られ、優れた品質の電子写真感光体を再現性良く作製することができた。   When the produced electrophotographic photoreceptor was evaluated in the same manner as in Example 2 and Example 3, the same characteristics as in Examples 2 and 3 were obtained, and an excellent quality electrophotographic photoreceptor was produced with good reproducibility. We were able to.

Figure 2005133127
Figure 2005133127

(実施例5)
本例は、実施例2で使用したプラズマ処理装置を使用し、補助部材(116)表面と円筒状アルミニウムシリンダ(104)表面間の距離を、(イ)10mm、(ロ)20mm、(ハ)50mm、(ニ)100mm、(ホ)120mmとして、実施例2と同様の条件で電子写真感光体を作製した。
(Example 5)
This example uses the plasma processing apparatus used in Example 2, and the distance between the surface of the auxiliary member (116) and the surface of the cylindrical aluminum cylinder (104) is (a) 10 mm, (b) 20 mm, (c) An electrophotographic photosensitive member was produced under the same conditions as in Example 2 with 50 mm, (d) 100 mm, and (e) 120 mm.

実施例5の(イ)〜(ホ)において作製した電子写真感光体の『感度』及び『光メモリー』を、実施例2に記載した方法で評価し、実施例5(ロ)の値を100%として以下のランクに区分した。   The “sensitivity” and “optical memory” of the electrophotographic photosensitive member produced in (a) to (e) of Example 5 were evaluated by the method described in Example 2, and the value of Example 5 (B) was set to 100. It was divided into the following ranks as%.

A 実施例5(ロ)と比較して90%未満
B 実施例5(ロ)と比較して90%以上100%未満
C 実施例5(ロ)と比較して100%以上110%未満
D 実施例5(ロ)と比較して110%以上
その結果を表6に示す。
A Less than 90% compared to Example 5 (B) B 90% or more and less than 100% compared to Example 5 (B) C 100% or more and less than 110% compared to Example 5 (B) D Implementation 110% or more compared with Example 5 (b). The results are shown in Table 6.

Figure 2005133127
Figure 2005133127

表6から明らかな様に、補助部材(116)表面と円筒状アルミニウムシリンダ(104)表面間の距離を、20mm以上100mm以下とすることにより、優れた品質の電子写真感光体を作製することができた。   As is clear from Table 6, an excellent quality electrophotographic photosensitive member can be produced by setting the distance between the surface of the auxiliary member (116) and the surface of the cylindrical aluminum cylinder (104) to 20 mm or more and 100 mm or less. did it.

(実施例6)
本例においても、実施例2で使用したプラズマ処理装置を使用し、(ィ)図5Aに示すように、円筒状アルミニウムシリンダ(104)全長にわたって補助部材(116)の導電性部分が対向する構成(即ち図中L部が導電性である)で、(ロ)図5Bに示すように、円筒状アルミニウムシリンダ(104)の一部(図中α部)が補助部材(116)と対向しない構成で、実施例2と同様の条件で電子写真感光体を作製した。
(Example 6)
Also in this example, the plasma processing apparatus used in Example 2 is used, and as shown in FIG. 5A, the conductive portion of the auxiliary member (116) faces the entire length of the cylindrical aluminum cylinder (104). (I.e., portion L in the drawing is conductive) (b) As shown in FIG. 5B, a part (α portion in the drawing) of the cylindrical aluminum cylinder (104) does not face the auxiliary member (116). Thus, an electrophotographic photosensitive member was produced under the same conditions as in Example 2.

実施例6の(イ)及び(ロ)において作製した電子写真感光体の『感度』及び『光メモリー』を、実施例2に記載した方法を用いて評価する。但し、実施例2とは測定位置が異なり、図5Bにαで示した範囲の中央位置を評価し、実施例6(ロ)の値を100%として以下のランクに区分した。   Using the method described in Example 2, the “sensitivity” and “optical memory” of the electrophotographic photosensitive member produced in (a) and (b) of Example 6 are evaluated. However, the measurement position was different from that of Example 2, and the central position of the range indicated by α in FIG. 5B was evaluated, and the value of Example 6 (b) was set as 100% and classified into the following ranks.

A 実施例6(ロ)と比較して90%未満
B 実施例6(ロ)と比較して90%以上100%未満
C 実施例6(ロ)と比較して100%以上110%未満
D 実施例6(ロ)と比較して110%以上
A Less than 90% compared to Example 6 (B) B 90% or more and less than 100% compared to Example 6 (B) C 100% or more and less than 110% compared to Example 6 (B) D Implementation 110% or more compared to Example 6 (b)

Figure 2005133127
Figure 2005133127

表7から明らかな様に、円筒状アルミニウムシリンダ(104)全長にわたって補助部材(116)の導電性部分が対向していることにより、優れた品質の電子写真感光体を作製することができた。   As can be seen from Table 7, the electrophotographic photosensitive member of excellent quality could be produced because the conductive portions of the auxiliary member (116) face each other over the entire length of the cylindrical aluminum cylinder (104).

