JP2005294101A - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP2005294101A
JP2005294101A JP2004108915A JP2004108915A JP2005294101A JP 2005294101 A JP2005294101 A JP 2005294101A JP 2004108915 A JP2004108915 A JP 2004108915A JP 2004108915 A JP2004108915 A JP 2004108915A JP 2005294101 A JP2005294101 A JP 2005294101A
Authority
JP
Japan
Prior art keywords
fuel cell
carbon
electrolyte
flow path
repellent film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004108915A
Other languages
Japanese (ja)
Other versions
JP4639625B2 (en
Inventor
Harumichi Nakanishi
治通 中西
Yoshifumi Ota
佳史 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004108915A priority Critical patent/JP4639625B2/en
Publication of JP2005294101A publication Critical patent/JP2005294101A/en
Application granted granted Critical
Publication of JP4639625B2 publication Critical patent/JP4639625B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell applying no surface pressure to an MEA, having high durability, and capable of easily and inexpensively manufacturing it. <P>SOLUTION: The fuel cell has a separator in which a second member 20 having a prescribed shape is joined to at least one side of a first member 10 formed in a plane shape, and a passage is formed on one side of the first member 10, the first member 10 is made of metal and the second member 20 is made of carbon, a carbon water-repellent film 30 is stuck on the surface on the passage side of the separator, and a catalyst layer 40 and an electrolyte layer 50 are formed on the carbon water-repellent film 30. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池に関し、特に耐久性を有するとともに、製造が容易であり、製造コストが安価な燃料電池に関する。   The present invention relates to a fuel cell, and more particularly to a fuel cell that has durability, is easy to manufacture, and is inexpensive to manufacture.

燃料電池のユニットセルは、電解質の両側に触媒層、さらにその両側に拡散層を配置して熱圧着したMEA(膜/電極接合体、(Membrane Electrode Assembly))で構成されている。該ユニットセルの理論起電力は、1.23Vである。しかし、かかる低起電力では自動車等の動力源等として不十分であるため、通常は、ユニットセルとセパレータとを交互にかつ直列に繰り返し積層させることにより、モジュールを構成し、モジュールを積層してモジュール積層体としている。その両端に集電板を配置し、さらにその外側に電気絶縁性を有する絶縁板を配置する。そして、締付板で挟み、締付ボルト、皿バネ及び締付ナットを用いて締付板で積層体を締め付け、加圧しながら保持する構成を有する燃料電池とすることにより、必要な電圧及び電力を得ている。   A unit cell of a fuel cell is composed of MEA (membrane / electrode assembly) which is thermocompression bonded with a catalyst layer on both sides of an electrolyte and a diffusion layer on both sides thereof. The theoretical electromotive force of the unit cell is 1.23V. However, such a low electromotive force is not sufficient as a power source for automobiles, etc., and therefore, a module is usually formed by repeatedly stacking unit cells and separators alternately and in series. It is a module laminate. A current collecting plate is disposed at both ends, and an insulating plate having electrical insulation is disposed outside the current collecting plate. Then, the required voltage and power can be obtained by forming a fuel cell having a structure in which the laminate is clamped with a clamping plate, clamped with a clamping plate, a disc spring, and a clamping nut, and held with pressure. Have gained.

上記積層体を加圧しながら保持するのは以下の理由による。すなわち、上記従来の燃料電池の構成においてMEAとセパレータとは別体に構成されており、その間に界面が存在する。したがって、この界面に両側より十分な面圧をかけなければ燃料電池内で発生した電気が流れないからである。   The reason why the laminate is held while being pressed is as follows. That is, the MEA and the separator are configured separately from each other in the conventional fuel cell configuration, and an interface exists between them. Therefore, electricity generated in the fuel cell does not flow unless sufficient surface pressure is applied to the interface from both sides.

かかる燃料電池の層構成の技術分野に関して、特許文献1には、電解質と、触媒を担持した炭素粒子を主体とする触媒層と、炭素粒子及び撥水性樹脂からなり、少なくとも該触媒層と反対側の表面に該炭素粒子と絡み合った状態で炭素短繊維を付着させてなる拡散層と、から構成される燃料電池の接合体が開示されている。この燃料電池接合体によれば、電極としてカーボンクロスやカーボンペーパー等を使用した場合に経験されるガス拡散性、及び余剰水の排出の悪化を防止することができるとされている。
特開平8−7897号公報
With respect to the technical field of the layer configuration of such fuel cells, Patent Document 1 describes an electrolyte, a catalyst layer mainly composed of carbon particles supporting a catalyst, carbon particles and a water-repellent resin, at least on the side opposite to the catalyst layer. And a diffusion layer formed by adhering short carbon fibers in an entangled state with the carbon particles on the surface of the fuel cell assembly. According to this fuel cell assembly, it is said that it is possible to prevent gas diffusivity experienced when using carbon cloth, carbon paper, or the like as an electrode, and deterioration of excess water discharge.
JP-A-8-7897

しかし、特許文献1に開示された方法では、積層体は面圧をかけないと発電しないが、この面圧がMEAにも及ぶため、電解質の耐久性を低下させているという問題があった。   However, in the method disclosed in Patent Document 1, the laminate does not generate electric power unless a surface pressure is applied, but this surface pressure reaches the MEA, so that there is a problem that the durability of the electrolyte is lowered.

