WO2012105487A1 - Membrane electrode assembly and alkaline fuel cell using same - Google Patents

Membrane electrode assembly and alkaline fuel cell using same Download PDF

Info

Publication number
WO2012105487A1
WO2012105487A1 PCT/JP2012/051971 JP2012051971W WO2012105487A1 WO 2012105487 A1 WO2012105487 A1 WO 2012105487A1 JP 2012051971 W JP2012051971 W JP 2012051971W WO 2012105487 A1 WO2012105487 A1 WO 2012105487A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
current collecting
collecting layer
membrane
fuel cell
Prior art date
Application number
PCT/JP2012/051971
Other languages
French (fr)
Japanese (ja)
Inventor
宏隆 水畑
俊輔 佐多
吉田 章人
忍 竹中
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012105487A1 publication Critical patent/WO2012105487A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • H01M8/083Alkaline fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a membrane electrode assembly, an alkaline fuel cell using the same, and a method for using the same.
  • the fuel cell includes a membrane electrode assembly (MEA) having a configuration in which an electrolyte membrane is sandwiched between an anode and a cathode as a main part of power generation.
  • MEA membrane electrode assembly
  • a polymer electrolyte fuel cell (direct fuel) Battery) phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, alkaline fuel cell and the like.
  • An alkaline fuel cell is a fuel cell in which an anion conductive electrolyte membrane (anion exchange membrane) is used as an electrolyte membrane, and charge carriers are hydroxide ions (OH ⁇ ).
  • anion exchange membrane anion exchange membrane
  • charge carriers are hydroxide ions (OH ⁇ ).
  • the supplied reducing agent (fuel), for example, H 2 gas and OH ⁇ transmitted from the cathode electrode are expressed by the following formula (2):
  • Self-purging means that the CO 2 -derived anion contained in the electrolyte membrane and the catalyst layer, which is a cause of a decrease in anion conductivity due to the operation of the fuel cell, moves to the anode electrode, is reduced by the reducing agent, and is anodeed as CO 2 gas. This refers to a phenomenon that is discharged from the pole.
  • the present invention has been made in view of the above problems, and its purpose is to reduce the reaction overvoltage at the anode electrode by suppressing the accumulation of CO 2 -derived anions on the anode electrode due to self-purge, and thus good power generation.
  • An object of the present invention is to provide a membrane electrode assembly for an alkaline fuel cell exhibiting efficiency and an alkaline fuel cell using the same.
  • the present invention provides an anion conductive electrolyte membrane, a first electrode laminated on a first surface of the anion conductive electrolyte membrane, and a second surface opposed to the first surface of the anion conductive electrolyte membrane.
  • a membrane electrode assembly comprising an alkaline fuel cell membrane electrode assembly including a second electrode, further comprising a third electrode spaced apart from the first electrode and laminated on the first surface.
  • the first electrode and the second electrode are preferably provided so as to face each other with an anion conductive electrolyte membrane interposed therebetween.
  • the membrane electrode assembly of the present invention can include a plurality of third electrodes that are spaced apart from each other. In this case, it is preferable that the plurality of third electrodes be arranged substantially uniformly in the first surface.
  • the membrane electrode assembly of the present invention can further include a fourth electrode that is separated from the second electrode and stacked on the second surface, and further includes a plurality of fourth electrodes that are disposed apart from each other. Can do. In the case where a plurality of fourth electrodes are provided, it is preferable that these are arranged substantially uniformly in the second surface.
  • the first electrode and the second electrode are provided to face each other via the anion conductive electrolyte membrane, and the shortest path from the third electrode to the fourth electrode is A third electrode and a fourth electrode are provided so as to pass through the anion conductive electrolyte membrane interposed between the first electrode and the second electrode.
  • the third electrode is disposed on the outer side of the first electrode, and the fourth electrode is on the outer side of the second electrode opposite to the side facing the third electrode. Placed in.
  • the present invention also provides an alkaline fuel cell comprising at least the membrane electrode assembly and a current collecting layer laminated on each electrode, and a method for using the alkaline fuel cell.
  • the first current collecting layer laminated on the first electrode and the third current collecting layer laminated on the third electrode are electrically insulated.
  • the membrane electrode assembly includes the fourth electrode, the second current collecting layer laminated on the second electrode and the fourth current collecting layer laminated on the fourth electrode are electrically insulated.
  • the membrane electrode assembly of the present invention is independent of the electrodes responsible for substantial power generation (ie, the first electrode and the second electrode), and the third electrode used for self-purging and optionally A fourth electrode is provided.
  • the alkaline fuel cell using such a membrane electrode composite it is possible to suppress the accumulation of CO 2 -derived anions on the electrode responsible for power generation, so that the electrode functioning as an anode electrode during power generation (first electrode) The reaction overvoltage in can be reduced, and the power generation efficiency can be improved.
  • FIG. 2 is a schematic sectional view taken along line II-II shown in FIG. 1.
  • FIG. 3 is a schematic cross-sectional view taken along line III-III shown in FIG.
  • FIG. 5 is a schematic cross-sectional view taken along line VV shown in FIG. 4.
  • FIG. 5 is a schematic sectional view taken along line VI-VI shown in FIG. 4.
  • FIG. 5 is a schematic sectional drawing which shows another preferable example of the membrane electrode assembly of this invention, and an alkaline fuel cell using the same.
  • FIG. 8 is a schematic sectional view taken along line VIII-VIII shown in FIG.
  • FIG. 8 is a schematic sectional view taken along line IX-IX shown in FIG. 7.
  • FIG. 14 is a schematic sectional view taken along line XVI-XVI shown in FIG. 13.
  • FIG. 14 is a schematic sectional view taken along line XVII-XVII shown in FIG. 13.
  • 1 is a schematic cross-sectional view showing an alkaline fuel cell produced in Example 1.
  • FIG. 19 is a schematic sectional view taken along line XX-XX shown in FIG. 3 is a schematic cross-sectional view showing an alkaline fuel cell produced in Example 2.
  • FIG. 22 is a schematic sectional view taken along line XXII-XXII shown in FIG. 21.
  • FIG. 22 is a schematic sectional view taken along line XXIII-XXIII shown in FIG. 21.
  • 6 is a schematic cross-sectional view showing an alkaline fuel cell produced in Example 3.
  • FIG. 25 is a schematic sectional view taken along line XXV-XXV shown in FIG. 24.
  • FIG. 25 is a schematic sectional view taken along line XXVI-XXVI shown in FIG. 24.
  • FIG. 25 is a schematic sectional view taken along line XXVII-XXVII shown in FIG. 24.
  • FIG. 25 is a schematic sectional view taken along line XXVIII-XXVIII shown in FIG. 24.
  • the membrane electrode assembly of the present invention is characterized by including a third electrode for self-purging separately from the electrodes (first electrode and second electrode) responsible for substantial power generation.
  • the third electrode is laminated on the surface of the anion conductive electrolyte membrane (first surface) on the same side as the first electrode that functions as the anode electrode during power generation, but is separated from (not in contact with) the first electrode. ) Arranged.
  • the membrane electrode assembly of the present invention can also include a fourth electrode for self-purging in addition to the third electrode.
  • the fourth electrode is laminated on the surface of the anion conductive electrolyte membrane (second surface) on the same side as the second electrode that functions as a cathode electrode during power generation, but is separated from (not in contact with) the second electrode. ) Arranged.
  • An alkaline fuel cell including such a membrane electrode assembly performs substantial power generation using the first and second electrodes after self-purging using the third and fourth electrodes.
  • the CO 2 -derived anion concentration of the first electrode, the second electrode and the anion conductive electrolyte membrane can be reduced (increase the OH ⁇ concentration) by self-purge.
  • an increase in cell resistance can be suppressed, and the accumulation of CO 2 -derived anions due to self-purging mainly occurs in the third electrode and / or the fourth electrode, so that the first electrode functions as an anode electrode during power generation.
  • the reaction overvoltage in can be reduced, and the power generation efficiency can be improved.
  • ion current flows through the membrane electrode assembly due to self-purging, and this causes the membrane electrode assembly to be in an appropriately warmed state. A sufficiently high power can be obtained from the beginning.
  • FIG. 1 is a schematic cross-sectional view showing a membrane electrode assembly according to the present embodiment and an alkaline fuel cell using the same
  • FIGS. FIG. 3 is a schematic cross-sectional view taken along lines II-II and III-III shown in FIG. 1, respectively.
  • the alkaline fuel cell 100 of this embodiment is characterized by including a membrane electrode assembly (MEA) 10.
  • the membrane electrode assembly 10 includes an anion conductive electrolyte membrane 101; a first electrode 103 laminated on the first surface of the anion conductive electrolyte membrane 101; and a second surface opposite to the first surface of the anion conductive electrolyte membrane 101.
  • a gasket 106 (for example, a layer made of an elastic resin such as silicone rubber or a cured resin layer of a curable resin such as an epoxy resin) is provided at the periphery of the electrode to prevent intrusion of air or the like from the electrode end face. Is provided.
  • the first electrode 103 and the second electrode 102 are provided to face each other with the anion conductive electrolyte membrane 101 interposed therebetween.
  • the first electrode 103 is divided into two layers and the third electrode 110 is disposed between the two first electrodes 103 so as to be separated from the first electrode 103. ing.
  • the alkaline fuel cell 100 includes a first current collecting layer 105 laminated on the first electrode 103; a second current collecting layer 104 laminated on the second electrode 102; and a layer laminated on the third electrode 110.
  • the third current collecting layer 120 is provided. These current collecting layers are members for exchanging electrons with an electrode in contact with the current collecting layer and for performing electrical wiring.
  • the first current collecting layer 105 and the third current collecting layer 120 are electrically insulated from each other by interposing an insulating layer 130 between these current collecting layers.
  • the first current collecting layer 105 and the third current collecting layer 120 are provided with a first flow path 105 a for supplying a reducing agent to the first electrode 103 or the third electrode 110.
  • each current collection layer 104 is provided with a second flow path 104 a for supplying an oxidant to the second electrode 102.
  • each current collection layer is also a member for supplying a reducing agent and an oxidizing agent.
  • the alkaline fuel cell 100 includes an external wiring 145 and switching means (switch) 140 interposed in the external wiring 145.
  • the switching means 140 is for switching the connection relationship between the current collecting layers.
  • the current collecting layer electrically connected to the second current collecting layer 104 is connected to the first current collecting layer 105 or the third current collecting layer 120. You can switch to either.
  • anion conductive electrolyte membrane As the anion conductive electrolyte membrane 101, in particular, as long as it can conduct OH ⁇ ions and has electrical insulation to prevent a short circuit between the first electrode 103 and the third electrode 110 and the second electrode 102, although not limited, an anion conductive solid polymer electrolyte membrane can be suitably used.
  • the anion conductive solid polymer electrolyte membrane include, for example, perfluorosulfonic acid type, perfluorocarboxylic acid type, styrene vinyl benzene type, quaternary ammonium type solid polymer electrolyte membrane (anion exchange membrane). It is done.
  • a membrane obtained by impregnating polyacrylic acid with a concentrated potassium hydroxide solution or an anion conductive solid oxide electrolyte membrane can also be used as the anion conductive electrolyte membrane 101.
  • the anion conductive electrolyte membrane 101 preferably has an anion conductivity of 10 ⁇ 5 S / cm or more, and an electrolyte membrane having an anion conductivity of 10 ⁇ 3 S / cm or more such as a perfluorosulfonic acid polymer electrolyte membrane. It is more preferable to use
  • the thickness of the anion conductive electrolyte membrane 101 is usually 5 to 300 ⁇ m, preferably 10 to 200 ⁇ m.
  • the electrode 102 is provided with at least a catalyst layer composed of a porous layer containing a catalyst and an electrolyte. These catalyst layers are laminated in contact with the surface of the anion conductive electrolyte membrane 101.
  • the catalyst (anode catalyst) of the first electrode 103 catalyzes a reaction that generates water and electrons from the reducing agent and OH ⁇ supplied to the first electrode 103.
  • the electrolyte of the first electrode 103 has a function of conducting OH ⁇ conducted from the anion conductive electrolyte membrane 101 to the catalytic reaction site.
  • the catalyst (cathode catalyst) of the second electrode 102 catalyzes the reaction of generating OH ⁇ from the oxidant and water supplied to the second electrode 102 and the electrons transferred from the first electrode 103.
  • the electrolyte of the second electrode 102 has a function of conducting the generated OH ⁇ to the anion conductive electrolyte membrane 201.
  • anode catalyst and the cathode catalyst conventionally known ones can be used.
  • the alloy is preferably an alloy containing at least two of platinum, iron, cobalt, and nickel.
  • the anode catalyst and the cathode catalyst may be the same or different.
  • the anode catalyst and the cathode catalyst are preferably those supported on a carrier, preferably a conductive carrier.
  • a carrier preferably a conductive carrier.
  • the conductive carrier include carbon black such as acetylene black, furnace black, channel black, and ketjen black, and conductive carbon particles such as graphite and activated carbon.
  • carbon fibers such as vapor grown carbon fiber (VGCF), carbon nanotube, carbon nanowire, and the like can be used.
  • the same electrolyte as that constituting the anion conductive solid polymer electrolyte membrane can be used.
  • the content ratio of the catalyst to the electrolyte in each catalyst layer is usually 5/1 to 1/4, and preferably 3/1 to 1/3, based on weight.
  • the first electrode 103 and the second electrode 102 may each include a gas diffusion layer laminated on the catalyst layer.
  • the gas diffusion layer has a function of diffusing the supplied reducing agent or oxidizing agent in the surface and also has a function of transferring electrons to and from the catalyst layer.
  • the gas diffusion layer can be a porous layer having electrical conductivity. Specifically, for example, carbon paper; carbon cloth; epoxy resin film containing carbon particles; metal or alloy foam, sintered body Or it can be a fiber nonwoven fabric.
  • the thickness of the gas diffusion layer is preferably 10 ⁇ m or more in order to reduce the diffusion resistance of the reducing agent or oxidizing agent in the direction perpendicular to the thickness direction (in-plane direction), and the diffusion resistance in the thickness direction. In order to reduce this, it is preferable that it is 1 mm or less.
  • the thickness of the gas diffusion layer is more preferably 100 to 500 ⁇ m.
  • the first electrode 103 and the second electrode 102 are preferably provided so as to face each other with the anion conductive electrolyte membrane 101 interposed therebetween.
  • Such an opposing arrangement makes the distance between the first electrode 103 and the second electrode 102 the shortest, thereby reducing the resistance when a current flows between these electrodes, thus reducing the power generation efficiency. Can be suppressed.
  • the first electrode 103 and the second electrode 102 are preferably formed with the largest possible area on the anion conductive electrolyte membrane 101 from the viewpoint of improving the output per unit area of the fuel cell.
  • the anion conductive electrolyte membrane 101 is preferably formed to have the same length or the same length.
  • the third electrode 110 is an electrode for Serufupaji is an electrode for discharging CO 2 from anionic as CO 2 gas by the supply of the reducing agent.
  • the contents described above for the first electrode 103 are cited.
  • the third electrode 110 is disposed on the first surface of the anion conductive electrolyte membrane 101 so as to be separated from the first electrode 103 in order to function independently for self-purging.
  • the first electrode 103 is divided into two, and a central region of the first surface of the anion conductive electrolyte membrane 101 between them.
  • the 3rd electrode 110 is arrange
  • the number of the first electrodes 103 (whether or not divided) and the positions of the third electrodes 110 are particularly limited, such as arranging the third electrodes 110 on the side of the first electrodes 103 without dividing the first electrodes 103.
  • the ratio between the area (width ⁇ length) of the first electrode 103 and the area of the third electrode 110 is determined in consideration of both the power generation capability of the fuel cell and the self-purge efficiency. If the ratio (the area of the first electrode 103 / the area of the third electrode 110) is too large, the third electrode 110 is too small and the self-purging efficiency is lowered. On the other hand, if the ratio is too small, the first electrode 103 serving as the anode electrode that contributes to power generation is too small to obtain a sufficient output.
  • the length of the third electrode 110 is preferably long so that CO 2 -derived anions can be taken from as wide a range as possible of the anion conductive electrolyte membrane 101.
  • the anion conductive electrolyte membrane 101 Can be the same or substantially the same length (see FIG. 2).
  • the thickness of the first electrode 103 and the thickness of the third electrode 110 are preferably the same.
  • the first current collecting layer 105, the second current collecting layer 104, and the third current collecting layer 120 are provided on and in contact with the first electrode 103, the second electrode 102, and the third electrode 110, respectively. It is a member for transferring electrons and performing electrical wiring. Further, in the alkaline fuel cell 100 of the present embodiment, these current collecting layers also have a function of supplying a reducing agent and an oxidizing agent, and the first current collecting layer 105 and the third current collecting layer 120 include A first flow path 105 a for supplying a reducing agent to the first electrode 103 and the third electrode 110 is provided in the second current collecting layer 104, and a second flow path 104 a for supplying an oxidant to the second electrode 102. Is provided.
  • the first current collecting layer 105 and the third current collecting layer 120 are electrically insulated from each other by interposing the insulating layer 130 between these current collecting layers.
  • the insulating layer 130 is not particularly limited as long as it exhibits electrical insulation, and can be made of, for example, various nonconductive polymers (including insulating adhesives).
  • the material of the current collecting layer is not particularly limited, and for example, a conductive material such as a carbon material, a conductive polymer, various metals, and an alloy typified by stainless steel can be used.
  • the material of each current collecting layer may be the same or different.
  • the first flow path 105a and the second flow path 104a can be composed of one or more grooves provided on the electrode-side surface of the current collecting layer, and the shape thereof is not particularly limited, and is linear or serpentine Etc.
  • the flow path for supplying the reducing agent to the first electrode 103 and the flow path for supplying the reducing agent to the third electrode 110 may or may not be connected.
  • a separate member (channel plate) for supplying the reducing agent and the oxidizing agent may be laminated on the current collecting layer.
  • the flow path plate may be one in which one or more grooves are provided on the surface of a plate-like body made of a non-conductive material such as various plastic materials.
  • the desired effect described above can be obtained by operating according to the following method.
  • an oxidant is supplied to the second electrode 102 through the second flow path 104a of the second current collection layer 104 and through the first flow path 105a of the third current collection layer 120.
  • the reducing agent is supplied to the third electrode 110, and further, the switching means 140 (connects the terminals A1 and A2 shown in FIG. 1), the second current collecting layer 104 and the third current collecting layer 120 (therefore, the second current collecting layer 120).
  • the electrode 102 and the third electrode 110) are electrically connected, and a current (ion current) is allowed to flow between the second electrode 102 and the third electrode 110 for a certain time [self-purging step].
  • a catalytic reaction like the above formula (1) occurs in the second electrode 102, while a self purge reaction like the above formulas (5) and (6) occurs in the third electrode 110 (partly, Catalytic reaction like the above formula (2) may also occur).
  • the anion conductive electrolyte membrane 101 and the CO 2 -derived anion mainly contained in the second electrode 102 among the electrodes move to the third electrode 110 and are reduced by the reducing agent as CO 2 gas. It is discharged from the third electrode 110.
  • the above-mentioned “certain time” may be a time until the completion of self-purge, and is specifically 2 to 60 minutes, preferably about 5 to 20 minutes.
  • the time until the completion of the self-purging is the time from the start of the self-purging step to the decrease and stabilization after the discharge amount of the CO 2 -derived anion increases once.
  • Completion of self-purging is observed with respect to the time variation of the ohmic resistance of the membrane electrode assembly, the time variation of the current when the self-purging step is a constant potential operation, and the time variation of the voltage when the self-purging step is a constant current operation. Can be determined. If the time fluctuation of the observed value becomes a certain value or less, the self-purge may be regarded as completed.
  • H 2 gas for example, H 2 gas, hydrocarbon gas, ammonia gas, or the like can be used. Among these, it is preferable to use H 2 gas.
  • O 2 gas or a gas containing O 2 such as air can be used. Of these, air is preferably used.
  • an external power supply (power generation device) is interposed in the external wiring 145, the external power supply is operated, and a current is forcibly passed between the second electrode 102 and the third electrode 110, whereby CO 2.
  • the derived anion can be moved to the third electrode 110, reduced by the electric energy of the external power source, and discharged from the third electrode 110 as CO 2 gas.
  • the external power source can also be used when self-purging is performed while supplying a reducing agent to the third electrode 110, thereby shortening the time required for the self-purging process.
  • the electrical connection between the second electrode 102 and the third electrode 110 is cut, and then the reducing agent is supplied to the first electrode 103 through the first flow path 105a of the first current collecting layer 105. Then, an oxidant is supplied to the second electrode 102 through the second flow path 104a of the second current collecting layer 104, and the first current collecting is performed by the switching means 140 (connecting the terminals A1 and A3 shown in FIG. 1). Electric power is obtained by electrically connecting the layer 105 and the second current collecting layer 104 (therefore, the first electrode 103 and the second electrode 102) [power generation step]. As described above, since the accumulation of CO 2 -derived anions does not easily occur in the first electrode 103 even by self-purge, good power generation efficiency can be exhibited.
  • FIG. 4 is a schematic cross-sectional view showing a membrane electrode assembly and an alkaline fuel cell using the same according to the present embodiment.
  • FIGS. 5 and 6 are respectively a VV line and a VI-line shown in FIG. It is a schematic sectional drawing in VI line.
  • the alkaline fuel cell 200 of the present embodiment includes a membrane electrode assembly 20 having a plurality of self-purge third electrodes 110 (three in the example of FIG. 4).
  • the other features are the same as those in the first embodiment (possible modifications are also the same as those in the first embodiment).
  • the method of using the alkaline fuel cell is the same as in the first embodiment.
  • the membrane electrode assembly 20 includes an anion conductive electrolyte membrane 101; a first electrode 103 stacked on the first surface of the anion conductive electrolyte membrane 101; a second electrode stacked on the second surface of the anion conductive electrolyte membrane 101. 102; and three third electrodes 110 that are separated from the first electrode 103 and stacked on the first surface.
  • a gasket 106 is provided on the periphery of the electrode.
  • the first electrode 103 and the second electrode 102 are provided so as to face each other with the anion conductive electrolyte membrane 101 interposed therebetween.
  • the first electrode 103 is divided into two and laminated, and the first electrode 103 and the two first electrodes 103 and the outer sides of the two first electrodes 103 are respectively A total of three third electrodes 110 are arranged so as to be separated from each other.
  • the alkaline fuel cell 200 includes a first current collecting layer 105 (two in total) laminated on the first electrode 103; a second current collecting layer 104 laminated on the second electrode 102; and a third electrode 110.
  • a third current collecting layer 120 (three in total) is provided thereon.
  • the first current collecting layer 105 and the third current collecting layer 120 are electrically insulated from each other by interposing an insulating layer 130 between these current collecting layers.
  • the first current collecting layer 105 and the third current collecting layer 120 are provided with a first flow path 105a for supplying a reducing agent to the first electrode 103 or the third electrode 110, and the second current collecting layer 105a.
  • the layer 104 is provided with a second flow path 104 a for supplying an oxidant to the second electrode 102.
  • the alkaline fuel cell 200 includes an external wiring 145 and switching means (switch) 140 interposed in the external wiring 145.
  • the switching means 140 can switch the current collecting layer electrically connected to the second current collecting layer 104 to either the first current collecting layer 105 or the third current collecting layer 120.
  • the plurality of third electrodes 110 are substantially disposed within the first surface of the anion conductive electrolyte membrane 101. It is preferable to disperse them evenly. This is due to the following reason. Since the anion conductive electrolyte membrane 101 is very thin, the ion conduction resistance in the film thickness direction is very small compared to the ion conduction resistance in the in-plane direction.
  • the self-purge when the self-purge is advanced, the movement of the CO 2 -derived anion occurs mainly between the anion conductive electrolyte membrane 101 in the vicinity of the third electrode 110 and the second electrode 102 and the third electrode 110, and the self-purge is preferential. Proceed to. On the other hand, since the ion conduction resistance is large between the anion conductive electrolyte membrane 101 and the second electrode 102 and the third electrode 110 in a region far from the third electrode 110, the movement of the CO 2 -derived anion hardly occurs, There is a tendency that self-purge does not progress sufficiently.
  • the area in the vicinity of the third electrode 110 can be increased, whereby an anion conducting electrolyte membrane is obtained.
  • the self-purge of the entire 101 and the second electrode 102 can be performed.
  • the plurality of third electrodes 110 are preferably provided at positions facing the second electrodes 102.
  • FIG. 7 is a schematic cross-sectional view showing a membrane electrode assembly according to the present embodiment and an alkaline fuel cell using the same
  • FIGS. FIG. 8 is a schematic cross-sectional view taken along lines VIII-VIII and IX-IX shown in FIG. 7, respectively (the cross-sectional structure on the anode electrode side is the same as in FIGS. 2 and 3).
  • the alkaline fuel cell 300 of the present embodiment includes the membrane electrode assembly 30 having the fourth electrode 115 for self-purging in addition to the third electrode 110 for self-purging.
  • Other configurations can be the same as those of the first embodiment (possible modifications are also the same as those of the first embodiment).
  • the membrane electrode assembly 30 includes an anion conductive electrolyte membrane 101; a first electrode 103 laminated on the first surface of the anion conductive electrolyte membrane 101; a second electrode laminated on the second surface of the anion conductive electrolyte membrane 101. 102; a third electrode 110 stacked on the first surface spaced apart from the first electrode 103; and a fourth electrode 115 stacked on the second surface spaced apart from the second electrode 102.
  • a gasket 106 is provided on the periphery of the electrode.
  • the first electrode 103 and the second electrode 102 are provided so as to face each other with the anion conductive electrolyte membrane 101 interposed therebetween.
  • the third electrode 110 and the fourth electrode 115 are provided so as to face each other with the anion conductive electrolyte membrane 101 interposed therebetween.
  • the first electrode 103 is divided into two layers and the third electrode 110 is disposed between the two first electrodes 103 so as to be separated from the first electrode 103. .
  • the second electrode 102 is divided into two layers and a fourth electrode 115 is disposed between the two second electrodes 102 so as to be separated from the second electrode 102.
  • the alkaline fuel cell 300 includes a first current collecting layer 105 laminated on the first electrode 103; a second current collecting layer 104 laminated on the second electrode 102; a third laminated on the third electrode 110.
  • the first current collecting layer 105 and the third current collecting layer 120 are electrically insulated from each other by interposing an insulating layer 130 between these current collecting layers.
  • the second current collecting layer 104 and the fourth current collecting layer 125 are electrically insulated from each other with the insulating layer 130 interposed therebetween.
  • first current collecting layer 105 and the third current collecting layer 120 are provided with a first flow path 105 a for supplying a reducing agent or an oxidizing agent to the first electrode 103 or the third electrode 110.
  • second current collecting layer 104 and the fourth current collecting layer 125 are provided with a second flow path 104 a for supplying a reducing agent or an oxidizing agent to the second electrode 102 or the fourth electrode 115.
  • the alkaline fuel cell 300 includes an external wiring 145 and switching means (switch) 140 interposed in the external wiring 145.
  • the switching means 140 can switch the current collecting layer to be connected.
  • the fourth electrode 115 like the third electrode 110 is an electrode for Serufupaji is an electrode for discharging CO 2 from anionic as CO 2 gas by the supply of the reducing agent.
  • the configuration and composition of the fourth electrode 115 the contents already described for the first electrode 103 are cited.
  • the provision of the fourth electrode 115 is advantageous in the following points. That is, in the case of a membrane electrode assembly including only the third electrode 110 as a self-purge electrode, as shown in the first embodiment, the anion conductive electrolyte membrane 101 and the second electrode mainly among the electrodes are mainly used. While the self-purge of the first electrode 103 can be performed, the self-purge of the first electrode 103 cannot be effectively performed.
  • the fourth electrode 115 when the fourth electrode 115 is provided on the second surface, an oxidizing agent is supplied to the first electrode 103, a reducing agent is supplied to the fourth electrode 115, and the first electrode 103 and the fourth electrode 115 are When a current is passed between the first electrode 103 and the first electrode 103, the self-purge of the first electrode 103 can be effectively performed.