本発明における堆積膜形成装置の一例で、プラズマCVD法による電子写真感光体の製造装置の模式的説明図である。It is an example of the deposited film formation apparatus in this invention, and is typical explanatory drawing of the manufacturing apparatus of the electrophotographic photoreceptor by plasma CVD method. 本発明における堆積膜形成装置の一例で、プラズマCVD法による電子写真感光体の製造装置の模式的説明図である。It is an example of the deposited film formation apparatus in this invention, and is typical explanatory drawing of the manufacturing apparatus of the electrophotographic photoreceptor by plasma CVD method. 従来の堆積膜形成装置の一例で、プラズマCVD法による電子写真感光体の製造装置の模式的説明図である。It is an example of the conventional deposited film forming apparatus, and is a schematic explanatory view of an electrophotographic photoreceptor manufacturing apparatus by plasma CVD. 従来の堆積膜形成装置の一例で、プラズマCVD法による電子写真感光体の製造装置の模式的説明図である。It is an example of the conventional deposited film forming apparatus, and is a schematic explanatory view of an electrophotographic photoreceptor manufacturing apparatus by plasma CVD. 本発明における堆積膜形成装置の一例で、円筒状基体と補助部材の位置関係を示す模式的説明図である。It is an example of the deposited film formation apparatus in this invention, and is typical explanatory drawing which shows the positional relationship of a cylindrical base | substrate and an auxiliary member. 実施例1で作製した電子写真感光体の評価結果を示すグラフである。3 is a graph showing the evaluation results of the electrophotographic photosensitive member produced in Example 1. 比較例1で作製した電子写真感光体の評価結果を示すグラフである。6 is a graph showing the evaluation results of the electrophotographic photosensitive member produced in Comparative Example 1.

符号の説明Explanation of symbols

101 反応容器
102 基体下部支持手段
103 基体キャップ
104 円筒状基体
105 基体加熱ヒーター
106 高周波電極
107 原料ガス導入手段
108 ガス配管
109 圧力測定手段
110 スロットルバルブ
111 高周波電源
112 整合回路
113 電力分割容器
114 電力分割部
115 導体線路
116 補助部材
201 少なくとも一部が誘電体で構成された反応容器
DESCRIPTION OF SYMBOLS 101 Reaction container 102 Base lower part support means 103 Base cap 104 Cylindrical base body 105 Substrate heater 106 High frequency electrode 107 Raw material gas introduction means 108 Gas piping 109 Pressure measurement means 110 Throttle valve 111 High frequency power supply 112 Matching circuit 113 Power division container 114 Power division Part 115 Conductor line 116 Auxiliary member 201 Reaction vessel at least partially made of a dielectric

Claims (12)