そこで本発明は、MEAに面圧をかけることがなく、もって耐久性が高く、さらに容易な方法、かつ安価なコストで製造することが可能な燃料電池を提供することを課題とする。   Accordingly, an object of the present invention is to provide a fuel cell that does not apply a surface pressure to the MEA, has high durability, can be manufactured at a low cost, and can be manufactured with ease.

上述した通り、従来の燃料電池では、積層体に面圧をかけないと発電しないものであった。しかしこの面圧が燃料電池電解質の耐久性に著しい悪影響を与えている。本願発明者の実験によれば、面圧を半減させると燃料電池としての性能は低下するものの、耐久性は10倍に伸びるという知見を得ている。上記面圧は、セパレータとMEAが別部材で構成されているために、両者の間に電気を良好な状態に流すために必要であるので、この問題を解決すれば燃料電池の性能を保持しつつその耐久性を大きく向上させることが可能であることに想到して、本発明の完成に至ったものである。   As described above, the conventional fuel cell does not generate power unless a surface pressure is applied to the laminate. However, this surface pressure has a significant adverse effect on the durability of the fuel cell electrolyte. According to the experiment by the present inventor, it has been found that, when the surface pressure is reduced by half, the performance as a fuel cell is lowered, but the durability is increased 10 times. Since the separator and MEA are composed of separate members, the surface pressure is necessary to allow electricity to flow between the two in a good state. Therefore, if this problem is solved, the performance of the fuel cell is maintained. However, the present invention has been completed by conceiving that the durability can be greatly improved.

かくして、上記課題を解決するために、本発明は以下の手段をとる。すなわち、
請求項1に記載の発明は、平板状に形成された第1部材の少なくとも一面側に、所定形状の第2部材を接合して、第1部材の一面側に流路を形成してなるセパレータを備えたことを特徴とする燃料電池である。
Thus, in order to solve the above problems, the present invention takes the following means. That is,
The invention according to claim 1 is a separator formed by joining a second member having a predetermined shape to at least one surface side of a first member formed in a flat plate shape and forming a flow path on one surface side of the first member. A fuel cell comprising:

また、請求項2に記載の発明は、請求項1に記載の燃料電池において、第2部材の断面形状は略円形であることを特徴とする。   According to a second aspect of the present invention, in the fuel cell according to the first aspect, the cross-sectional shape of the second member is substantially circular.

請求項3に記載の発明は、請求項1又は2に記載の燃料電池において、第1部材は金属、第2部材はカーボンで形成されていることを特徴とする。   According to a third aspect of the present invention, in the fuel cell according to the first or second aspect, the first member is made of metal and the second member is made of carbon.

請求項4に記載の発明は、請求項1〜3のいずれか1項に記載の燃料電池において、第2部材は少なくともその一部が多孔質体であることを特徴とする。   According to a fourth aspect of the present invention, in the fuel cell according to any one of the first to third aspects, at least a part of the second member is a porous body.

請求項5に記載の発明は、請求項1〜3のいずれか1項に記載の燃料電池において、第2部材はカソード下流側では少なくともその一部が多孔質体であることを特徴とする。   According to a fifth aspect of the present invention, in the fuel cell according to any one of the first to third aspects, at least a part of the second member is a porous body on the cathode downstream side.

また、請求項6に記載の発明は、請求項1〜5のいずれか1項に記載の燃料電池において、セパレータの流路側の面上に、カーボン撥水フィルムが張り渡されて接合されていることを特徴とする。ここに「カーボン撥水フィルム」とは、PTFE等のフッ素系樹脂フィルムにカーボンを分散させたものであり、市中で入手が可能である。   The invention according to claim 6 is the fuel cell according to any one of claims 1 to 5, wherein a carbon water-repellent film is stretched over and joined to the flow path side surface of the separator. It is characterized by that. Here, the “carbon water-repellent film” is obtained by dispersing carbon in a fluorine resin film such as PTFE, and is available in the market.

さらに、請求項7に記載の発明によれば、請求項6に記載の燃料電池において、カーボン撥水フィルム上にさらに触媒層及び電解質を形成したことを特徴とする。   Furthermore, according to the invention described in claim 7, in the fuel cell described in claim 6, a catalyst layer and an electrolyte are further formed on the carbon water-repellent film.

請求項1に記載の発明によれば、第1部材と第2部材とは接合されているので、両者の間には電気が良好に流れ、これら両部材の間に面圧をかける必要がない。また、第1部材と第2部材とはもともとは別体であるので、目的に応じてそれぞれ別の材料により構成することができる。   According to the first aspect of the present invention, since the first member and the second member are joined, electricity flows between them, and there is no need to apply a surface pressure between these members. . Moreover, since the first member and the second member are originally separate bodies, they can be made of different materials depending on the purpose.

