JP2003213431A - Vacuum processor and vacuum processing method - Google Patents
Vacuum processor and vacuum processing methodInfo
- Publication number
- JP2003213431A JP2003213431A JP2002006019A JP2002006019A JP2003213431A JP 2003213431 A JP2003213431 A JP 2003213431A JP 2002006019 A JP2002006019 A JP 2002006019A JP 2002006019 A JP2002006019 A JP 2002006019A JP 2003213431 A JP2003213431 A JP 2003213431A
- Authority
- JP
- Japan
- Prior art keywords
- container
- power
- frequency
- vacuum processing
- frequency power
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Chemical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、反応容器内に設置
された基体に真空処理を施す真空処理方法及び真空処理
装置に関するもので、とりわけプラズマCVD法による
堆積膜形成に適した方法及び装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum processing method and a vacuum processing apparatus for performing vacuum processing on a substrate installed in a reaction vessel, and more particularly to a method and apparatus suitable for forming a deposited film by a plasma CVD method. It is a thing.
【0002】[0002]
【従来の技術】堆積膜形成方法の一つとして放電エネル
ギーを利用するプラズマCVD法があり、この方法によ
り形成される非晶質薄膜 (例えば水素又は/及びハロゲ
ンによって補償されたアモルファスシリコン) は電子写
真用感光体、半導体デバイス、TFT等の半導体素子へ
の応用が提案され、その中のいくつかは実用に至ってい
る。特に13.56MHzのRF帯の高周波電力を用い
たプラズマCVD法は基板材料、堆積膜材料等が導電
体、絶縁体に関わらず処理でき、また、その取り扱いが
比較的容易であるため広く用いられている。また、近年
においては、VHF帯の高周波電力を用いたプラズマC
VD法(VHF−PCVD法)が注目を浴びており、こ
れを用いた各種の堆積膜形成方法の開発も積極的に進め
られている。これは、VHF−PCVD法を用いると膜
堆積速度が速く、また高品質な堆積膜が得られるため、
製品の低コスト化、高品質化を同時に達成し得るものと
期待されるためである。例えば特開平6−287760
号公報にはa−Si(アモルファスシリコン)系電子写真用感光体
の形成に使用できる装置及び方法が開示されている。ま
た、特開平8−253865号公報においては、複数の
電極を用いて複数の基体上に同時に堆積膜を形成する技
術に関しての開示がされており、生産性の向上、堆積膜
特性の均一性向上の効果が得られることが示されてい
る。2. Description of the Related Art There is a plasma CVD method utilizing discharge energy as one of deposited film forming methods. An amorphous thin film (for example, amorphous silicon compensated by hydrogen or / and halogen) formed by this method is an electron Applications to photographic photoreceptors, semiconductor devices, semiconductor elements such as TFTs have been proposed, and some of them have been put to practical use. In particular, the plasma CVD method using high frequency power in the RF band of 13.56 MHz is widely used because it can process substrate materials, deposited film materials, etc. regardless of conductors or insulators, and is relatively easy to handle. ing. Moreover, in recent years, plasma C using VHF band high frequency power
The VD method (VHF-PCVD method) has been attracting attention, and the development of various deposited film forming methods using the VD method has been actively promoted. This is because when the VHF-PCVD method is used, the film deposition rate is high and a high quality deposited film can be obtained.
This is because it is expected that cost reduction and quality improvement of products can be achieved at the same time. For example, Japanese Patent Laid-Open No. 6-287760
The publication discloses an apparatus and method that can be used for forming an a-Si (amorphous silicon) -based electrophotographic photoreceptor. Further, Japanese Patent Application Laid-Open No. 8-253865 discloses a technique of forming a deposited film on a plurality of substrates at the same time by using a plurality of electrodes, which improves productivity and improves uniformity of deposited film characteristics. It has been shown that the effect of is obtained.
【0003】[0003]
【発明が解決しようとする課題】上記従来の方法及び装
置により、良好な堆積膜を生産性良く形成することがで
きる。しかしながら、より生産性の高い堆積膜形成を実
現する上で更なる工夫の余地が存在する。その一つとし
て、複数基体間の均一処理能力を向上することが挙げら
れる。その実現のためには、複数の高周波電極を用いる
場合、複数の高周波電極へ均等に電力供給することが必
要となるが、その要求レベルは年々高まってきており、
何らかの根本的対策、改善が強く求められてきている。By the above-mentioned conventional method and apparatus, a good deposited film can be formed with high productivity. However, there is room for further improvement in realizing a highly productive deposited film formation. One of them is to improve the uniform processing ability between a plurality of substrates. In order to realize it, when using a plurality of high-frequency electrodes, it is necessary to supply electric power to the plurality of high-frequency electrodes evenly, but the required level is increasing year by year,
There is a strong demand for some kind of fundamental measures and improvements.
【0004】このような状況下において、堆積膜形成に
用いる高周波電力の均一供給に関する対策、改善は極め
て重要な意味を持ち、これまでにも様々な検討がなされ
てきた。高周波電力を複数の導体線路へと分割する電力
分割部を、所定の電位に維持された壁面からなる電力分
割容器内に設置することにより、複数の導体線路へと均
一に高周波電力を分割することが可能である。これによ
り、複数基体間の均一性は大きく向上するが、前述した
ように、より生産性の高い堆積膜の形成に対しての要求
レベルはますます高くなり、更なる工夫により、均一性
を高める必要性が生じてきた。Under such circumstances, measures and improvements for uniform supply of high-frequency power used for forming a deposited film are extremely important, and various studies have been made so far. A power dividing unit that divides high-frequency power into multiple conductor lines is installed in a power dividing container that consists of wall surfaces that are maintained at a prescribed potential, so that high-frequency power is evenly divided into multiple conductor lines. Is possible. As a result, the uniformity between multiple substrates is greatly improved, but as mentioned above, the required level for the formation of deposited films with higher productivity will become higher and higher, and further improvement will improve the uniformity. The need has arisen.
【0005】したがって、本発明の目的は、上述のよう
な従来の問題点を克服し、複数の高周波電極へのより均
等な電力供給を実現することにより、複数基体間の均一
処理を実現可能な真空処理装置及び真空処理方法を提供
することにある。Therefore, an object of the present invention is to overcome the above-mentioned conventional problems and to realize a more uniform power supply to a plurality of high frequency electrodes, thereby realizing a uniform treatment between a plurality of substrates. It is to provide a vacuum processing apparatus and a vacuum processing method.
【0006】[0006]
【課題を解決するための手段】本発明者らは上記目的を
達成すべく鋭意検討を行なった結果、電力分割部の構成
を最適化することにより、電力をより均一に分割可能で
あることを見出し、本発明を完成させるに至った。As a result of intensive studies to achieve the above object, the inventors of the present invention have found that power can be divided more uniformly by optimizing the configuration of the power divider. Heading out, the present invention has been completed.
【0007】即ち、本発明の真空処理装置は、高周波電
源と、前記高周波電源から出力される高周波電力の導体
線路と、整合回路と、前記高周波電源から出力された高
周波電力を複数の導体線路へと分割する電力分割部と、
前記電力分割部を内包し所定電位に維持された壁面から
なる電力分割容器と、前記電力分割容器及び一部が誘電
体部材で構成された反応容器の外に設置され、前記複数
の導体線路各々と接続される複数の高周波電極とを備
え、前記反応容器内に設置された基体に真空処理を施す
真空処理装置において、前記電力分割容器内の複数の前
記導体線路は、前記電力分割容器の出口において前記電
力分割容器の壁面と電気的に絶縁され、前記導体線路の
表面と前記電力分割容器の壁面との最短距離をd[m
m]、その間の比誘電率をε1としたときに、ε1/d≦
2.5 の関係を満たすことを特徴としている。That is, in the vacuum processing apparatus of the present invention, the high frequency power source, the conductor line of the high frequency power output from the high frequency power source, the matching circuit, and the high frequency power output from the high frequency power source are transmitted to a plurality of conductor lines. And a power division unit that divides
A power dividing container including a wall surface that includes the power dividing portion and is maintained at a predetermined potential, the power dividing container and a part of the reaction container that is installed outside the reaction container that is configured by a dielectric member, and each of the plurality of conductor lines. In a vacuum processing apparatus comprising: a plurality of high-frequency electrodes connected to each other, for performing vacuum processing on a substrate installed in the reaction container, the plurality of conductor lines in the power dividing container are outlets of the power dividing container. Is electrically insulated from the wall surface of the power division container, and the shortest distance between the surface of the conductor line and the wall surface of the power division container is d [m
m] and the relative permittivity between them is ε1, ε1 / d ≦
It is characterized by satisfying the relationship of 2.5.