高周波電源、前記高周波電源から出力された高周波電力が印加される高周波電極を備え、反応容器内に設置された円筒状基体にプラズマ処理を施すプラズマ処理装置において、前記反応容器内の前記円筒状基体の周囲には、前記高周波電極及び前記円筒状基体とは異なる複数の補助部材が設置され、前記補助部材は少なくとも一部が導電性材料で形成され、かつ電気的に接地されていることを特徴とするプラズマ処理装置。   A plasma processing apparatus comprising a high-frequency power source, a high-frequency electrode to which a high-frequency power output from the high-frequency power source is applied, and performing a plasma treatment on a cylindrical substrate installed in the reaction vessel, wherein the cylindrical substrate in the reaction vessel A plurality of auxiliary members different from the high-frequency electrode and the cylindrical substrate are provided around the auxiliary member, and the auxiliary member is formed of a conductive material and is electrically grounded. A plasma processing apparatus. 前記高周波電極及び前記複数の補助部材が、前記円筒状基体と略平行であることを特徴とする請求項1に記載のプラズマ処理装置。   The plasma processing apparatus according to claim 1, wherein the high-frequency electrode and the plurality of auxiliary members are substantially parallel to the cylindrical substrate. 前記高周波電極が、少なくとも一部が誘電体で構成された前記反応容器の外部に設置されていることを特徴とする請求項1乃至2に記載のプラズマ処理装置。   3. The plasma processing apparatus according to claim 1, wherein the high-frequency electrode is installed outside the reaction vessel at least a part of which is made of a dielectric. 前記補助部材表面と前記円筒状基体表面間の距離が、20mm以上100mm以下であることを特徴とする請求項1乃至3に記載のプラズマ処理装置。   The plasma processing apparatus according to claim 1, wherein a distance between the auxiliary member surface and the cylindrical substrate surface is 20 mm or more and 100 mm or less. 前記円筒状基体全長にわたって前記補助部材の導電性部分が対向していることを特徴とする請求項1乃至4に記載のプラズマ処理装置。   The plasma processing apparatus according to claim 1, wherein the conductive portions of the auxiliary member face each other over the entire length of the cylindrical substrate. 前記高周波電力の周波数が20MHz以上250MHz以下であることを特徴とする請求項1乃至5に記載のプラズマ処理装置。   The plasma processing apparatus according to claim 1, wherein the frequency of the high-frequency power is 20 MHz or more and 250 MHz or less. 高周波電源より出力された高周波電力を、高周波電極へと供給することによって、反応容器内にプラズマを生起し、前記反応容器内に設置された複数の円筒状基体にプラズマ処理を施すプラズマ処理方法において、前記反応容器内の前記円筒状基体の周囲に、前記高周波電極及び前記円筒状基体とは異なる複数の補助部材を設置し、前記補助部材を少なくとも一部が導電性材料で形成し、かつ電気的に接地させることを特徴とするプラズマ処理方法。   In a plasma processing method of generating plasma in a reaction vessel by supplying high-frequency power output from a high-frequency power source to a high-frequency electrode, and performing plasma treatment on a plurality of cylindrical substrates installed in the reaction vessel A plurality of auxiliary members different from the high-frequency electrode and the cylindrical substrate are provided around the cylindrical substrate in the reaction vessel, and the auxiliary member is formed of a conductive material at least partially, and is electrically A plasma processing method characterized in that it is grounded. 前記高周波電極及び前記複数の補助部材を前記円筒状基体と略平行に設置することを特徴とする請求項7に記載のプラズマ処理方法。   The plasma processing method according to claim 7, wherein the high-frequency electrode and the plurality of auxiliary members are installed substantially parallel to the cylindrical substrate. 前記高周波電極を、少なくとも一部が誘電体で構成された前記反応容器の外部に設置することを特徴とする請求項7乃至8に記載のプラズマ処理方法。   9. The plasma processing method according to claim 7, wherein the high-frequency electrode is installed outside the reaction vessel at least partly made of a dielectric. 前記補助部材表面と前記円筒状基体表面間の距離が、20mm以上100mm以下の距離に設置されていることを特徴とする請求項7乃至9に記載のプラズマ処理方法。   The plasma processing method according to claim 7, wherein a distance between the auxiliary member surface and the cylindrical substrate surface is set to a distance of 20 mm to 100 mm. 前記円筒状基体全長にわたって前記補助部材の導電性部分が対向していることを特徴とする請求項7乃至10に記載のプラズマ処理方法。   The plasma processing method according to claim 7, wherein the conductive portions of the auxiliary member face each other over the entire length of the cylindrical substrate. 前記高周波電力の周波数が20MHz以上250MHz以下であることを特徴とする請求項7乃至11に記載のプラズマ処理方法。
The plasma processing method according to claim 7, wherein a frequency of the high-frequency power is 20 MHz to 250 MHz.
JP2003368408A 2003-10-29 2003-10-29 Plasma processing apparatus and method Withdrawn JP2005133127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003368408A JP2005133127A (en) 2003-10-29 2003-10-29 Plasma processing apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003368408A JP2005133127A (en) 2003-10-29 2003-10-29 Plasma processing apparatus and method

Publications (1)

Publication Number Publication Date
JP2005133127A true JP2005133127A (en) 2005-05-26

Family

ID=34646080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003368408A Withdrawn JP2005133127A (en) 2003-10-29 2003-10-29 Plasma processing apparatus and method

Country Status (1)

Country Link
JP (1) JP2005133127A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103741120A (en) * 2013-12-24 2014-04-23 北京北印东源新材料科技有限公司 Electrode structure of PECVD (Plasma Enhanced Chemical Vapor Deposition) coating film device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103741120A (en) * 2013-12-24 2014-04-23 北京北印东源新材料科技有限公司 Electrode structure of PECVD (Plasma Enhanced Chemical Vapor Deposition) coating film device
CN103741120B (en) * 2013-12-24 2016-01-20 北京北印东源新材料科技有限公司 The electrode structure of PECVD film coating apparatus

Similar Documents

Publication Publication Date Title
JPH11193470A (en) Deposited film forming device and formation of deposited film
JP3745095B2 (en) Deposited film forming apparatus and deposited film forming method
JP4109861B2 (en) Vacuum processing method
JP2000073173A (en) Formation of deposited film and deposited film forming device
JP2005133127A (en) Plasma processing apparatus and method
JP5058511B2 (en) Deposited film forming equipment
JP2005015884A (en) Vacuum treatment system
JP2004353051A (en) Apparatus and method for forming deposited film
JP4656628B2 (en) Plasma processing method and method for producing electrophotographic photosensitive member
JP2001316829A (en) Device and method of vacuum treatment
JP2994658B2 (en) Apparatus and method for forming deposited film by microwave CVD
JP2005298873A (en) Plasma treatment device
JP2004149825A (en) Vacuum treatment system, and vacuum treatment method
JP2002080971A (en) Vacuum treatment system, vacuum treatment method and substrate holder
JP3402952B2 (en) Method and apparatus for forming deposited film
JP2007297660A (en) Deposited film formation device and deposited film formation method
JP2003213431A (en) Vacuum processor and vacuum processing method
JPH0897161A (en) Method and system for forming deposition film by rf plasma cvd
JP2005136027A (en) Plasma processing system
JP2005163161A (en) Apparatus and method for forming deposition film
JP2005344151A (en) Deposition film forming device and method
JP2008209748A (en) Method for producing electrophotographic photoreceptor
JP2005133128A (en) Apparatus and method for plasma treatment
JP2004134457A (en) Method for plasma treatment
JP2003041369A (en) Method and apparatus for vacuum treatment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070109