請求項2に記載の発明によれば、金属で形成された第1部材の一面側を該金属の融点以上に昇温して溶融させ、これに第2部材のカーボンを接合することができる。両部材の接合は、例えば、プラズマ溶融接合などの方法によることができる。かかる構成により両者の間には電気が良好に流れ、これら両部材の間に面圧をかける必要がない。   According to the second aspect of the present invention, it is possible to raise the temperature of one surface of the first member made of metal to a temperature equal to or higher than the melting point of the metal and to bond the carbon of the second member thereto. The joining of both members can be performed by a method such as plasma fusion joining. With such a configuration, electricity flows between them, and it is not necessary to apply a surface pressure between these members.

請求項3に記載の発明によれば、断面形状が四辺形に形成された通常の流路より、大きな流路を確保することができる。これは、第1部材と、それとは別に形成する第2部材とを、後から接合するので、流路の断面形状を自由に決定することができるという、本発明の利点の一つである。従来のセパレータのような切削あるいはプレス等の加工法ではかかる利点を得ることはできない。また、同一流量の流路でよい場合には、第2部材の厚さを薄くすることも可能になる。結果としてセパレータの厚さを薄くすることが可能になる   According to the third aspect of the present invention, it is possible to ensure a larger flow path than a normal flow path whose cross-sectional shape is formed in a quadrilateral shape. This is one of the advantages of the present invention that the first member and the second member formed separately from the first member are joined later, so that the cross-sectional shape of the flow path can be determined freely. Such advantages cannot be obtained by a cutting method such as a conventional separator or a processing method such as pressing. In addition, when the flow paths having the same flow rate are sufficient, the thickness of the second member can be reduced. As a result, it becomes possible to reduce the thickness of the separator.

請求項4に記載の発明によれば、第2部材は多孔質材料で形成されているので、流路内に流通されるガスは周囲の第2部材の内部にも浸透して、電極側に十分な量のガスを供給することができる。また、カソード側で生成される水分を第2部材を通じて流路内のガス中へと排出させることもできる。   According to the fourth aspect of the present invention, since the second member is formed of a porous material, the gas flowing in the flow path penetrates also into the surrounding second member, and on the electrode side. A sufficient amount of gas can be supplied. Moreover, the water | moisture content produced | generated by the cathode side can also be discharged | emitted in the gas in a flow path through a 2nd member.

請求項5に記載の発明によれば、特に生成水分がリッチとなるカソードの流路下流側において上記請求項4の効果を得ることができる。   According to the fifth aspect of the present invention, the effect of the fourth aspect can be obtained particularly on the downstream side of the flow path of the cathode where the generated water becomes rich.

請求項6に記載の発明によれば、電極の湿度を保つ撥水フィルムをセパレータ側に接合したので、従来のようなカーボンペーパー、カーボンクロス等で形成する拡散層を省略することが可能となる。かくして、従来の燃料電池で拡散層とセパレータとの間に電気を流すために必要であった面圧をかけることが不要となる。したがって、面圧をかけることにより犠牲となっていた燃料電池の耐久性を飛躍的に向上させることができる。また、従来面圧をかけるために燃料電池に使用されていた、締付板、締付ボルト、皿バネ、及び締付ナット等を使用しなくて済み、部品点数の削減、燃料電池重量の軽量化が可能であるという利点がある。さらに、拡散層が不要となるので、燃料電池のコストを低減し、電池の厚さを薄くすることもできる。   According to the invention described in claim 6, since the water-repellent film that keeps the humidity of the electrode is joined to the separator side, it is possible to omit a diffusion layer formed of carbon paper, carbon cloth, etc. as in the prior art. . Thus, it is not necessary to apply the surface pressure necessary for flowing electricity between the diffusion layer and the separator in the conventional fuel cell. Therefore, the durability of the fuel cell which has been sacrificed by applying the surface pressure can be dramatically improved. In addition, it is not necessary to use clamping plates, clamping bolts, disc springs, and clamping nuts that have been used in conventional fuel cells to apply surface pressure, reducing the number of parts and reducing the weight of the fuel cell. There is an advantage that it can be realized. Furthermore, since the diffusion layer is not necessary, the cost of the fuel cell can be reduced and the thickness of the cell can be reduced.

請求項7に記載の発明によれば、燃料電池のセルを構成する電解質、触媒層、撥水層、第2部材、及び第1部材が全て接合されているので、面圧をかけることが不要である。よって燃料電池の耐久性を向上することができる。また、第1部材上に、第2部材、カーボン撥水フィルム、触媒層、及び電解質を重ねるように接合して、連続的に生産が可能となるので、生産工程が簡素であり、かつ低廉なコストにて生産することが可能である。   According to the invention described in claim 7, since the electrolyte, the catalyst layer, the water repellent layer, the second member, and the first member constituting the fuel cell are all joined, it is not necessary to apply a surface pressure. It is. Therefore, the durability of the fuel cell can be improved. In addition, the second member, the carbon water repellent film, the catalyst layer, and the electrolyte are joined on the first member so that they can be continuously produced, so that the production process is simple and inexpensive. It is possible to produce at a cost.

