JP2006134640A - Polymer electrolyte fuel cell and its manufacturing method - Google Patents

Polymer electrolyte fuel cell and its manufacturing method Download PDF

Info

Publication number
JP2006134640A
JP2006134640A JP2004320475A JP2004320475A JP2006134640A JP 2006134640 A JP2006134640 A JP 2006134640A JP 2004320475 A JP2004320475 A JP 2004320475A JP 2004320475 A JP2004320475 A JP 2004320475A JP 2006134640 A JP2006134640 A JP 2006134640A
Authority
JP
Japan
Prior art keywords
gas diffusion
diffusion layer
polymer electrolyte
separator
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004320475A
Other languages
Japanese (ja)
Inventor
Yoichi Asano
洋一 浅野
Masajiro Inoue
雅次郎 井ノ上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004320475A priority Critical patent/JP2006134640A/en
Publication of JP2006134640A publication Critical patent/JP2006134640A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymer electrolyte fuel cell capable of stably keeping contact resistance between a metallic separator and a gas diffusion layer in a low value even when repeated load fatigue is added, preventing stay of produced water, and having high power generation performance. <P>SOLUTION: In the polymer electrolyte fuel cell formed by stacking a cathode side separator, an anode side gas diffusion layer, a cathode, a polymer electrolyte membrane, an anode, an anode side gas diffusion layer, and an anode side separator, a high density carbon layer comprising carbon particles and water repellent resin is arranged on the surface of the gas difffusion layer on the contact surface between the separator and the gas diffusion layer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固体高分子型燃料電池に係り、特に、固体高分子型燃料電池スタックMEA(膜電極構造体)の改良に関するものである。   The present invention relates to a polymer electrolyte fuel cell, and more particularly to improvement of a polymer electrolyte fuel cell stack MEA (membrane electrode structure).

固体高分子型燃料電池は、水素などの燃料ガスと酸素などの酸化剤ガスを電気化学的に反応させて発電することができる。このような固体高分子型燃料電池は、平板状のスタックMEAの両側にセパレータが積層されて構成されている。   The polymer electrolyte fuel cell can generate electricity by electrochemically reacting a fuel gas such as hydrogen and an oxidant gas such as oxygen. Such a polymer electrolyte fuel cell is configured by stacking separators on both sides of a flat stack MEA.

このスタックMEAは、スルホン基を有する樹脂からなる高分子電解質膜の両面に、白金系の金属触媒を担持したカーボン粉末を主成分とする触媒層が密着して形成されている。さらに、触媒層への反応ガスの供給及び反応生成水の排出を円滑に行うために、触媒層の外側には高いガス拡散と電子伝導を有するガス拡散層が設けられている。   In this stack MEA, catalyst layers mainly composed of carbon powder carrying a platinum-based metal catalyst are formed in close contact with both surfaces of a polymer electrolyte membrane made of a resin having a sulfone group. Further, in order to smoothly supply the reaction gas to the catalyst layer and discharge the reaction product water, a gas diffusion layer having high gas diffusion and electron conduction is provided outside the catalyst layer.

これらの高分子電解質膜、触媒層及びガス拡散層の接合体を機械的に固定するとともに、隣接する接合体を電気的に直列に接続するために、接合体の両側に導電性のセパレータ板が配されている。また、セパレータのガス拡散層に対向する面には、ガス拡散層に均一にガスを供給するための溝状の流路が設けられている。   In order to mechanically fix the joined body of the polymer electrolyte membrane, the catalyst layer, and the gas diffusion layer, and to electrically connect adjacent joined bodies in series, conductive separator plates are provided on both sides of the joined body. It is arranged. Further, a groove-like flow path for supplying gas uniformly to the gas diffusion layer is provided on the surface of the separator facing the gas diffusion layer.

このような固体高分子型燃料電池においては、セパレータとガス拡散層の接触部の接触抵抗が発電性能に大きく影響することが知られている(例えば、特許文献1参照。)。すなわち、接触抵抗が小さいものほど、発電時のロスとなる抵抗過電圧も小さく高性能となる。また、廉価な金属薄板を用いて一般的なプレス成形加工で作る金属セパレータは将来の小型高性能固体高分子型燃料電池として期待されている。このような、セパレータの材質に金属系セパレータを用い、ガス拡散層にカーボン系の不織布または織布を用いた場合には、通常金属表面が高抵抗となる酸化皮膜に覆われているため、導電抵抗が大きくなりがちであることから、金属セパレータの表面に安定で高導電な金などを薄く形成することが一般的に知られている(例えば、特許文献2参照。)。   In such a polymer electrolyte fuel cell, it is known that the contact resistance of the contact portion between the separator and the gas diffusion layer greatly affects the power generation performance (see, for example, Patent Document 1). That is, the smaller the contact resistance, the smaller the resistance overvoltage that becomes a loss during power generation, and the higher the performance. In addition, a metal separator made by a general press molding process using an inexpensive metal thin plate is expected as a future compact high-performance solid polymer fuel cell. When a metal separator is used as the separator material and a carbon-based nonwoven fabric or woven fabric is used for the gas diffusion layer, the metal surface is usually covered with an oxide film with high resistance. Since resistance tends to increase, it is generally known to form a thin, stable, highly conductive gold or the like on the surface of a metal separator (see, for example, Patent Document 2).