【0008】また、本発明の真空処理方法は、高周波電
源より出力された高周波電力を、所定電位に維持された
壁面からなる電力分割容器内に、導体線路及び整合回路
を介した後に導入し、電力分割容器内の電力分割部で複
数の導体線路へと分割し、電力分割容器外へと出力した
後、一部が誘電体部材で構成された減圧可能な反応容器
の外に設置された複数の高周波電極へと供給し、前記高
周波電力を前記反応容器内へと導入することによって、
前記反応容器内に設置された基体に真空処理を施す真空
処理方法において、前記電力分割容器内の複数の前記導
体線路は電力分割容器の出口において、前記電力分割容
器の壁面と電気的に絶縁され、前記導体線路の表面と前
記電力分割容器の壁面との最短距離をd[mm]、その間
の比誘電率をε1としたときに、ε1/d≦2.5 の
関係を満たすことを特徴としている。Further, in the vacuum processing method of the present invention, the high frequency power output from the high frequency power source is introduced into the power dividing container consisting of the wall surface maintained at a predetermined potential after passing through the conductor line and the matching circuit, After dividing into a plurality of conductor lines at the power dividing part in the power dividing container and outputting to the outside of the power dividing container, a plurality of parts installed outside the depressurizable reaction container partially composed of a dielectric member To the high-frequency electrode, and by introducing the high-frequency power into the reaction vessel,
In a vacuum processing method for performing vacuum processing on a substrate installed in the reaction container, the plurality of conductor lines in the power dividing container are electrically insulated from a wall surface of the power dividing container at an outlet of the power dividing container. When the shortest distance between the surface of the conductor line and the wall surface of the power dividing container is d [mm] and the relative permittivity between them is ε1, the relationship of ε1 / d ≦ 2.5 is satisfied. There is.
【0009】このような本発明の効果について、以下詳
述する。The effects of the present invention will be described in detail below.
【0010】本発明においては、電力分割容器により形
成される電力分割空間と高周波電極が設置される空間を
別個のものとする。これにより、電力の均一分割効果を
得ることができる。この理由は現在のところ明らかでは
ないが、電力分割容器内に高周波電極を設置した場合、
何らかのきっかけ、例えば真空処理中のプラズマのゆら
ぎ等で複数の高周波電極間に電界の不均一分布が一時的
に生じた際に、その影響が電力分割に顕著に反映されて
しまうことがあり、その結果、高周波電極上の不均一電
界の影響を受けて電力分割が不均衡になると、これによ
り更に高周波電極上の電界を不均一にし、それが再び、
更に強く電力分割に悪影響を及ぼす悪循環に陥る場合が
あるためではないかと推察している。In the present invention, the power dividing space formed by the power dividing container and the space in which the high frequency electrode is installed are separate. As a result, it is possible to obtain the effect of uniform division of power. The reason for this is not clear at present, but when a high-frequency electrode is installed in the power division container,
For some reason, for example, when a non-uniform distribution of the electric field is temporarily generated between a plurality of high-frequency electrodes due to plasma fluctuations during vacuum processing, the effect may be significantly reflected in the power division. As a result, if the power division becomes unbalanced under the influence of the non-uniform electric field on the radio frequency electrode, this further causes the electric field on the radio frequency electrode to become non-uniform, which again
It is speculated that this may be because it may cause a vicious circle that has an adverse effect on power division.
【0011】さらに本発明においては、電力分割容器内
で複数に分割された導体線路は、電力分割容器の出口に
おいて電力分割容器壁面と電気的に絶縁され、導体線路
の表面と電力分割容器の壁面との最短距離d[mm]、そ
の間の比誘電率ε1との関係を、ε1/d≦2.5とす
る。これにより電力がより均一に分割される理由につい
ては、現在のところ明らかではないが、以下のように推
察している。ε1/d>2.5の場合においては、何ら
かのきっかけにより、例えば真空処理中のプラズマのゆ
らぎ等で電力分割容器の壁面の電位分布が変動すること
により、分割後の複数の導体線路間で電界の不均一分布
が一時的に生じ、その影響が電力分割に顕著に反映され
てしまうことがある。従って、ε1/d≦2.5とし、
導体線路の表面と電力分割容器の壁面の間の絶縁性を十
分なものとすることにより、仮に電力分割容器の壁面の
電位分布が一時的に変動したとしても、導体線路がその
影響を受けることはなく、即ち電力分割に悪影響を及ぼ
すことはないのである。さらには、高周波電極間に電界
の不均一分布が一時的に生じた際においても、より顕著
な電力の均一分割効果を得ることができる。また、ε1
/d≦1とすると本発明の効果がより顕著に得られるこ
とができ、より好ましい。Further, in the present invention, the conductor line divided into a plurality of pieces in the power division container is electrically insulated from the wall surface of the power division container at the outlet of the power division container, and the surface of the conductor line and the wall surface of the power division container. And the shortest distance d [mm] between them and the relative permittivity ε1 therebetween are ε1 / d ≦ 2.5. The reason why the power is divided more evenly is not clear at present, but it is presumed as follows. In the case of ε1 / d> 2.5, the electric potential distribution on the wall surface of the power division container fluctuates due to, for example, plasma fluctuations during vacuum processing due to some trigger, so that the electric field between the plurality of conductor lines after division is increased. In some cases, the non-uniform distribution of the power generation occurs temporarily, and the influence may be significantly reflected in the power division. Therefore, ε1 / d ≦ 2.5,
By ensuring sufficient insulation between the surface of the conductor line and the wall surface of the power division container, even if the potential distribution on the wall surface of the power division container fluctuates temporarily, the conductor line is affected by it. That is, it does not adversely affect the power division. Furthermore, even when a non-uniform distribution of the electric field is temporarily generated between the high frequency electrodes, a more remarkable uniform power dividing effect can be obtained. Also, ε1
When / d ≦ 1, the effect of the present invention can be more remarkably obtained, which is more preferable.
【0012】また、本発明においては、高周波電力の周
波数が50MHz以上250MHz以下の範囲において
特に効果的である。この理由は定かではないが、周波数
が50MHz以上の高周波においては、高周波電力が装
置を構成する導電性の部材に伝播しやすい。よって、例
えばプラズマのゆらぎ等による電力分割容器の壁面の電
位分布への影響も顕著に現れ、電力分割に悪影響を及ぼ
しやすいと考えられる。よって、50MHz以上の高周
波においては、本発明によって達成される電力分割均等
化の効果が顕著に現れるのではないかと推察している。
また、周波数が250MHz以上の高周波においては、
導体線路を伝播する際に高周波電力の減衰が顕著なた
め、真空容器中に均一なプラズマを生成することが容易
ではなく、本発明の効果を十分に得ることができないの
ではないかと推察している。Further, the present invention is particularly effective when the frequency of the high frequency power is in the range of 50 MHz to 250 MHz. The reason for this is not clear, but at a high frequency of 50 MHz or higher, the high frequency power easily propagates to the conductive member forming the device. Therefore, it is considered that, for example, the fluctuation of plasma or the like significantly affects the potential distribution on the wall surface of the power division container, and the power division is likely to be adversely affected. Therefore, it is speculated that the effect of power division equalization achieved by the present invention may be remarkably exhibited at a high frequency of 50 MHz or more.