図1(a)は、本発明の燃料電池100の構成を示す断面図である。なお、説明の便宜上、図1(a)には電解質とその片側にあるアノード側のみ示されている。また、実際に燃料電池を例えば自動車の動力源として使用する場合には、図示の燃料電池100をユニットセルとして、積層して使用することはいうまでもない。   FIG. 1A is a cross-sectional view showing a configuration of a fuel cell 100 of the present invention. For convenience of explanation, FIG. 1 (a) shows only the electrolyte and the anode on one side thereof. Needless to say, when the fuel cell is actually used as a power source of an automobile, for example, the illustrated fuel cell 100 is used as a unit cell in a stacked manner.

燃料電池100は、第1部材10に接合された線状あるいは棒状の第2部材20、20、…と、各第2部材20、20、…上に張り渡されて接合されたカーボン撥水フィルム30と、カーボン撥水フィルム30上に接合された触媒層40と、触媒層40上に接合された電解質50を備えている。図1(a)において、電解質50の右側には触媒層40、カーボン撥水フィルム30、第2部材20、及び第1部材10が配置されているがこれらの図示は省略されている。   The fuel cell 100 includes a linear or rod-like second member 20, 20,... Joined to the first member 10, and a carbon water-repellent film stretched over and joined to each second member 20, 20,. 30, a catalyst layer 40 bonded on the carbon water-repellent film 30, and an electrolyte 50 bonded on the catalyst layer 40. In FIG. 1A, the catalyst layer 40, the carbon water-repellent film 30, the second member 20, and the first member 10 are disposed on the right side of the electrolyte 50, but these are not shown.

第1部材10は金属材料で形成された平板状の部材である。一方、第2部材20はカーボン製の線状あるいは棒状の部材である。これら第1部材10と、第2部材20とを接合するには、例えば、金属製である第1部材10表面をプラズマ溶融させて、これに第2部材20を接触させればよい。プラズマ溶融された第1部材10に第2部材20を接触させるだけで、両者の間に十分な接着強度と、良好な電気伝導性を得ることができる。   The first member 10 is a flat plate member made of a metal material. On the other hand, the second member 20 is a carbon linear or rod-shaped member. In order to join the first member 10 and the second member 20, for example, the surface of the first member 10 made of metal may be melted by plasma and the second member 20 may be brought into contact therewith. By simply bringing the second member 20 into contact with the plasma-melted first member 10, sufficient adhesive strength and good electrical conductivity can be obtained between them.

図1(b)は、図1(a)の燃料電池100のB−B線矢視断面図である。第1部材10上にサーペンタイン状に流路60を形成するように、線状あるいは棒状の第2部材20、20、…が適宜配置されている様子が示されている。本発明において流路形状は特に図1(b)に示されているサーペンタイン形状には限定されていないので、第1部材10上に接合される第2部材20は適宜その形状を決定して、例えばカーボン製の平板を打ち抜き等の加工をして得ることも可能である。   FIG. 1B is a cross-sectional view of the fuel cell 100 of FIG. The linear or rod-like second members 20, 20,... Are appropriately arranged so as to form the serpentine flow path 60 on the first member 10. In the present invention, the flow path shape is not particularly limited to the serpentine shape shown in FIG. 1 (b), so the second member 20 to be joined on the first member 10 determines its shape as appropriate, For example, a carbon flat plate can be obtained by punching or the like.

図2は、第1部材10上に接合される第2部材20の断面形状の各態様を示す図である。本発明においては流路60を実質的に形成する第1部材10と、第2部材20とをそれぞれ別体として作製してから両者を接合するので、従来のように流路を一部材から切削あるいはプレス加工により形成する場合に比較して、第2部材の断面形状を自由に決定することができる。図2(a)は、図1に示される燃料電池100における第1部材10の一面上に接合された断面形状四角形の第2部材20を示している。図2(b)〜(d)はその変形例を示すものである。   FIG. 2 is a view showing each aspect of the cross-sectional shape of the second member 20 joined on the first member 10. In the present invention, since the first member 10 and the second member 20 that substantially form the flow path 60 are manufactured separately from each other and then joined together, the flow path is cut from one member as in the prior art. Or compared with the case where it forms by press work, the cross-sectional shape of a 2nd member can be determined freely. FIG. 2A shows a second member 20 having a quadrangular cross-sectional shape joined on one surface of the first member 10 in the fuel cell 100 shown in FIG. 2 (b) to 2 (d) show modifications thereof.