  • the usage method of the alkaline fuel cell of this embodiment is as follows.
  • an oxidant is supplied to the first electrode 103 through the first flow path 105a of the first current collection layer 105, and through the second flow path 104a of the fourth current collection layer 125.
  • the reducing agent is supplied to the fourth electrode 115, and further, the switching unit 140 (connects the terminals B3 and B4 shown in FIG. 7), the first current collecting layer 105 and the fourth current collecting layer 125 (therefore, the first current collecting layer 125).
  • the electrode 103 and the fourth electrode 115) are electrically connected, and a current (ion current) is allowed to flow between the first electrode 103 and the fourth electrode 115 for a certain time [first self-purging step].
  • a catalytic reaction as expressed by the above formula (1) occurs in the first electrode 103, while a self purge reaction as expressed in the above formulas (5) and (6) occurs at the fourth electrode 115 (partly, Catalytic reaction like the above formula (2) may also occur).
  • the CO 2 -derived anion contained in the anion conductive electrolyte membrane 101 and the first electrode 103 moves to the fourth electrode 115, is reduced by the reducing agent, and is discharged from the fourth electrode 115 as CO 2 gas. It will be.
  • the first electrode 103 functions as a cathode electrode.
  • an oxidant is supplied to the second electrode 102 through the second flow path 104 a of the second current collecting layer 104, and the first The reducing agent is supplied to the third electrode 110 through the first flow path 105a of the third current collecting layer 120, and the second current collecting layer 104 is further connected by the switching means 140 (connecting the terminals B1 and B2 shown in FIG. 7).
  • the third current collecting layer 120 (therefore, the second electrode 102 and the third electrode 110) are electrically connected, and a current (ion current) is supplied between the second electrode 102 and the third electrode 110 for a certain period of time.
  • a catalytic reaction like the above formula (1) occurs in the second electrode 102, while a self purge reaction like the above formulas (5) and (6) occurs in the third electrode 110 (partly, Catalytic reaction like the above formula (2) may also occur).
  • the CO 2 -derived anion contained in the anion conductive electrolyte membrane 101 and the second electrode 102 moves to the third electrode 110, is reduced by the reducing agent, and is discharged from the third electrode 110 as CO 2 gas. It will be.
  • the second electrode 102 functions as a cathode electrode.
  • the electrical connection between the second electrode 102 and the third electrode 110 is cut, and then the reducing agent is supplied to the first electrode 103 through the first flow path 105a of the first current collecting layer 105.
  • an oxidant is supplied to the second electrode 102 through the second flow path 104a of the second current collecting layer 104, and is further switched by the switching means 140 (connecting the terminals B1 and B4 shown in FIG. 7). Electric power is obtained by electrically connecting the current collecting layer 105 and the second current collecting layer 104 (therefore, the first electrode 103 and the second electrode 102) [power generation step].
  • the accumulation of CO 2 -derived anions does not easily occur in the first electrode 103 even by self-purge, good power generation efficiency can be exhibited.
  • FIG. 10 is a schematic cross-sectional view showing a membrane electrode assembly according to the present embodiment and an alkaline fuel cell using the same, and FIGS. 11 and 12 are XI-XI line and XII-line shown in FIG. 10, respectively. It is a schematic sectional drawing in the XII line (The cross-sectional structure of the anode pole side is the same as that of FIG. 5 and FIG. 6).
  • the alkaline fuel cell 400 of the present embodiment includes the membrane electrode assembly 40 having a plurality of self-purge fourth electrodes 115 (three in the example of FIG. 10).
  • the other features are the same as those in the third embodiment (possible modifications are also the same as those in the third embodiment).
  • the method of using the alkaline fuel cell is the same as in the third embodiment.
  • the alkaline fuel cell 400 has a plurality of (three in the example of FIG. 10) third electrodes 110, and this is the same as in the second embodiment.
  • the membrane electrode assembly 40 includes an anion conductive electrolyte membrane 101; a first electrode 103 laminated on the first surface of the anion conductive electrolyte membrane 101; a second electrode laminated on the second surface of the anion conductive electrolyte membrane 101. 102; three third electrodes 110 stacked on the first surface spaced apart from the first electrode 103; and three fourth electrodes 115 stacked on the second surface spaced apart from the second electrode 102 Mainly composed.
  • a gasket 106 is provided on the periphery of the electrode.
  • the first electrode 103 and the second electrode 102 are provided so as to face each other with the anion conductive electrolyte membrane 101 interposed therebetween.
  • the third electrode 110 and the fourth electrode 115 are provided so as to face each other with the anion conductive electrolyte membrane 101 interposed therebetween.
  • the first electrode 103 is divided into two and laminated, and the first electrode 103 and the two first electrodes 103 and the outer sides of the two first electrodes 103 are respectively A total of three third electrodes 110 are arranged so as to be separated from each other.
  • the second electrode 102 is divided into two and laminated, and is separated from the second electrode 102 between the two second electrodes 102 and on the outer side of each of the two second electrodes 102.
  • a total of four fourth electrodes 115 are arranged.
  • the alkaline fuel cell 400 includes a first current collecting layer 105 (two in total) laminated on the first electrode 103; a second current collecting layer 104 (two in total) laminated on the second electrode 102; A third current collecting layer 120 (three in total) laminated on the three electrodes 110; and a fourth current collecting layer 125 (three in total) laminated on the fourth electrode 115.
  • the first current collecting layer 105 and the third current collecting layer 120 are electrically insulated from each other by interposing an insulating layer 130 between these current collecting layers.
  • the second current collecting layer 104 and the fourth current collecting layer 125 are electrically insulated from each other with the insulating layer 130 interposed therebetween.
  • first current collecting layer 105 and the third current collecting layer 120 are provided with a first flow path 105 a for supplying a reducing agent or an oxidizing agent to the first electrode 103 or the third electrode 110.
  • second current collecting layer 104 and the fourth current collecting layer 125 are provided with a second flow path 104 a for supplying a reducing agent or an oxidizing agent to the second electrode 102 or the fourth electrode 115.
  • Alkaline fuel cell 400 includes external wiring 145 and switching means (switch) 140 interposed in external wiring 145.
  • the switching means 140 can switch the current collecting layer to be connected.
  • the conductive electrolyte membrane 101 is disposed so as to be substantially evenly dispersed in the second surface of the conductive electrolyte membrane 101.
  • the area in the vicinity of the fourth electrode 115 can be increased, whereby an anion conductive electrolyte membrane is obtained. 101 and the entire first electrode 103 can be self-purged.
  • a plurality of third electrodes 110 and a plurality of fourth electrodes 115 are provided, and these are arranged so as to be distributed substantially evenly on the first surface and the second surface, respectively.
  • the entire anion conductive electrolyte membrane 101, the first electrode 103, and the second electrode 102 can be self purged.
  • FIG. 13 is a schematic cross-sectional view showing a membrane electrode assembly according to the present embodiment and an alkaline fuel cell using the membrane electrode assembly
  • FIGS. FIG. 14 is a schematic cross-sectional view taken along lines XIV-XIV, XV-XV, XVI-XVI, and XVII-XVII shown in FIG. 13, respectively.
  • the alkaline fuel cell 500 of the present embodiment is the same as the third embodiment in that it includes the third electrode 110 and the fourth electrode 115 for self-purging, but the third electrode 110 and the fourth electrode 115 are different from each other. It has a feature in arrangement relation.
  • the third electrode 110 and the fourth electrode 115 are not provided so as to face each other with the anion conductive electrolyte membrane 101 interposed therebetween.
  • the fourth electrode 115 is arranged on the outer side opposite to the side facing the third electrode 110 in the second electrode 102 with respect to the third electrode 110 arranged on one outer side of 103. .
  • the configuration other than the arrangement relationship between the third electrode 110 and the fourth electrode 115 is the same as that of the third embodiment (possible modifications are also the same as those of the third embodiment).
  • the first electrode 103 and the second electrode 102 are provided so as to face each other with the anion conductive electrolyte membrane 101 interposed therebetween.
  • the third electrode 110 and the fourth electrode 115 are both CO 2 by supplying a reducing agent in the self-purging process.
  • either the third electrode 110 or the fourth electrode 115 is an oxidizing agent in the self-purging process, while discharging the derived anions as CO 2 gas and accumulating the remaining CO 2 -derived anions. It plays a role as a cathode electrode to which is supplied.
  • a current flows between the fourth electrode 115 and this current always passes through the anion conductive electrolyte membrane 101 interposed between the first electrode 103 and the second electrode 102. Therefore, even in a single self-purging step, a considerably wide area of the anion conductive electrolyte membrane 101 (when the third electrode 110 and the fourth electrode 115 are arranged at almost the end of the membrane electrode assembly, the anion conductive electrolyte membrane 101 is used. Self-purging can be carried out for most areas).
  • a wide range of self-purge in the membrane electrode assembly can be achieved by, for example, the second embodiment or the fourth embodiment, but according to the present embodiment, the adjacent electrodes are formed so as not to contact each other. Therefore, the complexity of the structure to be manufactured and the complexity of the manufacturing can be reduced, and the manufacturing cost can be reduced.
  • the arrangement configuration of the third electrode 110 and the fourth electrode 115 and the shape of these electrodes are not limited to those shown in FIGS. 13, 14, and 16, and the third electrode 110 to the fourth electrode 115 are not limited thereto.
  • the third electrode 110 and the fourth electrode 115 so that the shortest path to reach the inside of the anion conductive electrolyte membrane 101 interposed between the first electrode 103 and the second electrode 102 is provided.
  • the advantageous effects shown in the above (a) and (b) can be obtained.
  • a plurality of third electrodes 110 and fourth electrodes 115 may be provided. For example, a position facing the fourth electrode 115 through the anion conductive electrolyte membrane 101 with respect to the membrane electrode assembly 50 shown in FIG. For example, a second third electrode 110 may be provided, and a second fourth electrode 115 may be provided at a position facing the third electrode 110 with the anion conductive electrolyte membrane 101 interposed therebetween.
  • a reducing agent is supplied to the third electrode 110 through the first flow path 105 a of the third current collection layer 120, and to the fourth electrode 115 through the second flow path 104 a of the fourth current collection layer 125.
  • the oxidizing agent is supplied, and the switching means 140 (connects the terminals B1 and B2 shown in FIG. 13), and the third current collecting layer 120 and the fourth current collecting layer 125 (therefore, the third electrode 110 and the fourth current collecting layer).
  • the electrode 115 is electrically connected, and a current (ion current) is allowed to flow between the third electrode 110 and the fourth electrode 115 for a certain time [self-purging step].
  • a catalytic reaction such as the above formula (1) occurs in the fourth electrode 115
  • a self purge reaction such as the above formulas (5) and (6) occurs in the third electrode 110 (partly, Catalytic reaction like the above formula (2) may also occur).
  • the CO 2 -derived anion in the anion conductive electrolyte membrane 101 including the region interposed between the first electrode 103 and the second electrode 102 moves to the third electrode 110 and is reduced by the reducing agent. , CO 2 gas is discharged from the third electrode 110.
  • the fourth electrode 115 functions as a cathode electrode.
  • the third electrode 110 functions as a cathode electrode.
  • self-purge is performed over a wide range of the anion conductive electrolyte membrane 101, so that an increase in cell resistance can be effectively suppressed and the first electrode 103 functioning as an anode electrode during power generation The reaction overvoltage can be effectively reduced, and thus good power generation efficiency can be exhibited.
  • the electrical connection between the third electrode 110 and the fourth electrode 115 is cut, and then the reducing agent is supplied to the first electrode 103 through the first flow path 105a of the first current collecting layer 105. Then, the oxidizing agent is supplied to the second electrode 102 through the second flow path 104a of the second current collecting layer 104, and further, the first current collecting is performed by the switching means 140 (connecting terminals B3 and B4 shown in FIG. 13). Electric power is obtained by electrically connecting the layer 105 and the second current collecting layer 104 (therefore, the first electrode 103 and the second electrode 102) [power generation step]. As described above, since the accumulation of CO 2 -derived anions does not easily occur in the first electrode 103 even by self-purge, good power generation efficiency can be exhibited.
  • the alkaline fuel cell of the present invention can be suitably applied as a power source for automobiles, home cogeneration, portable electronic devices, and the like.
  • Example 1 The alkaline fuel cell 100 having the structure shown in FIG. 18 (the same structure as FIG. 1) was produced by the following procedure. 19 and 20 are schematic sectional views taken along lines XIX-XIX and XX-XX, respectively, shown in FIG.
  • the catalyst paste for the 1st electrode 103, the 2nd electrode 102, and the 3rd electrode 110 was prepared by mixing and adding ion-exchange water and ethanol further.
  • a fluororesin polymer electrolyte (“Aciplex” manufactured by Asahi Kasei Co., Ltd.) cut into a size of 8 cm ⁇ 8 cm is used as the anion conductive electrolyte membrane 101, and one side of the anion conductive electrolyte membrane 101 (first
  • the catalyst paste of the second electrode 102 (cathode electrode) was formed by applying the catalyst paste at the center of the (2 surface) using a screen printing plate having a window of 5 cm length ⁇ 5 cm width and drying. .
  • the size of the catalyst layer of the second electrode 102 is 5 cm long ⁇ 5 cm wide ⁇ about 10 ⁇ m thick.
  • the catalyst paste is applied to the center of the other surface (first surface) of the anion conductive electrolyte membrane 101 using a screen printing plate having a 1 cm long ⁇ 5 cm wide window and dried.
  • a catalyst layer of the third electrode 110 was formed.
  • the size of the catalyst layer of the third electrode 110 is 1 cm long ⁇ 5 cm wide ⁇ about 10 ⁇ m thick.
  • the catalyst paste is applied using a screen printing plate having a 1.5 cm long ⁇ 5 cm wide window and dried, whereby the first electrode 103 ( A catalyst layer of the anode electrode) was formed to obtain a membrane electrode assembly 10.
  • the size of the catalyst layer of the first electrode 103 is 1.5 cm long ⁇ 5 cm wide ⁇ about 10 ⁇ m thick, and the distance between the catalyst layer of the first electrode 103 and the catalyst layer of the third electrode 110 is 0.5 cm.
  • the region where the catalyst layer of the second electrode 102 is formed and the region where the catalyst layers of the first electrode 103 and the third electrode 110 are formed coincide with each other in the plane of the anion conductive electrolyte membrane 101.
  • a serpentine-like groove (second flow path 104a, depth 0.3 cm) is formed by cutting on one side of a SUS plate having a length of 8 cm, a width of 8 cm, and a thickness of 1.5 cm.
  • Two current collecting layers 104 (cathode side current collecting layers) were used.
  • first flow path 105a first flow path 105a, depth 0.3 cm
  • electrical layer 105 / insulating layer 130 / third current collecting layer 120 / insulating layer 130 / first current collecting layer 105 electrical layer 105 / insulating layer 130 / third current collecting layer 120 / insulating layer 130 / first current collecting layer 105).
  • a gas diffusion layer (GDL 35BC manufactured by SGL) cut into a size of 5 cm in length and 5 cm in width was stacked, and the obtained second electrode 102 was obtained.
  • a silicone rubber sheet having an outer shape of 8 cm in length, 8 cm in width, and 200 ⁇ m in thickness and having an opening of 5 cm in length and 5 cm in width is arranged in the center as a gasket 106. Further, the second current collecting layer 104 was laminated so that the second flow path 104 a side was opposed to the second electrode 102.
  • a gas diffusion layer (GDL 35BC manufactured by SGL) cut into a size of 1.5 cm in length and 5 cm in width on the catalyst layer of the first electrode 103, 1 cm in length and 5 cm in width on the catalyst layer of the third electrode 110.
  • a gas diffusion layer cut out in size (GDL35BC manufactured by SGL) is laminated, and the outer shape of the obtained electrode is a gasket 106.
  • the outer shape is 8 cm long ⁇ 8 cm wide ⁇ 200 ⁇ m thick, and the center is 5 cm long ⁇ 5 cm wide.
  • a silicone rubber sheet having openings formed therein was disposed.
  • the anode-side current collection layer was laminated so that the first flow path 105a side was opposed to the first electrode 103 and the third electrode 110.
  • the current collector layer on the anode side and the current collector layer on the cathode side are fastened with an insulation-coated bolt 150 and a nut 155, and the current collector layer is connected using external wiring 145 and switching means 140 as shown in FIG.
  • the alkaline fuel cell 100 was obtained by wiring connection.
  • Example 1 except that only the first electrode 103 having the same size (5 cm long ⁇ 5 cm wide ⁇ about 10 ⁇ m thick) as the second electrode 102 is formed at the center of the first surface of the anion conductive electrolyte membrane 101. Similarly, a membrane electrode assembly was produced to obtain an alkaline fuel cell.
  • Example 2 The alkaline fuel cell 300 having the structure shown in FIG. 21 (the same structure as FIG. 7) was produced by the following procedure. 22 and 23 are schematic cross-sectional views taken along lines XXII-XXII and XXIII-XXIII shown in FIG. 21, respectively (the cross-sectional structures on the anode electrode side are the same as those in FIGS. 19 and 20).
  • the catalyst-supported carbon particles (“TEC10E50E” manufactured by Tanaka Kikinzoku Co., Ltd.) having a Pt-supported amount of Pt / C of 50% by weight and the above-obtained electrolyte solution have a weight ratio of 2 / 0.2.
  • the catalyst paste for the 1st electrode 103, the 2nd electrode 102, the 3rd electrode 110, and the 4th electrode 115 was prepared by mixing and adding ion-exchange water and ethanol further.
  • a fluororesin polymer electrolyte (“Aciplex” manufactured by Asahi Kasei Co., Ltd.) cut into a size of 8 cm ⁇ 8 cm is used as the anion conductive electrolyte membrane 101, and one side of the anion conductive electrolyte membrane (second).
  • the catalyst paste of the fourth electrode 115 was formed by applying the catalyst paste at the center of the surface) using a screen printing plate having a window of 1 cm length ⁇ 5 cm width and drying.
  • the size of the catalyst layer of the fourth electrode 115 is 1 cm long ⁇ 5 cm wide ⁇ about 10 ⁇ m thick.
  • the catalyst paste is applied using a screen printing plate having a 1.5 cm long ⁇ 5 cm wide window and dried, so that the second electrode 102 ( Cathode electrode) catalyst layer was formed.
  • the size of the catalyst layer of the second electrode 102 is 1.5 cm long ⁇ 5 cm wide ⁇ about 10 ⁇ m thick.
  • the distance between the catalyst layer of the second electrode 102 and the catalyst layer of the fourth electrode 115 is 0.5 cm.
  • the catalyst paste is applied to the center of the other surface (first surface) of the anion conductive electrolyte membrane 101 using a screen printing plate having a 1 cm long ⁇ 5 cm wide window and dried.
  • a catalyst layer of the third electrode 110 was formed.
  • the size of the catalyst layer of the third electrode 110 is 1 cm long ⁇ 5 cm wide ⁇ about 10 ⁇ m thick.
  • the catalyst paste is applied using a screen printing plate having a 1.5 cm long ⁇ 5 cm wide window and dried, whereby the first electrode 103 ( A membrane electrode assembly 30 was obtained by forming a catalyst layer of the anode electrode).
  • the size of the catalyst layer of the first electrode 103 is 1.5 cm long ⁇ 5 cm wide ⁇ about 10 ⁇ m thick, and the distance between the catalyst layer of the first electrode 103 and the catalyst layer of the third electrode 110 is 0.5 cm.
  • the region where the catalyst layer of the second electrode 102 is formed and the region where the catalyst layer of the first electrode 103 is formed coincide with each other in the plane of the anion conductive electrolyte membrane 101.
  • the region where the catalyst layer of the fourth electrode 115 is formed and the region where the catalyst layer of the third electrode 110 is formed coincide with each other in the plane of the anion conductive electrolyte membrane 101.
  • insulative bonding of SUS plate of 3cm length ⁇ 8cm width ⁇ 1.5cm thickness / 1cm length ⁇ 8cm width ⁇ SUS plate of 1.5cm thickness / 3cm length ⁇ 8cm width ⁇ 1.5cm thickness SUS plate in this order After bonding using the agent, a serpentine-like groove (first flow path 105a, depth 0.3 cm) was formed on one surface by cutting to form a current collecting layer on the anode side.
  • a gas diffusion layer (GDL 35BC manufactured by SGL) cut into a size of 1.5 cm in length and 5 cm in width on the catalyst layer of the second electrode 102 of the obtained membrane electrode assembly is placed on the catalyst layer of the fourth electrode 115.
  • a gas diffusion layer (GDL 35BC manufactured by SGL Co., Ltd.) cut into a size of 1 cm in length ⁇ 5 cm in width is laminated, and the outer shape of the obtained electrode as a gasket 106 is 8 cm in length ⁇ 8 cm in width ⁇ 200 ⁇ m in thickness, A silicone rubber sheet in which an opening of 5 cm in length and 5 cm in width was formed in the center was disposed.
  • the cathode-side current collection layer was laminated so that the second flow path 104 a side was opposed to the second electrode 102 and the fourth electrode 115.
  • a gas diffusion layer (GDL 35BC manufactured by SGL) cut into a size of 1.5 cm in length and 5 cm in width on the catalyst layer of the first electrode 103, 1 cm in length and 5 cm in width on the catalyst layer of the third electrode 110.
  • a gas diffusion layer cut out in size (GDL35BC manufactured by SGL) is laminated, and the outer shape of the obtained electrode is a gasket 106.
  • the outer shape is 8 cm long ⁇ 8 cm wide ⁇ 200 ⁇ m thick, and the center is 5 cm long ⁇ 5 cm wide.
  • a silicone rubber sheet having openings formed therein was disposed.
  • the anode-side current collection layer was laminated so that the first flow path 105 a side was opposed to the first electrode 103 and the third electrode 110.
  • the anode-side current collector layer and the cathode-side current collector layer are fastened with an insulation-coated bolt 150 and nut 155, and the current-collection layer is connected with external wiring 145 and switching means 140 as shown in FIG.
  • the alkaline fuel cell 300 was obtained by wiring connection.
  • the alkaline fuel cell 500 having the structure shown in FIG. 24 (the same structure as FIG. 13) was produced by the following procedure.
  • 25 to 28 are schematic sectional views taken along lines XXV-XXV, XXVI-XXVI, XXVII-XXVII, and XXVIII-XXVIII shown in FIG.
  • the catalyst-supported carbon particles (“TEC10E50E” manufactured by Tanaka Kikinzoku Co., Ltd.) having a Pt-supported amount of Pt / C of 50% by weight and the above-obtained electrolyte solution have a weight ratio of 2 / 0.2.
  • the catalyst paste for the 1st electrode 103, the 2nd electrode 102, the 3rd electrode 110, and the 4th electrode 115 was prepared by mixing and adding ion-exchange water and ethanol further.
  • a fluororesin polymer electrolyte (“Aciplex” manufactured by Asahi Kasei Co., Ltd.) cut into a size of 8 cm in length ⁇ 8 cm in width is used as the anion conductive electrolyte membrane 101, and one side of the anion conductive electrolyte membrane (second
  • the catalyst paste of the fourth electrode 115 was formed by applying the catalyst paste on the right side of the surface) using a screen printing plate having a 1 cm long ⁇ 5 cm wide window and drying.
  • the size of the catalyst layer of the fourth electrode is 1 cm long ⁇ 5 cm wide ⁇ about 10 ⁇ m thick.
  • the catalyst paste is applied using a screen printing plate having a 3.5 cm long by 5 cm wide window and dried, whereby the second electrode 102 (cathode) is formed on the left side of the catalyst layer of the fourth electrode 115. Electrode layer) was formed.
  • the size of the catalyst layer of the second electrode 102 is 3.5 cm long ⁇ 5 cm wide ⁇ about 10 ⁇ m thick, and the distance between the catalyst layer of the second electrode 102 and the catalyst layer of the fourth electrode 115 is 0.5 cm.
  • a catalyst layer of the third electrode 110 was formed.
  • the size of the catalyst layer of the third electrode 110 is 1 cm long ⁇ 5 cm wide ⁇ about 10 ⁇ m thick.
  • the catalyst paste is applied using a screen printing plate having a 3.5 cm long by 5 cm wide window and dried, whereby the first electrode 103 (anode) is formed on the right side of the catalyst layer of the third electrode 110.
  • Membrane electrode assembly 50 was obtained.
  • the size of the catalyst layer of the first electrode 103 is 3.5 cm long ⁇ 5 cm wide ⁇ about 10 ⁇ m thick, and the distance between the catalyst layer of the first electrode 103 and the catalyst layer of the third electrode 110 is 0.5 cm.
  • the region where the catalyst layer of the second electrode 102 is formed and the region where the catalyst layer of the first electrode 103 is formed coincide with each other in the plane of the anion conductive electrolyte membrane 101.
  • a gas diffusion layer (GDL 35BC manufactured by SGL) cut into a size of 3.5 cm in length and 5 cm in width is formed on the catalyst layer of the second electrode 102 of the obtained membrane electrode assembly.
  • a gas diffusion layer (GDL 35BC manufactured by SGL Co., Ltd.) cut into a size of 1 cm in length ⁇ 5 cm in width is laminated, and the outer shape of the obtained electrode as a gasket 106 is 8 cm in length ⁇ 8 cm in width ⁇ 200 ⁇ m in thickness, A silicone rubber sheet in which an opening of 5 cm in length ⁇ 5 cm in width was formed on the right side of the center.
  • the cathode-side current collection layer was laminated so that the second flow path 104 a side was opposed to the second electrode 102 and the fourth electrode 115.
  • a gas diffusion layer (GDL 35BC manufactured by SGL) cut into a size of 3.5 cm in length and 5 cm in width on the catalyst layer of the first electrode 103, 1 cm in length and 5 cm in width on the catalyst layer of the third electrode 110.
  • a gas diffusion layer (GDL35BC manufactured by SGL Co., Ltd.) cut into a size is laminated, and the outer shape of the obtained electrode as a gasket 106 is 8 cm long ⁇ 8 cm wide ⁇ 200 ⁇ m thick, and 5 cm long ⁇ 5 cm wide to the left of the center.
  • a silicone rubber sheet having an opening was arranged.
  • the anode-side current collection layer was laminated so that the first flow path 105 a side was opposed to the first electrode 103 and the third electrode 110.
  • the current collecting layer on the anode side and the current collecting layer on the cathode side are fastened with an insulation-coated bolt 150 and a nut 155, and the current collecting layer is connected using external wiring 145 and switching means 140.
  • the alkaline fuel cell 500 was obtained by wiring connection.
  • Alkaline fuel cell of Example 1 The alkaline fuel cell of Example 1 was placed in a constant temperature layer of 50 ° C., and H 2 gas humidified using a humidifier set at a water temperature of 48 ° C. was used as the alkaline fuel cell. A flow rate of 100 mL / min is supplied to the first flow path 105a of the battery, and oxygen humidified using a humidifier set to a water temperature of 48 ° C. is supplied to the second flow path 104a of the alkaline fuel cell at a flow rate of 100 mL / min.
  • the switching means 140 using the switching means 140, the second current collecting layer 104 and the third current collecting layer 120 were connected, and a current of 3A was circulated for 10 minutes. Subsequently, the switching means 140 is switched, the first current collecting layer 105 and the second current collecting layer 104 are connected, a current of 0.2 A / cm 2 is passed, and the battery output after 5 minutes is measured. An output of 0.142 W / cm 2 was obtained. The voltage at this time was 0.71 V, and the power generation efficiency was 58%.
  • the ohmic resistance of the fuel cell was measured using “Battery HiTester 3554” manufactured by Hioki Electric Co., Ltd., it was 150 m ⁇ cm 2 .
  • Example 2 Alkaline fuel cell of Example 2
  • the alkaline fuel cell of Example 2 was placed in a constant temperature layer of 50 ° C., and H 2 gas humidified using a humidifier set at a water temperature of 48 ° C. was used as the alkaline fuel cell.
  • the switching means 140 was used to connect the first current collecting layer 105 and the fourth current collecting layer 125, and a current of 3A was circulated for 10 minutes.
  • H 2 gas humidified using a humidifier set to a water temperature of 48 ° C. is supplied to the first flow path 105a of the alkaline fuel cell at a flow rate of 100 mL / min, and a humidifier set to a water temperature of 48 ° C.
  • the oxygen that has been humidified is supplied to the second flow path 104a of the alkaline fuel cell at a flow rate of 100 mL / min, and the switching means 140 is switched to switch between the second current collecting layer 104 and the third current collecting layer 120. After connecting and flowing the current of 3A for 10 minutes, the switching means 140 is switched to connect between the first current collecting layer 105 and the second current collecting layer 104, and a current of 0.2 A / cm 2 is passed.
  • Example 3 Alkaline fuel cell of Example 3
  • the alkaline fuel cell of Example 3 was placed in a constant temperature layer of 50 ° C., and H 2 gas humidified using a humidifier set to a water temperature of 48 ° C. was used as the alkaline fuel cell.
  • a flow rate of 100 mL / min is supplied to the first flow path 105a of the battery, and oxygen humidified using a humidifier set to a water temperature of 48 ° C. is supplied to the second flow path 104a of the alkaline fuel cell at a flow rate of 100 mL / min.
  • the switching means 140 the third current collecting layer 120 and the fourth current collecting layer 125 were connected, and a current of 3A was circulated for 10 minutes.
  • the switching means 140 was switched, the first current collecting layer 105 and the second current collecting layer 104 were connected, a current of 0.2 A / cm 2 was passed, and the battery output after 5 minutes was measured. An output of 0.138 W / cm 2 was obtained. The voltage at this time was 0.69 V, and the power generation efficiency was 58%.
  • the ohmic resistance of the fuel cell was measured using “Battery HiTester 3554” manufactured by Hioki Electric Co., Ltd. and found to be 162 m ⁇ cm 2 .
  • Alkaline fuel cell of Comparative Example 1 The alkaline fuel cell of Comparative Example 1 was placed in a constant temperature layer of 50 ° C., and H 2 gas humidified using a humidifier set to a water temperature of 48 ° C. was used as the alkaline fuel cell. A flow rate of 100 mL / min is supplied to the first flow path 105a of the battery, and oxygen humidified using a humidifier set to a water temperature of 48 ° C. is supplied to the second flow path 104a of the alkaline fuel cell at a flow rate of 100 mL / min.
  • the switching means 140 was used to connect between the first current collecting layer 105 and the second current collecting layer 104, a current of 0.2 A / cm 2 was passed, and the battery output after 5 minutes was measured. However, an output of 0.134 W / cm 2 was obtained. The voltage at this time was 0.67 V, and the power generation efficiency was 55%.
  • the ohmic resistance of the fuel cell was measured using “Battery HiTester 3554” manufactured by Hioki Electric Co., Ltd., it was 200 m ⁇ cm 2 .
  • membrane electrode composite 100, 200, 300, 400, 500 alkaline fuel cell, 101 anion conductive electrolyte membrane, 102 second electrode, 103 first electrode, 104 second current collector Layer, 104a second flow path, 105 first current collecting layer, 105a first flow path, 106 gasket, 110 third electrode, 115 fourth electrode, 120 third current collecting layer, 125 fourth current collecting layer, 130 insulation Layer, 140 switching means, 145 external wiring, 150 bolts, 155 nuts.