特開平7−22042号公報Japanese Patent Laid-Open No. 7-22042 特開平10−228914号公報JP-A-10-228914

しかしながら、固体高分子型燃料電池は何層にも積層する構造原理から多くのセパレータの積層が必要となるため、金などの高価な貴金属を多量に使用しなければならず、固体高分子型燃料電池の大量普及に向けて大きな課題であるコストダウンの障害となっていた。   However, since a polymer electrolyte fuel cell requires a large number of separators to be laminated due to the structure principle of laminating multiple layers, a large amount of expensive noble metals such as gold must be used. It has become an obstacle to cost reduction, which is a major issue for mass diffusion of batteries.

また、発電繰り返しによる燃料電池の熱的膨張収縮により金属セパレータの表面とガス拡散層表面で繰り返し荷重疲労が加わり、セパレータと接するガス拡散層面の繊維が破壊することで経時的にその接触抵抗が上昇していた。   In addition, the thermal expansion and contraction of the fuel cell due to repeated power generation causes repeated load fatigue on the surface of the metal separator and the surface of the gas diffusion layer, and the contact resistance increases with time by breaking the fibers on the surface of the gas diffusion layer in contact with the separator. Was.

したがって、本発明は、繰り返し荷重疲労が加わっても、金属セパレータとガス拡散層との接触抵抗が安定的に低抵抗を維持し、かつ、生成水の滞留を防止することができ、優れた発電性能が得られる固体高分子型燃料電池を提供することを目的としている。   Therefore, the present invention can maintain the low resistance of the metal separator and the gas diffusion layer stably even when repeated load fatigue is applied, and can prevent the stagnation of generated water. An object of the present invention is to provide a polymer electrolyte fuel cell capable of obtaining performance.

本発明の固体高分子型燃料電池用電極は、カソード側セパレータ、カソード側ガス拡散層、カソード電極、高分子電解質膜、アノード電極、アノード側ガス拡散層、アノード側セパレータを積層してなる固体高分子型燃料電池において、セパレータとガス拡散層との接触面におけるガス拡散層表面に、カーボン粒子と撥水性樹脂とからなる高密度カーボン層が設けられていることを特徴としている。   The electrode for a polymer electrolyte fuel cell according to the present invention comprises a cathode separator, cathode side gas diffusion layer, cathode electrode, polymer electrolyte membrane, anode electrode, anode side gas diffusion layer, and anode side separator. The molecular fuel cell is characterized in that a high-density carbon layer composed of carbon particles and a water-repellent resin is provided on the surface of the gas diffusion layer at the contact surface between the separator and the gas diffusion layer.

また、本発明の固体高分子型燃料電池においては、高密度カーボン層が設けられたガス拡散層がカソード側であることが好適な態様である。   In the polymer electrolyte fuel cell of the present invention, it is preferable that the gas diffusion layer provided with the high-density carbon layer is on the cathode side.

本発明によれば、セパレータとガス拡散層との接触面におけるガス拡散層表面に高密度カーボン層が設けられていることにより、繰り返し荷重疲労が加わっても、金属セパレータとガス拡散層との接触抵抗を安定的に低く維持することができ、また、この高密度カーボン層がカーボン粒子と撥水性樹脂とからなることにより、生成水の滞留を防止することができ、さらに、これらの結果として、優れた発電性能が得られる。   According to the present invention, since the high-density carbon layer is provided on the surface of the gas diffusion layer at the contact surface between the separator and the gas diffusion layer, contact between the metal separator and the gas diffusion layer can be achieved even when repeated load fatigue is applied. The resistance can be stably kept low, and the high-density carbon layer is composed of carbon particles and a water-repellent resin, so that retention of generated water can be prevented. Excellent power generation performance can be obtained.