図2(b)は、断面形状が円形の第2部材21を示すものである。この場合、第1部材10と第2部材21とが線接触しており接合強度に不安があるという見方もあるが、実際には、溶融した第1部材10の表面にわずかに第2部材21の底部が喰い込んで溶着されるので、十分な強度と電気伝導性を得ることが経験されている。   FIG. 2B shows the second member 21 having a circular cross-sectional shape. In this case, there is a view that the first member 10 and the second member 21 are in line contact with each other and there is a concern that the bonding strength is uneasy, but actually, the second member 21 is slightly formed on the surface of the melted first member 10. It has been experienced to obtain sufficient strength and electrical conductivity because the bottom part of the steel bites into and is welded.

図2(c)は、断面形状が円形の底部にさらにアンカー状の凸部を有する第2部材22を示すものである。かかる第2部材22によれば、アンカー部が第1部材10の表面にしっかりと喰い込んでアンカー効果を発揮するのでさらに確実に、十分な強度と電気伝導性を得ることが可能となる。   FIG. 2C shows the second member 22 having an anchor-like convex portion at the bottom having a circular cross-sectional shape. According to the second member 22, since the anchor portion firmly bites into the surface of the first member 10 and exhibits the anchor effect, it is possible to obtain sufficient strength and electrical conductivity more reliably.

図2(d)は、断面形状が逆三角形の第2部材23を示すものである。図2(b)〜(d)に示された形状の断面を有する第2部材21〜23を第1部材10上に接合すれば、断面形状四角形の第2部材20を第1部材10上に接合して形成した流路より断面積が大きな流路を形成することが可能である。したがって、流路を流れるガスの流量を多く取ることができる。   FIG. 2D shows the second member 23 whose cross-sectional shape is an inverted triangle. If the second members 21 to 23 having the cross section shown in FIGS. 2B to 2D are bonded onto the first member 10, the second member 20 having a quadrangular cross section is formed on the first member 10. It is possible to form a channel having a larger cross-sectional area than the channels formed by joining. Therefore, it is possible to increase the flow rate of the gas flowing through the flow path.

第2部材20を構成するカーボン材は、緻密質なものであってもよいが、電極へのガスの供給を良好にして、かつ生成水によるフラッディングを抑制するという観点からは多孔質であることが好ましい。特に、生成水がリッチとなるカソードの流路下流側では第2部材20を多孔質カーボン材で構成する利点が高い。   The carbon material constituting the second member 20 may be dense, but is porous from the viewpoint of improving the gas supply to the electrode and suppressing flooding due to generated water. Is preferred. In particular, there is a great advantage that the second member 20 is made of a porous carbon material on the downstream side of the cathode flow path where the generated water is rich.

再び図1(a)に戻り説明を続ける。第2部材20、20、…上にはカーボン撥水フィルム30が張り渡されて、第2部材20、20、…との接触面で接合されている。かかる接合方法の一例として、超音波接合法を挙げることができるが本発明はこれに限定されるものではない。カーボン撥水フィルム30は、フッ素系樹脂にカーボン粒子を分散させたもので、市中で入手することが可能である。フッ素樹脂としては、例えば、ポリテトラフルオロエチレン樹脂(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体樹脂(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体樹脂(PFA)、テトラフルオロエチレン−エチレン共重合体樹脂(ETFE)、クロロトリフルオロエチレン樹脂(PCTFE)、フルオロビニリデン樹脂(PVDF)などがあげられる。なかでも、PTFEが好ましい。このカーボン撥水フィルム30は、電解質10及び触媒層20で構成される電極側の湿度をほぼ100%に保つとともに、外部側から電極側への過剰な水分(生成水や、加湿水分が結露したもの)の侵入を防止する機能を有している。さらにカーボン撥水フィルム30は、カーボン粒子を有しており、電気の良導体であるので、電極側から、第2部材20、第1部材10への電気の流れを妨げない。   Returning to FIG. 1A again, the description will be continued. A carbon water-repellent film 30 is stretched over the second members 20, 20,... And joined at the contact surface with the second members 20, 20,. An example of such a bonding method is an ultrasonic bonding method, but the present invention is not limited to this. The carbon water-repellent film 30 is obtained by dispersing carbon particles in a fluorine-based resin and can be obtained in the market. Examples of the fluororesin include polytetrafluoroethylene resin (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer resin (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin (PFA), and tetrafluoroethylene. -Ethylene copolymer resin (ETFE), chlorotrifluoroethylene resin (PCTFE), fluorovinylidene resin (PVDF) and the like. Of these, PTFE is preferable. This carbon water-repellent film 30 keeps the humidity on the electrode side composed of the electrolyte 10 and the catalyst layer 20 at almost 100%, and excessive moisture (generated water or humidified moisture is condensed from the outside side to the electrode side). It has a function to prevent intrusion of things). Furthermore, since the carbon water-repellent film 30 has carbon particles and is a good electrical conductor, it does not hinder the flow of electricity from the electrode side to the second member 20 and the first member 10.