Abstract

Provided is a membrane electrode assembly for an alkaline fuel cell comprising an anion-conductive electrolyte membrane; a first electrode layered on a first surface of the anion-conductive electrolyte membrane; and a second electrode layered on a second surface opposite the first surface of the anion-conductive electrolyte membrane, wherein the membrane electrode assembly further comprises a third electrode layered on the first surface at a distance from the first electrode. Also provided are an alkaline fuel cell in which the membrane electrode assembly is used, and a method for using the alkaline fuel cell. The membrane electrode assembly can further comprise a fourth electrode layered on the second surface at a distance from the second electrode.

Description

膜電極複合体およびこれを用いたアルカリ形燃料電池Membrane electrode composite and alkaline fuel cell using the same
 本発明は、膜電極複合体、これを用いたアルカリ形燃料電池およびその使用方法に関する。 The present invention relates to a membrane electrode assembly, an alkaline fuel cell using the same, and a method for using the same.
 燃料電池は、小型軽量化や高出力密度を実現できる可能性を有していることから、携帯用電子機器用の新規電源や家庭用コジェネレーションシステムなどへの用途展開が精力的に進められている。燃料電池は、発電主要部として、電解質膜をアノード極およびカソード極で挟持した構成の膜電極複合体(MEA)を備えており、電解質膜の種類によって、固体高分子形燃料電池(直接形燃料電池を含む)、リン酸形燃料電池、溶融炭酸塩形燃料電池、固体酸化物形燃料電池、アルカリ形燃料電池などに分類される。 Since fuel cells have the potential to achieve small size and light weight and high output density, the development of applications for new power sources for portable electronic devices and household cogeneration systems has been energetically promoted. Yes. The fuel cell includes a membrane electrode assembly (MEA) having a configuration in which an electrolyte membrane is sandwiched between an anode and a cathode as a main part of power generation. Depending on the type of electrolyte membrane, a polymer electrolyte fuel cell (direct fuel) Battery), phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, alkaline fuel cell and the like.
 アルカリ形燃料電池は、電解質膜としてアニオン伝導性電解質膜(アニオン交換膜)を用いた、電荷キャリアが水酸化物イオン(OH-)である燃料電池である。アルカリ形燃料電池においては、アノード極とカソード極とを電気的に接続すると、次のような電気化学反応によりアノード極とカソード極との間に電流が流れ、電気エネルギーを得ることができる。すなわち、カソード極に酸化剤(たとえば酸素または空気など)および水(この水は、アノード極で生じ、電解質膜を透過した水であり得る)を供給すると、下記式(1):
 カソード極:1/2O2+H2O+2e → 2OH-    (1)
で表される触媒反応によりOH-が生成される。このOH-は、水分子との水和状態で電解質膜を介してアノード極側に伝達される。一方、アノード極では、供給された還元剤(燃料)、たとえばH2ガスとカソード極から伝達されたOH-とが、下記式(2):
 アノード極:H2+2OH- → 2H2O+2e      (2)
で表される触媒反応を起こし、水および電子を生成する。
An alkaline fuel cell is a fuel cell in which an anion conductive electrolyte membrane (anion exchange membrane) is used as an electrolyte membrane, and charge carriers are hydroxide ions (OH ). In an alkaline fuel cell, when an anode electrode and a cathode electrode are electrically connected, a current flows between the anode electrode and the cathode electrode by the following electrochemical reaction, and electric energy can be obtained. That is, when an oxidizing agent (for example, oxygen or air) and water (this water may be water generated at the anode electrode and permeated through the electrolyte membrane) are supplied to the cathode electrode, the following formula (1):
Cathode electrode: 1 / 2O 2 + H 2 O + 2e → 2OH (1)
OH is generated by the catalytic reaction represented by This OH is transmitted to the anode side through the electrolyte membrane in a hydrated state with water molecules. On the other hand, in the anode electrode, the supplied reducing agent (fuel), for example, H 2 gas and OH transmitted from the cathode electrode are expressed by the following formula (2):
Anode electrode: H 2 + 2OH → 2H 2 O + 2e (2)
To generate water and electrons.
 アルカリ形燃料電池においては、電解質膜および触媒層の電解質にアニオン伝導性電解質を用いるために、稼動停止中に、電解質膜および触媒層が環境中の二酸化炭素(CO2)を吸収し、電解質膜および触媒層中のOH-は、CO3 2-および/またはHCO3 -(以下、「CO2由来アニオン」ということがある。)に置換される〔下記式(3)および(4)参照〕。このようなCO2由来アニオンの濃度上昇(OH-イオン濃度の低下)は、電解質のアニオン伝導度を低下させ、セル抵抗を大きく増大させる。 In an alkaline fuel cell, since an anion conductive electrolyte is used for the electrolyte of the electrolyte membrane and the catalyst layer, the electrolyte membrane and the catalyst layer absorb carbon dioxide (CO 2 ) in the environment during operation stop, and the electrolyte membrane And OH in the catalyst layer is replaced with CO 3 2− and / or HCO 3 (hereinafter sometimes referred to as “CO 2 -derived anion”) [see the following formulas (3) and (4)] . Such increase in the concentration of CO 2 -derived anion (decrease in OH ion concentration) decreases the anion conductivity of the electrolyte and greatly increases the cell resistance.
 CO2+2OH- → CO3 2-+H2O            (3)
 CO2+OH- → HCO3 -                (4)
 上記セル抵抗増大の問題は、燃料電池の稼動により生じるセルフパージと呼ばれる現象により改善できることが知られている。セルフパージとは、燃料電池の稼動により、アニオン伝導度の低下の要因である、電解質膜および触媒層に含まれるCO2由来アニオンがアノード極に移動し、還元剤によって還元され、CO2ガスとしてアノード極から排出される現象をいい、具体的には下記式(5)および(6):
 H2+CO3 2- → CO2+H2O+2e-           (5)
 H2+2HCO3 - → 2CO2+2H2O+2e-       (6)
で表すことができる。
CO 2 + 2OH → CO 3 2− + H 2 O (3)
CO 2 + OH - → HCO 3 - (4)
It is known that the problem of increasing the cell resistance can be improved by a phenomenon called self-purging caused by the operation of the fuel cell. Self-purging means that the CO 2 -derived anion contained in the electrolyte membrane and the catalyst layer, which is a cause of a decrease in anion conductivity due to the operation of the fuel cell, moves to the anode electrode, is reduced by the reducing agent, and is anodeed as CO 2 gas. This refers to a phenomenon that is discharged from the pole. Specifically, the following formulas (5) and (6):
H 2 + CO 3 2− → CO 2 + H 2 O + 2e (5)
H 2 + 2HCO 3 → 2CO 2 + 2H 2 O + 2e (6)
Can be expressed as
 しかしながら、Yu Matsui,Morihiro Saito,Akimasa Tasaka,and Minoru Inaba,ECS Transactions,25(13),105-110(2010)〔非特許文献1〕に示されるように、セルフパージによれば、多くのCO2由来アニオンがOH-に再置換されるため、セル抵抗の増大を抑制することは可能であるものの、ある一定量残存したCO2由来アニオンがセルフパージによってアノード極に局在化し、蓄積される結果、アノード極における反応過電圧が高くなり、発電効率が低下してしまうという問題があった。 However, as shown in Yu Matsui, Morihiro Saito, Akimasa Tasaka, and Minoru Inaba, ECS Transactions, 25 (13), 105-110 (2010) [Non-Patent Document 1], many CO 2 Since the derived anion is re-substituted by OH , it is possible to suppress an increase in cell resistance, but a certain amount of remaining CO 2 -derived anion is localized and accumulated in the anode electrode by self-purge, There was a problem that the reaction overvoltage at the anode electrode was increased and the power generation efficiency was lowered.
 本発明は上記課題に鑑みなされたものであり、その目的は、セルフパージによるアノード極へのCO2由来アニオンの蓄積を抑制することによりアノード極における反応過電圧を低下させることができ、もって良好な発電効率を示すアルカリ形燃料電池用の膜電極複合体およびこれを用いたアルカリ形燃料電池を提供することにある。 The present invention has been made in view of the above problems, and its purpose is to reduce the reaction overvoltage at the anode electrode by suppressing the accumulation of CO 2 -derived anions on the anode electrode due to self-purge, and thus good power generation. An object of the present invention is to provide a membrane electrode assembly for an alkaline fuel cell exhibiting efficiency and an alkaline fuel cell using the same.
 本発明は、アニオン伝導性電解質膜と、該アニオン伝導性電解質膜の第1表面に積層される第1電極と、該アニオン伝導性電解質膜の第1表面に対向する第2表面に積層される第2電極とを含むアルカリ形燃料電池用膜電極複合体であって、第1電極と離間して第1表面に積層される第3電極をさらに備える膜電極複合体(MEA)を提供する。第1電極と第2電極とは、好ましくはアニオン伝導性電解質膜を介して対向するように設けられる。 The present invention provides an anion conductive electrolyte membrane, a first electrode laminated on a first surface of the anion conductive electrolyte membrane, and a second surface opposed to the first surface of the anion conductive electrolyte membrane. A membrane electrode assembly (MEA) comprising an alkaline fuel cell membrane electrode assembly including a second electrode, further comprising a third electrode spaced apart from the first electrode and laminated on the first surface. The first electrode and the second electrode are preferably provided so as to face each other with an anion conductive electrolyte membrane interposed therebetween.
 本発明の膜電極複合体は、互いに離間して配置される複数の第3電極を備えることができる。この場合、複数の第3電極は、第1表面内において略均等に分散して配置されることが好ましい。 The membrane electrode assembly of the present invention can include a plurality of third electrodes that are spaced apart from each other. In this case, it is preferable that the plurality of third electrodes be arranged substantially uniformly in the first surface.
 本発明の膜電極複合体は、第2電極と離間して第2表面に積層される第4電極をさらに備えることができ、また、互いに離間して配置される複数の第4電極を備えることができる。複数の第4電極を備える場合、これらは第2表面内において略均等に分散して配置されることが好ましい。 The membrane electrode assembly of the present invention can further include a fourth electrode that is separated from the second electrode and stacked on the second surface, and further includes a plurality of fourth electrodes that are disposed apart from each other. Can do. In the case where a plurality of fourth electrodes are provided, it is preferable that these are arranged substantially uniformly in the second surface.
 第4電極を備える1つの好ましい実施形態において、第1電極と第2電極とは、アニオン伝導性電解質膜を介して対向するように設けられ、第3電極から第4電極に至る最短経路が、第1電極と第2電極との間に介在するアニオン伝導性電解質膜内を通るように配置される第3電極および第4電極を備える。この実施形態において、好ましくは、第3電極は、第1電極の外側側方に配置されるとともに、第4電極は、第2電極における第3電極に対向する側とは反対側の外側側方に配置される。 In one preferable embodiment including the fourth electrode, the first electrode and the second electrode are provided to face each other via the anion conductive electrolyte membrane, and the shortest path from the third electrode to the fourth electrode is A third electrode and a fourth electrode are provided so as to pass through the anion conductive electrolyte membrane interposed between the first electrode and the second electrode. In this embodiment, preferably, the third electrode is disposed on the outer side of the first electrode, and the fourth electrode is on the outer side of the second electrode opposite to the side facing the third electrode. Placed in.
 また本発明は、上記膜電極複合体と、各電極上に積層される集電層とを少なくとも備えるアルカリ形燃料電池およびその使用方法を提供する。第1電極上に積層される第1集電層と第3電極上に積層される第3集電層とは電気的に絶縁される。また、膜電極複合体が第4電極を備える場合、第2電極上に積層される第2集電層と第4電極上に積層される第4集電層とは電気的に絶縁される。 The present invention also provides an alkaline fuel cell comprising at least the membrane electrode assembly and a current collecting layer laminated on each electrode, and a method for using the alkaline fuel cell. The first current collecting layer laminated on the first electrode and the third current collecting layer laminated on the third electrode are electrically insulated. Further, when the membrane electrode assembly includes the fourth electrode, the second current collecting layer laminated on the second electrode and the fourth current collecting layer laminated on the fourth electrode are electrically insulated.
 上記のように、本発明の膜電極複合体は、実質的な発電を担う電極(すなわち、第1電極および第2電極)とは独立して、セルフパージ用として使用される第3電極および任意で設けられる第4電極を備えるものである。このような膜電極複合体を用いたアルカリ形燃料電池によれば、発電を担う電極にCO2由来アニオンが蓄積することを抑制できるため、発電時においてアノード極として機能する電極(第1電極)における反応過電圧を低下させることができ、発電効率を向上させることができる。 As described above, the membrane electrode assembly of the present invention is independent of the electrodes responsible for substantial power generation (ie, the first electrode and the second electrode), and the third electrode used for self-purging and optionally A fourth electrode is provided. According to the alkaline fuel cell using such a membrane electrode composite, it is possible to suppress the accumulation of CO 2 -derived anions on the electrode responsible for power generation, so that the electrode functioning as an anode electrode during power generation (first electrode) The reaction overvoltage in can be reduced, and the power generation efficiency can be improved.
本発明の膜電極複合体およびこれを用いたアルカリ形燃料電池の好ましい一例を示す概略断面図である。It is a schematic sectional drawing which shows a preferable example of the membrane electrode assembly of this invention and an alkaline fuel cell using the same. 図1に示されるII-II線における概略断面図である。FIG. 2 is a schematic sectional view taken along line II-II shown in FIG. 1. 図1に示されるIII-III線における概略断面図である。FIG. 3 is a schematic cross-sectional view taken along line III-III shown in FIG. 本発明の膜電極複合体およびこれを用いたアルカリ形燃料電池の他の好ましい一例を示す概略断面図である。It is a schematic sectional drawing which shows another preferable example of the membrane electrode assembly of this invention, and an alkaline fuel cell using the same. 図4に示されるV-V線における概略断面図である。FIG. 5 is a schematic cross-sectional view taken along line VV shown in FIG. 4. 図4に示されるVI-VI線における概略断面図である。FIG. 5 is a schematic sectional view taken along line VI-VI shown in FIG. 4. 本発明の膜電極複合体およびこれを用いたアルカリ形燃料電池の他の好ましい一例を示す概略断面図である。It is a schematic sectional drawing which shows another preferable example of the membrane electrode assembly of this invention, and an alkaline fuel cell using the same. 図7に示されるVIII-VIII線における概略断面図である。FIG. 8 is a schematic sectional view taken along line VIII-VIII shown in FIG. 図7に示されるIX-IX線における概略断面図である。FIG. 8 is a schematic sectional view taken along line IX-IX shown in FIG. 7. 本発明の膜電極複合体およびこれを用いたアルカリ形燃料電池の他の好ましい一例を示す概略断面図である。It is a schematic sectional drawing which shows another preferable example of the membrane electrode assembly of this invention, and an alkaline fuel cell using the same. 図10に示されるXI-XI線における概略断面図である。It is a schematic sectional drawing in the XI-XI line shown by FIG. 図10に示されるXII-XII線における概略断面図である。It is a schematic sectional drawing in the XII-XII line | wire shown by FIG. 本発明の膜電極複合体およびこれを用いたアルカリ形燃料電池の他の好ましい一例を示す概略断面図である。It is a schematic sectional drawing which shows another preferable example of the membrane electrode assembly of this invention, and an alkaline fuel cell using the same. 図13に示されるXIV-XIV線における概略断面図である。It is a schematic sectional drawing in the XIV-XIV line | wire shown by FIG. 図13に示されるXV-XV線における概略断面図である。It is a schematic sectional drawing in the XV-XV line | wire shown by FIG. 図13に示されるXVI-XVI線における概略断面図である。FIG. 14 is a schematic sectional view taken along line XVI-XVI shown in FIG. 13. 図13に示されるXVII-XVII線における概略断面図である。FIG. 14 is a schematic sectional view taken along line XVII-XVII shown in FIG. 13. 実施例1で作製したアルカリ形燃料電池を示す概略断面図である。1 is a schematic cross-sectional view showing an alkaline fuel cell produced in Example 1. FIG. 図18に示されるXIX-XIX線における概略断面図である。It is a schematic sectional drawing in the XIX-XIX line | wire shown by FIG. 図18に示されるXX-XX線における概略断面図である。FIG. 19 is a schematic sectional view taken along line XX-XX shown in FIG. 実施例2で作製したアルカリ形燃料電池を示す概略断面図である。3 is a schematic cross-sectional view showing an alkaline fuel cell produced in Example 2. FIG. 図21に示されるXXII-XXII線における概略断面図である。FIG. 22 is a schematic sectional view taken along line XXII-XXII shown in FIG. 21. 図21に示されるXXIII-XXIII線における概略断面図である。FIG. 22 is a schematic sectional view taken along line XXIII-XXIII shown in FIG. 21. 実施例3で作製したアルカリ形燃料電池を示す概略断面図である。6 is a schematic cross-sectional view showing an alkaline fuel cell produced in Example 3. FIG. 図24に示されるXXV-XXV線における概略断面図である。FIG. 25 is a schematic sectional view taken along line XXV-XXV shown in FIG. 24. 図24に示されるXXVI-XXVI線における概略断面図である。FIG. 25 is a schematic sectional view taken along line XXVI-XXVI shown in FIG. 24. 図24に示されるXXVII-XXVII線における概略断面図である。FIG. 25 is a schematic sectional view taken along line XXVII-XXVII shown in FIG. 24. 図24に示されるXXVIII-XXVIII線における概略断面図である。FIG. 25 is a schematic sectional view taken along line XXVIII-XXVIII shown in FIG. 24.
 本発明の膜電極複合体は、実質的な発電を担う電極(第1電極および第2電極)とは独立して、セルフパージ用の第3電極を別途に備えることを特徴としている。この第3電極は、発電時においてアノード極として機能する第1電極と同じ側のアニオン伝導性電解質膜表面(第1表面)に積層されるが、第1電極と離間して(接触しないように)配置される。また、本発明の膜電極複合体は、第3電極に加えて、セルフパージ用の第4電極を備えることもできる。この第4電極は、発電時においてカソード極として機能する第2電極と同じ側のアニオン伝導性電解質膜表面(第2表面)に積層されるが、第2電極と離間して(接触しないように)配置される。かかる膜電極複合体を備えるアルカリ形燃料電池は、第3、第4電極などを用いてセルフパージを行なった後、第1および第2電極を用いて実質的な発電を行なうものである。 The membrane electrode assembly of the present invention is characterized by including a third electrode for self-purging separately from the electrodes (first electrode and second electrode) responsible for substantial power generation. The third electrode is laminated on the surface of the anion conductive electrolyte membrane (first surface) on the same side as the first electrode that functions as the anode electrode during power generation, but is separated from (not in contact with) the first electrode. ) Arranged. Moreover, the membrane electrode assembly of the present invention can also include a fourth electrode for self-purging in addition to the third electrode. The fourth electrode is laminated on the surface of the anion conductive electrolyte membrane (second surface) on the same side as the second electrode that functions as a cathode electrode during power generation, but is separated from (not in contact with) the second electrode. ) Arranged. An alkaline fuel cell including such a membrane electrode assembly performs substantial power generation using the first and second electrodes after self-purging using the third and fourth electrodes.
 このような膜電極複合体を用いたアルカリ形燃料電池によれば、セルフパージにより第1電極、第2電極およびアニオン伝導性電解質膜のCO2由来アニオン濃度を低減(OH-濃度を増大)でき、これによりセル抵抗の増大を抑制できるとともに、セルフパージによるCO2由来アニオンの蓄積は、第3電極および/または第4電極において主に生じることになるため、発電時においてアノード極として機能する第1電極における反応過電圧を低下させることができ、発電効率を向上させることができる。 According to the alkaline fuel cell using such a membrane electrode composite, the CO 2 -derived anion concentration of the first electrode, the second electrode and the anion conductive electrolyte membrane can be reduced (increase the OH concentration) by self-purge. As a result, an increase in cell resistance can be suppressed, and the accumulation of CO 2 -derived anions due to self-purging mainly occurs in the third electrode and / or the fourth electrode, so that the first electrode functions as an anode electrode during power generation. The reaction overvoltage in can be reduced, and the power generation efficiency can be improved.
 また、セルフパージにより膜電極複合体にイオン電流が流れ、これにより膜電極複合体は適度に加温された状態となるため、セルフパージ後、発電を行なう際の起動性を高めることができ、発電開始初期から十分に高い電力を得ることができる。 In addition, ion current flows through the membrane electrode assembly due to self-purging, and this causes the membrane electrode assembly to be in an appropriately warmed state. A sufficiently high power can be obtained from the beginning.
 以下、本発明の膜電極複合体、これを用いたアルカリ形燃料電池およびその使用方法について、実施の形態を示して詳細に説明する。 Hereinafter, a membrane electrode assembly of the present invention, an alkaline fuel cell using the same, and a method for using the same will be described in detail with reference to embodiments.
 <第1の実施形態>
 (1)膜電極複合体およびアルカリ形燃料電池の構成
 図1は、本実施形態に係る膜電極複合体およびこれを用いたアルカリ形燃料電池を示す概略断面図であり、図2および図3はそれぞれ、図1に示されるII-II線、III-III線における概略断面図である。本実施形態のアルカリ形燃料電池100は、膜電極複合体(MEA)10を備えることを特徴としている。膜電極複合体10は、アニオン伝導性電解質膜101;アニオン伝導性電解質膜101の第1表面に積層される第1電極103;アニオン伝導性電解質膜101の第1表面に対向する第2表面に積層される第2電極102;および、第1電極103と離間して第1表面に積層される、セルフパージ用の第3電極110から主に構成される。電極の周縁には、電極端面からの空気等の浸入を防止するために、ガスケット106(たとえば、シリコーンゴム等の弾性樹脂からなる層や、エポキシ系樹脂等の硬化性樹脂の硬化物層)が設けられている。
<First Embodiment>
(1) Configuration of Membrane Electrode Assembly and Alkaline Fuel Cell FIG. 1 is a schematic cross-sectional view showing a membrane electrode assembly according to the present embodiment and an alkaline fuel cell using the same, and FIGS. FIG. 3 is a schematic cross-sectional view taken along lines II-II and III-III shown in FIG. 1, respectively. The alkaline fuel cell 100 of this embodiment is characterized by including a membrane electrode assembly (MEA) 10. The membrane electrode assembly 10 includes an anion conductive electrolyte membrane 101; a first electrode 103 laminated on the first surface of the anion conductive electrolyte membrane 101; and a second surface opposite to the first surface of the anion conductive electrolyte membrane 101. It is mainly composed of a second electrode 102 to be laminated; and a third electrode 110 for self-purging that is separated from the first electrode 103 and laminated on the first surface. A gasket 106 (for example, a layer made of an elastic resin such as silicone rubber or a cured resin layer of a curable resin such as an epoxy resin) is provided at the periphery of the electrode to prevent intrusion of air or the like from the electrode end face. Is provided.
 第1電極103と第2電極102とは、アニオン伝導性電解質膜101を介して対向するように設けられている。また、本実施形態において、第1電極103は2つに分割されて積層されており、これら2つの第1電極103の間に、第1電極103と離間するように第3電極110が配置されている。 The first electrode 103 and the second electrode 102 are provided to face each other with the anion conductive electrolyte membrane 101 interposed therebetween. In the present embodiment, the first electrode 103 is divided into two layers and the third electrode 110 is disposed between the two first electrodes 103 so as to be separated from the first electrode 103. ing.
 また、アルカリ形燃料電池100は、第1電極103上に積層される第1集電層105;第2電極102上に積層される第2集電層104;および、第3電極110上に積層される第3集電層120を備えている。これらの集電層は、これに接する電極との間で電子の授受を行なうとともに、電気的配線を行なうための部材である。第1集電層105と第3集電層120とは、これらの集電層の間に絶縁層130を介在させることにより互いに電気的に絶縁されている。また、第1集電層105および第3集電層120には、第1電極103または第3電極110に還元剤を供給するための第1流路105aが設けられている。同様に、第2集電層104には、第2電極102に酸化剤を供給するための第2流路104aが設けられている。このように、本実施形態において各集電層は、還元剤や酸化剤を供給するための部材でもある。 The alkaline fuel cell 100 includes a first current collecting layer 105 laminated on the first electrode 103; a second current collecting layer 104 laminated on the second electrode 102; and a layer laminated on the third electrode 110. The third current collecting layer 120 is provided. These current collecting layers are members for exchanging electrons with an electrode in contact with the current collecting layer and for performing electrical wiring. The first current collecting layer 105 and the third current collecting layer 120 are electrically insulated from each other by interposing an insulating layer 130 between these current collecting layers. The first current collecting layer 105 and the third current collecting layer 120 are provided with a first flow path 105 a for supplying a reducing agent to the first electrode 103 or the third electrode 110. Similarly, the second current collection layer 104 is provided with a second flow path 104 a for supplying an oxidant to the second electrode 102. Thus, in this embodiment, each current collection layer is also a member for supplying a reducing agent and an oxidizing agent.
 さらに、アルカリ形燃料電池100は、外部配線145と、外部配線145に介在する切り替え手段(スイッチ)140とを備える。切り替え手段140は、集電層間の接続関係を切り替えるためのものであり、第2集電層104と電気的接続される集電層を、第1集電層105または第3集電層120のいずれかに切り替えることができる。 Furthermore, the alkaline fuel cell 100 includes an external wiring 145 and switching means (switch) 140 interposed in the external wiring 145. The switching means 140 is for switching the connection relationship between the current collecting layers. The current collecting layer electrically connected to the second current collecting layer 104 is connected to the first current collecting layer 105 or the third current collecting layer 120. You can switch to either.
 (アニオン伝導性電解質膜)
 アニオン伝導性電解質膜101としては、OH-イオンを伝導でき、かつ、第1電極103および第3電極110と第2電極102との間の短絡を防止するために電気的絶縁性を有する限り特に制限されないが、アニオン伝導性固体高分子電解質膜を好適に用いることができる。アニオン伝導性固体高分子電解質膜の好ましい例は、たとえば、パーフルオロスルホン酸系、パーフルオロカルボン酸系、スチレンビニルベンゼン系、第4級アンモニウム系の固体高分子電解質膜(アニオン交換膜)が挙げられる。また、ポリアクリル酸に濃厚水酸化カリウム溶液を含浸させた膜やアニオン伝導性固体酸化物電解質膜をアニオン伝導性電解質膜101として用いることもできる。
(Anion conductive electrolyte membrane)
As the anion conductive electrolyte membrane 101, in particular, as long as it can conduct OH ions and has electrical insulation to prevent a short circuit between the first electrode 103 and the third electrode 110 and the second electrode 102, Although not limited, an anion conductive solid polymer electrolyte membrane can be suitably used. Preferable examples of the anion conductive solid polymer electrolyte membrane include, for example, perfluorosulfonic acid type, perfluorocarboxylic acid type, styrene vinyl benzene type, quaternary ammonium type solid polymer electrolyte membrane (anion exchange membrane). It is done. A membrane obtained by impregnating polyacrylic acid with a concentrated potassium hydroxide solution or an anion conductive solid oxide electrolyte membrane can also be used as the anion conductive electrolyte membrane 101.
 アニオン伝導性電解質膜101は、アニオン伝導率が10-5S/cm以上であることが好ましく、パーフルオロスルホン酸系高分子電解質膜などのアニオン伝導率が10-3S/cm以上の電解質膜を用いることがより好ましい。アニオン伝導性電解質膜101の厚みは、通常5~300μmであり、好ましくは10~200μmである。 The anion conductive electrolyte membrane 101 preferably has an anion conductivity of 10 −5 S / cm or more, and an electrolyte membrane having an anion conductivity of 10 −3 S / cm or more such as a perfluorosulfonic acid polymer electrolyte membrane. It is more preferable to use The thickness of the anion conductive electrolyte membrane 101 is usually 5 to 300 μm, preferably 10 to 200 μm.
 (第1電極および第2電極)
 アニオン伝導性電解質膜101の第1表面に積層され、発電時にアノード極として機能する第1電極103、および、第1表面に対向する第2表面に積層され、発電時にカソード極として機能する第2電極102には、触媒と電解質とを含有する多孔質層からなる触媒層が少なくとも設けられる。これらの触媒層は、アニオン伝導性電解質膜101の表面に接して積層される。第1電極103の触媒(アノード触媒)は、第1電極103に供給された還元剤とOH-とから、水および電子を生成する反応を触媒する。第1電極103の電解質は、アニオン伝導性電解質膜101から伝導してきたOH-を触媒反応サイトへ伝導する機能を有する。一方、第2電極102の触媒(カソード触媒)は、第2電極102に供給された酸化剤および水と、第1電極103から伝達された電子とから、OH-を生成する反応を触媒する。第2電極102の電解質は、生成したOH-をアニオン伝導性電解質膜201へ伝導する機能を有する。
(First electrode and second electrode)
A first electrode 103 that is stacked on the first surface of the anion conductive electrolyte membrane 101 and functions as an anode electrode during power generation, and a second electrode that is stacked on a second surface facing the first surface and functions as a cathode electrode during power generation. The electrode 102 is provided with at least a catalyst layer composed of a porous layer containing a catalyst and an electrolyte. These catalyst layers are laminated in contact with the surface of the anion conductive electrolyte membrane 101. The catalyst (anode catalyst) of the first electrode 103 catalyzes a reaction that generates water and electrons from the reducing agent and OH supplied to the first electrode 103. The electrolyte of the first electrode 103 has a function of conducting OH conducted from the anion conductive electrolyte membrane 101 to the catalytic reaction site. On the other hand, the catalyst (cathode catalyst) of the second electrode 102 catalyzes the reaction of generating OH from the oxidant and water supplied to the second electrode 102 and the electrons transferred from the first electrode 103. The electrolyte of the second electrode 102 has a function of conducting the generated OH to the anion conductive electrolyte membrane 201.
 アノード触媒およびカソード触媒としては、従来公知のものを使用することができ、たとえば、白金、鉄、コバルト、ニッケル、パラジウム、銀、ルテニウム、イリジウム、モリブデン、マンガン、これらの金属化合物、およびこれらの金属の2種以上を含む合金からなる微粒子が挙げられる。合金は、白金、鉄、コバルト、ニッケルのうち少なくとも2種以上を含有する合金が好ましく、たとえば、白金-鉄合金、白金-コバルト合金、鉄-コバルト合金、コバルト-ニッケル合金、鉄-ニッケル合金等、鉄-コバルト-ニッケル合金が挙げられる。アノード触媒とカソード触媒とは同種であってもよいし、異種であってもよい。 As the anode catalyst and the cathode catalyst, conventionally known ones can be used. For example, platinum, iron, cobalt, nickel, palladium, silver, ruthenium, iridium, molybdenum, manganese, these metal compounds, and these metals And fine particles made of an alloy containing two or more of the above. The alloy is preferably an alloy containing at least two of platinum, iron, cobalt, and nickel. For example, platinum-iron alloy, platinum-cobalt alloy, iron-cobalt alloy, cobalt-nickel alloy, iron-nickel alloy, etc. And iron-cobalt-nickel alloys. The anode catalyst and the cathode catalyst may be the same or different.
 アノード触媒およびカソード触媒は、担体、好ましくは導電性の担体に担持されたものを用いることが好ましい。導電性担体としては、たとえば、アセチレンブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラック等のカーボンブラック、黒鉛、活性炭等の導電性カーボン粒子が挙げられる。また、気相法炭素繊維(VGCF)、カーボンナノチューブ、カーボンナノワイヤー等の炭素繊維を用いることもできる。 The anode catalyst and the cathode catalyst are preferably those supported on a carrier, preferably a conductive carrier. Examples of the conductive carrier include carbon black such as acetylene black, furnace black, channel black, and ketjen black, and conductive carbon particles such as graphite and activated carbon. In addition, carbon fibers such as vapor grown carbon fiber (VGCF), carbon nanotube, carbon nanowire, and the like can be used.
 第1電極103および第2電極102の電解質としては、アニオン伝導性固体高分子電解質膜を構成する電解質と同様のものを用いることができる。各触媒層における触媒と電解質との含有比は、重量基準で、通常5/1~1/4であり、好ましくは3/1~1/3である。 As the electrolyte of the first electrode 103 and the second electrode 102, the same electrolyte as that constituting the anion conductive solid polymer electrolyte membrane can be used. The content ratio of the catalyst to the electrolyte in each catalyst layer is usually 5/1 to 1/4, and preferably 3/1 to 1/3, based on weight.
 第1電極103および第2電極102はそれぞれ、触媒層上に積層されるガス拡散層を備えていてもよい。ガス拡散層は、供給される還元剤または酸化剤を面内において拡散させる機能を有するとともに、触媒層との間で電子の授受を行なう機能を有する。 The first electrode 103 and the second electrode 102 may each include a gas diffusion layer laminated on the catalyst layer. The gas diffusion layer has a function of diffusing the supplied reducing agent or oxidizing agent in the surface and also has a function of transferring electrons to and from the catalyst layer.