本発明の固体高分子型燃料電池は、図1に示すように、カソード側セパレータ1、カソード側ガス拡散層2、カソード電極3、高分子電解質膜4、アノード電極5、アノード側ガス拡散層6、アノード側セパレータ7がこの順に積層された構成であり、さらに、セパレータ(1,7)とガス拡散層(2,6)との接触面におけるガス拡散層表面に、カーボン粒子と撥水性樹脂とからなる高密度カーボン層(8,9)が設けられた構成である。本発明においては、高密度カーボン層以外の構成要素は特に限定されるものではないので、以下、高密度カーボン層について詳細に説明する。   As shown in FIG. 1, a solid polymer fuel cell of the present invention comprises a cathode separator 1, a cathode gas diffusion layer 2, a cathode electrode 3, a polymer electrolyte membrane 4, an anode electrode 5, and an anode gas diffusion layer 6. The anode separator 7 is laminated in this order. Further, carbon particles and a water-repellent resin are formed on the surface of the gas diffusion layer at the contact surface between the separator (1, 7) and the gas diffusion layer (2, 6). The high-density carbon layer (8, 9) made of is provided. In the present invention, constituent elements other than the high-density carbon layer are not particularly limited, and therefore, the high-density carbon layer will be described in detail below.

本発明における高密度カーボン層は、セパレータとガス拡散層との接触面におけるガス拡散層表面に設けられ、好ましくは、ガス拡散層中に1〜8μm埋め込まれて設けられる。また、セパレータにはガス流路が形成されているため、本発明においては、図2に示すように、その流路パターンに合わせて、ガス拡散層10表面に高密度カーボン層11が形成される。このような構成により、発電繰り返しによる燃料電池の熱的膨張収縮により繰り返し荷重疲労が加わっても、セパレータと接するガス拡散層面の繊維が破壊することなく、セパレータとガス拡散層との接触抵抗を安定的に低く維持することができる。   The high-density carbon layer in the present invention is provided on the surface of the gas diffusion layer at the contact surface between the separator and the gas diffusion layer, and preferably is embedded in the gas diffusion layer by 1 to 8 μm. In addition, since the gas flow path is formed in the separator, in the present invention, as shown in FIG. 2, the high-density carbon layer 11 is formed on the surface of the gas diffusion layer 10 in accordance with the flow path pattern. . With such a configuration, even when repeated load fatigue is applied due to thermal expansion and contraction of the fuel cell due to repeated power generation, the fibers on the surface of the gas diffusion layer in contact with the separator are not destroyed, and the contact resistance between the separator and the gas diffusion layer is stabilized. Can be kept low.

また、本発明における高密度カーボン層は、カソード側及びアノード側の両ガス拡散層表面に設けることができるが、特に、高密度カーボン層をカソード側のガス拡散層表面に設けることにより、上記の効果に加えて、カソード電極において生成される水を良好に制御し、生成水の滞留を防止することもできる。   The high-density carbon layer in the present invention can be provided on both the cathode-side and anode-side gas diffusion layer surfaces. In particular, by providing the high-density carbon layer on the cathode-side gas diffusion layer surface, In addition to the effect, the water produced at the cathode electrode can be well controlled to prevent the produced water from staying.

さらに、本発明における高密度カーボン層は、カーボン粒子と撥水性樹脂とからなるが、高密度カーボン層中におけるカーボンの重量比は、16〜50wt%以上であることが好ましい。カーボンの含有率が16wt%未満の場合には、電子伝導性が阻害されて抵抗過電圧(IR)が増加し、発電性能が低下してしまう。一方、カーボンの含有率が50wt%を超える場合には、面方向へのガス拡散性が阻害されて濃度過電圧が上昇し、発電性能が低下してしまう。   Furthermore, the high-density carbon layer in the present invention is composed of carbon particles and a water-repellent resin, and the weight ratio of carbon in the high-density carbon layer is preferably 16 to 50 wt% or more. When the carbon content is less than 16 wt%, the electron conductivity is hindered, the resistance overvoltage (IR) increases, and the power generation performance decreases. On the other hand, when the carbon content exceeds 50 wt%, the gas diffusivity in the surface direction is hindered, the concentration overvoltage increases, and the power generation performance decreases.

本発明におけるカーボン粒子としては、例えばカーボンブラック粒子を用いることができ、後述の造孔剤として電子伝導性の材料からなるものを用いることにより、電子伝導性物質と造孔剤とを兼用することもできる。本発明における撥水性樹脂としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ペルフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−エチレン共重合体(ETFE)、ポリフッ化ビニリデン(PVDF)を用いることができ、これらの中でも、PTFE及びFEPが好ましい。これらは、水との接触角が大きく、熱水に安定だからである。   As the carbon particles in the present invention, for example, carbon black particles can be used. By using a material made of an electron conductive material as a pore forming agent described later, the electron conductive material and the pore forming agent can be used together. You can also. Examples of the water-repellent resin in the present invention include polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and tetrafluoroethylene-ethylene. A copolymer (ETFE) and polyvinylidene fluoride (PVDF) can be used, and among these, PTFE and FEP are preferable. This is because the contact angle with water is large and stable to hot water.

また、本発明の固体高分子型燃料電池は、ガス拡散層表面において、セパレータが接触する部分に相当するパターンを形成するように、カーボン粒子と撥水性樹脂とからなる塗料を含浸させて、高密度カーボン層を設け、上記セパレータの上記ガス拡散層表面に接触する部分と、上記高密度カーボン層とを重ね合わせることを特徴とする本発明の固体高分子型燃料電池の製造方法により好適に製造することができる。本発明の製造方法においては、カーボン粒子と撥水性樹脂の含浸方法として、パターニングされたスクリーン印刷等が挙げられる。   Further, the polymer electrolyte fuel cell of the present invention is impregnated with a coating made of carbon particles and a water-repellent resin so as to form a pattern corresponding to the portion in contact with the separator on the surface of the gas diffusion layer. Produced suitably by the method for producing a polymer electrolyte fuel cell of the present invention, wherein a density carbon layer is provided, and the portion of the separator that contacts the surface of the gas diffusion layer is overlapped with the high-density carbon layer. can do. In the production method of the present invention, patterned screen printing or the like is used as a method for impregnating the carbon particles and the water-repellent resin.

次に、具体的な実施例により本発明の効果を詳細に説明する。
1.固体高分子型燃料電池の作製
<実施例1>
白金担持カーボン(商品名:TEC10E50E、田中貴金属社製)20gと、イオン導伝性ポリマー溶液(商品名:Nafion DE2020、Dupont社製)179gとをボールミル攪拌し、触媒ペーストを調製した。
Next, the effects of the present invention will be described in detail by way of specific examples.
1. Preparation of polymer electrolyte fuel cell <Example 1>
20 g of platinum-supporting carbon (trade name: TEC10E50E, manufactured by Tanaka Kikinzoku Co., Ltd.) and 179 g of ion conductive polymer solution (trade name: Nafion DE2020, manufactured by Dupont) were ball milled to prepare a catalyst paste.

次に、この触媒ペーストを、ポリテトラフルオロエチレン(PTFE)製シート上に、白金重量が0.5mg/cmとなるようにスクリーン印刷により塗布し、その後、120℃60分の熱処理により乾燥し、カソード及びアノード電解触媒シートを作製した。次いで、上記のカソード及びアノード電極触媒シートを、デカール法にて高分子電解質膜(商品名:Nafion 112、Dupont社製)の両面に転写し、高分子電解質上に電解触媒層を形成した。なお、デカール法による転写とは、電解触媒シートの触媒層側を高分子電解質膜に熱圧着した後にPTFEシートを剥離することをいう。 Next, this catalyst paste is applied on a polytetrafluoroethylene (PTFE) sheet by screen printing so that the weight of platinum is 0.5 mg / cm 2, and then dried by heat treatment at 120 ° C. for 60 minutes. Cathode and anode electrocatalyst sheets were prepared. Next, the cathode and anode electrode catalyst sheets were transferred to both surfaces of a polymer electrolyte membrane (trade name: Nafion 112, manufactured by Dupont) by a decal method to form an electrolytic catalyst layer on the polymer electrolyte. The transfer by the decal method means that the PTFE sheet is peeled after the catalyst layer side of the electrocatalyst sheet is thermocompression bonded to the polymer electrolyte membrane.

また、カーボンペーパー(商品名:TGP−H−060、東レ社製)上に、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)の10wt%溶液を含浸させ、その後、380℃30分の熱処理により乾燥し、カーボンペーパーを撥水処理してのガス拡散層を作製した。   Carbon paper (trade name: TGP-H-060, manufactured by Toray Industries, Inc.) is impregnated with a 10 wt% solution of tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and then heat treated at 380 ° C. for 30 minutes. Was dried, and a gas diffusion layer was produced by subjecting the carbon paper to a water repellent treatment.

一方、電子伝導性と造孔性を兼ね備えた粒状カーボン(商品名:Vulcan XC72、Cabot社製)10gと、撥水性樹脂(商品名:PTFEパウダーフルオンL170J、旭硝子社製)10gと、エチレングリコール180gとをボールミルにより混合攪拌し、高密度カーボン層ペーストを調製した。次に、上記の撥水処理されたガス拡散層のセパレータが接触する部分上に、この高密度カーボン層ペーストを、スクリーン印刷により塗布してガス拡散層中に含浸させ、その後、380℃30分の熱処理により乾燥し、セパレータが接触する部分に相当するパターンに高密度カーボン層を作製した。   On the other hand, 10 g of granular carbon (trade name: Vulcan XC72, manufactured by Cabot) having both electronic conductivity and pore-forming property, 10 g of water repellent resin (trade name: PTFE powder full-on L170J, manufactured by Asahi Glass Co., Ltd.), and 180 g of ethylene glycol Were mixed and stirred by a ball mill to prepare a high-density carbon layer paste. Next, the high-density carbon layer paste is applied by screen printing on the portion where the separator of the gas diffusion layer subjected to the water repellent treatment contacts, and then impregnated in the gas diffusion layer, and then 380 ° C. for 30 minutes. A high-density carbon layer was produced in a pattern corresponding to the portion in contact with the separator.

次に、上記の高密度カーボン層の形成されたカーボンペーパーと、電解触媒層の転写されたイオン交換膜とを、140℃、面圧30kgf/cmで熱圧着し、スタックMEAを作製した。次いで、カーボンセパレーターに形成された直線溝と高密度カーボン層とを接触させて、上記のスタックMEAの両面にカーボンセパレーターを狭持させ、実施例1の固体高分子型燃料電池を作製した。 Next, the carbon paper on which the high-density carbon layer was formed and the ion exchange membrane to which the electrocatalyst layer was transferred were thermocompression bonded at 140 ° C. and a surface pressure of 30 kgf / cm 2 to produce a stack MEA. Subsequently, the linear groove formed in the carbon separator and the high-density carbon layer were brought into contact with each other, and the carbon separator was sandwiched between both surfaces of the above-described stack MEA, whereby a polymer electrolyte fuel cell of Example 1 was produced.

<実施例2>
実施例1の高密度カーボン層の形成工程において、高密度カーボン層ペーストの組成を、粒状カーボン(商品名:Vulcan XC72、Cabot社製)5g、撥水性樹脂(商品名:PTFEパウダーフルオンL170J、旭硝子社製)10g、及び、エチレングリコール180gとした以外は、実施例1と同様にして実施例2の固体高分子型燃料電池を作製した。
<Example 2>
In the formation process of the high-density carbon layer of Example 1, the composition of the high-density carbon layer paste is 5 g of granular carbon (trade name: Vulcan XC72, manufactured by Cabot), water-repellent resin (trade name: PTFE powder full-on L170J, Asahi Glass. A polymer electrolyte fuel cell of Example 2 was produced in the same manner as in Example 1, except that 10 g and 180 g of ethylene glycol were used.

<実施例3>
実施例1の高密度カーボン層の形成工程において、高密度カーボン層ペーストの組成を、粒状カーボン(商品名:Vulcan XC72、Cabot社製)2g、撥水性樹脂(商品名:PTFEパウダーフルオンL170J、旭硝子社製)10g、及び、エチレングリコール180gとした以外は、実施例1と同様にして実施例3の固体高分子型燃料電池を作製した。
<Example 3>
In the formation process of the high-density carbon layer of Example 1, the composition of the high-density carbon layer paste is as follows. A polymer electrolyte fuel cell of Example 3 was produced in the same manner as in Example 1, except that 10 g and 180 g of ethylene glycol were used.

<比較例1>
実施例1の固体高分子型燃料電池の作製において、高密度カーボン層を形成しなかった以外は、実施例1と同様にして比較例1の固体高分子型燃料電池を作製した。
<Comparative Example 1>
A solid polymer type fuel cell of Comparative Example 1 was produced in the same manner as in Example 1 except that the high density carbon layer was not formed in the production of the solid polymer type fuel cell of Example 1.

<比較例2>
実施例1の高密度カーボン層の形成工程において、高密度カーボン層ペーストの組成を、粒状カーボン(商品名:Vulcan XC72、Cabot社製)10g、及び、エチレングリコール180gとした以外は、実施例1と同様にして比較例2の固体高分子型燃料電池を作製した。
<Comparative example 2>
In the formation process of the high-density carbon layer of Example 1, the composition of the high-density carbon layer paste was changed to 10 g of granular carbon (trade name: Vulcan XC72, manufactured by Cabot) and 180 g of ethylene glycol. In the same manner, a polymer electrolyte fuel cell of Comparative Example 2 was produced.

<比較例3>
実施例1の高密度カーボン層の形成工程において、高密度カーボン層ペーストの組成を、粒状カーボン(商品名:Vulcan XC72、Cabot社製)10g、ポリエチレン樹脂(商品名:NUCG−4953、日本ユニカー社製)10g、及び、エチレングリコール180gとした以外は、実施例1と同様にして比較例3の固体高分子型燃料電池を作製した。
<Comparative Example 3>
In the formation process of the high-density carbon layer of Example 1, the composition of the high-density carbon layer paste is 10 g of granular carbon (trade name: Vulcan XC72, manufactured by Cabot), polyethylene resin (trade name: NUCG-4953, Nihon Unicar). (Manufactured) A polymer electrolyte fuel cell of Comparative Example 3 was produced in the same manner as in Example 1 except that 10 g and 180 g of ethylene glycol were used.

2.評価
(1)発電性能
上記のようにして作製された実施例1〜3及び比較例1〜3の固体高分子型燃料電池について、アノード側に水素ガスを、また、カソード側に空気を供給し、セル温度:72℃、Stoich:アノード5.7/カソード7.3、相対湿度:アノード/カソード=50/50%RHの条件下で、電流密度:1A/cmの発電を行い、この時の端子電圧及びIRを測定した。これらの値よりIRフリーを求めた。なお、MEA電極部の面積は36cmであった。これらの結果を表1及び図3に示した。
2. Evaluation (1) Power generation performance For the polymer electrolyte fuel cells of Examples 1 to 3 and Comparative Examples 1 to 3 produced as described above, hydrogen gas was supplied to the anode side and air was supplied to the cathode side. , Cell temperature: 72 ° C., stoic: anode 5.7 / cathode 7.3, relative humidity: anode / cathode = 50/50% RH, current density: 1 A / cm 2. The terminal voltage and IR were measured. IR free was calculated | required from these values. The area of the MEA electrode part was 36 cm 2 . These results are shown in Table 1 and FIG.

(2)貫通抵抗
上記の実施例1〜3及び比較例1〜3の固体高分子型燃料電池におけるスタックMEAの作製において、高分子電解質膜を用いずに、カソード及びアノードのガス拡散層が直接接触するように重ね合わせた構成のスタックMEAを作製し、このスタックMEAを、直線溝が形成されたカーボンセパレーターとSUS板との間に狭持させ、面圧20kgf/cmの荷重を繰り返しかけた後、面圧10kgf/cmの状態に保持し、抵抗計によってセパレータSUS板間の貫通抵抗を測定し、スタック膨張収縮による貫通抵抗の変化を評価した。これらの結果を表1及び図4に示した。
(2) Penetration resistance In the production of the stack MEA in the polymer electrolyte fuel cells of Examples 1 to 3 and Comparative Examples 1 to 3, the gas diffusion layers of the cathode and the anode are directly used without using the polymer electrolyte membrane. A stack MEA having a structure in which the layers are stacked so as to come into contact with each other is manufactured, and the stack MEA is sandwiched between a carbon separator having a linear groove and a SUS plate, and a load of 20 kgf / cm 2 is repeatedly applied. Then, the surface pressure was maintained at 10 kgf / cm 2 , and the penetration resistance between the separator SUS plates was measured with a resistance meter, and the change in penetration resistance due to stack expansion and contraction was evaluated. These results are shown in Table 1 and FIG.

Figure 2006134640
Figure 2006134640

表1及び図3に示すように、カーボン粒子と撥水性樹脂とからなる高密度カーボン層が設けられていない比較例2及び3では、初期の発電性能に劣り、実用に供し得ないものであることが示された。また、表1及び図4に示すように、高密度カーボン層が設けられていない比較例1では、初期の発電性能に優れるものの、スタック膨張収縮が繰り返される状態では、貫通抵抗著しく増加し、発電性能に劣ることが示された。これに対し、カーボン粒子と撥水性樹脂とからなる高密度カーボン層が設けられた実施例1〜3では、初期の発電性能に優れることは勿論のこと、スタック膨張収縮が繰り返される状態においても、貫通抵抗の増加が僅かであり、優れた固体高分子型燃料電池であることが示された。   As shown in Table 1 and FIG. 3, Comparative Examples 2 and 3 in which a high-density carbon layer composed of carbon particles and a water-repellent resin is not provided are inferior in initial power generation performance and cannot be put to practical use. It was shown that. Further, as shown in Table 1 and FIG. 4, in Comparative Example 1 in which the high-density carbon layer is not provided, although the initial power generation performance is excellent, the penetration resistance is remarkably increased in the state where the stack expansion and contraction is repeated, and the power generation Inferior performance. On the other hand, in Examples 1 to 3 provided with a high-density carbon layer composed of carbon particles and a water-repellent resin, not only the initial power generation performance is excellent, but also in a state where stack expansion and contraction is repeated, The increase in penetration resistance was slight, indicating that the polymer electrolyte fuel cell was excellent.

本発明の固体高分子型燃料電池の一実施形態を模式的に示した断面図である。It is sectional drawing which showed typically one Embodiment of the polymer electrolyte fuel cell of this invention. 本発明の固体高分子型燃料電池の一実施形態を模式的に示した平面図である。It is the top view which showed typically one Embodiment of the polymer electrolyte fuel cell of this invention. IRフリーの発電性能及びIRを示す線図である。It is a diagram which shows IR free electric power generation performance and IR. 繰り返し回数に対する貫通抵抗を示す線図である。It is a diagram which shows the penetration resistance with respect to the frequency | count of repetition.

符号の説明Explanation of symbols

1…カソード側セパレータ、2…カソード側ガス拡散層、3…カソード電極、
4…高分子電解質膜、5…アノード電極、6…アノード側ガス拡散層、
7…アノード側セパレータ、8,9,11…高密度カーボン層、10…ガス拡散層。
DESCRIPTION OF SYMBOLS 1 ... Cathode side separator, 2 ... Cathode side gas diffusion layer, 3 ... Cathode electrode,
4 ... polymer electrolyte membrane, 5 ... anode electrode, 6 ... anode side gas diffusion layer,
7 ... anode-side separator, 8, 9, 11 ... high density carbon layer, 10 ... gas diffusion layer.

Claims (3)

カソード側セパレータ、カソード側ガス拡散層、カソード電極、高分子電解質膜、アノード電極、アノード側ガス拡散層、アノード側セパレータを積層してなる固体高分子型燃料電池において、セパレータとガス拡散層との接触面におけるガス拡散層表面に、カーボン粒子と撥水性樹脂とからなる高密度カーボン層が設けられていることを特徴とする固体高分子型燃料電池。   In a polymer electrolyte fuel cell in which a cathode side separator, a cathode side gas diffusion layer, a cathode electrode, a polymer electrolyte membrane, an anode electrode, an anode side gas diffusion layer, and an anode side separator are laminated, the separator and the gas diffusion layer A solid polymer fuel cell, characterized in that a high-density carbon layer comprising carbon particles and a water-repellent resin is provided on the gas diffusion layer surface on the contact surface. 前記高密度カーボン層が設けられたガス拡散層は、カソード側であることを特徴とする請求項1に記載の固体高分子型燃料電池。   2. The polymer electrolyte fuel cell according to claim 1, wherein the gas diffusion layer provided with the high-density carbon layer is on the cathode side. ガス拡散層表面において、セパレータが接触する部分に相当するパターンを形成するように、カーボン粒子と撥水性樹脂とからなる塗料を含浸させて、高密度カーボン層を設け、上記セパレータの上記ガス拡散層表面に接触する部分と、上記高密度カーボン層とを重ね合わせることを特徴とする固体高分子型燃料電池の製造方法。   On the surface of the gas diffusion layer, a high-density carbon layer is provided by impregnating a paint composed of carbon particles and a water-repellent resin so as to form a pattern corresponding to a portion in contact with the separator, and the gas diffusion layer of the separator is provided. A method for producing a polymer electrolyte fuel cell, wherein a portion in contact with a surface and the high-density carbon layer are overlapped.
JP2004320475A 2004-11-04 2004-11-04 Polymer electrolyte fuel cell and its manufacturing method Pending JP2006134640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004320475A JP2006134640A (en) 2004-11-04 2004-11-04 Polymer electrolyte fuel cell and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004320475A JP2006134640A (en) 2004-11-04 2004-11-04 Polymer electrolyte fuel cell and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006134640A true JP2006134640A (en) 2006-05-25

Family

ID=36727991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004320475A Pending JP2006134640A (en) 2004-11-04 2004-11-04 Polymer electrolyte fuel cell and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006134640A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093895A1 (en) * 2007-02-01 2008-08-07 Canon Kabushiki Kaisha Gas diffusion electrode, fuel cell, and manufacturing method for the gas diffusion electrode
KR20140003894A (en) * 2012-06-29 2014-01-10 주식회사 제이앤티씨 Microporous layer used for fuel cell, gas diffusion layer comprising the same and fuel cell comprising the same
KR20160122843A (en) 2014-04-03 2016-10-24 신닛테츠스미킨 카부시키카이샤 Composite metal foil for fuel cell separator, fuel cell separator, fuel cell, and method for producing composite metal foil for fuel cell separator
CN107429330A (en) * 2015-03-18 2017-12-01 新日铁住金株式会社 Titanium alloy, separator and polymer electrolyte fuel cell
JPWO2021171793A1 (en) * 2020-02-25 2021-09-02
JPWO2021033366A1 (en) * 2019-08-21 2021-12-02 パナソニックIpマネジメント株式会社 Compressor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093895A1 (en) * 2007-02-01 2008-08-07 Canon Kabushiki Kaisha Gas diffusion electrode, fuel cell, and manufacturing method for the gas diffusion electrode
JP2008192361A (en) * 2007-02-01 2008-08-21 Canon Inc Gas diffusion electrode, fuel cell, and manufacturing method of gas diffusion electrode
KR101140094B1 (en) * 2007-02-01 2012-04-30 캐논 가부시끼가이샤 Gas diffusion electrode, fuel cell, and manufacturing method for the gas diffusion electrode
US8435695B2 (en) 2007-02-01 2013-05-07 Canon Kabushiki Kaisha Gas diffusion electrode, fuel cell, and manufacturing method for the gas diffusion electrode
KR20140003894A (en) * 2012-06-29 2014-01-10 주식회사 제이앤티씨 Microporous layer used for fuel cell, gas diffusion layer comprising the same and fuel cell comprising the same
KR101881139B1 (en) 2012-06-29 2018-08-20 주식회사 제이앤티지 Microporous layer used for fuel cell, gas diffusion layer comprising the same and fuel cell comprising the same
KR20160122843A (en) 2014-04-03 2016-10-24 신닛테츠스미킨 카부시키카이샤 Composite metal foil for fuel cell separator, fuel cell separator, fuel cell, and method for producing composite metal foil for fuel cell separator
CN107429330A (en) * 2015-03-18 2017-12-01 新日铁住金株式会社 Titanium alloy, separator and polymer electrolyte fuel cell
JPWO2021033366A1 (en) * 2019-08-21 2021-12-02 パナソニックIpマネジメント株式会社 Compressor
JPWO2021171793A1 (en) * 2020-02-25 2021-09-02
WO2021171793A1 (en) * 2020-02-25 2021-09-02 国立大学法人山梨大学 Gas diffusion member, gas diffusion unit, and fuel cell
JP7101393B2 (en) 2020-02-25 2022-07-15 国立大学法人山梨大学 Gas diffusion unit, fuel cell

Similar Documents

Publication Publication Date Title
JP4190478B2 (en) Polymer electrolyte fuel cell
JP2002025560A (en) Fuel cell
KR100722093B1 (en) Membrane-electrode assembly for fuel cell, method for manufacturing the same, and fuel cell system comprising the same
JP3357872B2 (en) Fuel cell
JP2004192950A (en) Solid polymer fuel cell and its manufacturing method
JP5298365B2 (en) Fine pore layer paste, membrane electrode assembly and fuel cell
JP3970704B2 (en) Manufacturing method of membrane / electrode assembly
JP2007188768A (en) Polymer electrolyte fuel cell
US10873097B2 (en) Electrode for fuel cell, membrane electrode complex body for fuel cell, and fuel cell
JP7225691B2 (en) Membrane electrode assembly and polymer electrolyte fuel cell
JP4180556B2 (en) Polymer electrolyte fuel cell
JP5219571B2 (en) Membrane electrode assembly and fuel cell
JP2007134306A (en) Direct oxidation fuel cell and membrane electrode assembly thereof
JP2006134640A (en) Polymer electrolyte fuel cell and its manufacturing method
US11973230B2 (en) Electrode for membrane-electrode assembly and method of manufacturing same
JP4996823B2 (en) Fuel cell electrode and fuel cell using the same
JP2006085984A (en) Mea for fuel cell and fuel cell using this
JP2000251901A (en) Cell for fuel cell and fuel cell using it
JP2006147522A (en) Manufacturing method for membrane electrode assembly, fuel cell and manufacturing method for conductive particle layer
US10707510B2 (en) Membrane electrode assembly
KR101909709B1 (en) Membrane-Electrode Assembly with Improved Durability, Manufacturing Method Thereof and Fuel Cell Containing the Same
JPH05190184A (en) Electrode-electrolyte joint body, manufacture thereof, and fuel cell using thereof
JP2006318790A (en) Solid polymer type fuel cell, gas diffusion electrode therefor, and its manufacturing method
JP2006107877A (en) Power generating element for liquid fuel battery, manufacturing method of the same, and liquid fuel battery
JP4060736B2 (en) Gas diffusion layer and fuel cell using the same