カーボン撥水層30と電解質50との間には、触媒層40が配置されている。触媒層40は、例えば、炭素粒子(30nm径)に担持された微小な粒子状(3nm径)の白金触媒と、撥水性を備えたフッ素樹脂から10μm程度の厚さに形成されており、反応ガスが効率的に拡散できるよう細孔を有している。触媒層40は、いわゆる「デカール法」に基づいて、上記材料をアルコール等の溶剤に溶いたものを、テフロン(登録商標)フィルムのブランク上に製膜し、その後電解質50上に、あるいはカーボン撥水フィルム30上に転写することにより、いずれかの層上に接合することが可能である。   A catalyst layer 40 is disposed between the carbon water repellent layer 30 and the electrolyte 50. The catalyst layer 40 is formed to a thickness of about 10 μm from, for example, a fine particle (3 nm diameter) platinum catalyst supported on carbon particles (30 nm diameter) and a fluororesin having water repellency. It has pores so that gas can diffuse efficiently. Based on the so-called “decal method”, the catalyst layer 40 is obtained by forming a solution of the above material in a solvent such as alcohol on a Teflon (registered trademark) film blank and then on the electrolyte 50 or carbon repellent. By transferring onto the water film 30, it is possible to bond on either layer.

電解質50としては、スルホン酸基を含有するポリスチレン系陽イオン交換膜(カチオン導電性膜)、フルオロカーボンマトリクスにおいてトリフルオロエチレンをグラファイト化した膜、及びパーフルオロカーボンスルホン酸膜を使用することができる。パーフルオロカーボンスルホン酸膜として、例えば、米国デュポン社製の「Nafion」、旭硝子(日本)の「Flemion」、旭化成(日本)の「Aciplex」などが市中で入手可能である。電解質は、分子中にプロトン(水素イオン)交換基を備えており、常温下、飽和に水を含む状態で比抵抗が20Ωcm以下となり、プロトン導電性電解質として機能する。   As the electrolyte 50, a polystyrene-based cation exchange membrane (cation conductive membrane) containing a sulfonic acid group, a membrane obtained by graphitizing trifluoroethylene in a fluorocarbon matrix, and a perfluorocarbonsulfonic acid membrane can be used. As the perfluorocarbon sulfonic acid membrane, for example, “Nafion” manufactured by DuPont, USA, “Flemion” manufactured by Asahi Glass (Japan), “Aciplex” manufactured by Asahi Kasei (Japan), etc. are available in the market. The electrolyte has a proton (hydrogen ion) exchange group in the molecule, and has a specific resistance of 20 Ωcm or less when water is saturated and contained at room temperature, and functions as a proton conductive electrolyte.

次に、図3を参照しつつ、燃料電池100における電気発生の源となる電気化学反応の工程につき説明する。図1(a)では、説明の便宜上、燃料電池100の左側()アノード)だけを表し、右側(カソード)を省略して表していたが、ここでは、かかる省略をせず、電解質50の図面左側をアノード側として各部材の参照符号の末尾に「a」を付し、電解質50の図面右側をカソード側として、その各部材の参照符号の末尾には「b」を付して表している。なお、カソード側流路60bは、アノード側流路60aと直交する方向に形成されているため、カソード側には第2部材20bのみが図の上下方向に表されている。   Next, with reference to FIG. 3, an electrochemical reaction process that is a source of electricity generation in the fuel cell 100 will be described. In FIG. 1A, for convenience of explanation, only the left side () anode) of the fuel cell 100 is shown and the right side (cathode) is omitted. However, here, the illustration of the electrolyte 50 is omitted without such omission. “A” is added to the end of the reference number of each member with the left side as the anode side, and the right side of the drawing of the electrolyte 50 is set as the cathode side, and “b” is added to the end of the reference number of each member. . In addition, since the cathode side flow path 60b is formed in the direction orthogonal to the anode side flow path 60a, only the 2nd member 20b is represented by the up-down direction of the figure at the cathode side.

まず、第1部材10aと第2部材20aとにより形成されたガス流路60aに水素(H)が供給される。ガス流路60aからカーボン撥水フィルム30aを透過して触媒層40aへと届けられた水素(H)は、触媒の存在下、水素イオンと電子とに分解される。
アノード側:H→2H+2e
そして、発生した水素イオンは、イオン伝導体である電解質50を通過してカソード側へと移動する。電解質50はイオンのみを通過させる性質を有するため、発生した電子は電解質50を通過することができず、外部の回路を通ってカソード側へと移動する。燃料電池100においては、かかる電子の移動により、電気が発生する。一方で、ガス流路60bにより、カソード内に流通される酸素(O)が、カソードへと移動してきた水素イオンおよび電子と反応することにより、水が生成される。
カソード側:2H+2e+(1/2)O→H
First, hydrogen (H 2 ) is supplied to the gas flow path 60a formed by the first member 10a and the second member 20a. Hydrogen (H 2 ) that has passed through the carbon water repellent film 30a from the gas flow path 60a and delivered to the catalyst layer 40a is decomposed into hydrogen ions and electrons in the presence of the catalyst.
Anode side: H 2 → 2H + + 2e
The generated hydrogen ions pass through the electrolyte 50, which is an ionic conductor, and move to the cathode side. Since the electrolyte 50 has a property of allowing only ions to pass therethrough, the generated electrons cannot pass through the electrolyte 50 and move to the cathode side through an external circuit. In the fuel cell 100, electricity is generated by the movement of the electrons. On the other hand, by the gas flow path 60b, oxygen (O 2 ) circulated in the cathode reacts with hydrogen ions and electrons that have moved to the cathode, thereby generating water.
Cathode side: 2H + + 2e + (1/2) O 2 → H 2 O