 ガス拡散層は、導電性を有する多孔質層であることができ、具体的には、たとえば、カーボンペーパー;カーボンクロス;カーボン粒子を含有するエポキシ樹脂膜;金属または合金の発泡体、焼結体または繊維不織布などであることができる。ガス拡散層の厚みは、厚み方向に対して垂直な方向(面内方向)への還元剤または酸化剤の拡散抵抗を低減させるために、10μm以上であることが好ましく、厚み方向への拡散抵抗を低減させるために、1mm以下であることが好ましい。ガス拡散層の厚みは、より好ましくは100~500μmである。 The gas diffusion layer can be a porous layer having electrical conductivity. Specifically, for example, carbon paper; carbon cloth; epoxy resin film containing carbon particles; metal or alloy foam, sintered body Or it can be a fiber nonwoven fabric. The thickness of the gas diffusion layer is preferably 10 μm or more in order to reduce the diffusion resistance of the reducing agent or oxidizing agent in the direction perpendicular to the thickness direction (in-plane direction), and the diffusion resistance in the thickness direction. In order to reduce this, it is preferable that it is 1 mm or less. The thickness of the gas diffusion layer is more preferably 100 to 500 μm.
 第1電極103と第2電極102とは、図1に示されるように、好ましくはアニオン伝導性電解質膜101を介して対向するように設けられる。このような対向配置は、第1電極103と第2電極102との間の距離を最も短くさせ、これにより、これらの電極間に電流が流れる際の抵抗が低減されるため、発電効率の低下を抑制することができる。 As shown in FIG. 1, the first electrode 103 and the second electrode 102 are preferably provided so as to face each other with the anion conductive electrolyte membrane 101 interposed therebetween. Such an opposing arrangement makes the distance between the first electrode 103 and the second electrode 102 the shortest, thereby reducing the resistance when a current flows between these electrodes, thus reducing the power generation efficiency. Can be suppressed.
 第1電極103および第2電極102は、燃料電池単位面積あたりの出力を向上させる観点から、アニオン伝導性電解質膜101上にできるだけ大きい面積を有して形成されることが好ましく、たとえば図2に示されるように、アニオン伝導性電解質膜101と同じ長さまたは同程度の長さを有して形成されることが好ましい。 The first electrode 103 and the second electrode 102 are preferably formed with the largest possible area on the anion conductive electrolyte membrane 101 from the viewpoint of improving the output per unit area of the fuel cell. As shown, the anion conductive electrolyte membrane 101 is preferably formed to have the same length or the same length.
 (第3電極)
 第3電極110はセルフパージ用の電極であり、還元剤の供給によりCO2由来アニオンをCO2ガスとして排出する電極である。第3電極110の構成および組成に関しては、第1電極103について既述した内容が引用される。
(Third electrode)
The third electrode 110 is an electrode for Serufupaji is an electrode for discharging CO 2 from anionic as CO 2 gas by the supply of the reducing agent. Regarding the configuration and composition of the third electrode 110, the contents described above for the first electrode 103 are cited.
 第3電極110は、セルフパージ用として独立に機能させるために、第1電極103と離間してアニオン伝導性電解質膜101の第1表面上に配置される。ここで、図1および図2に示される膜電極複合体10においては、第1電極103を2つに分割し、それらの間であって、アニオン伝導性電解質膜101の第1表面の中央領域に第3電極110を配置しているが、このような配置に限定されるものではない。たとえば、第1電極103を分割することなく、第3電極110を第1電極103の側方に配置するなど、第1電極103の数(分割の有無)や第3電極110の位置は特に制限されない。ただし、セルフパージの効率を考慮すると、第2電極102に対向するような位置に第3電極110を設けることが好ましい。 The third electrode 110 is disposed on the first surface of the anion conductive electrolyte membrane 101 so as to be separated from the first electrode 103 in order to function independently for self-purging. Here, in the membrane electrode assembly 10 shown in FIG. 1 and FIG. 2, the first electrode 103 is divided into two, and a central region of the first surface of the anion conductive electrolyte membrane 101 between them. Although the 3rd electrode 110 is arrange | positioned in this, it is not limited to such an arrangement | positioning. For example, the number of the first electrodes 103 (whether or not divided) and the positions of the third electrodes 110 are particularly limited, such as arranging the third electrodes 110 on the side of the first electrodes 103 without dividing the first electrodes 103. Not. However, in consideration of self-purge efficiency, it is preferable to provide the third electrode 110 at a position facing the second electrode 102.
 第1電極103の面積(幅×長さ)と、第3電極110の面積との比は、燃料電池の発電能力とセルフパージの効率性の双方を勘案して決定される。当該比(第1電極103の面積/第3電極110の面積)があまりに大きいと、第3電極110が小さすぎてセルフパージの効率が低下する。一方、当該比があまり小さいと、発電に寄与するアノード極としての第1電極103が小さすぎて十分な出力を得ることができない。セルフパージの効率を考慮すると、第3電極110の長さは、アニオン伝導性電解質膜101のできるだけ広い範囲からCO2由来アニオンを取り込むことができるよう長いことが好ましく、たとえば、アニオン伝導性電解質膜101と同じか、または略同じ長さとすることができる(図2参照)。第1電極103の厚みと第3電極110の厚みは同じであることが好ましい。 The ratio between the area (width × length) of the first electrode 103 and the area of the third electrode 110 is determined in consideration of both the power generation capability of the fuel cell and the self-purge efficiency. If the ratio (the area of the first electrode 103 / the area of the third electrode 110) is too large, the third electrode 110 is too small and the self-purging efficiency is lowered. On the other hand, if the ratio is too small, the first electrode 103 serving as the anode electrode that contributes to power generation is too small to obtain a sufficient output. Considering the efficiency of self-purge, the length of the third electrode 110 is preferably long so that CO 2 -derived anions can be taken from as wide a range as possible of the anion conductive electrolyte membrane 101. For example, the anion conductive electrolyte membrane 101 Can be the same or substantially the same length (see FIG. 2). The thickness of the first electrode 103 and the thickness of the third electrode 110 are preferably the same.
 (集電層)
 第1集電層105、第2集電層104、第3集電層120はそれぞれ、第1電極103、第2電極102、第3電極110上に接して設けられる、接する電極との間で電子の授受を行なうとともに、電気的配線を行なうための部材である。また、本実施形態のアルカリ形燃料電池100において、これらの集電層は、還元剤や酸化剤を供給する機能も兼ね備えており、第1集電層105および第3集電層120には、還元剤を第1電極103および第3電極110に供給するための第1流路105aが、第2集電層104には、酸化剤を第2電極102に供給するための第2流路104aが設けられている。
(Collector layer)
The first current collecting layer 105, the second current collecting layer 104, and the third current collecting layer 120 are provided on and in contact with the first electrode 103, the second electrode 102, and the third electrode 110, respectively. It is a member for transferring electrons and performing electrical wiring. Further, in the alkaline fuel cell 100 of the present embodiment, these current collecting layers also have a function of supplying a reducing agent and an oxidizing agent, and the first current collecting layer 105 and the third current collecting layer 120 include A first flow path 105 a for supplying a reducing agent to the first electrode 103 and the third electrode 110 is provided in the second current collecting layer 104, and a second flow path 104 a for supplying an oxidant to the second electrode 102. Is provided.
 上述のように、第1集電層105と第3集電層120とは、これらの集電層の間に絶縁層130を介在させることにより互いに電気的に絶縁されている。絶縁層130は、電気的絶縁性を示すものであれば特に制限されず、たとえば、各種非導電性高分子(絶縁性接着剤などを含む)からなることができる。集電層の材質は特に制限されず、たとえば、カーボン材料、導電性高分子、各種金属、ステンレスに代表される合金などの導電性材料を用いることができる。各集電層の材質は同じであってもよいし、異なっていてもよい。 As described above, the first current collecting layer 105 and the third current collecting layer 120 are electrically insulated from each other by interposing the insulating layer 130 between these current collecting layers. The insulating layer 130 is not particularly limited as long as it exhibits electrical insulation, and can be made of, for example, various nonconductive polymers (including insulating adhesives). The material of the current collecting layer is not particularly limited, and for example, a conductive material such as a carbon material, a conductive polymer, various metals, and an alloy typified by stainless steel can be used. The material of each current collecting layer may be the same or different.
 第1流路105aおよび第2流路104aは、集電層の電極側表面に設けられた1または2以上の溝から構成することができ、その形状は特に制限されず、ライン状、サーペンタイン状等であることができる。なお、第1電極103に還元剤を供給するための流路と第3電極110に還元剤を供給するための流路とは連結されていてもよいし、連結されていなくてもよい。 The first flow path 105a and the second flow path 104a can be composed of one or more grooves provided on the electrode-side surface of the current collecting layer, and the shape thereof is not particularly limited, and is linear or serpentine Etc. The flow path for supplying the reducing agent to the first electrode 103 and the flow path for supplying the reducing agent to the third electrode 110 may or may not be connected.
 集電層に還元剤や酸化剤を供給する機能を付与するのではなく、還元剤や酸化剤の供給を担う別途の部材(流路板)を集電層上に積層してもよい。流路板は、たとえば、各種プラスチック材料などの非導電性材料からなる板状体の表面に1または2以上の溝を設けたものであることができる。 Instead of providing the current collecting layer with a function of supplying a reducing agent and an oxidizing agent, a separate member (channel plate) for supplying the reducing agent and the oxidizing agent may be laminated on the current collecting layer. For example, the flow path plate may be one in which one or more grooves are provided on the surface of a plate-like body made of a non-conductive material such as various plastic materials.
 以上のような構成のアルカリ形燃料電池によれば、たとえば下記方法に従って稼動させることにより、上記した所望の効果を得ることができる。 According to the alkaline fuel cell having the above-described configuration, for example, the desired effect described above can be obtained by operating according to the following method.
 (2)アルカリ形燃料電池の使用方法
 まず、第2集電層104の第2流路104aを通して第2電極102に酸化剤を供給するとともに、第3集電層120の第1流路105aを通して第3電極110に還元剤を供給し、さらに切り替え手段140により(図1に示される端子A1とA2とを接続する)、第2集電層104と第3集電層120(したがって、第2電極102と第3電極110)とを電気的に接続して、第2電極102と第3電極110との間に一定時間電流(イオン電流)を流す〔セルフパージ工程〕。この工程により、第2電極102では上記式(1)のような触媒反応が生じ、一方、第3電極110では、上記式(5)および(6)のようなセルフパージ反応が生じる(一部、上記式(2)のような触媒反応も生じ得る)。これらの反応によって、アニオン伝導性電解質膜101、および、電極のうちの主に第2電極102に含まれるCO2由来アニオンが第3電極110に移動し、還元剤によって還元され、CO2ガスとして第3電極110から排出されることとなる。
(2) Usage Method of Alkaline Fuel Cell First, an oxidant is supplied to the second electrode 102 through the second flow path 104a of the second current collection layer 104 and through the first flow path 105a of the third current collection layer 120. The reducing agent is supplied to the third electrode 110, and further, the switching means 140 (connects the terminals A1 and A2 shown in FIG. 1), the second current collecting layer 104 and the third current collecting layer 120 (therefore, the second current collecting layer 120). The electrode 102 and the third electrode 110) are electrically connected, and a current (ion current) is allowed to flow between the second electrode 102 and the third electrode 110 for a certain time [self-purging step]. By this step, a catalytic reaction like the above formula (1) occurs in the second electrode 102, while a self purge reaction like the above formulas (5) and (6) occurs in the third electrode 110 (partly, Catalytic reaction like the above formula (2) may also occur). By these reactions, the anion conductive electrolyte membrane 101 and the CO 2 -derived anion mainly contained in the second electrode 102 among the electrodes move to the third electrode 110 and are reduced by the reducing agent as CO 2 gas. It is discharged from the third electrode 110.
 ここで、上記の「一定時間」とは、セルフパージが完了するまでの時間であればよく、具体的には、2~60分間、好ましくは、5~20分間程度である。セルフパージが完了するまでの時間とは、セルフパージ工程の開始直後、CO2由来アニオンの排出量が一端増加した後、減少し安定するまでの時間である。セルフパージの完了は、膜電極複合体のオーミック抵抗の時間変化や、セルフパージ工程が定電位操作である場合は、電流の時間変化、セルフパージ工程が定電流操作である場合は、電圧の時間変化を観測することで判別できる。観測値の時間変動が一定値以下になれば、セルフパージ完了とみなしてよい。 Here, the above-mentioned “certain time” may be a time until the completion of self-purge, and is specifically 2 to 60 minutes, preferably about 5 to 20 minutes. The time until the completion of the self-purging is the time from the start of the self-purging step to the decrease and stabilization after the discharge amount of the CO 2 -derived anion increases once. Completion of self-purging is observed with respect to the time variation of the ohmic resistance of the membrane electrode assembly, the time variation of the current when the self-purging step is a constant potential operation, and the time variation of the voltage when the self-purging step is a constant current operation. Can be determined. If the time fluctuation of the observed value becomes a certain value or less, the self-purge may be regarded as completed.
 上記セルフパージにより多くのCO2由来アニオンがOH-に再置換されるため、セル抵抗の増大を抑制することができる。また、セルフパージによるCO2由来アニオンの蓄積は、主に第3電極110において生じるため、発電時においてアノード極として機能する第1電極103における反応過電圧を低下させることができ、したがって、良好な発電効率を発揮することができる。なお、第1集電層105と第3集電層120とは電気的に絶縁されているため、第1電極103がセルフパージに関与することはない。 Since many CO 2 -derived anions are replaced again with OH by the self-purge, an increase in cell resistance can be suppressed. In addition, since accumulation of CO 2 -derived anions due to self-purging mainly occurs at the third electrode 110, the reaction overvoltage at the first electrode 103 functioning as the anode electrode during power generation can be reduced, and therefore, good power generation efficiency is achieved. Can be demonstrated. In addition, since the 1st current collection layer 105 and the 3rd current collection layer 120 are electrically insulated, the 1st electrode 103 does not participate in a self purge.
 還元剤としては、たとえば、H2ガス、炭化水素ガス、アンモニアガスなどを用いることができる。なかでも、H2ガスを用いることが好ましい。酸化剤としては、たとえば、O2ガスや、空気等のO2を含むガスなどを用いることができる。なかでも、空気が好ましく用いられる。 As the reducing agent, for example, H 2 gas, hydrocarbon gas, ammonia gas, or the like can be used. Among these, it is preferable to use H 2 gas. As the oxidizing agent, for example, O 2 gas or a gas containing O 2 such as air can be used. Of these, air is preferably used.
 なお、第3電極110に還元剤を供給することなく、セルフパージ工程を実施することも可能である(後述する他の実施形態についても同様)。すなわち、外部配線145中に外部電源(発電装置)を介在させておき、外部電源を稼動させて、強制的に第2電極102と第3電極110との間に電流を流すことにより、CO2由来アニオンを第3電極110に移動させ、外部電源の電気エネルギーによりこれを還元して、CO2ガスとして第3電極110から排出させることができる。外部電源の電気エネルギーによるCO2由来アニオンの還元は、下記式(7)および(8):
 CO3 2- → CO2+1/2O2+2e-          (7)
 2HCO3 - → 2CO2+1/2O2+H2O+2e-    (8)
で表されるような反応に従う。
In addition, it is also possible to implement a self purge process, without supplying a reducing agent to the 3rd electrode 110 (same also about other embodiment mentioned later). That is, an external power supply (power generation device) is interposed in the external wiring 145, the external power supply is operated, and a current is forcibly passed between the second electrode 102 and the third electrode 110, whereby CO 2. The derived anion can be moved to the third electrode 110, reduced by the electric energy of the external power source, and discharged from the third electrode 110 as CO 2 gas. Reduction of the CO 2 -derived anion by the electric energy of the external power source is represented by the following formulas (7) and (8):
CO 3 2− → CO 2 + 1 / 2O 2 + 2e (7)
2HCO 3 → 2CO 2 + 1 / 2O 2 + H 2 O + 2e (8)
Follow the reaction as
 上記外部電源は、第3電極110に還元剤を供給しながらセルフパージを行なう場合にも用いることができ、これによりセルフパージ工程にかかる時間を短縮させることができる。 The external power source can also be used when self-purging is performed while supplying a reducing agent to the third electrode 110, thereby shortening the time required for the self-purging process.
 セルフパージ工程後、第2電極102と第3電極110との間の電気的接続を切断し、ついで、第1集電層105の第1流路105aを通して第1電極103に還元剤を供給するとともに、第2集電層104の第2流路104aを通して第2電極102に酸化剤を供給し、さらに切り替え手段140により(図1に示される端子A1とA3とを接続する)、第1集電層105と第2集電層104(したがって、第1電極103と第2電極102)とを電気的に接続することにより、電力を得る〔発電工程〕。上述のように、セルフパージによっても第1電極103にCO2由来アニオンの蓄積は生じにくいため、良好な発電効率を発揮することができる。 After the self-purging step, the electrical connection between the second electrode 102 and the third electrode 110 is cut, and then the reducing agent is supplied to the first electrode 103 through the first flow path 105a of the first current collecting layer 105. Then, an oxidant is supplied to the second electrode 102 through the second flow path 104a of the second current collecting layer 104, and the first current collecting is performed by the switching means 140 (connecting the terminals A1 and A3 shown in FIG. 1). Electric power is obtained by electrically connecting the layer 105 and the second current collecting layer 104 (therefore, the first electrode 103 and the second electrode 102) [power generation step]. As described above, since the accumulation of CO 2 -derived anions does not easily occur in the first electrode 103 even by self-purge, good power generation efficiency can be exhibited.
 <第2の実施形態>
 図4は、本実施形態に係る膜電極複合体およびこれを用いたアルカリ形燃料電池を示す概略断面図であり、図5および図6はそれぞれ、図4に示されるV-V線、VI-VI線における概略断面図である。図4および図5に示されるように、本実施形態のアルカリ形燃料電池200は、セルフパージ用の第3電極110を複数(図4の例では3つ)有する膜電極複合体20を備えることを特徴としており、これ以外の構成については、上記第1の実施形態と同様とすることができる(可能な変形についても第1の実施形態と同様である)。また、アルカリ形燃料電池の使用方法についても第1の実施形態と同様である。
<Second Embodiment>
FIG. 4 is a schematic cross-sectional view showing a membrane electrode assembly and an alkaline fuel cell using the same according to the present embodiment. FIGS. 5 and 6 are respectively a VV line and a VI-line shown in FIG. It is a schematic sectional drawing in VI line. As shown in FIGS. 4 and 5, the alkaline fuel cell 200 of the present embodiment includes a membrane electrode assembly 20 having a plurality of self-purge third electrodes 110 (three in the example of FIG. 4). The other features are the same as those in the first embodiment (possible modifications are also the same as those in the first embodiment). Also, the method of using the alkaline fuel cell is the same as in the first embodiment.
 膜電極複合体20は、アニオン伝導性電解質膜101;アニオン伝導性電解質膜101の第1表面に積層される第1電極103;アニオン伝導性電解質膜101の第2表面に積層される第2電極102;および、第1電極103と離間して第1表面に積層される、3つの第3電極110から主に構成される。第1の実施形態と同様、電極の周縁にはガスケット106が設けられている。第1電極103と第2電極102とは、アニオン伝導性電解質膜101を介して対向するように設けられている。 The membrane electrode assembly 20 includes an anion conductive electrolyte membrane 101; a first electrode 103 stacked on the first surface of the anion conductive electrolyte membrane 101; a second electrode stacked on the second surface of the anion conductive electrolyte membrane 101. 102; and three third electrodes 110 that are separated from the first electrode 103 and stacked on the first surface. As in the first embodiment, a gasket 106 is provided on the periphery of the electrode. The first electrode 103 and the second electrode 102 are provided so as to face each other with the anion conductive electrolyte membrane 101 interposed therebetween.
 本実施形態において、第1電極103は2つに分割されて積層されており、これら2つの第1電極103の間、および2つの第1電極103それぞれの外側側方に、第1電極103と離間するように合計3つの第3電極110が配置されている。 In the present embodiment, the first electrode 103 is divided into two and laminated, and the first electrode 103 and the two first electrodes 103 and the outer sides of the two first electrodes 103 are respectively A total of three third electrodes 110 are arranged so as to be separated from each other.
 アルカリ形燃料電池200は、第1電極103上に積層される第1集電層105(計2つ);第2電極102上に積層される第2集電層104;および、第3電極110上に積層される第3集電層120(計3つ)を備えている。第1集電層105と第3集電層120とは、これらの集電層の間に絶縁層130を介在させることにより互いに電気的に絶縁されている。また、第1集電層105および第3集電層120には、第1電極103または第3電極110に還元剤を供給するための第1流路105aが設けられており、第2集電層104には、第2電極102に酸化剤を供給するための第2流路104aが設けられている。 The alkaline fuel cell 200 includes a first current collecting layer 105 (two in total) laminated on the first electrode 103; a second current collecting layer 104 laminated on the second electrode 102; and a third electrode 110. A third current collecting layer 120 (three in total) is provided thereon. The first current collecting layer 105 and the third current collecting layer 120 are electrically insulated from each other by interposing an insulating layer 130 between these current collecting layers. The first current collecting layer 105 and the third current collecting layer 120 are provided with a first flow path 105a for supplying a reducing agent to the first electrode 103 or the third electrode 110, and the second current collecting layer 105a. The layer 104 is provided with a second flow path 104 a for supplying an oxidant to the second electrode 102.
 アルカリ形燃料電池200は、外部配線145と、外部配線145に介在する切り替え手段(スイッチ)140とを備える。切り替え手段140により、第2集電層104と電気的接続される集電層を、第1集電層105または第3集電層120のいずれかに切り替えることができる。 The alkaline fuel cell 200 includes an external wiring 145 and switching means (switch) 140 interposed in the external wiring 145. The switching means 140 can switch the current collecting layer electrically connected to the second current collecting layer 104 to either the first current collecting layer 105 or the third current collecting layer 120.
 本実施形態のように複数の第3電極110を設ける場合においては、図4および図5に示されるように、これら複数の第3電極110をアニオン伝導性電解質膜101の第1表面内において略均等に分散して配置することが好ましい。これは次の理由による。アニオン伝導性電解質膜101は非常に薄いため、膜厚方向のイオン伝導抵抗は、膜面内方向のイオン伝導抵抗に比べて非常に小さい。したがって、セルフパージを進めた場合、主に、第3電極110近傍のアニオン伝導性電解質膜101および第2電極102と第3電極110との間でCO2由来アニオンの移動が起こり、セルフパージが優先的に進行する。一方、第3電極110から遠く離れた領域のアニオン伝導性電解質膜101および第2電極102と第3電極110との間では、イオン伝導抵抗が大きいため、CO2由来アニオンの移動が起こりにくく、セルフパージが十分に進まない傾向にある。複数の第3電極110を設け、好ましくはこれらを第1表面内において略均等に分散して配置することにより、第3電極110近傍の領域を増加させることができ、これによりアニオン伝導性電解質膜101および第2電極102全体のセルフパージを行なうことができるようになる。なお、セルフパージの効率を考慮すると、複数の第3電極110は、第2電極102に対向するような位置に設けることが好ましい。 In the case where a plurality of third electrodes 110 are provided as in the present embodiment, as shown in FIGS. 4 and 5, the plurality of third electrodes 110 are substantially disposed within the first surface of the anion conductive electrolyte membrane 101. It is preferable to disperse them evenly. This is due to the following reason. Since the anion conductive electrolyte membrane 101 is very thin, the ion conduction resistance in the film thickness direction is very small compared to the ion conduction resistance in the in-plane direction. Therefore, when the self-purge is advanced, the movement of the CO 2 -derived anion occurs mainly between the anion conductive electrolyte membrane 101 in the vicinity of the third electrode 110 and the second electrode 102 and the third electrode 110, and the self-purge is preferential. Proceed to. On the other hand, since the ion conduction resistance is large between the anion conductive electrolyte membrane 101 and the second electrode 102 and the third electrode 110 in a region far from the third electrode 110, the movement of the CO 2 -derived anion hardly occurs, There is a tendency that self-purge does not progress sufficiently. By providing a plurality of third electrodes 110, and preferably disposing them in a substantially uniform manner in the first surface, the area in the vicinity of the third electrode 110 can be increased, whereby an anion conducting electrolyte membrane is obtained. The self-purge of the entire 101 and the second electrode 102 can be performed. In consideration of the efficiency of self-purge, the plurality of third electrodes 110 are preferably provided at positions facing the second electrodes 102.
 <第3の実施形態>
 (1)膜電極複合体およびアルカリ形燃料電池の構成
 図7は、本実施形態に係る膜電極複合体およびこれを用いたアルカリ形燃料電池を示す概略断面図であり、図8および図9はそれぞれ、図7に示されるVIII-VIII線、IX-IX線における概略断面図である(アノード極側の断面構造は図2および図3と同様である。)。図7および図8に示されるように、本実施形態のアルカリ形燃料電池300は、セルフパージ用の第3電極110に加えて、同じくセルフパージ用の第4電極115を有する膜電極複合体30を備えることを特徴としており、これ以外の構成については、上記第1の実施形態と同様とすることができる(可能な変形についても第1の実施形態と同様である)。
<Third Embodiment>
(1) Configuration of Membrane Electrode Assembly and Alkaline Fuel Cell FIG. 7 is a schematic cross-sectional view showing a membrane electrode assembly according to the present embodiment and an alkaline fuel cell using the same, and FIGS. FIG. 8 is a schematic cross-sectional view taken along lines VIII-VIII and IX-IX shown in FIG. 7, respectively (the cross-sectional structure on the anode electrode side is the same as in FIGS. 2 and 3). As shown in FIGS. 7 and 8, the alkaline fuel cell 300 of the present embodiment includes the membrane electrode assembly 30 having the fourth electrode 115 for self-purging in addition to the third electrode 110 for self-purging. Other configurations can be the same as those of the first embodiment (possible modifications are also the same as those of the first embodiment).
 膜電極複合体30は、アニオン伝導性電解質膜101;アニオン伝導性電解質膜101の第1表面に積層される第1電極103;アニオン伝導性電解質膜101の第2表面に積層される第2電極102;第1電極103と離間して第1表面に積層される第3電極110;および、第2電極102と離間して第2表面に積層される第4電極115から主に構成される。第1の実施形態と同様、電極の周縁には、ガスケット106が設けられている。第1電極103と第2電極102とは、アニオン伝導性電解質膜101を介して対向するように設けられている。また、第3電極110と第4電極115とは、アニオン伝導性電解質膜101を介して対向するように設けられている。 The membrane electrode assembly 30 includes an anion conductive electrolyte membrane 101; a first electrode 103 laminated on the first surface of the anion conductive electrolyte membrane 101; a second electrode laminated on the second surface of the anion conductive electrolyte membrane 101. 102; a third electrode 110 stacked on the first surface spaced apart from the first electrode 103; and a fourth electrode 115 stacked on the second surface spaced apart from the second electrode 102. As in the first embodiment, a gasket 106 is provided on the periphery of the electrode. The first electrode 103 and the second electrode 102 are provided so as to face each other with the anion conductive electrolyte membrane 101 interposed therebetween. The third electrode 110 and the fourth electrode 115 are provided so as to face each other with the anion conductive electrolyte membrane 101 interposed therebetween.
 本実施形態において、第1電極103は2つに分割されて積層されており、これら2つの第1電極103の間に、第1電極103と離間するように第3電極110が配置されている。同様に、第2電極102は2つに分割されて積層されており、これら2つの第2電極102の間に、第2電極102と離間するように第4電極115が配置されている。 In the present embodiment, the first electrode 103 is divided into two layers and the third electrode 110 is disposed between the two first electrodes 103 so as to be separated from the first electrode 103. . Similarly, the second electrode 102 is divided into two layers and a fourth electrode 115 is disposed between the two second electrodes 102 so as to be separated from the second electrode 102.
 アルカリ形燃料電池300は、第1電極103上に積層される第1集電層105;第2電極102上に積層される第2集電層104;第3電極110上に積層される第3集電層120;および、第4電極115上に積層される第4集電層125を備えている。第1集電層105と第3集電層120とは、これらの集電層の間に絶縁層130を介在させることにより互いに電気的に絶縁されている。同様に、第2集電層104と第4集電層125とは、絶縁層130を介在させることにより互いに電気的に絶縁されている。また、第1集電層105および第3集電層120には、第1電極103または第3電極110に還元剤または酸化剤を供給するための第1流路105aが設けられている。同様に、第2集電層104および第4集電層125には、第2電極102または第4電極115に還元剤または酸化剤を供給するための第2流路104aが設けられている。 The alkaline fuel cell 300 includes a first current collecting layer 105 laminated on the first electrode 103; a second current collecting layer 104 laminated on the second electrode 102; a third laminated on the third electrode 110. Current collecting layer 120; and a fourth current collecting layer 125 stacked on the fourth electrode 115. The first current collecting layer 105 and the third current collecting layer 120 are electrically insulated from each other by interposing an insulating layer 130 between these current collecting layers. Similarly, the second current collecting layer 104 and the fourth current collecting layer 125 are electrically insulated from each other with the insulating layer 130 interposed therebetween. Further, the first current collecting layer 105 and the third current collecting layer 120 are provided with a first flow path 105 a for supplying a reducing agent or an oxidizing agent to the first electrode 103 or the third electrode 110. Similarly, the second current collecting layer 104 and the fourth current collecting layer 125 are provided with a second flow path 104 a for supplying a reducing agent or an oxidizing agent to the second electrode 102 or the fourth electrode 115.
 アルカリ形燃料電池300は、外部配線145と、外部配線145に介在する切り替え手段(スイッチ)140とを備える。切り替え手段140により、接続される集電層の切り替えを行なうことができる。 The alkaline fuel cell 300 includes an external wiring 145 and switching means (switch) 140 interposed in the external wiring 145. The switching means 140 can switch the current collecting layer to be connected.
 第4電極115は、第3電極110と同様、セルフパージ用の電極であり、還元剤の供給によりCO2由来アニオンをCO2ガスとして排出する電極である。第4電極115の構成および組成に関しては、第1電極103について既述した内容が引用される。 The fourth electrode 115, like the third electrode 110 is an electrode for Serufupaji is an electrode for discharging CO 2 from anionic as CO 2 gas by the supply of the reducing agent. Regarding the configuration and composition of the fourth electrode 115, the contents already described for the first electrode 103 are cited.
 第3電極110に加えて、第4電極115を設けると次の点で有利である。すなわち、セルフパージ用電極として第3電極110のみを備える膜電極複合体の場合、上記第1の実施形態で示したように、アニオン伝導性電解質膜101、および、電極のうちの主に第2電極102のセルフパージを行なうことができる一方、第1電極103のセルフパージを効果的に実施することができない。これに対し、第2表面に第4電極115を設けた場合、第1電極103に酸化剤を供給し、第4電極115に還元剤を供給して、第1電極103と第4電極115との間に電流を流すと、第1電極103のセルフパージを効果的に実施することが可能となる。本実施形態のアルカリ形燃料電池の使用方法は、具体的には、下記のとおりである。 In addition to the third electrode 110, the provision of the fourth electrode 115 is advantageous in the following points. That is, in the case of a membrane electrode assembly including only the third electrode 110 as a self-purge electrode, as shown in the first embodiment, the anion conductive electrolyte membrane 101 and the second electrode mainly among the electrodes are mainly used. While the self-purge of the first electrode 103 can be performed, the self-purge of the first electrode 103 cannot be effectively performed. On the other hand, when the fourth electrode 115 is provided on the second surface, an oxidizing agent is supplied to the first electrode 103, a reducing agent is supplied to the fourth electrode 115, and the first electrode 103 and the fourth electrode 115 are When a current is passed between the first electrode 103 and the first electrode 103, the self-purge of the first electrode 103 can be effectively performed. Specifically, the usage method of the alkaline fuel cell of this embodiment is as follows.
 (2)アルカリ形燃料電池の使用方法
 まず、第1集電層105の第1流路105aを通して第1電極103に酸化剤を供給するとともに、第4集電層125の第2流路104aを通して第4電極115に還元剤を供給し、さらに切り替え手段140により(図7に示される端子B3とB4とを接続する)、第1集電層105と第4集電層125(したがって、第1電極103と第4電極115)とを電気的に接続して、第1電極103と第4電極115との間に一定時間電流(イオン電流)を流す〔第1セルフパージ工程〕。この工程により、第1電極103では上記式(1)のような触媒反応が生じ、一方、第4電極115では、上記式(5)および(6)のようなセルフパージ反応が生じる(一部、上記式(2)のような触媒反応も生じ得る)。これらの反応によって、アニオン伝導性電解質膜101および第1電極103に含まれるCO2由来アニオンは第4電極115に移動し、還元剤によって還元され、CO2ガスとして第4電極115から排出されることとなる。第1セルフパージ工程では、第1電極103はカソード極として機能する。
(2) Usage Method of Alkaline Fuel Cell First, an oxidant is supplied to the first electrode 103 through the first flow path 105a of the first current collection layer 105, and through the second flow path 104a of the fourth current collection layer 125. The reducing agent is supplied to the fourth electrode 115, and further, the switching unit 140 (connects the terminals B3 and B4 shown in FIG. 7), the first current collecting layer 105 and the fourth current collecting layer 125 (therefore, the first current collecting layer 125). The electrode 103 and the fourth electrode 115) are electrically connected, and a current (ion current) is allowed to flow between the first electrode 103 and the fourth electrode 115 for a certain time [first self-purging step]. By this step, a catalytic reaction as expressed by the above formula (1) occurs in the first electrode 103, while a self purge reaction as expressed in the above formulas (5) and (6) occurs at the fourth electrode 115 (partly, Catalytic reaction like the above formula (2) may also occur). By these reactions, the CO 2 -derived anion contained in the anion conductive electrolyte membrane 101 and the first electrode 103 moves to the fourth electrode 115, is reduced by the reducing agent, and is discharged from the fourth electrode 115 as CO 2 gas. It will be. In the first self-purging step, the first electrode 103 functions as a cathode electrode.
 次に、第1電極103と第4電極115との間の電気的接続を切断した後、第2集電層104の第2流路104aを通して第2電極102に酸化剤を供給するとともに、第3集電層120の第1流路105aを通して第3電極110に還元剤を供給し、さらに切り替え手段140により(図7に示される端子B1とB2とを接続する)、第2集電層104と第3集電層120(したがって、第2電極102と第3電極110)とを電気的に接続して、第2電極102と第3電極110との間に一定時間電流(イオン電流)を流す〔第2セルフパージ工程〕。この工程により、第2電極102では上記式(1)のような触媒反応が生じ、一方、第3電極110では、上記式(5)および(6)のようなセルフパージ反応が生じる(一部、上記式(2)のような触媒反応も生じ得る)。これらの反応によって、アニオン伝導性電解質膜101および第2電極102に含まれるCO2由来アニオンは第3電極110に移動し、還元剤によって還元され、CO2ガスとして第3電極110から排出されることとなる。第2セルフパージ工程では、第2電極102がカソード極として機能する。 Next, after disconnecting the electrical connection between the first electrode 103 and the fourth electrode 115, an oxidant is supplied to the second electrode 102 through the second flow path 104 a of the second current collecting layer 104, and the first The reducing agent is supplied to the third electrode 110 through the first flow path 105a of the third current collecting layer 120, and the second current collecting layer 104 is further connected by the switching means 140 (connecting the terminals B1 and B2 shown in FIG. 7). And the third current collecting layer 120 (therefore, the second electrode 102 and the third electrode 110) are electrically connected, and a current (ion current) is supplied between the second electrode 102 and the third electrode 110 for a certain period of time. [Second self-purging step]. By this step, a catalytic reaction like the above formula (1) occurs in the second electrode 102, while a self purge reaction like the above formulas (5) and (6) occurs in the third electrode 110 (partly, Catalytic reaction like the above formula (2) may also occur). By these reactions, the CO 2 -derived anion contained in the anion conductive electrolyte membrane 101 and the second electrode 102 moves to the third electrode 110, is reduced by the reducing agent, and is discharged from the third electrode 110 as CO 2 gas. It will be. In the second self-purging step, the second electrode 102 functions as a cathode electrode.
 以上のとおり、第1および第2セルフパージ工程を実施することにより、アニオン伝導性電解質膜101、第1電極103および第2電極102のすべてのセルフパージを行なうことができる。これにより、セル抵抗の増大をより効果的に抑制することができるとともに、発電時においてアノード極として機能する第1電極103における反応過電圧をより効果的に低下させることができ、したがって、より良好な発電効率を発揮することができる。 As described above, by performing the first and second self-purging steps, all the self-purging of the anion conductive electrolyte membrane 101, the first electrode 103, and the second electrode 102 can be performed. As a result, an increase in cell resistance can be suppressed more effectively, and a reaction overvoltage in the first electrode 103 that functions as an anode electrode during power generation can be reduced more effectively. Power generation efficiency can be demonstrated.
 第2セルフパージ工程後、第2電極102と第3電極110との間の電気的接続を切断し、ついで、第1集電層105の第1流路105aを通して第1電極103に還元剤を供給するとともに、第2集電層104の第2流路104aを通して第2電極102に酸化剤を供給し、さらに切り替え手段140により(図7に示される端子B1とB4とを接続する)、第1集電層105と第2集電層104(したがって、第1電極103と第2電極102)とを電気的に接続することにより、電力を得る〔発電工程〕。上述のように、セルフパージによっても第1電極103にCO2由来アニオンの蓄積は生じにくいため、良好な発電効率を発揮することができる。 After the second self-purging step, the electrical connection between the second electrode 102 and the third electrode 110 is cut, and then the reducing agent is supplied to the first electrode 103 through the first flow path 105a of the first current collecting layer 105. At the same time, an oxidant is supplied to the second electrode 102 through the second flow path 104a of the second current collecting layer 104, and is further switched by the switching means 140 (connecting the terminals B1 and B4 shown in FIG. 7). Electric power is obtained by electrically connecting the current collecting layer 105 and the second current collecting layer 104 (therefore, the first electrode 103 and the second electrode 102) [power generation step]. As described above, since the accumulation of CO 2 -derived anions does not easily occur in the first electrode 103 even by self-purge, good power generation efficiency can be exhibited.
 なお、第1セルフパージ工程と第2セルフパージ工程の順序を逆にしても同様の効果が得られることはいうまでもない。 Needless to say, the same effect can be obtained even if the order of the first self-purging step and the second self-purging step is reversed.
 <第4の実施形態>
 図10は、本実施形態に係る膜電極複合体およびこれを用いたアルカリ形燃料電池を示す概略断面図であり、図11および図12はそれぞれ、図10に示されるXI-XI線、XII-XII線における概略断面図である(アノード極側の断面構造は図5および図6と同様である。)。図10および図11に示されるように、本実施形態のアルカリ形燃料電池400は、セルフパージ用の第4電極115を複数(図10の例では3つ)有する膜電極複合体40を備えることを特徴としており、これ以外の構成については、上記第3の実施形態と同様とすることができる(可能な変形についても第3の実施形態と同様である)。アルカリ形燃料電池の使用方法についても第3の実施形態と同様である。また、アルカリ形燃料電池400は、複数(図10の例では3つ)の第3電極110を有しており、この点は、上記第2の実施形態と同様である。
<Fourth Embodiment>
FIG. 10 is a schematic cross-sectional view showing a membrane electrode assembly according to the present embodiment and an alkaline fuel cell using the same, and FIGS. 11 and 12 are XI-XI line and XII-line shown in FIG. 10, respectively. It is a schematic sectional drawing in the XII line (The cross-sectional structure of the anode pole side is the same as that of FIG. 5 and FIG. 6). As shown in FIGS. 10 and 11, the alkaline fuel cell 400 of the present embodiment includes the membrane electrode assembly 40 having a plurality of self-purge fourth electrodes 115 (three in the example of FIG. 10). The other features are the same as those in the third embodiment (possible modifications are also the same as those in the third embodiment). The method of using the alkaline fuel cell is the same as in the third embodiment. The alkaline fuel cell 400 has a plurality of (three in the example of FIG. 10) third electrodes 110, and this is the same as in the second embodiment.
 膜電極複合体40は、アニオン伝導性電解質膜101;アニオン伝導性電解質膜101の第1表面に積層される第1電極103;アニオン伝導性電解質膜101の第2表面に積層される第2電極102;第1電極103と離間して第1表面に積層される、3つの第3電極110;および、第2電極102と離間して第2表面に積層される、3つの第4電極115から主に構成される。第1の実施形態と同様、電極の周縁にはガスケット106が設けられている。第1電極103と第2電極102とは、アニオン伝導性電解質膜101を介して対向するように設けられている。また、第3電極110と第4電極115とは、アニオン伝導性電解質膜101を介して対向するように設けられている。 The membrane electrode assembly 40 includes an anion conductive electrolyte membrane 101; a first electrode 103 laminated on the first surface of the anion conductive electrolyte membrane 101; a second electrode laminated on the second surface of the anion conductive electrolyte membrane 101. 102; three third electrodes 110 stacked on the first surface spaced apart from the first electrode 103; and three fourth electrodes 115 stacked on the second surface spaced apart from the second electrode 102 Mainly composed. As in the first embodiment, a gasket 106 is provided on the periphery of the electrode. The first electrode 103 and the second electrode 102 are provided so as to face each other with the anion conductive electrolyte membrane 101 interposed therebetween. The third electrode 110 and the fourth electrode 115 are provided so as to face each other with the anion conductive electrolyte membrane 101 interposed therebetween.
 本実施形態において、第1電極103は2つに分割されて積層されており、これら2つの第1電極103の間、および2つの第1電極103それぞれの外側側方に、第1電極103と離間するように合計3つの第3電極110が配置されている。同様に、第2電極102は2つに分割されて積層されており、これら2つの第2電極102の間、および2つの第2電極102それぞれの外側側方に、第2電極102と離間するように合計3つの第4電極115が配置されている。 In the present embodiment, the first electrode 103 is divided into two and laminated, and the first electrode 103 and the two first electrodes 103 and the outer sides of the two first electrodes 103 are respectively A total of three third electrodes 110 are arranged so as to be separated from each other. Similarly, the second electrode 102 is divided into two and laminated, and is separated from the second electrode 102 between the two second electrodes 102 and on the outer side of each of the two second electrodes 102. Thus, a total of four fourth electrodes 115 are arranged.
 アルカリ形燃料電池400は、第1電極103上に積層される第1集電層105(計2つ);第2電極102上に積層される第2集電層104(計2つ);第3電極110上に積層される第3集電層120(計3つ);および、第4電極115上に積層される第4集電層125(計3つ)を備えている。第1集電層105と第3集電層120とは、これらの集電層の間に絶縁層130を介在させることにより互いに電気的に絶縁されている。同様に、第2集電層104と第4集電層125とは、絶縁層130を介在させることにより互いに電気的に絶縁されている。また、第1集電層105および第3集電層120には、第1電極103または第3電極110に還元剤または酸化剤を供給するための第1流路105aが設けられている。同様に、第2集電層104および第4集電層125には、第2電極102または第4電極115に還元剤または酸化剤を供給するための第2流路104aが設けられている。 The alkaline fuel cell 400 includes a first current collecting layer 105 (two in total) laminated on the first electrode 103; a second current collecting layer 104 (two in total) laminated on the second electrode 102; A third current collecting layer 120 (three in total) laminated on the three electrodes 110; and a fourth current collecting layer 125 (three in total) laminated on the fourth electrode 115. The first current collecting layer 105 and the third current collecting layer 120 are electrically insulated from each other by interposing an insulating layer 130 between these current collecting layers. Similarly, the second current collecting layer 104 and the fourth current collecting layer 125 are electrically insulated from each other with the insulating layer 130 interposed therebetween. Further, the first current collecting layer 105 and the third current collecting layer 120 are provided with a first flow path 105 a for supplying a reducing agent or an oxidizing agent to the first electrode 103 or the third electrode 110. Similarly, the second current collecting layer 104 and the fourth current collecting layer 125 are provided with a second flow path 104 a for supplying a reducing agent or an oxidizing agent to the second electrode 102 or the fourth electrode 115.
 アルカリ形燃料電池400は、外部配線145と、外部配線145に介在する切り替え手段(スイッチ)140とを備える。切り替え手段140により、接続される集電層の切り替えを行なうことができる。 Alkaline fuel cell 400 includes external wiring 145 and switching means (switch) 140 interposed in external wiring 145. The switching means 140 can switch the current collecting layer to be connected.
 本実施形態のように複数の第4電極115を設ける場合においては、第3電極110の場合と同様の理由から、図10および図11に示されるように、これら複数の第4電極115をアニオン伝導性電解質膜101の第2表面内において略均等に分散して配置することが好ましい。複数の第4電極115を設け、好ましくはこれらを第2表面内において略均等に分散して配置することにより、第4電極115近傍の領域を増加させることができ、これによりアニオン伝導性電解質膜101および第1電極103全体のセルフパージを行なうことができるようになる。 In the case where a plurality of fourth electrodes 115 are provided as in the present embodiment, for the same reason as in the case of the third electrode 110, as shown in FIGS. It is preferable that the conductive electrolyte membrane 101 is disposed so as to be substantially evenly dispersed in the second surface of the conductive electrolyte membrane 101. By providing a plurality of fourth electrodes 115, and preferably disposing them in a substantially uniform manner in the second surface, the area in the vicinity of the fourth electrode 115 can be increased, whereby an anion conductive electrolyte membrane is obtained. 101 and the entire first electrode 103 can be self-purged.
 好ましくは、図10に示されるように、第3電極110および第4電極115をともに複数設け、これらをそれぞれ第1表面、第2表面略均等に分散して配置する。これにより、アニオン伝導性電解質膜101、第1電極103および第2電極102全体のセルフパージを行なうことができるようになる。 Preferably, as shown in FIG. 10, a plurality of third electrodes 110 and a plurality of fourth electrodes 115 are provided, and these are arranged so as to be distributed substantially evenly on the first surface and the second surface, respectively. As a result, the entire anion conductive electrolyte membrane 101, the first electrode 103, and the second electrode 102 can be self purged.
 <第5の実施形態>
 (1)膜電極複合体およびアルカリ形燃料電池の構成
 図13は、本実施形態に係る膜電極複合体およびこれを用いたアルカリ形燃料電池を示す概略断面図であり、図14~図17はそれぞれ、図13に示されるXIV-XIV線、XV-XV線、XVI-XVI線、XVII-XVII線における概略断面図である。本実施形態のアルカリ形燃料電池500は、セルフパージ用の第3電極110および第4電極115を備える点において上記第3の実施形態と同じであるが、第3電極110と第4電極115との配置関係に特徴を有する。すなわち、アルカリ形燃料電池500が備える膜電極複合体50において、第3電極110と第4電極115とは、アニオン伝導性電解質膜101を介して対向するように設けられるのではなく、第1電極103の一方の外側側方に配置される第3電極110に対して、第4電極115は、第2電極102における第3電極110に対向する側とは反対側の外側側方に配置される。このような第3電極110と第4電極115との配置関係以外の構成は、第3の実施形態と同様である(可能な変形についても第3の実施形態と同様である)。第1電極103と第2電極102とは、アニオン伝導性電解質膜101を介して対向するように設けられる。
<Fifth Embodiment>
(1) Configuration of Membrane Electrode Assembly and Alkaline Fuel Cell FIG. 13 is a schematic cross-sectional view showing a membrane electrode assembly according to the present embodiment and an alkaline fuel cell using the membrane electrode assembly, and FIGS. FIG. 14 is a schematic cross-sectional view taken along lines XIV-XIV, XV-XV, XVI-XVI, and XVII-XVII shown in FIG. 13, respectively. The alkaline fuel cell 500 of the present embodiment is the same as the third embodiment in that it includes the third electrode 110 and the fourth electrode 115 for self-purging, but the third electrode 110 and the fourth electrode 115 are different from each other. It has a feature in arrangement relation. That is, in the membrane electrode assembly 50 included in the alkaline fuel cell 500, the third electrode 110 and the fourth electrode 115 are not provided so as to face each other with the anion conductive electrolyte membrane 101 interposed therebetween. The fourth electrode 115 is arranged on the outer side opposite to the side facing the third electrode 110 in the second electrode 102 with respect to the third electrode 110 arranged on one outer side of 103. . The configuration other than the arrangement relationship between the third electrode 110 and the fourth electrode 115 is the same as that of the third embodiment (possible modifications are also the same as those of the third embodiment). The first electrode 103 and the second electrode 102 are provided so as to face each other with the anion conductive electrolyte membrane 101 interposed therebetween.
 一方、第3電極110と第4電極115の機能に関していえば、第3および第4の実施形態では、セルフパージ工程において第3電極110および第4電極115は、いずれも還元剤の供給によりCO2由来アニオンをCO2ガスとして排出するとともに、残存したCO2由来アニオンを蓄積する役割を担うが、本実施形態では、第3電極110または第4電極115のいずれか一方は、セルフパージ工程において酸化剤が供給されるカソード極としての役割を担う。 On the other hand, regarding the functions of the third electrode 110 and the fourth electrode 115, in the third and fourth embodiments, the third electrode 110 and the fourth electrode 115 are both CO 2 by supplying a reducing agent in the self-purging process. In the present embodiment, either the third electrode 110 or the fourth electrode 115 is an oxidizing agent in the self-purging process, while discharging the derived anions as CO 2 gas and accumulating the remaining CO 2 -derived anions. It plays a role as a cathode electrode to which is supplied.
 本実施形態に従い、図13に示されるような配置関係で第3電極110および第4電極115を配置することは次の点で有利である。 According to the present embodiment, it is advantageous to arrange the third electrode 110 and the fourth electrode 115 in the arrangement relationship as shown in FIG.
 (a)たとえば、第3電極110に還元剤を供給するとともに、第4電極115に酸化剤を供給し、第3電極110と第4電極115とを電気的に接続すると、第3電極110と第4電極115との間に電流(イオン電流)が流れるが、この電流は、必ず第1電極103と第2電極102との間に介在するアニオン伝導性電解質膜101内を通ることとなる。したがって、1回のセルフパージ工程でも、アニオン伝導性電解質膜101のかなり広い領域(第3電極110および第4電極115を膜電極複合体のほぼ端部に配置した場合にはアニオン伝導性電解質膜101のほとんどの領域)についてセルフパージを行なうことができる。 (A) For example, when a reducing agent is supplied to the third electrode 110, an oxidizing agent is supplied to the fourth electrode 115, and the third electrode 110 and the fourth electrode 115 are electrically connected, A current (ion current) flows between the fourth electrode 115 and this current always passes through the anion conductive electrolyte membrane 101 interposed between the first electrode 103 and the second electrode 102. Therefore, even in a single self-purging step, a considerably wide area of the anion conductive electrolyte membrane 101 (when the third electrode 110 and the fourth electrode 115 are arranged at almost the end of the membrane electrode assembly, the anion conductive electrolyte membrane 101 is used. Self-purging can be carried out for most areas).
 (b)膜電極複合体内の広範囲にわたるセルフパージは、たとえば上記第2の実施形態や第4の実施形態によっても可能であるが、本実施形態によれば、隣り合う電極同士を接触しないように形成する構造の複雑さや製造の煩雑さを低減することができ、また、製造コストを低減することもできる。 (B) A wide range of self-purge in the membrane electrode assembly can be achieved by, for example, the second embodiment or the fourth embodiment, but according to the present embodiment, the adjacent electrodes are formed so as not to contact each other. Therefore, the complexity of the structure to be manufactured and the complexity of the manufacturing can be reduced, and the manufacturing cost can be reduced.
 本実施形態において、第3電極110と第4電極115との配置構成およびこれら電極の形状は図13、図14および図16に示されるものに限定されず、第3電極110から第4電極115に至る最短経路が、第1電極103と第2電極102との間に介在するアニオン伝導性電解質膜101内を通るように配置されるように第3電極110および第4電極115を設けることで、上述の(a)および(b)で示した有利な効果を得ることができる。 In the present embodiment, the arrangement configuration of the third electrode 110 and the fourth electrode 115 and the shape of these electrodes are not limited to those shown in FIGS. 13, 14, and 16, and the third electrode 110 to the fourth electrode 115 are not limited thereto. By providing the third electrode 110 and the fourth electrode 115 so that the shortest path to reach the inside of the anion conductive electrolyte membrane 101 interposed between the first electrode 103 and the second electrode 102 is provided. The advantageous effects shown in the above (a) and (b) can be obtained.
 第3電極110および第4電極115は複数個設けられてもよく、たとえば、図13に示される膜電極複合体50に対し、アニオン伝導性電解質膜101を介して第4電極115と対向する位置に2つ目の第3電極110を設け、アニオン伝導性電解質膜101を介して第3電極110と対向する位置に2つ目の第4電極115を設ける構成などを挙げることができる。 A plurality of third electrodes 110 and fourth electrodes 115 may be provided. For example, a position facing the fourth electrode 115 through the anion conductive electrolyte membrane 101 with respect to the membrane electrode assembly 50 shown in FIG. For example, a second third electrode 110 may be provided, and a second fourth electrode 115 may be provided at a position facing the third electrode 110 with the anion conductive electrolyte membrane 101 interposed therebetween.
 (2)アルカリ形燃料電池の使用方法
 次に、本実施形態のアルカリ形燃料電池の使用方法について説明する。本実施形態では、まず、第3集電層120の第1流路105aを通して第3電極110に還元剤を供給するとともに、第4集電層125の第2流路104aを通して第4電極115に酸化剤を供給し、さらに切り替え手段140により(図13に示される端子B1とB2とを接続する)、第3集電層120と第4集電層125(したがって、第3電極110と第4電極115)とを電気的に接続して、第3電極110と第4電極115との間に一定時間電流(イオン電流)を流す〔セルフパージ工程〕。この工程により、第4電極115では上記式(1)のような触媒反応が生じ、一方、第3電極110では、上記式(5)および(6)のようなセルフパージ反応が生じる(一部、上記式(2)のような触媒反応も生じ得る)。これらの反応によって、第1電極103と第2電極102との間に介在する領域を含めたアニオン伝導性電解質膜101内のCO2由来アニオンは第3電極110に移動し、還元剤によって還元され、CO2ガスとして第3電極110から排出されることとなる。このセルフパージ工程において、第4電極115はカソード極として機能している。
(2) Method for Using Alkaline Fuel Cell Next, a method for using the alkaline fuel cell of this embodiment will be described. In the present embodiment, first, a reducing agent is supplied to the third electrode 110 through the first flow path 105 a of the third current collection layer 120, and to the fourth electrode 115 through the second flow path 104 a of the fourth current collection layer 125. The oxidizing agent is supplied, and the switching means 140 (connects the terminals B1 and B2 shown in FIG. 13), and the third current collecting layer 120 and the fourth current collecting layer 125 (therefore, the third electrode 110 and the fourth current collecting layer). The electrode 115) is electrically connected, and a current (ion current) is allowed to flow between the third electrode 110 and the fourth electrode 115 for a certain time [self-purging step]. By this step, a catalytic reaction such as the above formula (1) occurs in the fourth electrode 115, while a self purge reaction such as the above formulas (5) and (6) occurs in the third electrode 110 (partly, Catalytic reaction like the above formula (2) may also occur). By these reactions, the CO 2 -derived anion in the anion conductive electrolyte membrane 101 including the region interposed between the first electrode 103 and the second electrode 102 moves to the third electrode 110 and is reduced by the reducing agent. , CO 2 gas is discharged from the third electrode 110. In the self purge process, the fourth electrode 115 functions as a cathode electrode.
 セルフパージ工程においては、第3電極110に還元剤を供給し、第4電極115に酸化剤を供給する代わりに、第3電極110に酸化剤を供給し、第4電極115に還元剤を供給するようにしてもよい。この場合、第3電極110がカソード極として機能する。 In the self-purge process, instead of supplying a reducing agent to the third electrode 110 and supplying an oxidizing agent to the fourth electrode 115, an oxidizing agent is supplied to the third electrode 110 and a reducing agent is supplied to the fourth electrode 115. You may do it. In this case, the third electrode 110 functions as a cathode electrode.
 セルフパージ工程の実施により、アニオン伝導性電解質膜101の広い範囲にわたってセルフパージが行なわれるため、セル抵抗の増大を効果的に抑制することができるとともに、発電時においてアノード極として機能する第1電極103における反応過電圧を効果的に低下させることができ、したがって、良好な発電効率を発揮することができる。 By performing the self-purge process, self-purge is performed over a wide range of the anion conductive electrolyte membrane 101, so that an increase in cell resistance can be effectively suppressed and the first electrode 103 functioning as an anode electrode during power generation The reaction overvoltage can be effectively reduced, and thus good power generation efficiency can be exhibited.
 セルフパージ工程後、第3電極110と第4電極115との間の電気的接続を切断し、ついで、第1集電層105の第1流路105aを通して第1電極103に還元剤を供給するとともに、第2集電層104の第2流路104aを通して第2電極102に酸化剤を供給し、さらに切り替え手段140により(図13に示される端子B3とB4とを接続する)、第1集電層105と第2集電層104(したがって、第1電極103と第2電極102)とを電気的に接続することにより、電力を得る〔発電工程〕。上述のように、セルフパージによっても第1電極103にCO2由来アニオンの蓄積は生じにくいため、良好な発電効率を発揮することができる。 After the self-purging step, the electrical connection between the third electrode 110 and the fourth electrode 115 is cut, and then the reducing agent is supplied to the first electrode 103 through the first flow path 105a of the first current collecting layer 105. Then, the oxidizing agent is supplied to the second electrode 102 through the second flow path 104a of the second current collecting layer 104, and further, the first current collecting is performed by the switching means 140 (connecting terminals B3 and B4 shown in FIG. 13). Electric power is obtained by electrically connecting the layer 105 and the second current collecting layer 104 (therefore, the first electrode 103 and the second electrode 102) [power generation step]. As described above, since the accumulation of CO 2 -derived anions does not easily occur in the first electrode 103 even by self-purge, good power generation efficiency can be exhibited.
 本発明のアルカリ形燃料電池は、たとえば自動車、家庭用コジェネレーション、携帯型電子機器などの電源として好適に適用することができる。 The alkaline fuel cell of the present invention can be suitably applied as a power source for automobiles, home cogeneration, portable electronic devices, and the like.
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.
 <実施例1>
 以下の手順で、図18に示される構造(図1と同様の構造)を有するアルカリ形燃料電池100を作製した。図19および図20はそれぞれ、図18に示されるXIX-XIX線、XX-XX線における概略断面図である。
<Example 1>
The alkaline fuel cell 100 having the structure shown in FIG. 18 (the same structure as FIG. 1) was produced by the following procedure. 19 and 20 are schematic sectional views taken along lines XIX-XIX and XX-XX, respectively, shown in FIG.
 (1)膜電極複合体の作製
 芳香族ポリエーテルスルホン酸と芳香族ポリチオエーテルスルホン酸との共重合体をクロロメチル化した後、アミノ化することにより、アニオン伝導性固体高分子電解質を得た。これをテトラヒドロフランに添加することにより、5重量%アニオン伝導性固体高分子電解質溶液を得た。
(1) Preparation of membrane electrode composite An anion-conducting solid polymer electrolyte was obtained by chloromethylating a copolymer of aromatic polyether sulfonic acid and aromatic polythioether sulfonic acid and then aminating the copolymer. . By adding this to tetrahydrofuran, a 5 wt% anion conductive solid polymer electrolyte solution was obtained.
 Pt担持量が50重量%のPt/Cである触媒担持カーボン粒子(田中貴金属社製「TEC10E50E」)と、上記で得られた電解質溶液とを、重量比で2/0.2となるように混合し、さらにイオン交換水およびエタノールを添加することにより、第1電極103、第2電極102および第3電極110用の触媒ペーストを調製した。 A catalyst-supporting carbon particle (“TEC10E50E” manufactured by Tanaka Kikinzoku Co., Ltd.) having a Pt-supporting amount of 50% by weight of Pt / C and the above-obtained electrolyte solution are in a weight ratio of 2 / 0.2. The catalyst paste for the 1st electrode 103, the 2nd electrode 102, and the 3rd electrode 110 was prepared by mixing and adding ion-exchange water and ethanol further.
 次に、縦8cm×横8cmのサイズに切り出したフッ素樹脂系高分子電解質(旭化成社製「アシプレックス」)をアニオン伝導性電解質膜101として用い、アニオン伝導性電解質膜101の一方の面(第2表面)の中央に、上記触媒ペーストを、縦5cm×横5cmのウィンドウを有したスクリーン印刷版を用いて塗布し、乾燥させることにより、第2電極102(カソード極)の触媒層を形成した。第2電極102の触媒層のサイズは、縦5cm×横5cm×厚み約10μmである。 Next, a fluororesin polymer electrolyte (“Aciplex” manufactured by Asahi Kasei Co., Ltd.) cut into a size of 8 cm × 8 cm is used as the anion conductive electrolyte membrane 101, and one side of the anion conductive electrolyte membrane 101 (first The catalyst paste of the second electrode 102 (cathode electrode) was formed by applying the catalyst paste at the center of the (2 surface) using a screen printing plate having a window of 5 cm length × 5 cm width and drying. . The size of the catalyst layer of the second electrode 102 is 5 cm long × 5 cm wide × about 10 μm thick.
 また、アニオン伝導性電解質膜101の他方の面(第1表面)の中央に、上記触媒ペーストを、縦1cm×横5cmのウィンドウを有したスクリーン印刷版を用いて塗布し、乾燥させることにより、第3電極110の触媒層を形成した。第3電極110の触媒層のサイズは、縦1cm×横5cm×厚み約10μmである。さらに、上記触媒ペーストを、縦1.5cm×横5cmのウィンドウを有したスクリーン印刷版を用いて塗布し、乾燥させることにより、第3電極110の触媒層の左右両側に、第1電極103(アノード極)の触媒層を形成して、膜電極複合体10を得た。第1電極103の触媒層のサイズは、縦1.5cm×横5cm×厚み約10μmであり、第1電極103の触媒層と第3電極110の触媒層との間隔は0.5cmである。第2電極102の触媒層が形成された領域と、第1電極103および第3電極110の触媒層が形成された領域とは、アニオン伝導性電解質膜101の面内において一致している。 In addition, the catalyst paste is applied to the center of the other surface (first surface) of the anion conductive electrolyte membrane 101 using a screen printing plate having a 1 cm long × 5 cm wide window and dried. A catalyst layer of the third electrode 110 was formed. The size of the catalyst layer of the third electrode 110 is 1 cm long × 5 cm wide × about 10 μm thick. Further, the catalyst paste is applied using a screen printing plate having a 1.5 cm long × 5 cm wide window and dried, whereby the first electrode 103 ( A catalyst layer of the anode electrode) was formed to obtain a membrane electrode assembly 10. The size of the catalyst layer of the first electrode 103 is 1.5 cm long × 5 cm wide × about 10 μm thick, and the distance between the catalyst layer of the first electrode 103 and the catalyst layer of the third electrode 110 is 0.5 cm. The region where the catalyst layer of the second electrode 102 is formed and the region where the catalyst layers of the first electrode 103 and the third electrode 110 are formed coincide with each other in the plane of the anion conductive electrolyte membrane 101.
 (2)アルカリ形燃料電池の作製
 縦8cm×横8cm×厚み1.5cmのSUS板の片面にサーペンタイン状の溝(第2流路104a、深さ0.3cm)を切削加工により形成し、第2集電層104(カソード側の集電層)とした。また、縦3cm×横8cm×厚み1.5cmのSUS板/縦1cm×横8cm×厚み1.5cmのSUS板/縦3cm×横8cm×厚み1.5cmのSUS板をこの順で絶縁性接着剤を用いて接合した後、その片面にサーペンタイン状の溝(第1流路105a、深さ0.3cm)を切削加工により形成し、アノード側の集電層(すなわち、図18の第1集電層105/絶縁層130/第3集電層120/絶縁層130/第1集電層105に相当)とした。
(2) Production of alkaline fuel cell A serpentine-like groove (second flow path 104a, depth 0.3 cm) is formed by cutting on one side of a SUS plate having a length of 8 cm, a width of 8 cm, and a thickness of 1.5 cm. Two current collecting layers 104 (cathode side current collecting layers) were used. Also, insulative bonding of SUS plate of 3cm length × 8cm width × 1.5cm thickness / 1cm length × 8cm width × SUS plate of 1.5cm thickness / 3cm length × 8cm width × 1.5cm thickness SUS plate in this order After joining using the agent, a serpentine-like groove (first flow path 105a, depth 0.3 cm) is formed on one side by cutting, and the anode-side current collecting layer (that is, the first current collector in FIG. 18). Electrical layer 105 / insulating layer 130 / third current collecting layer 120 / insulating layer 130 / first current collecting layer 105).
 上記得られた膜電極複合体10の第2電極102の触媒層上に、縦5cm×横5cmサイズに切り出したガス拡散層(SGL社製 GDL 35BC)を積層し、得られた第2電極102の外周部にガスケット106として、外形が縦8cm×横8cm×厚み200μmであり、中央に縦5cm×横5cmの開口が形成されたシリコーンゴムシートを配置した。さらに、第2流路104a側が第2電極102に対向するように第2集電層104を積層した。また、第1電極103の触媒層上に、縦1.5cm×横5cmサイズに切り出したガス拡散層(SGL社製 GDL 35BC)を、第3電極110の触媒層上に、縦1cm×横5cmサイズに切り出したガス拡散層(SGL社製 GDL35BC)を積層し、得られた電極の外周部にガスケット106として、外形が縦8cm×横8cm×厚み200μmであり、中央に縦5cm×横5cmの開口が形成されたシリコーンゴムシートを配置した。第1流路105a側が第1電極103および第3電極110に対向するようにアノード側集電層を積層した。アノード側の集電層とカソード側の集電層との間を、絶縁被覆したボルト150とナット155により締結し、集電層間を外部配線145および切り替え手段140を用いて、図18のように配線接続し、アルカリ形燃料電池100を得た。 On the catalyst layer of the second electrode 102 of the membrane electrode assembly 10 obtained above, a gas diffusion layer (GDL 35BC manufactured by SGL) cut into a size of 5 cm in length and 5 cm in width was stacked, and the obtained second electrode 102 was obtained. A silicone rubber sheet having an outer shape of 8 cm in length, 8 cm in width, and 200 μm in thickness and having an opening of 5 cm in length and 5 cm in width is arranged in the center as a gasket 106. Further, the second current collecting layer 104 was laminated so that the second flow path 104 a side was opposed to the second electrode 102. Further, a gas diffusion layer (GDL 35BC manufactured by SGL) cut into a size of 1.5 cm in length and 5 cm in width on the catalyst layer of the first electrode 103, 1 cm in length and 5 cm in width on the catalyst layer of the third electrode 110. A gas diffusion layer cut out in size (GDL35BC manufactured by SGL) is laminated, and the outer shape of the obtained electrode is a gasket 106. The outer shape is 8 cm long × 8 cm wide × 200 μm thick, and the center is 5 cm long × 5 cm wide. A silicone rubber sheet having openings formed therein was disposed. The anode-side current collection layer was laminated so that the first flow path 105a side was opposed to the first electrode 103 and the third electrode 110. The current collector layer on the anode side and the current collector layer on the cathode side are fastened with an insulation-coated bolt 150 and a nut 155, and the current collector layer is connected using external wiring 145 and switching means 140 as shown in FIG. The alkaline fuel cell 100 was obtained by wiring connection.
 <比較例1>
 アニオン伝導性電解質膜101の第1表面の中央に、第2電極102と同一のサイズ(縦5cm×横5cm×厚み約10μm)の第1電極103のみを形成したこと以外は、実施例1と同様にして膜電極複合体を作製し、アルカリ形燃料電池を得た。
<Comparative Example 1>
Example 1 except that only the first electrode 103 having the same size (5 cm long × 5 cm wide × about 10 μm thick) as the second electrode 102 is formed at the center of the first surface of the anion conductive electrolyte membrane 101. Similarly, a membrane electrode assembly was produced to obtain an alkaline fuel cell.
 <実施例2>
 以下の手順で、図21に示される構造(図7と同様の構造)を有するアルカリ形燃料電池300を作製した。図22および図23はそれぞれ、図21に示されるXXII-XXII線、XXIII-XXIII線における概略断面図である(アノード極側の断面構造は図19および図20と同様である。)。
<Example 2>
The alkaline fuel cell 300 having the structure shown in FIG. 21 (the same structure as FIG. 7) was produced by the following procedure. 22 and 23 are schematic cross-sectional views taken along lines XXII-XXII and XXIII-XXIII shown in FIG. 21, respectively (the cross-sectional structures on the anode electrode side are the same as those in FIGS. 19 and 20).
 (1)膜電極複合体の作製
 芳香族ポリエーテルスルホン酸と芳香族ポリチオエーテルスルホン酸との共重合体をクロロメチル化した後、アミノ化することにより、アニオン伝導性固体高分子電解質を得た。これをテトラヒドロフランに添加することにより、5重量%アニオン伝導性固体高分子電解質溶液を得た。
(1) Preparation of membrane electrode composite An anion-conducting solid polymer electrolyte was obtained by chloromethylating a copolymer of aromatic polyether sulfonic acid and aromatic polythioether sulfonic acid and then aminating the copolymer. . By adding this to tetrahydrofuran, a 5 wt% anion conductive solid polymer electrolyte solution was obtained.
 Pt担持量が50重量%のPt/Cである触媒担持カーボン粒子(田中貴金属社製「TEC10E50E」)と、上記で得られた電解質溶液とを、重量比で2/0.2となるように混合し、さらにイオン交換水およびエタノールを添加することにより、第1電極103、第2電極102、第3電極110および第4電極115用の触媒ペーストを調製した。 The catalyst-supported carbon particles (“TEC10E50E” manufactured by Tanaka Kikinzoku Co., Ltd.) having a Pt-supported amount of Pt / C of 50% by weight and the above-obtained electrolyte solution have a weight ratio of 2 / 0.2. The catalyst paste for the 1st electrode 103, the 2nd electrode 102, the 3rd electrode 110, and the 4th electrode 115 was prepared by mixing and adding ion-exchange water and ethanol further.
 次に、縦8cm×横8cmのサイズに切り出したフッ素樹脂系高分子電解質(旭化成社製「アシプレックス」)をアニオン伝導性電解質膜101として用い、アニオン伝導性電解質膜の一方の面(第2表面)の中央に、上記触媒ペーストを、縦1cm×横5cmのウィンドウを有したスクリーン印刷版を用いて塗布し、乾燥させることにより、第4電極115の触媒層を形成した。第4電極115の触媒層のサイズは、縦1cm×横5cm×厚み約10μmである。さらに、上記触媒ペーストを、縦1.5cm×横5cmのウィンドウを有したスクリーン印刷版を用いて塗布し、乾燥させることにより、第4電極115の触媒層の左右両側に、第2電極102(カソード極)の触媒層を形成した。第2電極102の触媒層のサイズは、縦1.5cm×横5cm×厚み約10μmである。第2電極102の触媒層と第4電極115の触媒層との間隔は0.5cmである。 Next, a fluororesin polymer electrolyte (“Aciplex” manufactured by Asahi Kasei Co., Ltd.) cut into a size of 8 cm × 8 cm is used as the anion conductive electrolyte membrane 101, and one side of the anion conductive electrolyte membrane (second The catalyst paste of the fourth electrode 115 was formed by applying the catalyst paste at the center of the surface) using a screen printing plate having a window of 1 cm length × 5 cm width and drying. The size of the catalyst layer of the fourth electrode 115 is 1 cm long × 5 cm wide × about 10 μm thick. Further, the catalyst paste is applied using a screen printing plate having a 1.5 cm long × 5 cm wide window and dried, so that the second electrode 102 ( Cathode electrode) catalyst layer was formed. The size of the catalyst layer of the second electrode 102 is 1.5 cm long × 5 cm wide × about 10 μm thick. The distance between the catalyst layer of the second electrode 102 and the catalyst layer of the fourth electrode 115 is 0.5 cm.
 また、アニオン伝導性電解質膜101の他方の面(第1表面)の中央に、上記触媒ペーストを、縦1cm×横5cmのウィンドウを有したスクリーン印刷版を用いて塗布し、乾燥させることにより、第3電極110の触媒層を形成した。第3電極110の触媒層のサイズは、縦1cm×横5cm×厚み約10μmである。さらに、上記触媒ペーストを、縦1.5cm×横5cmのウィンドウを有したスクリーン印刷版を用いて塗布し、乾燥させることにより、第3電極110の触媒層の左右両側に、第1電極103(アノード極)の触媒層を形成して、膜電極複合体30を得た。第1電極103の触媒層のサイズは、縦1.5cm×横5cm×厚み約10μmであり、第1電極103の触媒層と第3電極110の触媒層との間隔は0.5cmである。第2電極102の触媒層が形成された領域と、第1電極103の触媒層が形成された領域とは、アニオン伝導性電解質膜101の面内において一致している。また、第4電極115の触媒層が形成された領域と、第3電極110の触媒層が形成された領域とは、アニオン伝導性電解質膜101の面内において一致している。 In addition, the catalyst paste is applied to the center of the other surface (first surface) of the anion conductive electrolyte membrane 101 using a screen printing plate having a 1 cm long × 5 cm wide window and dried. A catalyst layer of the third electrode 110 was formed. The size of the catalyst layer of the third electrode 110 is 1 cm long × 5 cm wide × about 10 μm thick. Further, the catalyst paste is applied using a screen printing plate having a 1.5 cm long × 5 cm wide window and dried, whereby the first electrode 103 ( A membrane electrode assembly 30 was obtained by forming a catalyst layer of the anode electrode). The size of the catalyst layer of the first electrode 103 is 1.5 cm long × 5 cm wide × about 10 μm thick, and the distance between the catalyst layer of the first electrode 103 and the catalyst layer of the third electrode 110 is 0.5 cm. The region where the catalyst layer of the second electrode 102 is formed and the region where the catalyst layer of the first electrode 103 is formed coincide with each other in the plane of the anion conductive electrolyte membrane 101. In addition, the region where the catalyst layer of the fourth electrode 115 is formed and the region where the catalyst layer of the third electrode 110 is formed coincide with each other in the plane of the anion conductive electrolyte membrane 101.
 (2)アルカリ形燃料電池の作製
 縦3cm×横8cm×厚み1.5cmのSUS板/縦1cm×横8cm×厚み1.5cmのSUS板/縦3cm×横8cm×厚み1.5cmのSUS板をこの順で絶縁性接着剤を用いて接合した後、その片面にサーペンタイン状の溝(第2流路104a、深さ0.3cm)を切削加工により形成し、カソード側の集電層とした。また、縦3cm×横8cm×厚み1.5cmのSUS板/縦1cm×横8cm×厚み1.5cmのSUS板/縦3cm×横8cm×厚み1.5cmのSUS板をこの順で絶縁性接着剤を用いて接合した後、その片面にサーペンタイン状の溝(第1流路105a、深さ0.3cm)を切削加工により形成し、アノード側の集電層とした。
(2) Fabrication of alkaline fuel cell 3 cm long × 8 cm wide × 1.5 cm thick SUS plate / 1 cm long × 8 cm wide × 1.5 cm thick SUS plate / 3 cm long × 8 cm wide × 1.5 cm thick SUS plate Were joined in this order using an insulating adhesive, and then a serpentine-like groove (second flow path 104a, depth 0.3 cm) was formed by cutting on one side thereof to form a cathode-side current collecting layer. . Also, insulative bonding of SUS plate of 3cm length × 8cm width × 1.5cm thickness / 1cm length × 8cm width × SUS plate of 1.5cm thickness / 3cm length × 8cm width × 1.5cm thickness SUS plate in this order After bonding using the agent, a serpentine-like groove (first flow path 105a, depth 0.3 cm) was formed on one surface by cutting to form a current collecting layer on the anode side.
 上記得られた膜電極複合体の第2電極102の触媒層上に、縦1.5cm×横5cmサイズに切り出したガス拡散層(SGL社製 GDL 35BC)を、第4電極115の触媒層上に、縦1cm×横5cmサイズに切り出したガス拡散層(SGL社製 GDL 35BC)を積層し、得られた電極の外周部にガスケット106として、外形が縦8cm×横8cm×厚み200μmであり、中央に縦5cm×横5cmの開口が形成されたシリコーンゴムシートを配置した。さらに、第2流路104a側が第2電極102および第4電極115に対向するようにカソード側の集電層を積層した。また、第1電極103の触媒層上に、縦1.5cm×横5cmサイズに切り出したガス拡散層(SGL社製 GDL 35BC)を、第3電極110の触媒層上に、縦1cm×横5cmサイズに切り出したガス拡散層(SGL社製 GDL35BC)を積層し、得られた電極の外周部にガスケット106として、外形が縦8cm×横8cm×厚み200μmであり、中央に縦5cm×横5cmの開口が形成されたシリコーンゴムシートを配置した。さらに、第1流路105a側が第1電極103および第3電極110に対向するようにアノード側の集電層を積層した。アノード側の集電層とカソード側の集電層との間を、絶縁被覆したボルト150とナット155により締結し、集電層間を外部配線145および切り替え手段140を用いて、図21のように配線接続し、アルカリ形燃料電池300を得た。 A gas diffusion layer (GDL 35BC manufactured by SGL) cut into a size of 1.5 cm in length and 5 cm in width on the catalyst layer of the second electrode 102 of the obtained membrane electrode assembly is placed on the catalyst layer of the fourth electrode 115. In addition, a gas diffusion layer (GDL 35BC manufactured by SGL Co., Ltd.) cut into a size of 1 cm in length × 5 cm in width is laminated, and the outer shape of the obtained electrode as a gasket 106 is 8 cm in length × 8 cm in width × 200 μm in thickness, A silicone rubber sheet in which an opening of 5 cm in length and 5 cm in width was formed in the center was disposed. Further, the cathode-side current collection layer was laminated so that the second flow path 104 a side was opposed to the second electrode 102 and the fourth electrode 115. Further, a gas diffusion layer (GDL 35BC manufactured by SGL) cut into a size of 1.5 cm in length and 5 cm in width on the catalyst layer of the first electrode 103, 1 cm in length and 5 cm in width on the catalyst layer of the third electrode 110. A gas diffusion layer cut out in size (GDL35BC manufactured by SGL) is laminated, and the outer shape of the obtained electrode is a gasket 106. The outer shape is 8 cm long × 8 cm wide × 200 μm thick, and the center is 5 cm long × 5 cm wide. A silicone rubber sheet having openings formed therein was disposed. Furthermore, the anode-side current collection layer was laminated so that the first flow path 105 a side was opposed to the first electrode 103 and the third electrode 110. The anode-side current collector layer and the cathode-side current collector layer are fastened with an insulation-coated bolt 150 and nut 155, and the current-collection layer is connected with external wiring 145 and switching means 140 as shown in FIG. The alkaline fuel cell 300 was obtained by wiring connection.
 <実施例3>
 以下の手順で、図24に示される構造(図13と同様の構造)を有するアルカリ形燃料電池500を作製した。図25~図28はそれぞれ、図24に示されるXXV-XXV線、XXVI-XXVI線、XXVII-XXVII線、XXVIII-XXVIII線における概略断面図である。
<Example 3>
The alkaline fuel cell 500 having the structure shown in FIG. 24 (the same structure as FIG. 13) was produced by the following procedure. 25 to 28 are schematic sectional views taken along lines XXV-XXV, XXVI-XXVI, XXVII-XXVII, and XXVIII-XXVIII shown in FIG.
 (1)膜電極複合体の作製
 芳香族ポリエーテルスルホン酸と芳香族ポリチオエーテルスルホン酸との共重合体をクロロメチル化した後、アミノ化することにより、アニオン伝導性固体高分子電解質を得た。これをテトラヒドロフランに添加することにより、5重量%アニオン伝導性固体高分子電解質溶液を得た。
(1) Preparation of membrane electrode composite An anion-conducting solid polymer electrolyte was obtained by chloromethylating a copolymer of aromatic polyether sulfonic acid and aromatic polythioether sulfonic acid and then aminating the copolymer. . By adding this to tetrahydrofuran, a 5 wt% anion conductive solid polymer electrolyte solution was obtained.
 Pt担持量が50重量%のPt/Cである触媒担持カーボン粒子(田中貴金属社製「TEC10E50E」)と、上記で得られた電解質溶液とを、重量比で2/0.2となるように混合し、さらにイオン交換水およびエタノールを添加することにより、第1電極103、第2電極102、第3電極110および第4電極115用の触媒ペーストを調製した。 The catalyst-supported carbon particles (“TEC10E50E” manufactured by Tanaka Kikinzoku Co., Ltd.) having a Pt-supported amount of Pt / C of 50% by weight and the above-obtained electrolyte solution have a weight ratio of 2 / 0.2. The catalyst paste for the 1st electrode 103, the 2nd electrode 102, the 3rd electrode 110, and the 4th electrode 115 was prepared by mixing and adding ion-exchange water and ethanol further.
 次に、縦8cm×横8cmのサイズに切り出したフッ素樹脂系高分子電解質(旭化成社製「アシプレックス」)をアニオン伝導性電解質膜101として用い、アニオン伝導性電解質膜の一方の面(第2表面)の右寄りに、上記触媒ペーストを、縦1cm×横5cmのウィンドウを有したスクリーン印刷版を用いて塗布し、乾燥させることにより、第4電極115の触媒層を形成した。第4電極の触媒層のサイズは、縦1cm×横5cm×厚み約10μmである。さらに、上記触媒ペーストを、縦3.5cm×横5cmのウィンドウを有したスクリーン印刷版を用いて塗布し、乾燥させることにより、第4電極115の触媒層の左側に、第2電極102(カソード極)の触媒層を形成した。第2電極102の触媒層のサイズは、縦3.5cm×横5cm×厚み約10μmであり、第2電極102の触媒層と第4電極115の触媒層との間隔は0.5cmである。 Next, a fluororesin polymer electrolyte (“Aciplex” manufactured by Asahi Kasei Co., Ltd.) cut into a size of 8 cm in length × 8 cm in width is used as the anion conductive electrolyte membrane 101, and one side of the anion conductive electrolyte membrane (second The catalyst paste of the fourth electrode 115 was formed by applying the catalyst paste on the right side of the surface) using a screen printing plate having a 1 cm long × 5 cm wide window and drying. The size of the catalyst layer of the fourth electrode is 1 cm long × 5 cm wide × about 10 μm thick. Further, the catalyst paste is applied using a screen printing plate having a 3.5 cm long by 5 cm wide window and dried, whereby the second electrode 102 (cathode) is formed on the left side of the catalyst layer of the fourth electrode 115. Electrode layer) was formed. The size of the catalyst layer of the second electrode 102 is 3.5 cm long × 5 cm wide × about 10 μm thick, and the distance between the catalyst layer of the second electrode 102 and the catalyst layer of the fourth electrode 115 is 0.5 cm.
 また、アニオン伝導性電解質膜101の他方の面(第1表面)の左寄りに、上記触媒ペーストを、縦1cm×横5cmのウィンドウを有したスクリーン印刷版を用いて塗布し、乾燥させることにより、第3電極110の触媒層を形成した。第3電極110の触媒層のサイズは、縦1cm×横5cm×厚み約10μmである。さらに、上記触媒ペーストを、縦3.5cm×横5cmのウィンドウを有したスクリーン印刷版を用いて塗布し、乾燥させることにより、第3電極110の触媒層の右側に、第1電極103(アノード極)の触媒層を形成して、膜電極複合体50を得た。第1電極103の触媒層のサイズは、縦3.5cm×横5cm×厚み約10μmであり、第1電極103の触媒層と第3電極110の触媒層との間隔は0.5cmである。第2電極102の触媒層が形成された領域と、第1電極103の触媒層が形成された領域とは、アニオン伝導性電解質膜101の面内において一致している。 In addition, by applying the catalyst paste to the left side of the other surface (first surface) of the anion conductive electrolyte membrane 101 using a screen printing plate having a 1 cm long × 5 cm wide window and drying, A catalyst layer of the third electrode 110 was formed. The size of the catalyst layer of the third electrode 110 is 1 cm long × 5 cm wide × about 10 μm thick. Further, the catalyst paste is applied using a screen printing plate having a 3.5 cm long by 5 cm wide window and dried, whereby the first electrode 103 (anode) is formed on the right side of the catalyst layer of the third electrode 110. Membrane electrode assembly 50 was obtained. The size of the catalyst layer of the first electrode 103 is 3.5 cm long × 5 cm wide × about 10 μm thick, and the distance between the catalyst layer of the first electrode 103 and the catalyst layer of the third electrode 110 is 0.5 cm. The region where the catalyst layer of the second electrode 102 is formed and the region where the catalyst layer of the first electrode 103 is formed coincide with each other in the plane of the anion conductive electrolyte membrane 101.
 (2)アルカリ形燃料電池の作製
 縦2.5cm×横8cm×厚み1.5cmのSUS板/縦5cm×横8cm×厚み1.5cmのSUS板をこの順で絶縁性接着剤を用いて接合した後、その片面にサーペンタイン状の溝(第2流路104a、深さ0.3cm)を切削加工により形成し、カソード側の集電層とした。また、縦5cm×横8cm×厚み1.5cmのSUS板/縦2.5cm×横8cm×厚み1.5cmのSUS板をこの順で絶縁性接着剤を用いて接合した後、その片面にサーペンタイン状の溝(第1流路105a、深さ0.3cm)を切削加工により形成し、アノード側の集電層とした。
(2) Fabrication of alkaline fuel cell: 2.5 cm long × 8 cm wide × 1.5 cm thick SUS plate / 5 cm long × 8 cm wide × 1.5 cm thick SUS plate joined in this order using an insulating adhesive After that, a serpentine-like groove (second flow path 104a, depth 0.3 cm) was formed on one surface by cutting to form a cathode-side current collecting layer. Also, a SUS plate having a length of 5 cm × width 8 cm × thickness 1.5 cm / SUS plate having a length of 2.5 cm × width 8 cm × thickness 1.5 cm was joined in this order using an insulating adhesive, and then serpentine was formed on one surface thereof. A groove (first flow path 105a, depth 0.3 cm) was formed by cutting to form a current collecting layer on the anode side.
 上記得られた膜電極複合体の第2電極102の触媒層上に、縦3.5cm×横5cmサイズに切り出したガス拡散層(SGL社製 GDL 35BC)を、第4電極115の触媒層上に、縦1cm×横5cmサイズに切り出したガス拡散層(SGL社製 GDL 35BC)を積層し、得られた電極の外周部にガスケット106として、外形が縦8cm×横8cm×厚み200μmであり、中央右寄りに縦5cm×横5cmの開口が形成されたシリコーンゴムシートを配置した。さらに、第2流路104a側が第2電極102および第4電極115に対向するようにカソード側の集電層を積層した。また、第1電極103の触媒層上に、縦3.5cm×横5cmサイズに切り出したガス拡散層(SGL社製 GDL 35BC)を、第3電極110の触媒層上に、縦1cm×横5cmサイズに切り出したガス拡散層(SGL社製 GDL35BC)を積層し、得られた電極の外周部にガスケット106として、外形が縦8cm×横8cm×厚み200μmであり、中央左寄りに縦5cm×横5cmの開口が形成されたシリコーンゴムシートを配置した。さらに、第1流路105a側が第1電極103および第3電極110に対向するようにアノード側の集電層を積層した。アノード側の集電層とカソード側の集電層との間を、絶縁被覆したボルト150とナット155により締結し、集電層間を外部配線145および切り替え手段140を用いて、図24のように配線接続し、アルカリ形燃料電池500を得た。 On the catalyst layer of the fourth electrode 115, a gas diffusion layer (GDL 35BC manufactured by SGL) cut into a size of 3.5 cm in length and 5 cm in width is formed on the catalyst layer of the second electrode 102 of the obtained membrane electrode assembly. In addition, a gas diffusion layer (GDL 35BC manufactured by SGL Co., Ltd.) cut into a size of 1 cm in length × 5 cm in width is laminated, and the outer shape of the obtained electrode as a gasket 106 is 8 cm in length × 8 cm in width × 200 μm in thickness, A silicone rubber sheet in which an opening of 5 cm in length × 5 cm in width was formed on the right side of the center. Further, the cathode-side current collection layer was laminated so that the second flow path 104 a side was opposed to the second electrode 102 and the fourth electrode 115. In addition, a gas diffusion layer (GDL 35BC manufactured by SGL) cut into a size of 3.5 cm in length and 5 cm in width on the catalyst layer of the first electrode 103, 1 cm in length and 5 cm in width on the catalyst layer of the third electrode 110. A gas diffusion layer (GDL35BC manufactured by SGL Co., Ltd.) cut into a size is laminated, and the outer shape of the obtained electrode as a gasket 106 is 8 cm long × 8 cm wide × 200 μm thick, and 5 cm long × 5 cm wide to the left of the center. A silicone rubber sheet having an opening was arranged. Furthermore, the anode-side current collection layer was laminated so that the first flow path 105 a side was opposed to the first electrode 103 and the third electrode 110. As shown in FIG. 24, the current collecting layer on the anode side and the current collecting layer on the cathode side are fastened with an insulation-coated bolt 150 and a nut 155, and the current collecting layer is connected using external wiring 145 and switching means 140. The alkaline fuel cell 500 was obtained by wiring connection.
 [燃料電池の発電特性評価]
 (1)実施例1のアルカリ形燃料電池
 実施例1のアルカリ形燃料電池を、50℃の恒温層に入れ、水温48℃に設定した加湿器を用いて加湿したH2ガスを、アルカリ形燃料電池の第1流路105aに100mL/分の流量で供給するとともに、水温48℃に設定した加湿器を用いて加湿した酸素を、アルカリ形燃料電池の第2流路104aに100mL/分の流量で供給し、切り替え手段140を用いて、第2集電層104と第3集電層120との間を接続し、3Aの電流を10分流通させた。ついで、切り替え手段140を切り替え、第1集電層105と第2集電層104の間とを接続し、0.2A/cm2の電流を流し、5分後の電池出力を計測したところ、0.142W/cm2の出力が得られた。この時の電圧は0.71Vであり、発電効率は58%であった。日置電機株式会社製「バッテリハイテスタ3554」を用いて、燃料電池のオーミック抵抗を計測したところ、150mΩcm2であった。
[Evaluation of power generation characteristics of fuel cells]
(1) Alkaline fuel cell of Example 1 The alkaline fuel cell of Example 1 was placed in a constant temperature layer of 50 ° C., and H 2 gas humidified using a humidifier set at a water temperature of 48 ° C. was used as the alkaline fuel cell. A flow rate of 100 mL / min is supplied to the first flow path 105a of the battery, and oxygen humidified using a humidifier set to a water temperature of 48 ° C. is supplied to the second flow path 104a of the alkaline fuel cell at a flow rate of 100 mL / min. Then, using the switching means 140, the second current collecting layer 104 and the third current collecting layer 120 were connected, and a current of 3A was circulated for 10 minutes. Subsequently, the switching means 140 is switched, the first current collecting layer 105 and the second current collecting layer 104 are connected, a current of 0.2 A / cm 2 is passed, and the battery output after 5 minutes is measured. An output of 0.142 W / cm 2 was obtained. The voltage at this time was 0.71 V, and the power generation efficiency was 58%. When the ohmic resistance of the fuel cell was measured using “Battery HiTester 3554” manufactured by Hioki Electric Co., Ltd., it was 150 mΩcm 2 .
 (2)実施例2のアルカリ形燃料電池
 実施例2のアルカリ形燃料電池を、50℃の恒温層に入れ、水温48℃に設定した加湿器を用いて加湿したH2ガスを、アルカリ形燃料電池の第2流路104aに100mL/分の流量で供給するとともに、水温48℃に設定した加湿器を用いて加湿した酸素を、アルカリ形燃料電池の第1流路105aに100mL/分の流量で供給し、切り替え手段140を用いて、第1集電層105と第4集電層125との間を接続し、3Aの電流を10分流通させた。ついで、水温48℃に設定した加湿器を用いて加湿したH2ガスを、アルカリ形燃料電池の第1流路105aに100mL/分の流量で供給するとともに、水温48℃に設定した加湿器を用いて加湿した酸素を、アルカリ形燃料電池の第2流路104aに100mL/分の流量で供給し、切り替え手段140を切り替え、第2集電層104と第3集電層120との間を接続し、3Aの電流を10分流通させた後、切り替え手段140を切り替え、第1集電層105と第2集電層104との間を接続し、0.2A/cm2の電流を流し、5分後の電池出力を計測したところ、0.144W/cm2の出力が得られた。この時の電圧は0.72Vであり、発電効率は59%であった。日置電機株式会社製「バッテリハイテスタ3554」を用いて、燃料電池のオーミック抵抗を計測したところ、150mΩcm2であった。
(2) Alkaline fuel cell of Example 2 The alkaline fuel cell of Example 2 was placed in a constant temperature layer of 50 ° C., and H 2 gas humidified using a humidifier set at a water temperature of 48 ° C. was used as the alkaline fuel cell. Supplying the second flow path 104a of the battery at a flow rate of 100 mL / min and supplying oxygen humidified using a humidifier set to a water temperature of 48 ° C. to the first flow path 105a of the alkaline fuel cell at a flow rate of 100 mL / min Then, the switching means 140 was used to connect the first current collecting layer 105 and the fourth current collecting layer 125, and a current of 3A was circulated for 10 minutes. Next, H 2 gas humidified using a humidifier set to a water temperature of 48 ° C. is supplied to the first flow path 105a of the alkaline fuel cell at a flow rate of 100 mL / min, and a humidifier set to a water temperature of 48 ° C. The oxygen that has been humidified is supplied to the second flow path 104a of the alkaline fuel cell at a flow rate of 100 mL / min, and the switching means 140 is switched to switch between the second current collecting layer 104 and the third current collecting layer 120. After connecting and flowing the current of 3A for 10 minutes, the switching means 140 is switched to connect between the first current collecting layer 105 and the second current collecting layer 104, and a current of 0.2 A / cm 2 is passed. When the battery output after 5 minutes was measured, an output of 0.144 W / cm 2 was obtained. The voltage at this time was 0.72 V, and the power generation efficiency was 59%. When the ohmic resistance of the fuel cell was measured using “Battery HiTester 3554” manufactured by Hioki Electric Co., Ltd., it was 150 mΩcm 2 .
 (3)実施例3のアルカリ形燃料電池
 実施例3のアルカリ形燃料電池を、50℃の恒温層に入れ、水温48℃に設定した加湿器を用いて加湿したH2ガスを、アルカリ形燃料電池の第1流路105aに100mL/分の流量で供給するとともに、水温48℃に設定した加湿器を用いて加湿した酸素を、アルカリ形燃料電池の第2流路104aに100mL/分の流量で供給し、切り替え手段140を用いて、第3集電層120と第4集電層125とを接続し、3Aの電流を10分流通させた。ついで、切り替え手段140を切り替え、第1集電層105と第2集電層104との間を接続し、0.2A/cm2の電流を流し、5分後の電池出力を計測したところ、0.138W/cm2の出力が得られた。この時の電圧は0.69Vであり、発電効率は58%であった。日置電機株式会社製「バッテリハイテスタ3554」を用いて、燃料電池のオーミック抵抗を計測したところ、162mΩcm2であった。
(3) Alkaline fuel cell of Example 3 The alkaline fuel cell of Example 3 was placed in a constant temperature layer of 50 ° C., and H 2 gas humidified using a humidifier set to a water temperature of 48 ° C. was used as the alkaline fuel cell. A flow rate of 100 mL / min is supplied to the first flow path 105a of the battery, and oxygen humidified using a humidifier set to a water temperature of 48 ° C. is supplied to the second flow path 104a of the alkaline fuel cell at a flow rate of 100 mL / min. Then, using the switching means 140, the third current collecting layer 120 and the fourth current collecting layer 125 were connected, and a current of 3A was circulated for 10 minutes. Subsequently, the switching means 140 was switched, the first current collecting layer 105 and the second current collecting layer 104 were connected, a current of 0.2 A / cm 2 was passed, and the battery output after 5 minutes was measured. An output of 0.138 W / cm 2 was obtained. The voltage at this time was 0.69 V, and the power generation efficiency was 58%. The ohmic resistance of the fuel cell was measured using “Battery HiTester 3554” manufactured by Hioki Electric Co., Ltd. and found to be 162 mΩcm 2 .
 (4)比較例1のアルカリ形燃料電池
 比較例1のアルカリ形燃料電池を、50℃の恒温層に入れ、水温48℃に設定した加湿器を用いて加湿したH2ガスを、アルカリ形燃料電池の第1流路105aに100mL/分の流量で供給するとともに、水温48℃に設定した加湿器を用いて加湿した酸素を、アルカリ形燃料電池の第2流路104aに100mL/分の流量で供給し、切り替え手段140を用いて、第1集電層105と第2集電層104の間を接続し、0.2A/cm2の電流を流し、5分後の電池出力を計測したところ、0.134W/cm2の出力が得られた。この時の電圧は0.67Vであり、発電効率は55%であった。日置電機株式会社製「バッテリハイテスタ3554」を用いて、燃料電池のオーミック抵抗を計測したところ、200mΩcm2であった。
(4) Alkaline fuel cell of Comparative Example 1 The alkaline fuel cell of Comparative Example 1 was placed in a constant temperature layer of 50 ° C., and H 2 gas humidified using a humidifier set to a water temperature of 48 ° C. was used as the alkaline fuel cell. A flow rate of 100 mL / min is supplied to the first flow path 105a of the battery, and oxygen humidified using a humidifier set to a water temperature of 48 ° C. is supplied to the second flow path 104a of the alkaline fuel cell at a flow rate of 100 mL / min. And the switching means 140 was used to connect between the first current collecting layer 105 and the second current collecting layer 104, a current of 0.2 A / cm 2 was passed, and the battery output after 5 minutes was measured. However, an output of 0.134 W / cm 2 was obtained. The voltage at this time was 0.67 V, and the power generation efficiency was 55%. When the ohmic resistance of the fuel cell was measured using “Battery HiTester 3554” manufactured by Hioki Electric Co., Ltd., it was 200 mΩcm 2 .
 10,20,30,40,50 膜電極複合体、100,200,300,400,500 アルカリ形燃料電池、101 アニオン伝導性電解質膜、102 第2電極、103 第1電極、104 第2集電層、104a 第2流路、105 第1集電層、105a 第1流路、106 ガスケット、110 第3電極、115 第4電極、120 第3集電層、125 第4集電層、130 絶縁層、140 切り替え手段、145 外部配線、150 ボルト、155 ナット。 10, 20, 30, 40, 50 membrane electrode composite, 100, 200, 300, 400, 500 alkaline fuel cell, 101 anion conductive electrolyte membrane, 102 second electrode, 103 first electrode, 104 second current collector Layer, 104a second flow path, 105 first current collecting layer, 105a first flow path, 106 gasket, 110 third electrode, 115 fourth electrode, 120 third current collecting layer, 125 fourth current collecting layer, 130 insulation Layer, 140 switching means, 145 external wiring, 150 bolts, 155 nuts.

Claims (15)

  1.  アニオン伝導性電解質膜と、
     前記アニオン伝導性電解質膜の第1表面に積層される第1電極と、
     前記アニオン伝導性電解質膜の前記第1表面に対向する第2表面に積層される第2電極と、
    を含むアルカリ形燃料電池用膜電極複合体であって、
     前記第1電極と離間して、前記第1表面に積層される第3電極をさらに備える膜電極複合体。
    An anion conductive electrolyte membrane;
    A first electrode laminated on a first surface of the anion conductive electrolyte membrane;
    A second electrode laminated on a second surface of the anion conductive electrolyte membrane facing the first surface;
    A membrane electrode assembly for an alkaline fuel cell comprising:
    A membrane electrode assembly further comprising a third electrode stacked on the first surface and spaced apart from the first electrode.
  2.  前記アニオン伝導性電解質膜を介して、前記第1電極と前記第2電極とが対向して設けられる請求項1に記載の膜電極複合体。 The membrane electrode assembly according to claim 1, wherein the first electrode and the second electrode are provided to face each other with the anion conductive electrolyte membrane interposed therebetween.
  3.  互いに離間して配置される複数の第3電極を備える請求項1に記載の膜電極複合体。 The membrane electrode assembly according to claim 1, further comprising a plurality of third electrodes that are spaced apart from each other.
  4.  前記複数の第3電極は、第1表面内において略均等に分散して配置される請求項3に記載の膜電極複合体。 The membrane electrode assembly according to claim 3, wherein the plurality of third electrodes are substantially uniformly dispersed in the first surface.
  5.  前記第2電極と離間して、前記第2表面に積層される第4電極をさらに備える請求項1に記載の膜電極複合体。 The membrane electrode assembly according to claim 1, further comprising a fourth electrode laminated on the second surface so as to be separated from the second electrode.
  6.  互いに離間して配置される複数の第4電極を備える請求項5に記載の膜電極複合体。 The membrane electrode assembly according to claim 5, further comprising a plurality of fourth electrodes arranged apart from each other.
  7.  前記複数の第4電極は、第2表面内において略均等に分散して配置される請求項6に記載の膜電極複合体。 The membrane electrode assembly according to claim 6, wherein the plurality of fourth electrodes are arranged substantially uniformly in the second surface.
  8.  前記アニオン伝導性電解質膜を介して、前記第1電極と前記第2電極とが対向して設けられ、
     前記第3電極から前記第4電極に至る最短経路が、前記第1電極と前記第2電極との間に介在するアニオン伝導性電解質膜内を通るように配置される前記第3電極および前記第4電極を備える請求項5に記載の膜電極複合体。
    The first electrode and the second electrode are provided to face each other through the anion conductive electrolyte membrane,
    The third electrode disposed so that the shortest path from the third electrode to the fourth electrode passes through the anion conductive electrolyte membrane interposed between the first electrode and the second electrode; and The membrane electrode assembly according to claim 5, comprising four electrodes.
  9.  前記第3電極は、前記第1電極の外側側方に配置されるとともに、前記第4電極は、前記第2電極における前記第3電極に対向する側とは反対側の外側側方に配置される請求項8に記載の膜電極複合体。 The third electrode is disposed on the outer side of the first electrode, and the fourth electrode is disposed on the outer side of the second electrode opposite to the side facing the third electrode. The membrane electrode assembly according to claim 8.
  10.  請求項1に記載の膜電極複合体と、
     前記第1電極上に積層される第1集電層と、
     前記第2電極上に積層される第2集電層と、
     前記第3電極上に積層される第3集電層と
    を備え、
     前記第1集電層と前記第3集電層とが電気的に絶縁されているアルカリ形燃料電池。
    A membrane electrode assembly according to claim 1;
    A first current collecting layer laminated on the first electrode;
    A second current collecting layer laminated on the second electrode;
    A third current collecting layer laminated on the third electrode,
    An alkaline fuel cell in which the first current collecting layer and the third current collecting layer are electrically insulated.
  11.  請求項5に記載の膜電極複合体と、
     前記第1電極上に積層される第1集電層と、
     前記第2電極上に積層される第2集電層と、
     前記第3電極上に積層される第3集電層と、
     前記第4電極上に積層される第4集電層と、
    を備え、
     前記第1集電層と前記第3集電層とが電気的に絶縁されており、前記第2集電層と前記第4集電層とが電気的に絶縁されているアルカリ形燃料電池。
    A membrane electrode assembly according to claim 5;
    A first current collecting layer laminated on the first electrode;
    A second current collecting layer laminated on the second electrode;
    A third current collecting layer laminated on the third electrode;
    A fourth current collecting layer laminated on the fourth electrode;
    With
    An alkaline fuel cell in which the first current collecting layer and the third current collecting layer are electrically insulated, and the second current collecting layer and the fourth current collecting layer are electrically insulated.
  12.  請求項8に記載の膜電極複合体と、
     前記第1電極上に積層される第1集電層と、
     前記第2電極上に積層される第2集電層と、
     前記第3電極上に積層される第3集電層と、
     前記第4電極上に積層される第4集電層と、
    を備え、
     前記第1集電層と前記第3集電層とが電気的に絶縁されており、前記第2集電層と前記第4集電層とが電気的に絶縁されているアルカリ形燃料電池。
    A membrane electrode assembly according to claim 8;
    A first current collecting layer laminated on the first electrode;
    A second current collecting layer laminated on the second electrode;
    A third current collecting layer laminated on the third electrode;
    A fourth current collecting layer laminated on the fourth electrode;
    With
    An alkaline fuel cell in which the first current collecting layer and the third current collecting layer are electrically insulated, and the second current collecting layer and the fourth current collecting layer are electrically insulated.
  13.  請求項10に記載のアルカリ形燃料電池の使用方法であって、
     前記第2電極に酸化剤を供給し、前記第3電極に還元剤を供給するとともに、前記第2電極と前記第3電極とを電気的に接続して、前記第2電極と前記第3電極との間に電流を流す工程と、
     前記第2電極と前記第3電極との間の電気的接続を切断する工程と、
     前記第1電極に還元剤を供給し、前記第2電極に酸化剤を供給するとともに、前記第1電極と前記第2電極とを電気的に接続して、電力を得る工程と、
    を含む使用方法。
    A method of using the alkaline fuel cell according to claim 10,
    An oxidant is supplied to the second electrode, a reducing agent is supplied to the third electrode, the second electrode and the third electrode are electrically connected, and the second electrode and the third electrode A process of passing an electric current between
    Cutting an electrical connection between the second electrode and the third electrode;
    Supplying a reducing agent to the first electrode, supplying an oxidizing agent to the second electrode, and electrically connecting the first electrode and the second electrode to obtain electric power;
    Including usage.
  14.  請求項11に記載のアルカリ形燃料電池の使用方法であって、
     前記第1電極に酸化剤を供給し、前記第4電極に還元剤を供給するとともに、前記第1電極と前記第4電極とを電気的に接続して、前記第1電極と前記第4電極との間に電流を流す工程と、
     前記第1電極と前記第4電極との間の電気的接続を切断する工程と、
     前記第2電極に酸化剤を供給し、前記第3電極に還元剤を供給するとともに、前記第2電極と前記第3電極とを電気的に接続して、前記第2電極と前記第3電極との間に電流を流す工程と、
     前記第2電極と前記第3電極との間の電気的接続を切断する工程と、
     前記第1電極に還元剤を供給し、前記第2電極に酸化剤を供給するとともに、前記第1電極と前記第2電極とを電気的に接続して、電力を得る工程と、
    を含む使用方法。
    A method of using the alkaline fuel cell according to claim 11,
    The first electrode and the fourth electrode are supplied by supplying an oxidizing agent to the first electrode, supplying a reducing agent to the fourth electrode, and electrically connecting the first electrode and the fourth electrode. A process of passing an electric current between
    Disconnecting an electrical connection between the first electrode and the fourth electrode;
    An oxidant is supplied to the second electrode, a reducing agent is supplied to the third electrode, the second electrode and the third electrode are electrically connected, and the second electrode and the third electrode A process of passing an electric current between
    Cutting an electrical connection between the second electrode and the third electrode;
    Supplying a reducing agent to the first electrode, supplying an oxidizing agent to the second electrode, and electrically connecting the first electrode and the second electrode to obtain electric power;
    Including usage.
  15.  請求項12に記載のアルカリ形燃料電池の使用方法であって、
     前記第3電極に還元剤または酸化剤のいずれか一方を供給し、前記第4電極に還元剤または酸化剤のいずれか一方であって、前記第3電極に供給される剤とは異なる剤を供給するとともに、前記第3電極と前記第4電極とを電気的に接続して、前記第3電極と前記第4電極との間に電流を流す工程と、
     前記第3電極と前記第4電極との間の電気的接続を切断する工程と、
     前記第1電極に還元剤を供給し、前記第2電極に酸化剤を供給するとともに、前記第1電極と前記第2電極とを電気的に接続して、電力を得る工程と、
    を含む使用方法。
    A method of using the alkaline fuel cell according to claim 12,
    Either a reducing agent or an oxidizing agent is supplied to the third electrode, and either a reducing agent or an oxidizing agent is supplied to the fourth electrode, which is different from the agent supplied to the third electrode. Supplying and electrically connecting the third electrode and the fourth electrode to pass a current between the third electrode and the fourth electrode;
    Cutting an electrical connection between the third electrode and the fourth electrode;
    Supplying a reducing agent to the first electrode, supplying an oxidizing agent to the second electrode, and electrically connecting the first electrode and the second electrode to obtain electric power;
    Including usage.
PCT/JP2012/051971 2011-02-01 2012-01-30 Membrane electrode assembly and alkaline fuel cell using same WO2012105487A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011019691A JP5752430B2 (en) 2011-02-01 2011-02-01 Alkaline fuel cell and method of using the same
JP2011-019691 2011-08-31

Publications (1)

Publication Number Publication Date
WO2012105487A1 true WO2012105487A1 (en) 2012-08-09

Family

ID=46602701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051971 WO2012105487A1 (en) 2011-02-01 2012-01-30 Membrane electrode assembly and alkaline fuel cell using same

Country Status (2)

Country Link
JP (1) JP5752430B2 (en)
WO (1) WO2012105487A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161618A1 (en) * 2012-04-23 2013-10-31 シャープ株式会社 Alkaline fuel cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169499A (en) * 1985-04-19 1995-07-04 Ivac Corp Plate-shaped multiple-junction type electrochemical cell
JP2007073428A (en) * 2005-09-08 2007-03-22 Sanyo Electric Co Ltd Fuel cell and fuel cell system
JP2009054538A (en) * 2007-08-29 2009-03-12 Toshiba Corp Fuel cell
JP2009535790A (en) * 2006-05-03 2009-10-01 ジョージア テック リサーチ コーポレイション Anion fuel cell, hybrid fuel cell, and manufacturing method thereof
JP2010009934A (en) * 2008-06-26 2010-01-14 Dainippon Printing Co Ltd Electrode for fuel cell, manufacturing method of electrode for fuel cell, electrode electrolyte membrane laminate, cell of fuel cell, and fuel cell
JP2010182589A (en) * 2009-02-06 2010-08-19 Toyota Motor Corp Fuel cell system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07169499A (en) * 1985-04-19 1995-07-04 Ivac Corp Plate-shaped multiple-junction type electrochemical cell
JP2007073428A (en) * 2005-09-08 2007-03-22 Sanyo Electric Co Ltd Fuel cell and fuel cell system
JP2009535790A (en) * 2006-05-03 2009-10-01 ジョージア テック リサーチ コーポレイション Anion fuel cell, hybrid fuel cell, and manufacturing method thereof
JP2009054538A (en) * 2007-08-29 2009-03-12 Toshiba Corp Fuel cell
JP2010009934A (en) * 2008-06-26 2010-01-14 Dainippon Printing Co Ltd Electrode for fuel cell, manufacturing method of electrode for fuel cell, electrode electrolyte membrane laminate, cell of fuel cell, and fuel cell
JP2010182589A (en) * 2009-02-06 2010-08-19 Toyota Motor Corp Fuel cell system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161618A1 (en) * 2012-04-23 2013-10-31 シャープ株式会社 Alkaline fuel cell

Also Published As

Publication number Publication date
JP2012160363A (en) 2012-08-23
JP5752430B2 (en) 2015-07-22

Similar Documents

Publication Publication Date Title
JP4860264B2 (en) Fuel cell and manufacturing method thereof
KR20020070515A (en) Fuel Cell
WO2010121442A1 (en) Fuel cell device with electric field and membrane electrode and reversibly regenerative hydrogen-oxygen electrolysis device thereof
US8440364B2 (en) Membrane electrode assembly and fuel cell
JP6998797B2 (en) Organic hydride manufacturing equipment, organic hydride manufacturing method and energy transportation method
JP5515241B2 (en) FUEL CELL ELECTRODE, METHOD FOR PRODUCING FUEL CELL ELECTRODE, ELECTRODE-ELECTROLYTE MEMBRANE LAMINATE, FUEL CELL CELL, AND FUEL CELL
US20100248068A1 (en) Fuel cell stack, fuel cell, and method of manufacturing fuel cell stack
JP5752430B2 (en) Alkaline fuel cell and method of using the same
JP5481297B2 (en) Membrane electrode assembly and fuel cell
JP5298303B2 (en) Membrane electrode assembly and fuel cell
JP2012074205A (en) Membrane electrode assembly and alkaline fuel cell
JP5650025B2 (en) Control device and fuel cell system
WO2012032999A1 (en) Membrane electrode assembly and alkaline fuel cell
JP4529345B2 (en) Method for producing polymer electrolyte fuel cell
JP5733182B2 (en) Manufacturing method of membrane electrode assembly
JP2006040633A (en) Electrode for fuel cell, its manufacturing method, and fuel cell using it
JP5731324B2 (en) Alkaline fuel cell
JP2011253788A (en) Membrane-electrode structure for polymer electrolyte fuel cell
JP2011146245A (en) Pre-processing method for fuel cell
WO2013161618A1 (en) Alkaline fuel cell
JP2006244949A (en) Electrode for fuel cell and fuel cell
JP2007103291A (en) Manufacturing method of membrane/electrode assembly for direct methanol fuel cell
JP4245405B2 (en) Fuel cell
JP5597281B2 (en) Membrane electrode assembly and fuel cell
JP2013045699A (en) Alkaline fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12741695

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12741695

Country of ref document: EP

Kind code of ref document: A1