Moreover, in the high frequency of 250 MHz or more,
Since the high frequency power is significantly attenuated when propagating through the conductor line, it is not easy to generate a uniform plasma in the vacuum container, and it is speculated that the effect of the present invention may not be sufficiently obtained. There is.
【0013】[0013]
【発明の実施の形態】次に、上記のような効果が得られ
る本発明を以下で図を用いて詳述する。BEST MODE FOR CARRYING OUT THE INVENTION Next, the present invention that achieves the above effects will be described in detail below with reference to the drawings.
【0014】図1は本発明で使用されるプラズマCVD
法による電子写真用感光体の製造装置の模式図の一例で
あり、この製造装置を横から見た概略断面図である。図
2は図1の切断線X-X’に沿う概略断面図、図3は図
1の切断線Y-Y’に沿う概略断面図、図4は図1の切
断線Z-Z’に沿う概略断面図である。FIG. 1 shows the plasma CVD used in the present invention.
FIG. 1 is an example of a schematic view of a manufacturing apparatus for an electrophotographic photosensitive member by a method, and is a schematic cross-sectional view of the manufacturing apparatus as seen from the side. 2 is a schematic sectional view taken along the section line XX 'in FIG. 1, FIG. 3 is a schematic sectional view taken along the section line YY' in FIG. 1, and FIG. 4 is sectioned along the section line ZZ 'in FIG. It is a schematic sectional drawing.
【0015】図1〜図4で示す電子写真用感光体用製造
装置は、堆積膜が形成される円筒状の基体102を内部
に設置する反応容器101を有する。基体102の内部
には基体102を加熱する基体加熱ヒーター107が基
体102の長手方向に沿って配置されている。反応容器
101の少なくとも一部が誘電体部材で構成されてい
る。反応容器101内には、反応容器101外のガス供
給装置(不図示)、圧力調整器及びマスフローコントロ
ーラー等とガス配管103を介して繋がった原料ガス導
入手段104が配置されている。さらに、反応容器10
1は内部圧力をモニターする圧力測定手段105を有
し、また、開度を調節可能なバルブを開くことで容器内
部を容器外と連通させるスロットルバルブ106も備え
ている。The electrophotographic photoreceptor manufacturing apparatus shown in FIGS. 1 to 4 has a reaction vessel 101 in which a cylindrical substrate 102 on which a deposited film is formed is installed. A substrate heater 107 for heating the substrate 102 is arranged inside the substrate 102 along the longitudinal direction of the substrate 102. At least a part of the reaction vessel 101 is made of a dielectric material. Inside the reaction vessel 101, a source gas introduction means 104 connected to a gas supply device (not shown) outside the reaction vessel 101, a pressure regulator, a mass flow controller and the like via a gas pipe 103 is arranged. Furthermore, the reaction container 10
1 has a pressure measuring means 105 for monitoring the internal pressure, and also has a throttle valve 106 for communicating the inside of the container with the outside of the container by opening a valve whose opening can be adjusted.
【0016】反応容器101の側壁の外側にはアースシ
ールド114が反応容器101の周りを囲むように設け
られている。反応容器101の側壁とアースシールド1
14との間には複数の高周波電極115が反応容器10
1の周りに均等に配置されている。An earth shield 114 is provided outside the side wall of the reaction container 101 so as to surround the reaction container 101. Side wall of reaction vessel 101 and earth shield 1
A plurality of high frequency electrodes 115 are provided between the reaction vessel 10 and
1 is evenly arranged around 1.
【0017】複数の高周波電極115はそれぞれ、電力
分割部112で分割された導体線路113に接続され、
電力分割部112は導体線路117を介して整合回路1
10に接続され、整合回路110は導体線路109を介
して高周波電源108に接続されている。The plurality of high frequency electrodes 115 are connected to the conductor lines 113 divided by the power dividing section 112, respectively.
The power dividing unit 112 is connected to the matching circuit 1 via the conductor line 117.
10, the matching circuit 110 is connected to the high frequency power supply 108 via the conductor line 109.
【0018】導体線路117の一部及びこれに繋がる電
力分割部112から複数の導体線路113までを覆う
(内包する)電力分割容器111が、反応容器101と
は別個に形成されていて、所定の電位に維持されてい
る。A power dividing container 111 that covers (includes) a part of the conductor line 117 and the power dividing portion 112 connected to the conductor line 113 to a plurality of conductor lines 113 is formed separately from the reaction container 101 and has a predetermined shape. It is maintained at the electric potential.
【0019】次に、図1に示した装置を使用して実施さ
れる、本発明による堆積膜形成方法の一例を以下に詳述
する。Next, an example of the deposited film forming method according to the present invention, which is carried out by using the apparatus shown in FIG. 1, will be described in detail below.
【0020】少なくとも一部が誘電体部材で構成された
反応容器101内に基体102を設置した後、排気装置
(例えば真空ポンプ)を用いて反応容器101内を真空
引きする。反応容器101内を十分排気した後、ガス供
給装置(図示せず)内のHe、N2、Ar及びH2等のガ
スボンベから供給される内の必要とされる加熱用ガス
が、不図示の圧力調整器及びマスフローコントローラー
等を介することにより適切な流量に調節され、ガス配管
103、原料ガス導入手段104を介して反応容器10
1内に送り込まれる。加熱用ガス導入後の反応容器10
1内の圧力は圧力測定手段105によってモニターさ
れ、スロットルバルブ106の開度を調節すること等に
よって、所定の値に制御される。所定の基体加熱環境が
整ったところで、基体102は基体加熱ヒーター107
によって間接的に所定の温度にまで加熱される。After the substrate 102 is placed in the reaction vessel 101 at least a part of which is made of a dielectric material, the inside of the reaction vessel 101 is evacuated by using an exhaust device (for example, a vacuum pump). After sufficiently exhausting the inside of the reaction vessel 101, the required heating gas supplied from gas cylinders such as He, N 2 , Ar and H 2 in a gas supply device (not shown) is not shown. The reaction flow rate is adjusted to an appropriate flow rate via a pressure regulator, a mass flow controller, etc., and the reaction vessel 10 via the gas pipe 103 and the raw material gas introducing means 104.
It is sent within 1. Reaction vessel 10 after introduction of heating gas
The pressure in 1 is monitored by the pressure measuring means 105, and is controlled to a predetermined value by adjusting the opening of the throttle valve 106 or the like. When a predetermined substrate heating environment is prepared, the substrate 102 is heated by the substrate heating heater 107.
Is indirectly heated to a predetermined temperature.
【0021】所定の加熱終了後、ガス供給装置(図示せ
ず)内のSiH4、H2、CH4、B2H6、PH33等のガ
スボンベから供給される内の必要とされる堆積膜形成用
ガスが、圧力調整器及びマスフローコントローラー等を
介することにより適切な流量に調節され、ガス配管10
3、原料ガス導入手段104を介して、反応容器101
内に送り込まれる。堆積膜形成用ガス導入後の反応容器
101内の圧力は圧力測定手段105によってモニター
され、スロットルバルブ106の開度を調節すること等
によって、所定の値に制御される。所定の堆積膜形成環
境が整ったところで、高周波電源108より出力された
高周波電力が、導体線路109及び整合回路110を介
した後に、所定の電位に維持された壁面からなる電力分
割容器111内に導入される。その後、高周波電力は電
力分割容器111内の電力分割部112において複数の
導体線路113へと分割され、電力分割容器111外へ
と出力された後、少なくとも一部が誘電体部材で構成さ
れた反応容器101とアースシールド114との間に設
置された複数の高周波電極115を介して、反応容器1
01内に導入されプラズマを生起する。該プラズマによ
り堆積膜形成用ガスが分解され、基体102上に堆積膜
を形成する。After completion of the predetermined heating, the required deposition of the gas supplied from a gas cylinder of SiH 4 , H 2 , CH 4 , B 2 H 6 , PH 3 3 etc. in a gas supply device (not shown). The gas for film formation is adjusted to an appropriate flow rate through a pressure regulator and a mass flow controller, and the gas pipe 10
3, the reaction vessel 101 via the raw material gas introduction means 104
Sent in. The pressure in the reaction vessel 101 after the deposition film forming gas is introduced is monitored by the pressure measuring means 105, and is controlled to a predetermined value by adjusting the opening degree of the throttle valve 106 or the like. When a predetermined deposited film forming environment is prepared, the high frequency power output from the high frequency power supply 108 passes through the conductor line 109 and the matching circuit 110, and then enters the power dividing container 111 having a wall surface maintained at a predetermined potential. be introduced. After that, the high-frequency power is divided into a plurality of conductor lines 113 in the power dividing unit 112 in the power dividing container 111, is output to the outside of the power dividing container 111, and then, a reaction in which at least a part is composed of a dielectric member. The reaction container 1 is provided via a plurality of high-frequency electrodes 115 installed between the container 101 and the earth shield 114.
Introduced into 01 to generate plasma. The plasma decomposes the deposited film forming gas to form a deposited film on the substrate 102.
【0022】なお、本発明においては、電力分割容器1
11内の複数の導体線路113は電力分割容器111か
らの出口116において、電力分割容器111の壁面と
電気的に絶縁される。その際、導体線路113の表面と
電力分割容器111の壁面との最短距離d[mm]、その
間の比誘電率ε1との関係を、ε1/d≦2.5とす
る。In the present invention, the power dividing container 1
The plurality of conductor lines 113 in 11 are electrically insulated from the wall surface of the power division container 111 at the outlet 116 from the power division container 111. At that time, the relation between the shortest distance d [mm] between the surface of the conductor line 113 and the wall surface of the power dividing container 111 and the relative permittivity ε1 therebetween is ε1 / d ≦ 2.5.
【0023】ここでいう、導体線路113の表面と電力
分割容器111の壁面との最短距離d[mm]の一例を図
5の(A)、(B)に示す。図中の矢印は、それぞれの
構成における導体線路113の表面と電力分割容器11
1の壁面との最短距離d[mm]を示し、図中の斜線部
(グレーの部分)は導体線路の表面と電力分割容器11
1の壁面との間の空間を示す。また、図中の斜線部の空
間には、絶縁性材料で構成された部材を設置してもよい
し、或いは部材を設置せず、空気によって導体線路と電
力分割容器との間を電気的に絶縁する構成であってもよ
い。但し、導体線路113を電力分割容器111の壁面
と接触しないように安定に固定するといった観点から考
えると、絶縁性材料で構成された部材を設置することが
好ましい。また、絶縁性部材の材料としては、アルミ
ナ、ジルコニア、ムライト、コージュライト、炭化珪
素、チッ化ホウ素、チッ化アルミ等のセラミックス材
料、或いはテフロン(登録商標)等が挙げられる。An example of the shortest distance d [mm] between the surface of the conductor line 113 and the wall surface of the power dividing container 111 here is shown in FIGS. 5 (A) and 5 (B). The arrows in the figure indicate the surface of the conductor line 113 and the power dividing container 11 in each configuration.
1 shows the shortest distance d [mm] from the wall surface, and the shaded portion (gray portion) in the figure is the surface of the conductor line and the power dividing container 11
1 shows a space between the wall surface and the wall surface. In addition, a member made of an insulating material may be installed in the shaded space in the figure, or the member may not be installed and the air is electrically connected between the conductor line and the power dividing container by air. The structure may be insulated. However, from the viewpoint of stably fixing the conductor line 113 so as not to contact the wall surface of the power dividing container 111, it is preferable to install a member made of an insulating material. Examples of the material of the insulating member include ceramic materials such as alumina, zirconia, mullite, cordierite, silicon carbide, boron nitride and aluminum nitride, and Teflon (registered trademark).
【0024】また、本発明における電力分割部112と
は、整合回路110側の一つの導体線路117と高周波
電極115側の複数の導体線路113との結合部のこと
である。図2、図6に電力分割部112の一例を真上か
ら見た場合の模式図を示す。電力分割部112の形状と
しては、図2においては点状であり、図6においては円
板状であるが、整合回路110側の導体線路117と電
力分割部112との結合点を通る軸に対して回転対称で
あることが好ましい。The power dividing section 112 in the present invention is a coupling section between one conductor line 117 on the matching circuit 110 side and a plurality of conductor lines 113 on the high frequency electrode 115 side. 2 and 6 are schematic diagrams showing an example of the power dividing unit 112 when viewed from directly above. The shape of the power dividing unit 112 is a dot shape in FIG. 2 and a disk shape in FIG. 6, but the power dividing unit 112 has an axis passing through the coupling point between the conductor line 117 on the matching circuit 110 side and the power dividing unit 112. In contrast, it is preferably rotationally symmetrical.
【0025】また、本発明においては、電力均等分割の
効果をより顕著に得るために、電力分割後の導体線路1
13をすべて同一の形状、長さ及び材質とすることが効
果的である。Further, in the present invention, in order to obtain the effect of the even power division more significantly, the conductor line 1 after the power division is obtained.
It is effective that all 13 have the same shape, length and material.
【0026】また、本発明における導体線路109、1
13、117とは、少なくともその表面の一部を高周波
電力が伝送可能なものをいう。即ち、導体が表面の少な
くとも一部で高周波伝送方向に連続的に形成されている
ものであればよく、従って、全体が導体で形成されてい
てもよいし、絶縁性材料表面の一部に導体領域を設けた
ものでもよい。また、その形状に関しては特に制限はな
く、線状、柱状、板状等いずれの形状でも良い。又、そ
の材料としては、銅、SUS及びアルミ等の金属材料が
挙げられる。さらには、絶縁性材料表面の一部に銀メッ
キ等を施したものでもよい。In addition, the conductor lines 109, 1 according to the present invention
13, 117 are capable of transmitting high-frequency power at least on a part of the surface thereof. That is, it is sufficient that the conductor is continuously formed in at least a part of the surface in the high frequency transmission direction. Therefore, the entire conductor may be formed of a conductor, or the conductor may be formed on a part of the surface of the insulating material. It may be provided with a region. The shape is not particularly limited, and may be linear, columnar, plate-shaped or the like. Further, examples of the material thereof include metal materials such as copper, SUS and aluminum. Further, a part of the surface of the insulating material may be silver-plated or the like.
【0027】[0027]
【実施例】以下、本発明の真空処理装置及び方法につい
て、実施例及び比較例により更に詳しく説明するが、本
発明はこれらにより限定されるものではない。EXAMPLES The vacuum processing apparatus and method of the present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
【0028】(実施例1)図1に示した真空処理装置に
おいて、電力分割容器111内の導体線路113の出口
116において、導体線路の表面と電力分割容器の壁面
との最短距離d[mm]、その間の比誘電率ε1との関係
を、
(イ) ε1/d=2.5
(ロ) ε1/d=1
(ハ) ε1/d=0.5
とした真空処理装置を用意した。(Embodiment 1) In the vacuum processing apparatus shown in FIG. 1, at the outlet 116 of the conductor line 113 in the power division container 111, the shortest distance d [mm] between the surface of the conductor line and the wall surface of the power division container. , And the relative permittivity ε1 between them was (a) ε1 / d = 2.5 (b) ε1 / d = 1 (c) ε1 / d = 0.5.
【0029】それぞれの真空処理装置において、発振周
波数105MHzの高周波電源108から供給された高
周波電力を整合回路110を介した後に、壁面をアース
電位とした電力分割容器111内の電力分割部112へ
と導入し、六方向に分割して電力分割容器111外へと
出力し、六本の高周波電極115に印加することによ
り、直径80mm、長さ358mmの円筒状アルミニウ
ムシリンダである基体102上に、表1に示す条件で電
荷注入阻止層、光導電層、表面層からなる電子写真用感
光体を作成した。In each vacuum processing apparatus, after the high frequency power supplied from the high frequency power supply 108 with an oscillation frequency of 105 MHz is passed through the matching circuit 110, it is sent to the power dividing unit 112 in the power dividing container 111 whose wall surface is at the ground potential. It is introduced, divided into six directions, output to the outside of the power dividing container 111, and applied to the six high-frequency electrodes 115, so that the surface of the substrate 102, which is a cylindrical aluminum cylinder having a diameter of 80 mm and a length of 358 mm, is displayed. An electrophotographic photoreceptor including a charge injection blocking layer, a photoconductive layer, and a surface layer was prepared under the conditions shown in 1.
【0030】[0030]
【表1】
(比較例1)本例では、実施例1で使用した図1の真空
処理装置において、電力分割容器111内の導体線路1
13の出口116において、導体線路の表面と電力分割
容器の壁面との最短距離d[mm]、その間の比誘電率ε
1との関係を、ε1/d=3とし、実施例1と同様の方
法で直径80mm、長さ358mmの円筒状アルミニウ
ムシリンダである基体102上に、表1に示す条件で電
荷注入阻止層、光導電層、表面層からなる電子写真用感
光体を作成した。[Table 1] (Comparative Example 1) In this example, in the vacuum processing apparatus of FIG. 1 used in Example 1, the conductor line 1 in the power division container 111 is used.
At the outlet 116 of 13, the shortest distance d [mm] between the surface of the conductor line and the wall surface of the power division container, and the relative permittivity ε therebetween
The relationship with 1 is ε1 / d = 3, and in the same manner as in Example 1, the charge injection blocking layer is formed on the substrate 102, which is a cylindrical aluminum cylinder having a diameter of 80 mm and a length of 358 mm, under the conditions shown in Table 1. An electrophotographic photoreceptor comprising a photoconductive layer and a surface layer was prepared.
【0031】(実施例1及び比較例1の評価)実施例1
の(イ)〜(ハ)及び比較例1において作製した、各六
本の電子写真用感光体の電子写真特性を以下に記載した
方法で評価し、実施例1の(イ)〜(ハ)で作製した電
子写真用感光体と比較例1で作製した電子写真用感光体
との比較を行った。(Evaluation of Example 1 and Comparative Example 1) Example 1
The electrophotographic characteristics of the six electrophotographic photoconductors prepared in (a) to (c) of Comparative Example 1 and Comparative Example 1 were evaluated by the methods described below, and (a) to (c) of Example 1 were evaluated. The electrophotographic photoreceptor prepared in 1 was compared with the electrophotographic photoreceptor prepared in Comparative Example 1.
【0032】『膜厚ばらつき』作成した電子写真用感光
体の軸方向中心位置において円周方向等間隔に八点の膜
厚を渦電流式膜厚測定器を用いて測定し、その平均値を
求める。六本の電子写真用感光体の『膜厚』の平均値に
対する最大値と最小値の差を『膜厚ばらつき』として評
価する。従って、数値が小さいほど良好である。実施例
1の(イ)〜(ハ)について比較例1と比較し、比較例
1の値を100%として以下のランクに区分した。
ランクA: 比較例1と比較して75%未満
ランクB: 比較例1と比較して75%以上同等未満
ランクC: 比較例1と比較して同等
ランクD: 比較例1と比較して増加
『電子写真特性ばらつき評価方法』作成した各々の電子
写真用感光体を本テスト用に改造されたキヤノン製の複
写機NP−6750に設置し、評価項目は、『帯電能ば
らつき』、『感度ばらつき』、二項目とし、以下の具体
的評価法により各項目の評価を行った。[Film Thickness Variation] Eight-point film thickness was measured at regular intervals in the circumferential direction at the center position in the axial direction of the prepared electrophotographic photosensitive member using an eddy current film thickness measuring instrument, and the average value was calculated. Ask. The difference between the maximum value and the minimum value of the “film thickness” of the six electrophotographic photoconductors is evaluated as “film thickness variation”. Therefore, the smaller the value, the better. The items (a) to (c) of Example 1 were compared with Comparative Example 1, and the value of Comparative Example 1 was set to 100% and classified into the following ranks. Rank A: Less than 75% compared to Comparative Example 1 Rank B: 75% or more compared to Comparative Example 1 Less than equivalent Rank C: Equivalent to Comparative Example 1 Rank D: Increased compared to Comparative Example 1 "Evaluation method for electrophotographic characteristic variation" Each electrophotographic photosensitive member created was installed on a Canon copier NP-6750 modified for this test. , And each item was evaluated by the following specific evaluation method.
【0033】『帯電能ばらつき』複写機の主帯電器に一
定の電流を流したときの現像器位置での暗部電位を『帯
電能』とする(但し、周方向一周の平均値とする)。各
実施例及び比較例で作製したそれぞれ六本の電子写真用
感光体の軸方向中位置における『帯電能』を測定する。
六本の電子写真用感光体の『帯電能』の平均値に対する
最大値と最小値の差を『帯電能ばらつき』として評価す
る。従って、数値が小さいほど良好である。実施例1の
(イ)〜(ハ)について比較例1と比較し、比較例1の
値を100%として以下のランクに区分した。
ランクA: 比較例1と比較して75%未満
ランクB: 比較例1と比較して75%以上同等未満
ランクC: 比較例1と比較して同等
ランクD: 比較例1と比較して増加
『感度ばらつき』現像器位置における暗部電位が所定の
値となるように、主帯電器の電流値を調整した後、像露
光を照射する。ついで像露光光源の光量を調整して、現
像器位置における表面電位(明電位)が所定の値となる
ようにし、そのときの露光量を『感度』とする(但し、
周方向一周の平均値とする)。各実施例及び比較例で作
製したそれぞれ六本の電子写真用感光体の軸方向中位置
における『感度』を測定する。六本の電子写真用感光体
の『感度』の平均値に対する最大値と最小値の差を『感
度ばらつき』として評価する。従って、数値が小さいほ
ど良好である。実施例1の(イ)〜(ハ)について比較
例1と比較し、比較例1の値を100%として以下のラ
ンクに区分した。
ランクA: 比較例1と比較して75%未満
ランクB: 比較例1と比較して75%以上同等未満
ランクC: 比較例1と比較して同等
ランクD: 比較例1と比較して増加
その結果を表2に示す。"Variation of Charging Ability" The dark portion potential at the developing device position when a constant current is applied to the main charger of the copying machine is referred to as "charging ability" (provided that it is an average value for one round in the circumferential direction). The "charging ability" of each of the six electrophotographic photoconductors produced in each of the examples and comparative examples is measured at the axially middle position.
The difference between the maximum value and the minimum value of the "chargeability" of the six electrophotographic photoconductors with respect to the average value is evaluated as "chargeability variation". Therefore, the smaller the value, the better. The items (a) to (c) of Example 1 were compared with Comparative Example 1, and the value of Comparative Example 1 was set to 100% and classified into the following ranks. Rank A: Less than 75% compared to Comparative Example 1 Rank B: 75% or more compared to Comparative Example 1 Less than equivalent Rank C: Equivalent to Comparative Example 1 Rank D: Increased compared to Comparative Example 1 "Sensitivity variation" After the current value of the main charger is adjusted so that the dark portion potential at the developing device position becomes a predetermined value, image exposure is performed. Next, the light quantity of the image exposure light source is adjusted so that the surface potential (bright potential) at the developing device position becomes a predetermined value, and the exposure amount at that time is defined as "sensitivity" (however,
The average value for one round in the circumferential direction). The “sensitivity” of each of the six electrophotographic photoconductors produced in each of the examples and comparative examples is measured at the axially middle position. The difference between the maximum value and the minimum value of the "sensitivity" of the six electrophotographic photoconductors is evaluated as "sensitivity variation". Therefore, the smaller the value, the better. The items (a) to (c) of Example 1 were compared with Comparative Example 1, and the value of Comparative Example 1 was set to 100% and classified into the following ranks. Rank A: Less than 75% compared to Comparative Example 1 Rank B: 75% or more compared to Comparative Example 1 Less than equivalent Rank C: Equivalent to Comparative Example 1 Rank D: Increased compared to Comparative Example 1 The results are shown in Table 2.
【0034】[0034]
【表2】
表2より明らかな様に、電力分割容器111内の導体線
路113の出口116における、導体線路の表面と電力
分割容器の壁面との最短距離d[mm]、その間の比誘電
率ε1との関係を、
ε1/d≦2.5
とすることにより、さらにより好ましくは、
ε1/d≦1
とすることにより、電子写真用感光体間の膜厚及び電子
写真特性のばらつきを抑えることができる。[Table 2] As is apparent from Table 2, the relationship between the shortest distance d [mm] between the surface of the conductor line and the wall surface of the power division container at the outlet 116 of the conductor line 113 in the power division container 111 and the relative permittivity ε1 therebetween. By setting ε1 / d ≦ 2.5, and even more preferably by setting ε1 / d ≦ 1, it is possible to suppress variations in film thickness and electrophotographic characteristics between electrophotographic photoreceptors.
【0035】(実施例2)本例では実施例1と同様に、
図1に示した真空処理装置において、発振周波数が
イ) 30MHz
ロ) 50MHz
ハ) 250MHz
ニ) 300MHz
の高周波電源108を用意し、それぞれの高周波電源を
使用して、実施例1と同様に、表1に示す条件で電荷注
入阻止層、光導電層、表面層からなる電子写真用感光体
を、計四種類作成した。(Embodiment 2) In this embodiment, as in Embodiment 1,
In the vacuum processing apparatus shown in FIG. 1, a high-frequency power supply 108 having an oscillation frequency of a) 30 MHz, b) 50 MHz, c) 250 MHz, d) 300 MHz is prepared, and each high-frequency power supply is used. Under the conditions shown in FIG. 1, a total of four types of electrophotographic photoreceptors including a charge injection blocking layer, a photoconductive layer, and a surface layer were prepared.
【0036】尚、本例においては、電力分割容器111
内の導体線路113の出口116における、導体線路の
表面と電力分割容器の壁面との最短距離d[mm]、その
間の比誘電率ε1との関係を、ε1/d=0.5として
いる。In this example, the power dividing container 111
At the outlet 116 of the conductor line 113 inside, the relationship between the surface of the conductor line and the wall surface of the power dividing container, d [mm], and the relative permittivity ε1 therebetween is ε1 / d = 0.5.
【0037】(比較例2)本例では、実施例2で使用し
た図1の真空処理装置に代えて、図7に示した真空処理
装置を使用した。図7に示した真空処理装置は、電力分
割部が設置される空間と高周波電極が設置される空間を
同一のものとした。Comparative Example 2 In this example, the vacuum processing apparatus shown in FIG. 7 was used instead of the vacuum processing apparatus shown in FIG. 1 used in Example 2. In the vacuum processing apparatus shown in FIG. 7, the space where the power dividing unit is installed and the space where the high frequency electrode is installed are the same.
【0038】高周波電源108として、発振周波数が
イ) 30MHz
ロ) 50MHz
ハ) 250MHz
ニ) 300MHz
のものを用意し、それぞれの高周波電源を使用して、比
較例1と同様に、表1に示す条件で電荷注入阻止層、光
導電層、表面層からなる電子写真用感光体を、計四種類
作成した。As the high-frequency power source 108, those having an oscillation frequency of a) 30 MHz, b) 50 MHz, c) 250 MHz, d) 300 MHz are prepared, and the conditions shown in Table 1 are used in the same manner as in Comparative Example 1 using the respective high-frequency power sources. Then, a total of four types of electrophotographic photoreceptors comprising a charge injection blocking layer, a photoconductive layer and a surface layer were prepared.
【0039】(実施例2及び比較例2の評価)実施例2
の(イ)〜(ニ)及び比較例2の(イ)〜(ニ)におい
て作製した電子写真用感光体の各六本間の『膜厚ばらつ
き』、『帯電能ばらつき』、『感度ばらつき』を評価
し、上記三項目について、実施例2の(イ)と比較例
2の(イ)、実施例2の(ロ)と比較例2の(ロ)、
実施例2の(ハ)と比較例2の(ハ)、実施例2の
(ニ)と比較例2の(ニ)をそれぞれ比較し、比較例2
の値を100%として以下のランクに区分した。その結
果を表3に示す。
ランクA: 比較例2と比較して75%未満
ランクB: 比較例2と比較して75%以上同等未満
ランクC: 比較例2と比較して同等
ランクD: 比較例2と比較して増加(Evaluation of Example 2 and Comparative Example 2) Example 2
Of (a) to (d) and (a) to (d) of Comparative Example 2 in which the “film thickness variation”, the “charging capability variation”, and the “sensitivity variation” among the six electrophotographic photoconductors were measured. The three items were evaluated, and (a) of Example 2 and (a) of Comparative Example 2; (b) of Example 2 and (b) of Comparative Example 2;
Comparative example 2 is compared with (c) of Example 2 and (c) of Comparative Example 2, and (d) of Example 2 and (d) of Comparative Example 2 respectively.
The value was evaluated as 100% and the samples were classified into the following ranks. The results are shown in Table 3. Rank A: Less than 75% compared to Comparative Example 2 Rank B: 75% or more compared to Comparative Example 2 Less than equivalent Rank C: Equivalent to Comparative Example 2 Rank D: Increased compared to Comparative Example 2
【0040】[0040]
【表3】
表3より明らかな様に、発振周波数が50MHz以上2
50MHz以下の高周波電源を使用して、電子写真用感
光体を作製した場合、本発明の効果を顕著に得ることが
でき、電子写真用感光体間のばらつきを抑えることがで
きる。[Table 3] As is clear from Table 3, the oscillation frequency is 50MHz or more 2
When the electrophotographic photoconductor is manufactured by using a high frequency power source of 50 MHz or less, the effect of the present invention can be remarkably obtained, and variation between electrophotographic photoconductors can be suppressed.
【0041】(実施例3)本例では、実施例2で使用し
た図1の真空処理装置において、電力分割部112のみ
を、図6に示した形状へと代えた真空処理装置を用意
し、発振周波数が105MHzの高周波電源108を使
用し、実施例1と同様に、表1に示す条件で電荷注入阻
止層、光導電層、表面層からなる電子写真用感光体を作
成した。(Embodiment 3) In this embodiment, in the vacuum processing apparatus of FIG. 1 used in Embodiment 2, only the power dividing section 112 is changed to the shape shown in FIG. 6 to prepare a vacuum processing apparatus. Using a high frequency power supply 108 with an oscillation frequency of 105 MHz, an electrophotographic photoreceptor including a charge injection blocking layer, a photoconductive layer and a surface layer was prepared under the conditions shown in Table 1 in the same manner as in Example 1.
【0042】尚、本例においては、電力分割容器111
内の導体線路113の出口116における、導体線路の
表面と電力分割容器の壁面との最短距離d[mm]、その
間の比誘電率ε1との関係を、ε1/d=0.3として
いる。In this example, the power dividing container 111
The relation between the surface of the conductor line and the wall surface of the power dividing container at the outlet 116 of the conductor line 113 inside, d [mm], and the relative permittivity ε1 therebetween is ε1 / d = 0.3.
【0043】作製した六本の電子写真用感光体の『膜厚
ばらつき』、『帯電能ばらつき』、『感度ばらつき』を
評価したところ、いずれの項目においても良好な結果が
得られた。When the "thickness variation", "charging ability variation", and "sensitivity variation" of the six electrophotographic photoconductors produced were evaluated, good results were obtained in all the items.
【0044】(実施例4)本例では、実施例3で使用し
た図1及び図6の真空処理装置に代えて、図8に示すよ
うに、二つの高周波電源501A、501B及び整合回
路502A、502Bを設置した真空処理装置を使用
し、高周波電源(A)501Aの発振周波数(f1)を1
05MHz、高周波電源(B)501Bの発振周波数(f
2)を70MHzとし、それらから供給された高周波電
力を整合回路(A)502A、整合回路(B)502Bを介し
た後に一旦合成する。その後、壁面をアース電位とした
電力分割容器111内の電力分割部112へと導入し、
六方向に分割して電力分割容器111外へと出力し、六
本の高周波電極115に印加することにより、直径80
mm、長さ358mmの円筒状アルミニウムシリンダで
ある基体102上に、表4に示す条件で電荷注入阻止
層、光導電層、表面層からなる電子写真用感光体を作成
した。(Embodiment 4) In this embodiment, instead of the vacuum processing apparatus of FIGS. 1 and 6 used in Embodiment 3, as shown in FIG. 8, two high frequency power sources 501A and 501B and a matching circuit 502A, Using the vacuum processing device with 502B installed, set the oscillation frequency (f1) of the high frequency power supply (A) 501A to 1
05MHz, high frequency power supply (B) 501B oscillation frequency (f
2) is set to 70 MHz, and the high frequency power supplied from them is once combined after passing through the matching circuit (A) 502A and the matching circuit (B) 502B. After that, the wall surface is introduced into the power dividing unit 112 in the power dividing container 111 with the earth potential,
The power is divided into six directions, output to the outside of the power dividing container 111, and applied to the six high-frequency electrodes 115 to obtain a diameter of 80.
An electrophotographic photosensitive member including a charge injection blocking layer, a photoconductive layer and a surface layer was prepared under the conditions shown in Table 4 on a substrate 102 which was a cylindrical aluminum cylinder having a length of 358 mm and a length of 358 mm.
【0045】尚、本例においては、導体線路113の電
力分割容器111の出口116における、導体線路の表
面と電力分割容器の壁面との最短距離d[mm]、その間
の比誘電率ε1との関係を、ε1/d=0.3としてい
る。In this example, the shortest distance d [mm] between the surface of the conductor line and the wall surface of the power division container at the outlet 116 of the power division container 111 of the conductor line 113, and the relative permittivity ε1 therebetween. The relationship is ε1 / d = 0.3.
【0046】作製した六本の電子写真用感光体の『膜厚
ばらつき』、『帯電能ばらつき』、『感度ばらつき』を
評価したところ、いずれの項目においても良好な結果が
得られた。The six electrophotographic photoconductors prepared were evaluated for "film thickness variation", "charging ability variation", and "sensitivity variation", and good results were obtained for all the items.
【0047】[0047]
【表4】 **5分間で各パラメーターを連続的に変化させた[Table 4] ** Each parameter was changed continuously within 5 minutes
【0048】[0048]
【発明の効果】以上説明したように、本発明の真空処理
装置及び真空処理方法は、高周波電源と、前記高周波電
源から出力される高周波電力の導体線路と、整合回路
と、前記高周波電源から出力された高周波電力を複数の
導体線路へと分割する電力分割部と、前記電力分割部を
内包し所定電位に維持された壁面からなる電力分割容器
と、前記電力分割容器及び少なくとも一部が誘電体部材
で構成された反応容器の外に設置され、前記複数の導体
線路の各々と接続される複数の高周波電極とを備え、前
記反応容器内に設置された基体に真空処理を施す構成に
おいて、前記電力分割容器内の複数の前記導体線路は、
前記電力分割容器の出口において前記電力分割容器の壁
面と電気的に絶縁され、前記導体線路の表面と前記電力
分割容器の壁面との最短距離をd[mm]、その間の比誘
電率をε1としたときに、ε1/d≦2.5 の関係を
満たすことにより、仮に電力分割容器の壁面の電位分布
が一時的に変動したとしても、導体線路がその影響を受
けることはなく、即ち電力分割に悪影響を及ぼすことが
ない。さらには、高周波電極間に電界の不均一分布が一
時的に生じた際においても、より顕著な電力の均一分割
効果を得ることができる。As described above, the vacuum processing apparatus and the vacuum processing method of the present invention include a high-frequency power source, a conductor line of high-frequency power output from the high-frequency power source, a matching circuit, and an output from the high-frequency power source. A power dividing unit configured to divide the generated high frequency power into a plurality of conductor lines; a power dividing container including a wall surface that includes the power dividing unit and is maintained at a predetermined potential; and the power dividing container and at least a part of the dielectric. In a configuration that is provided outside a reaction vessel composed of a member and that includes a plurality of high-frequency electrodes that are connected to each of the plurality of conductor lines, and that performs vacuum processing on a substrate provided in the reaction vessel, The plurality of conductor lines in the power dividing container,
At the outlet of the power dividing container, electrically insulated from the wall surface of the power dividing container, the shortest distance between the surface of the conductor line and the wall surface of the power dividing container is d [mm], and the relative permittivity therebetween is ε1. By satisfying the relationship of ε1 / d ≦ 2.5, even if the potential distribution on the wall surface of the power division container fluctuates temporarily, the conductor line is not affected, that is, the power division. Will not be adversely affected. Furthermore, even when a non-uniform distribution of the electric field is temporarily generated between the high frequency electrodes, a more remarkable uniform power dividing effect can be obtained.
【0049】また、前記高周波電力の周波数を50MH
z以上250MHz以下の範囲に規定することにより、
本発明によって達成される電力分割均等化の効果が顕著
に現れ、かつ、真空容器中に均一なプラズマを生成する
ことが容易となる。The frequency of the high frequency power is set to 50 MHz.
By defining the range from z to 250 MHz,
The effect of equalization of the power division achieved by the present invention remarkably appears, and it becomes easy to generate a uniform plasma in the vacuum container.
【図1】本発明における真空処理装置の一例で、プラズ
マCVD法による電子写真用光受容部材の製造装置を横
から見た概略断面図である。FIG. 1 is a schematic cross-sectional view of an example of a vacuum processing apparatus according to the present invention as seen from the side of a manufacturing apparatus for an electrophotographic light-receiving member by a plasma CVD method.
【図2】図1の切断線X-X’に沿う概略断面図であ
る。FIG. 2 is a schematic cross-sectional view taken along the section line XX ′ in FIG.
【図3】図1の切断線Y-Y’に沿う概略断面図であ
る。FIG. 3 is a schematic cross-sectional view taken along the section line YY ′ of FIG.
【図4】図1の切断線Z-Z’に沿う概略断面図であ
る。FIG. 4 is a schematic sectional view taken along the section line ZZ ′ of FIG.
【図5】本発明における電力分割容器内の導体線路の出
口の一例である。FIG. 5 is an example of an outlet of a conductor line in the power dividing container according to the present invention.
【図6】本発明における真空処理装置の電力分割部の一
例である。FIG. 6 is an example of a power dividing unit of the vacuum processing apparatus according to the present invention.
【図7】従来の真空処理装置の一例で、プラズマCVD
法による電子写真用光受容部材の製造装置の模式的説明
図である。FIG. 7 shows an example of a conventional vacuum processing apparatus, plasma CVD
It is a schematic explanatory view of a manufacturing apparatus of a light receiving member for electrophotography by the method.
【図8】本発明における真空処理装置の一例で、プラズ
マCVD法による電子写真用光受容部材の製造装置の模
式的説明図である。FIG. 8 is a schematic explanatory diagram of an example of a vacuum processing apparatus according to the present invention, which is an apparatus for manufacturing an electrophotographic light-receiving member by a plasma CVD method.
101 反応容器 102 基体 103 ガス配管 104 原料ガス導入手段 105 圧力測定手段 106 スロットルバルブ 107 基体加熱ヒーター 108 高周波電源 109 導体線路 110 整合回路 111 電力分割容器 112 電力分割部 113 導体線路 114 アースシールド 115 高周波電極 116 導体線路の出口 117 導体線路 501A 高周波電源(A) 501B 高周波電源(B) 502A 整合回路(A) 502B 整合回路(B) 101 reaction vessel 102 base 103 gas piping 104 Source Gas Introducing Means 105 Pressure measuring means 106 Throttle valve 107 Substrate heating heater 108 high frequency power supply 109 conductor track 110 matching circuit 111 power split container 112 Power division unit 113 conductor track 114 Earth Shield 115 high frequency electrode 116 Exit of conductor track 117 Conductor line 501A high frequency power supply (A) 501B High frequency power supply (B) 502A Matching circuit (A) 502B Matching circuit (B)
───────────────────────────────────────────────────── フロントページの続き (72)発明者 片桐 宏之 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 Fターム(参考) 4K030 FA03 JA03 JA18 KA30 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Hiroyuki Katagiri 3-30-2 Shimomaruko, Ota-ku, Tokyo Non non corporation F-term (reference) 4K030 FA03 JA03 JA18 KA30
Claims (4)
される高周波電力の導体線路と、整合回路と、前記高周
波電源から出力された高周波電力を複数の導体線路へと
分割する電力分割部と、前記電力分割部を内包し所定電
位に維持された壁面からなる電力分割容器と、前記電力
分割容器及び少なくとも一部が誘電体部材で構成された
反応容器の外に設置され、前記複数の導体線路の各々と
接続される複数の高周波電極とを備え、前記反応容器内
に設置された基体に真空処理を施す真空処理装置におい
て、前記電力分割容器内の複数の前記導体線路は、前記
電力分割容器の出口において前記電力分割容器の壁面と
電気的に絶縁され、前記導体線路の表面と前記電力分割
容器の壁面との最短距離をd[mm]、その間の比誘電率
をε1としたときに、ε1/d≦2.5 の関係を満た
すことを特徴とした真空処理装置。1. A high-frequency power supply, a conductor line for high-frequency power output from the high-frequency power supply, a matching circuit, and a power dividing unit for dividing the high-frequency power output from the high-frequency power supply into a plurality of conductor lines. A power dividing container including a wall surface that includes the power dividing portion and is maintained at a predetermined potential, and the power dividing container and the reaction container, at least a part of which is formed of a dielectric member, are installed outside the plurality of conductor lines. A plurality of high-frequency electrodes connected to each of the plurality of high-frequency electrodes, the plurality of conductor lines in the power dividing container is the power dividing container. When the shortest distance between the surface of the conductor line and the wall surface of the power division container is d [mm] and the relative permittivity between them is ε1, it is electrically insulated from the wall surface of the power division container at the outlet of Vacuum processing apparatus characterized by satisfying the relation of ε1 / d ≦ 2.5.
上250MHz以下の高周波電力を供給可能である、請
求項1に記載の真空処理装置。2. The vacuum processing apparatus according to claim 1, wherein the high frequency power supply is capable of supplying high frequency power having a frequency of 50 MHz or more and 250 MHz or less.
を、所定電位に維持された壁面からなる電力分割容器内
に、導体線路及び整合回路を介した後に導入し、電力分
割容器内の電力分割部で複数の導体線路へと分割し、電
力分割容器外へと出力した後、少なくとも一部が誘電体
部材で構成された減圧可能な反応容器の外に設置された
複数の高周波電極へと供給し、前記高周波電力を前記反
応容器内へと導入することによって、前記反応容器内に
設置された基体に真空処理を施す真空処理方法におい
て、前記電力分割容器内で複数に分割された前記導体線
路は電力分割容器の出口において、前記電力分割容器の
壁面と電気的に絶縁され、前記導体線路の表面と前記電
力分割容器の壁面との最短距離をd[mm]、その間の比
誘電率をε1としたときに、ε1/d≦2.5 の関係
を満たすことを特徴とした真空処理方法。3. A high-frequency power output from a high-frequency power source is introduced into a power division container having wall surfaces maintained at a predetermined potential after passing through a conductor line and a matching circuit, and a power division unit in the power division container is introduced. After splitting into multiple conductor lines with and outputting to the outside of the power dividing container, supply to multiple high-frequency electrodes installed outside the depressurizable reaction container, at least a part of which is composed of a dielectric member. In the vacuum processing method of performing vacuum processing on a substrate installed in the reaction container by introducing the high-frequency power into the reaction container, the conductor line divided into a plurality of parts in the power dividing container is At the outlet of the power division container, electrically insulated from the wall surface of the power division container, the shortest distance between the surface of the conductor line and the wall surface of the power division container is d [mm], and the relative permittivity therebetween is ε1. When The vacuum processing method wherein a satisfies the relationship ε1 / d ≦ 2.5.
上250MHz以下である、請求項3に記載の真空処理
方法。4. The vacuum processing method according to claim 3, wherein the high frequency power has a frequency of 50 MHz or more and 250 MHz or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002006019A JP2003213431A (en) | 2002-01-15 | 2002-01-15 | Vacuum processor and vacuum processing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002006019A JP2003213431A (en) | 2002-01-15 | 2002-01-15 | Vacuum processor and vacuum processing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003213431A true JP2003213431A (en) | 2003-07-30 |
Family
ID=27644899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002006019A Pending JP2003213431A (en) | 2002-01-15 | 2002-01-15 | Vacuum processor and vacuum processing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003213431A (en) |
-
2002
- 2002-01-15 JP JP2002006019A patent/JP2003213431A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5534070A (en) | Plasma CVD process using a very-high-frequency and plasma CVD apparatus | |
JP2787148B2 (en) | Method and apparatus for forming deposited film by microwave plasma CVD | |
JP4109861B2 (en) | Vacuum processing method | |
JP2003213431A (en) | Vacuum processor and vacuum processing method | |
JP4656628B2 (en) | Plasma processing method and method for producing electrophotographic photosensitive member | |
JP2768539B2 (en) | Deposition film forming equipment | |
JP2867150B2 (en) | Microwave plasma CVD equipment | |
JP2994658B2 (en) | Apparatus and method for forming deposited film by microwave CVD | |
JP2005298873A (en) | Plasma treatment device | |
JP2005133127A (en) | Plasma processing apparatus and method | |
JP2008209748A (en) | Method for producing electrophotographic photoreceptor | |
JP2005015884A (en) | Vacuum treatment system | |
JP3368142B2 (en) | Deposition film forming equipment | |
JP2004353051A (en) | Apparatus and method for forming deposited film | |
JP2925310B2 (en) | Deposition film formation method | |
JP2004193328A (en) | Plasma treatment method | |
JPH01222058A (en) | Formation of thin film and photosensitive body | |
JPH06196407A (en) | Method and device for forming deposited film | |
JP3402952B2 (en) | Method and apparatus for forming deposited film | |
JP2001023909A (en) | Manufacture of functional deposited film and manufacturing apparatus of the functional deposited film | |
JPH07288233A (en) | Film forming apparatus | |
JP2753084B2 (en) | Deposition film formation method | |
JP2001316829A (en) | Device and method of vacuum treatment | |
JP2008179862A (en) | Apparatus and method for forming deposited film | |
JP2002080971A (en) | Vacuum treatment system, vacuum treatment method and substrate holder |