以上のように構成された本発明の燃料電池100は、従来の燃料電池のような拡散層とセパレータとの間の界面に相当するものがなく、各構成部材はそれぞれに接合されているので、従来の燃料電池で拡散層とセパレータとの間に電気を流すために必要であった面圧をかけることが不要となる。したがって、面圧をかけることにより犠牲となっていた燃料電池の耐久性を飛躍的に向上させることができる。また、従来面圧をかけるために燃料電池に使用されていた、締付板、締付ボルト、皿バネ、及び締付ナット等を使用しなくて済むという利点がある。さらに、拡散層が不要となるので、燃料電池のコストを低減し、電池の厚さを薄くすることもできる。また、第1部材10上に、第2部材20、カーボン撥水フィルム30、触媒層40、及び電解質50を積み重ねるように接合して、連続的に生産が可能となるので、生産工程が簡素であり、かつ生産に要するコストが低廉である。   The fuel cell 100 of the present invention configured as described above has nothing equivalent to the interface between the diffusion layer and the separator as in the conventional fuel cell, and each component is joined to each other. It is no longer necessary to apply a surface pressure that is necessary for flowing electricity between the diffusion layer and the separator in the conventional fuel cell. Therefore, the durability of the fuel cell which has been sacrificed by applying the surface pressure can be dramatically improved. Further, there is an advantage that it is not necessary to use a clamping plate, a clamping bolt, a disc spring, a clamping nut, and the like, which are conventionally used for a fuel cell to apply a surface pressure. Furthermore, since the diffusion layer is not necessary, the cost of the fuel cell can be reduced and the thickness of the cell can be reduced. In addition, since the second member 20, the carbon water repellent film 30, the catalyst layer 40, and the electrolyte 50 are joined on the first member 10 so that they can be continuously produced, the production process is simplified. Yes, and the cost required for production is low.

(a)は、本発明の燃料電池の構成を示す断面図である。(b)は、(a)の燃料電池のB−B矢視断面図である。(A) is sectional drawing which shows the structure of the fuel cell of this invention. (B) is a BB arrow sectional view of the fuel cell of (a). 第1部材上に接合される第2部材の断面形状の各態様を示す図である。It is a figure which shows each aspect of the cross-sectional shape of the 2nd member joined on the 1st member. 燃料電池における電気化学反応の工程を説明する図である。It is a figure explaining the process of the electrochemical reaction in a fuel cell.

符号の説明Explanation of symbols

10 第1部材
20、21、22、23 第2部材
30 カーボン撥水層
40 触媒層
50 電解質
60a、60b 流路
100 燃料電池
DESCRIPTION OF SYMBOLS 10 1st member 20, 21, 22, 23 2nd member 30 Carbon water repellent layer 40 Catalyst layer 50 Electrolyte 60a, 60b Flow path 100 Fuel cell

Claims (7)

平板状に形成された第1部材の少なくとも一面側に、所定形状の第2部材を接合して、前記第1部材の一面側に流路を形成してなるセパレータを備えたことを特徴とする燃料電池。 A separator formed by joining a second member having a predetermined shape to at least one surface side of the first member formed in a flat plate shape and forming a flow path on one surface side of the first member is provided. Fuel cell. 前記第2部材の断面形状は略円形であることを特徴とする請求項1に記載の燃料電池。 The fuel cell according to claim 1, wherein a cross-sectional shape of the second member is substantially circular. 前記第1部材は金属、第2部材はカーボンで形成されていることを特徴とする請求項1又は2に記載の燃料電池。 The fuel cell according to claim 1 or 2, wherein the first member is made of metal and the second member is made of carbon. 前記第2部材は少なくともその一部が多孔質体であることを特徴とする請求項1〜3のいずれか1項に記載の燃料電池。 The fuel cell according to claim 1, wherein at least a part of the second member is a porous body. 前記第2部材はカソード下流側では少なくともその一部が多孔質体であることを特徴とする請求項1〜3のいずれか1項に記載の燃料電池。 The fuel cell according to any one of claims 1 to 3, wherein at least a part of the second member is a porous body on the downstream side of the cathode. 前記セパレータの流路側の面上に、カーボン撥水フィルムが張り渡されて接合されていることを特徴とする請求項1〜5のいずれか1項に記載の燃料電池。 The fuel cell according to any one of claims 1 to 5, wherein a carbon water-repellent film is stretched and joined on a flow path side surface of the separator. 前記カーボン撥水フィルム上にさらに触媒層および電解質を形成したことを特徴とする請求項6に記載の燃料電池。

The fuel cell according to claim 6, wherein a catalyst layer and an electrolyte are further formed on the carbon water-repellent film.

JP2004108915A 2004-04-01 2004-04-01 Fuel cell Expired - Fee Related JP4639625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004108915A JP4639625B2 (en) 2004-04-01 2004-04-01 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004108915A JP4639625B2 (en) 2004-04-01 2004-04-01 Fuel cell

Publications (2)

Publication Number Publication Date
JP2005294101A true JP2005294101A (en) 2005-10-20
JP4639625B2 JP4639625B2 (en) 2011-02-23

Family

ID=35326793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004108915A Expired - Fee Related JP4639625B2 (en) 2004-04-01 2004-04-01 Fuel cell

Country Status (1)

Country Link
JP (1) JP4639625B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029076A (en) * 2009-07-28 2011-02-10 Nissan Motor Co Ltd Gas diffusion layer for fuel cell, and method of manufacturing gas diffusion layer for fuel cell, fuel cell, and fuel cell automobile
JP2013191434A (en) * 2012-03-14 2013-09-26 Nissan Motor Co Ltd Gas diffusion layer with passage

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03138865A (en) * 1989-10-24 1991-06-13 Hitachi Chem Co Ltd Separator for fuel cell
JP2000231925A (en) * 1999-02-09 2000-08-22 Nippon Pillar Packing Co Ltd Separator for fuel cell and its manufacture
JP2002158017A (en) * 2000-11-20 2002-05-31 Sanyo Electric Co Ltd Manufacturing method of base board for fuel cell, and fuel cell
JP2002216786A (en) * 2001-01-23 2002-08-02 Hitachi Ltd Solid polymer fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03138865A (en) * 1989-10-24 1991-06-13 Hitachi Chem Co Ltd Separator for fuel cell
JP2000231925A (en) * 1999-02-09 2000-08-22 Nippon Pillar Packing Co Ltd Separator for fuel cell and its manufacture
JP2002158017A (en) * 2000-11-20 2002-05-31 Sanyo Electric Co Ltd Manufacturing method of base board for fuel cell, and fuel cell
JP2002216786A (en) * 2001-01-23 2002-08-02 Hitachi Ltd Solid polymer fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029076A (en) * 2009-07-28 2011-02-10 Nissan Motor Co Ltd Gas diffusion layer for fuel cell, and method of manufacturing gas diffusion layer for fuel cell, fuel cell, and fuel cell automobile
JP2013191434A (en) * 2012-03-14 2013-09-26 Nissan Motor Co Ltd Gas diffusion layer with passage

Also Published As

Publication number Publication date
JP4639625B2 (en) 2011-02-23

Similar Documents

Publication Publication Date Title
JP2009064769A (en) Unit cell for fuel battery, and fuel battery
US9397351B2 (en) Apparatus and methods for connecting fuel cells to an external circuit
JP5343532B2 (en) Fuel cell and fuel cell stack manufacturing method
JP5294550B2 (en) Membrane electrode assembly and fuel cell
JP2007273141A (en) Fuel cell and manufacturing method of fuel cell
JP4400177B2 (en) Fuel cell electrode
JP4897928B2 (en) Polymer electrolyte fuel cell and separator for polymer electrolyte fuel cell
JP4639625B2 (en) Fuel cell
JP5151270B2 (en) Fuel cell components
JP2007273433A (en) Cell unit, cell connection method, and fuel cell
JP5029897B2 (en) Fuel cell
JP2009170175A (en) Membrane electrode structure, and fuel cell
JP2007087728A (en) Laminate, method of manufacturing it, as well as fuel cell
JP2003077500A (en) Solid polymer fuel cell
JP2009059604A (en) Hybrid membrane for solid polymer fuel cell, its manufacturing method, membrane-electrode assembly, its manufacturing method, and solid polymer fuel cell
JP2006134640A (en) Polymer electrolyte fuel cell and its manufacturing method
JP2008288068A (en) Fuel cell, anode of fuel cell, and membrane electrode assembly
JP5733182B2 (en) Manufacturing method of membrane electrode assembly
JP2013182751A (en) Method for manufacturing membrane electrode assembly, membrane electrode assembly, and fuel cell
JP4440088B2 (en) Fuel cell
JP2008146910A (en) Voltage measuring terminal mounting method
JP2009026468A (en) Manufacturing method of membrane-gas diffusion electrode assembly
JP4839589B2 (en) Fuel cell electrolyte layer and membrane electrode assembly comprising fuel cell electrolyte layer
WO2012105487A1 (en) Membrane electrode assembly and alkaline fuel cell using same
JP4183671B2 (en) Fuel cell separator and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

TRDD Decision of grant or rejection written
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20101101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

R151 Written notification of patent or utility model registration

Ref document number: 4639625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees