JP2005290233A - Magnetic abrasive grain, its manufacturing method, and magnetic grinding method - Google Patents

Magnetic abrasive grain, its manufacturing method, and magnetic grinding method Download PDF

Info

Publication number
JP2005290233A
JP2005290233A JP2004108446A JP2004108446A JP2005290233A JP 2005290233 A JP2005290233 A JP 2005290233A JP 2004108446 A JP2004108446 A JP 2004108446A JP 2004108446 A JP2004108446 A JP 2004108446A JP 2005290233 A JP2005290233 A JP 2005290233A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic abrasive
abrasive grain
abrasive grains
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004108446A
Other languages
Japanese (ja)
Other versions
JP4189446B2 (en
Inventor
Hitomi Yamaguchi
ひとみ 山口
Tetsuo Saito
哲男 齋藤
Akira Kuwana
朗 桑名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUWANA SHOJI KK
Utsunomiya University
Tochigi Prefecture
Original Assignee
KUWANA SHOJI KK
Utsunomiya University
Tochigi Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KUWANA SHOJI KK, Utsunomiya University, Tochigi Prefecture filed Critical KUWANA SHOJI KK
Priority to JP2004108446A priority Critical patent/JP4189446B2/en
Publication of JP2005290233A publication Critical patent/JP2005290233A/en
Application granted granted Critical
Publication of JP4189446B2 publication Critical patent/JP4189446B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetic abrasive grain for a more precise surface treatment, and to provide a method for manufacturing the same. <P>SOLUTION: The magnetic abrasive grain 1 is flat, and has an aspect ratio of ≥1.5. Preferably, the magnetic abrasive grain 1 is formed of nickel or a nickel-based metal such as a nickel alloy or formed of cobalt or a cobalt-based metal such as a cobalt alloy. Also preferably, the magnetic abrasive grain 1 is formed by cutting, pulverizing, or forging a magnetic thin film. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、磁性砥粒及びその製造方法並びに磁気研磨法に関し、更に詳しくは、より精密な表面加工を行える磁性砥粒及びその製造方法並びに磁気研磨法に関するものである。   The present invention relates to a magnetic abrasive grain, a manufacturing method thereof, and a magnetic polishing method, and more particularly to a magnetic abrasive grain capable of performing more precise surface processing, a manufacturing method thereof, and a magnetic polishing method.

磁気研磨法は、研磨作用を有する磁性砥粒を磁場の作用により運動させて被加工物の表面を研磨する精密加工方法である。この磁気研磨法は、従来の機械加工では困難な部品の研磨を可能にする方法であり、例えば、複雑形状を有する部品の表面、工具が入らない穴の内面、工具が届かない管の内面等の研磨について一部実用化されている。   The magnetic polishing method is a precision processing method for polishing the surface of a workpiece by moving magnetic abrasive grains having a polishing action by the action of a magnetic field. This magnetic polishing method is a method that enables polishing of parts that are difficult with conventional machining, such as the surface of a part having a complicated shape, the inner surface of a hole that does not receive a tool, the inner surface of a tube that does not reach the tool, etc. Part of the polishing has been put to practical use.

磁気研磨法で利用される磁性砥粒は、磁場の作用により被加工物に対して相対運動するものである。一般的には、磁性を有する研磨粒子を含む磁性砥粒や、磁性を有しない非磁性の研磨粒子と磁性を有する磁性粒子との混合物からなる磁性砥粒が知られている。前者の場合は磁場により研磨粒子自体が運動するが、後者の場合は、磁場により運動するのは磁性粒子であり、研磨粒子は磁性粒子の運動に伴って運動して被加工物の表面を研磨する。したがって、後者の磁性砥粒は、磁性粒子の運動に伴って研磨粒子が所望の運動を行わないこともあり得るという問題がある。   Magnetic abrasive grains used in the magnetic polishing method move relative to the workpiece by the action of a magnetic field. In general, magnetic abrasive grains containing magnetic abrasive particles and magnetic abrasive grains made of a mixture of non-magnetic non-magnetic abrasive particles and magnetic magnetic particles are known. In the former case, the abrasive particles move by the magnetic field. In the latter case, the magnetic particles move by the magnetic field, and the abrasive particles move along with the movement of the magnetic particles to polish the surface of the workpiece. To do. Therefore, the latter magnetic abrasive grains have a problem that the abrasive particles may not perform a desired movement with the movement of the magnetic particles.

一方、前者の磁性砥粒にはそうした問題がなく、例えば、磁性粒子の表面に研磨粒子を含有した無電解めっき皮膜を形成した磁性砥粒(例えば特許文献1を参照。)や、焼結などの方法で磁性粒子と研磨粒子とが一体化されている磁性砥粒等が報告されている。このような磁性砥粒としては、国内では1種類の磁性砥粒(東洋研磨材工業株式会社;KMX−80)が市販されている程度で種類が少ないのが現状である。
特開2002−265933号公報(請求項3)
On the other hand, the former magnetic abrasive grains do not have such a problem. For example, magnetic abrasive grains in which an electroless plating film containing abrasive particles is formed on the surface of the magnetic particles (see, for example, Patent Document 1), sintering, and the like. In this method, magnetic abrasive grains in which magnetic particles and abrasive particles are integrated have been reported. As such magnetic abrasive grains, there are few kinds of magnetic abrasive grains in Japan to the extent that one kind of magnetic abrasive grains (Toyo Abrasive Co., Ltd .; KMX-80) is commercially available.
JP 2002-265933 A (Claim 3)

ところで、前述した市販の磁性砥粒は、加工効果を有するものの、より精密な研磨加工を行う際には、必要以上に被加工物表面の微小凹部に入り込み、凸部に加えて凹部を過剰に除去加工してしまうことがあり、必ずしも好ましい磁性砥粒であるとは言えないものであった。   By the way, although the above-mentioned commercially available magnetic abrasive grains have a processing effect, when performing a more precise polishing process, they enter the minute recesses on the surface of the workpiece more than necessary, and excessively add the recesses in addition to the protrusions. In some cases, it may be removed, and it is not necessarily a preferable magnetic abrasive grain.

本発明は、前記課題を解決するためになされたものであって、その目的は、より精密な表面加工を可能にする磁性砥粒及びその製造方法並びにその磁性砥粒を利用した磁気研磨法を提供することにある。   The present invention has been made to solve the above-mentioned problems, and its object is to provide a magnetic abrasive that enables more precise surface processing, a manufacturing method thereof, and a magnetic polishing method using the magnetic abrasive. It is to provide.

前記目的を達成するための本発明の磁性砥粒は、磁性を有する扁平状の磁性砥粒であって、当該磁性砥粒の扁平度が1.5以上であることを特徴とする。   The magnetic abrasive grains of the present invention for achieving the object are flat magnetic abrasive grains having magnetism, and the flatness of the magnetic abrasive grains is 1.5 or more.

この発明によれば、磁性砥粒は扁平度が1.5以上の扁平状に形成されていることにより、周縁部が研磨を行う研磨部として作用するので、より精密に研磨を行うことができる。また、扁平状に形成されていることにより、断面略円形の粒状に形成されている場合に比して大きい体積を有したままで、例えば被加工物の微小な溝等の細部に容易に入り込むことができ、より精密な表面加工を行うという利点がある。   According to the present invention, since the magnetic abrasive grains are formed in a flat shape having a flatness of 1.5 or more, the peripheral portion acts as a polishing portion for polishing, so that the polishing can be performed more precisely. . Further, by being formed in a flat shape, it can easily enter into details such as a minute groove of a workpiece while maintaining a large volume as compared with a case where the cross section is formed in a substantially circular shape. There is an advantage that more precise surface processing can be performed.

本発明の磁性砥粒において、前記磁性砥粒が、ニッケル、コバルト又はそれらの合金により形成されていることが好ましい。この発明によれば、磁性砥粒がニッケル、コバルト又はそれらの合金により形成されているので、磁性砥粒は錆び難いものとなる。また、合金組成を変えることにより加工力の異なる磁性砥粒を得ることができる。   In the magnetic abrasive grains of the present invention, the magnetic abrasive grains are preferably formed of nickel, cobalt, or an alloy thereof. According to this invention, since the magnetic abrasive grains are formed of nickel, cobalt, or an alloy thereof, the magnetic abrasive grains are difficult to rust. Also, magnetic abrasive grains having different working forces can be obtained by changing the alloy composition.

前記目的を達成するための本発明の磁性砥粒の製造方法は、磁性を有する磁性薄膜を切断、粉砕又は鍛造して、扁平度が1.5以上の扁平状の磁性砥粒を形成することを特徴とする。この発明によれば、扁平状の磁性砥粒を簡単に形成することができる。形成された磁性砥粒は、扁平状に形成されているために、周縁部が研磨を行う研磨部として作用すると共に、断面略円形の粒状に形成されている場合に比して大きい体積を有したままで、例えば被加工物の微小な溝等の細部に容易に入り込むことができ、より精密に表面加工を行うことができる。   In order to achieve the above object, the magnetic abrasive grain manufacturing method of the present invention cuts, crushes or forges a magnetic thin film having magnetism to form a flat magnetic abrasive grain having a flatness of 1.5 or more. It is characterized by. According to the present invention, flat magnetic abrasive grains can be easily formed. Since the formed magnetic abrasive grains are formed in a flat shape, the peripheral portion acts as a polishing portion for polishing, and has a volume larger than that in the case where it is formed in a granular shape having a substantially circular cross section. Thus, for example, it is possible to easily enter details such as minute grooves of the workpiece, and surface processing can be performed more precisely.

前記目的を達成するための本発明の磁気研磨法は、前述した本発明の磁性砥粒を用いて被加工物の表面を研磨することを特徴とする。この発明によれば、前述と同様により精密な表面加工を行うことができると共に、複雑な形状を有する被加工物を容易に加工することができる。   In order to achieve the above object, a magnetic polishing method of the present invention is characterized by polishing the surface of a workpiece using the magnetic abrasive grains of the present invention described above. According to the present invention, it is possible to perform a more precise surface processing as described above, and to easily process a workpiece having a complicated shape.

以上説明したように、本発明の磁性砥粒及び本発明の磁気研磨法は、磁性砥粒が扁平状に形成されているので、より精密に加工することが可能となると共に、複雑な形状を有する被加工物を容易に加工することができる。   As described above, the magnetic abrasive grains according to the present invention and the magnetic polishing method according to the present invention can be processed more precisely and have a complicated shape since the magnetic abrasive grains are formed in a flat shape. The workpiece to be processed can be easily processed.

また、本発明の磁性砥粒の製造方法によると、より精密に加工することが可能となると共に、複雑な形状を有する被加工物を容易に加工することができる扁平状の磁性砥粒を簡単に形成することができる。   Further, according to the magnetic abrasive grain manufacturing method of the present invention, flat magnetic abrasive grains that can be processed more precisely and can easily process a workpiece having a complicated shape can be easily obtained. Can be formed.

以下、本発明の磁性砥粒及び磁性砥粒の製造方法並びに本発明の磁気研磨法について図面に基づき詳細に説明する。   Hereinafter, the magnetic abrasive grains of the present invention, the method for producing the magnetic abrasive grains, and the magnetic polishing method of the present invention will be described in detail based on the drawings.

(磁性砥粒)
図1は本発明の磁性砥粒の一例を示す図である。図2は本発明の磁性砥粒の他の例を示す図である。本発明の磁性砥粒は、磁気研磨方法で利用されるものであり、図1及び図2に示すように、磁性を有する扁平状の磁性砥粒1であって、当該磁性砥粒1の扁平度が1.5以上であることに特徴がある。
(Magnetic abrasive)
FIG. 1 is a view showing an example of magnetic abrasive grains of the present invention. FIG. 2 is a view showing another example of the magnetic abrasive grains of the present invention. The magnetic abrasive grain of the present invention is used in a magnetic polishing method. As shown in FIGS. 1 and 2, the magnetic abrasive grain 1 is a flat magnetic abrasive grain 1 having magnetism, and the magnetic abrasive grain 1 is flattened. It is characterized in that the degree is 1.5 or more.

磁性砥粒1は磁気研磨法で利用される際の磁場内で磁性を有し、その磁場の変動と共に移動するものである。磁性砥粒1の材質は、磁場内で磁気を帯びていればよく、常に磁気を帯びたものでもよいし、磁場外では磁気を帯びていないが磁場内に置くことにより磁化するものでもよい。このような磁性砥粒1の材質としては、例えば、ニッケル、ニッケル合金などのニッケル系金属、コバルト、コバルト合金などのコバルト系金属、フェライト、酸化鉄等が挙げられ、錆び難い点からニッケル、ニッケル合金などのニッケル系金属やコバルト、コバルト合金などのコバルト系金属等が好ましいものとして挙げられる。   The magnetic abrasive grains 1 have magnetism in a magnetic field when used in a magnetic polishing method, and move with fluctuations in the magnetic field. The material of the magnetic abrasive grain 1 may be magnetized in the magnetic field, and may be always magnetized, or may be magnetized by being placed in the magnetic field, although not magnetized outside the magnetic field. Examples of the material of the magnetic abrasive grain 1 include nickel-based metals such as nickel and nickel alloys, cobalt-based metals such as cobalt and cobalt alloys, ferrite, and iron oxide. Preferred examples include nickel-based metals such as alloys and cobalt-based metals such as cobalt and cobalt alloys.

磁性砥粒1は、加工対象である被加工物の材質や形状及びその被加工物への加工目的等に応じて適宜選定され、平面視した形状が略円形、略楕円形、略三角形、略矩形、略多角形等の各種の形状であって扁平状に形成されている。本発明の磁性砥粒1は、図1及び図2に示すように、扁平状に形成されていることに特徴がある。なお、本発明において扁平状とは、厚さが薄いことを意味し、厚さが薄ければ板状とも薄片状ともいうことがあり、また、鱗片状ということもある。   The magnetic abrasive grain 1 is appropriately selected according to the material and shape of the workpiece to be processed and the purpose of processing the workpiece, and the shape in plan view is approximately circular, approximately elliptical, approximately triangular, approximately It has various shapes such as a rectangle and a substantially polygon, and is formed in a flat shape. The magnetic abrasive grain 1 of the present invention is characterized in that it is formed in a flat shape as shown in FIGS. In the present invention, the flat shape means that the thickness is thin, and if the thickness is small, it may be referred to as a plate shape or a flake shape, and may be a scale shape.

磁性砥粒1の厚さTは、1μm〜100μmの範囲であることが好ましく、特に好ましくは10μm〜30μmである。本発明において厚さTとは、Heywoodの定義を基にしたものであり、図1に示すように、1個の磁性砥粒1がもっとも安定した状態で水平面上に静止されているとき、水平面に平行で、かつ磁性砥粒1の表面に接する平行面間の最大距離のことをいう。磁性砥粒1の厚さTが1μm未満であると、被加工物を加工することができないことがある。一方、磁性砥粒1の厚さTが100μmを超えると、より精密な表面加工を行うことができないことがある。   The thickness T of the magnetic abrasive grain 1 is preferably in the range of 1 μm to 100 μm, particularly preferably 10 μm to 30 μm. In the present invention, the thickness T is based on the definition of Heywood, and as shown in FIG. 1, when one magnetic abrasive grain 1 is stationary on the horizontal plane in the most stable state, the horizontal plane It is the maximum distance between parallel surfaces that are parallel to and in contact with the surface of the magnetic abrasive grain 1. If the thickness T of the magnetic abrasive grain 1 is less than 1 μm, the workpiece may not be processed. On the other hand, when the thickness T of the magnetic abrasive grains 1 exceeds 100 μm, it may be impossible to perform more precise surface processing.

磁性砥粒1の扁平度mは、1.5以上、好ましくは4以上である。扁平度mの上限は、特に限定されないが、好ましくは30である。本発明において扁平度mとは、Heywoodの定義を基にしたものであり、磁性砥粒1の短軸長をBとしたとき、m=B/Tで表される。ここで、磁性砥粒1の短軸長Bとは、1個の磁性砥粒1がもっとも安定した状態で水平面上に静止されているとき、同一水平面上に延び、かつ磁性砥粒1の表面に接する平行面間の最小距離のことをいう。扁平度mが1.5未満であると、より精密な表面加工を行うことができないことがある。   The flatness m of the magnetic abrasive grain 1 is 1.5 or more, preferably 4 or more. The upper limit of the flatness m is not particularly limited, but is preferably 30. In the present invention, the flatness m is based on the definition of Heywood, and is represented by m = B / T, where B is the short axis length of the magnetic abrasive grain 1. Here, the minor axis length B of the magnetic abrasive grain 1 means that when one magnetic abrasive grain 1 is stationary on the horizontal plane in the most stable state, it extends on the same horizontal plane and the surface of the magnetic abrasive grain 1 This is the minimum distance between parallel surfaces in contact with. If the flatness m is less than 1.5, more precise surface processing may not be performed.

磁性砥粒1の長軸長Lは、特に限定されないが、好ましくは200μm〜2000μmの範囲、好ましくは450μm〜1700μmの範囲である。本発明において長軸長Lとは、Heywoodの定義を基にしたものであり、1個の磁性砥粒1がもっとも安定した状態で水平面上に静止されているとき、短軸長Bに対して直角な方向であって同一水平面上に延び、かつ磁性砥粒1の表面に接する平行面間の最大距離のことをいう。磁性砥粒1の長軸長Lが200μm未満であると、磁性砥粒が小形化して加工力の基となる磁力が弱くなるので、より精密な表面加工を行うことができないことがある。一方、磁性砥粒1の長軸長Lが2000μmを超えると、磁性砥粒が大形化して加工圧力が大きくなり過ぎ、より精密な表面加工ができなくなることがある。磁性砥粒1の短軸長Bは、特に限定されないが、好ましくは100μm〜1000μmの範囲、より好ましくは140μm〜450μmの範囲である。磁性砥粒1の短軸長Bが100μm未満であると、磁性砥粒が小形化して加工力の基となる磁力が弱くなるので、より精密な表面加工を行うことができなくなることがある。一方、磁性砥粒1の短軸長Bが1000μmを超えると、大形化して加工圧力が大きくなり過ぎ、より精密な表面加工を行うことができなくなることがある。   The major axis length L of the magnetic abrasive grain 1 is not particularly limited, but is preferably in the range of 200 μm to 2000 μm, and preferably in the range of 450 μm to 1700 μm. In the present invention, the long axis length L is based on the definition of Heywood. When one magnetic abrasive grain 1 is stationary on the horizontal plane in the most stable state, the long axis length L is The maximum distance between parallel surfaces that are perpendicular to each other, extend on the same horizontal plane, and are in contact with the surface of the magnetic abrasive grain 1. If the major axis length L of the magnetic abrasive grains 1 is less than 200 μm, the magnetic abrasive grains are reduced in size and the magnetic force that is the basis of the processing force becomes weak, so that more precise surface processing may not be performed. On the other hand, when the major axis length L of the magnetic abrasive grains 1 exceeds 2000 μm, the magnetic abrasive grains become large and the processing pressure becomes too high, and a more precise surface processing may not be possible. The minor axis length B of the magnetic abrasive grain 1 is not particularly limited, but is preferably in the range of 100 μm to 1000 μm, more preferably in the range of 140 μm to 450 μm. If the minor axis length B of the magnetic abrasive grains 1 is less than 100 μm, the magnetic abrasive grains are reduced in size and the magnetic force that is the basis of the processing force becomes weak, so that more precise surface processing may not be performed. On the other hand, if the minor axis length B of the magnetic abrasive grains 1 exceeds 1000 μm, the magnetic abrasive grains 1 are increased in size and the processing pressure becomes too large, and it may be impossible to perform more precise surface processing.

このように、本発明の磁性砥粒1は、扁平度mが1.5以上の扁平状に形成されているので、周縁部(エッジ部)2が研磨を行う研磨部として作用する。また、本発明の磁性砥粒1は、鍛造、プレス等により扁平状に形成されていると、磁性砥粒1の表面に平行な方向に磁化されやすい特性すなわち磁気異方性を有する。このため、磁性砥粒1は、磁場内では磁場の方向に立つ。例えば、図3に示すように、被加工物である円状の管(円管21ということがある。)の内部に磁性砥粒1を入れて、この円管21の外部に2個の1組の磁極22を配置して、円管21内に磁場を発生させると、磁性砥粒1の表面が磁場の方向と平行になると共に、磁性砥粒1の周縁部が円管21の内壁にくっつくので、磁性砥粒1の周縁部2によって被加工物の表面をより精密に研磨することが可能となる。   Thus, since the magnetic abrasive grain 1 of this invention is formed in the flat shape whose flatness m is 1.5 or more, the peripheral part (edge part) 2 acts as a grinding | polishing part which grind | polishes. Further, when the magnetic abrasive grain 1 of the present invention is formed flat by forging, pressing or the like, it has a characteristic that it is easily magnetized in a direction parallel to the surface of the magnetic abrasive grain 1, that is, magnetic anisotropy. For this reason, the magnetic abrasive grain 1 stands in the direction of the magnetic field in the magnetic field. For example, as shown in FIG. 3, magnetic abrasive grains 1 are placed inside a circular tube (also referred to as a circular tube 21) that is a workpiece, and two pieces of 1 are placed outside the circular tube 21. When a pair of magnetic poles 22 is arranged and a magnetic field is generated in the circular tube 21, the surface of the magnetic abrasive grain 1 becomes parallel to the direction of the magnetic field, and the peripheral edge of the magnetic abrasive grain 1 is on the inner wall of the circular tube 21. Since they adhere, the surface of the workpiece can be polished more precisely by the peripheral edge 2 of the magnetic abrasive grain 1.

また、本発明の磁性砥粒1は、扁平状に形成されていることにより、例えば断面略円形の粒状に形成されている場合に比して大きい体積を有したままで、例えば被加工物の微小な溝等の細部に容易に入り込むことができ、より精密な表面加工を行うことができることになる。   In addition, the magnetic abrasive grain 1 of the present invention is formed in a flat shape, so that the magnetic abrasive grain 1 has a large volume as compared with the case where the magnetic abrasive grain 1 is formed, for example, in a substantially circular cross section. It is possible to easily enter details such as minute grooves, and to perform more precise surface processing.

また、磁性砥粒1には、図2に示すように、磁性砥粒全量基準で研磨粒子5が70重量%以下含有されていてもよい。研磨粒子5としては、研磨粒子として利用可能な各種の無機粒子や化合物(酸化物、炭化物、窒化物等)粒子を用いることができ、例えばダイヤモンド粒子、アルミナ(酸化アルミニウム)粒子及び炭化ケイ素粒子等を挙げることができる。研磨粒子5の形状は、加工対象である被加工物の材質や形状及びその被加工物への加工目的等に応じて適宜選定され、例えば、球形状(真球形状も含む)、多角形状、針状等の各種の形状が挙げられる。研磨粒子5の粒径についても、加工対象である被加工物の材質や形状及びその被加工物への加工目的等に応じて適宜選定される。   Further, as shown in FIG. 2, the magnetic abrasive grains 1 may contain 70% by weight or less of abrasive particles 5 based on the total amount of magnetic abrasive grains. As the abrasive particles 5, various inorganic particles and compound (oxide, carbide, nitride, etc.) particles that can be used as abrasive particles can be used. For example, diamond particles, alumina (aluminum oxide) particles, silicon carbide particles, etc. Can be mentioned. The shape of the abrasive particles 5 is appropriately selected according to the material and shape of the workpiece to be processed and the purpose of processing the workpiece, such as a spherical shape (including a true spherical shape), a polygonal shape, Various shapes such as a needle shape can be mentioned. The particle size of the abrasive particles 5 is also appropriately selected according to the material and shape of the workpiece to be processed and the purpose of processing the workpiece.

研磨粒子5の含有量は、磁性砥粒全量基準で70重量%以下であることが好ましいが、加工対象である被加工物の材質や形状及びその被加工物への加工目的等に応じて適宜選定することが望ましい。例えば、研磨粒子5の含有量を前記の範囲内で多くすることにより、研磨性能を向上させることができる。一方、研磨粒子の含有量を前記の範囲内で少なめにすることにより、研磨効率を抑えて徐々に研磨を進行させ、精密な加工を行うことができる。   The content of the abrasive particles 5 is preferably 70% by weight or less based on the total amount of the magnetic abrasive grains. However, the content of the abrasive particles 5 is appropriately determined according to the material and shape of the workpiece to be processed and the purpose of processing the workpiece. It is desirable to select. For example, the polishing performance can be improved by increasing the content of the abrasive particles 5 within the above range. On the other hand, by reducing the content of the abrasive particles within the above range, it is possible to suppress the polishing efficiency and gradually advance the polishing to perform precise processing.

磁性砥粒1に含有されている研磨粒子5のうち、少なくとも磁性砥粒1の周縁部2の近傍に取り込まれた研磨粒子5の一部が磁性砥粒1の周縁部2から突出していることが望ましい。そうした態様となっていることにより、加工初期においても十分な研磨機能を発揮することが可能となる。なお、磁性砥粒1の周縁部2の近傍に取り込まれた研磨粒子5の一部が磁性砥粒1の周縁部表面から突出していない場合であっても、加工中に磁性砥粒1の周縁部の表層が摩耗して研磨粒子5が露出するので、前記の態様の場合と同様の効果を得ることができる。   Among the abrasive particles 5 contained in the magnetic abrasive grain 1, at least a part of the abrasive particles 5 taken in the vicinity of the peripheral edge 2 of the magnetic abrasive grain 1 protrudes from the peripheral edge 2 of the magnetic abrasive grain 1. Is desirable. With such an embodiment, it is possible to exhibit a sufficient polishing function even in the initial stage of processing. Even if a part of the abrasive particles 5 taken in the vicinity of the peripheral edge 2 of the magnetic abrasive grain 1 does not protrude from the peripheral edge surface of the magnetic abrasive grain 1, the peripheral edge of the magnetic abrasive grain 1 during processing Since the surface layer of the part is worn and the abrasive particles 5 are exposed, the same effect as in the case of the above aspect can be obtained.

(磁性砥粒の製造方法)
次に、本発明の磁性砥粒の製造方法について説明する。
(Method for producing magnetic abrasive grains)
Next, the manufacturing method of the magnetic abrasive grain of this invention is demonstrated.

本発明の磁性砥粒の製造方法は、磁気研磨方法で利用される磁性砥粒、特に、前述した本発明の磁性砥粒を製造するための方法として好適なものである。本発明の磁性砥粒の製造方法は、磁性を有する磁性薄膜を切断、粉砕又は鍛造して、扁平度が1.5以上の扁平状の磁性砥粒を形成することを特徴とする。   The method for producing magnetic abrasive grains of the present invention is suitable as a method for producing the magnetic abrasive grains used in the magnetic polishing method, particularly the magnetic abrasive grains of the present invention described above. The method for producing magnetic abrasive grains according to the present invention is characterized in that a magnetic thin film having magnetism is cut, ground or forged to form flat magnetic abrasive grains having a flatness of 1.5 or more.

磁性を有する磁性薄膜は、前記の磁性砥粒1を形成する材料、例えばニッケル又はニッケル合金などのニッケル系金属、コバルト、コバルト合金などのコバルト系金属などで形成されていることが好ましい。磁性薄膜は、例えばニッケル系金属やコバルト系金属などの磁性材料で形成されていればどのようなものでもよく、金属片であってもよいし、圧延により形成されたものでもよいし、また、めっき例えば電鋳法により形成されたものでもよい。電鋳法は、電気めっき法や、無電解めっき法などの化学めっき法を利用した方法である。   The magnetic thin film having magnetism is preferably formed of a material for forming the magnetic abrasive grains 1, for example, a nickel-based metal such as nickel or a nickel alloy, or a cobalt-based metal such as cobalt or a cobalt alloy. The magnetic thin film may be any material as long as it is formed of a magnetic material such as a nickel-based metal or a cobalt-based metal, may be a metal piece, may be formed by rolling, It may be formed by plating such as electroforming. The electroforming method is a method using a chemical plating method such as an electroplating method or an electroless plating method.

次に、電鋳法を用いて磁性薄膜を形成する場合について説明する。電鋳法は、まず母型に電気めっき法、又は無電解めっき法により磁性薄膜を形成した後、この磁性薄膜を母型から剥離して磁性薄膜を得る方法である。電鋳法に用いるめっき浴としては、例えばニッケル系金属の場合、硫酸ニッケル、塩化ニッケル及びホウ酸を主成分とするワット浴や、スルファミン酸めっき浴を用いることが好ましい。コバルト系金属の場合は、硫酸コバルト及び塩化コバルトを主成分とするコバルトめっき浴を用いることが好ましい。   Next, the case where a magnetic thin film is formed using an electroforming method will be described. The electroforming method is a method in which a magnetic thin film is first formed on a mother die by electroplating or electroless plating, and then the magnetic thin film is peeled off from the mother die to obtain a magnetic thin film. As a plating bath used in the electroforming method, for example, in the case of a nickel-based metal, it is preferable to use a watt bath mainly composed of nickel sulfate, nickel chloride and boric acid, or a sulfamic acid plating bath. In the case of a cobalt-based metal, it is preferable to use a cobalt plating bath mainly composed of cobalt sulfate and cobalt chloride.

なお、磁性砥粒に研磨粒子を含有させる場合には、めっき浴に研磨粒子を所定量入れて攪拌してめっき浴を調製するようにする。この場合、磁性砥粒となる磁性薄膜中に研磨粒子を均一に分散させることができるように、機械攪拌、エア等のガス攪拌、超音波ホモジナイザー等による超音波攪拌等の攪拌手段を用いることが好ましい。こうした手段によって磁性砥粒となる磁性薄膜中に研磨粒子を均一に分散させることができるので、研磨粒子の含有量を調整することができる。その結果、研磨粒子の含有量を調整することにより、磁性砥粒の機械特性や磁気特性を調整することができることになる。   When the abrasive particles are contained in the magnetic abrasive grains, a predetermined amount of the abrasive particles are put in the plating bath and stirred to prepare the plating bath. In this case, stirring means such as mechanical stirring, gas stirring such as air, ultrasonic stirring using an ultrasonic homogenizer, etc. may be used so that the abrasive particles can be uniformly dispersed in the magnetic thin film serving as magnetic abrasive grains. preferable. By such means, the abrasive particles can be uniformly dispersed in the magnetic thin film that becomes the magnetic abrasive grains, so that the content of the abrasive particles can be adjusted. As a result, the mechanical properties and magnetic properties of the magnetic abrasive grains can be adjusted by adjusting the content of the abrasive particles.

母型は、磁性薄膜が形成される面が平面上に形成されていれるもの、例えば板状に形成されているものが好ましい。母型の材質は、例えば、鉄、ステンレス、銅及び銅合金、アルミ及びアルミ合金、亜鉛、鉛等の金属、エポキシ樹脂、油脂、各種プラスチック、石膏、ガラス、ゴム、セラミック、皮革等の非金属が挙げられる。母型はその材質を限定することなく磁性薄膜を形成することができる。   The mother die is preferably one in which the surface on which the magnetic thin film is formed is formed on a flat surface, for example, a plate. Non-metallic materials such as iron, stainless steel, copper and copper alloys, aluminum and aluminum alloys, metals such as zinc and lead, epoxy resins, oils and fats, various plastics, gypsum, glass, rubber, ceramics, leather, etc. Is mentioned. The mother die can form a magnetic thin film without limiting its material.

また、母型として板状のものを用いる場合について説明したが、母型としてドラムを用いてもよい。この場合において、ドラムをゆっくり回転させると共に、ドラムの一部を例えばニッケルめっき浴に浸漬させてドラムの一部にめっきを行って磁性薄膜を形成し、この形成された磁性薄膜を連続的にドラムから剥離して、帯状の磁性薄膜を形成するようにしてもよい。   Moreover, although the case where the plate-shaped thing was used as a mother mold was demonstrated, you may use a drum as a mother mold. In this case, the drum is rotated slowly, and a part of the drum is immersed in, for example, a nickel plating bath, and a part of the drum is plated to form a magnetic thin film, and the formed magnetic thin film is continuously drummed. It is also possible to form a belt-like magnetic thin film by peeling off the film.

磁性薄膜の厚さは、切断、粉砕又は鍛造により磁性粉末1を形成することができる範囲から任意に選定される。例えば、切断により磁性粉末1を形成する場合には、磁性薄膜の厚さが磁性粉末1の厚さとなるので、磁性薄膜の厚さは、所望の磁性粉末1の厚さと同じである。また、粉砕により磁性粉末1を形成する場合も、磁性薄膜の厚さが磁性粉末1の厚さとなるので、磁性薄膜の厚さは、所望の磁性粉末1の厚さと同じである。また、鍛造により磁性粉末1を形成する場合には、磁性薄膜の厚さは、所望の磁性粉末1の厚さより厚い範囲から選定される。磁性薄膜の厚さは、一概には決められないが、例えば100μm〜200μmの範囲であることが好ましい。磁性薄膜の厚さが100μm未満であると、粉砕や鍛造等の工程が簡略化されるため、十分に加工硬化した硬質な磁性砥粒を得ることができなくなることがある。一方、磁性薄膜の厚さが200μmを超えると、例えば磁性薄膜の厚さを30μm以下にするための粉砕や鍛造等の工程が複雑になり、製造できなくなることがある。   The thickness of the magnetic thin film is arbitrarily selected from the range in which the magnetic powder 1 can be formed by cutting, grinding or forging. For example, when the magnetic powder 1 is formed by cutting, the thickness of the magnetic thin film becomes the thickness of the magnetic powder 1, so that the thickness of the magnetic thin film is the same as the thickness of the desired magnetic powder 1. Further, when the magnetic powder 1 is formed by pulverization, the thickness of the magnetic thin film is the same as the thickness of the magnetic powder 1, and therefore the thickness of the magnetic thin film is the same as the thickness of the desired magnetic powder 1. When the magnetic powder 1 is formed by forging, the thickness of the magnetic thin film is selected from a range thicker than the desired thickness of the magnetic powder 1. The thickness of the magnetic thin film is not generally determined, but is preferably in the range of 100 μm to 200 μm, for example. If the thickness of the magnetic thin film is less than 100 μm, processes such as pulverization and forging are simplified, and it may not be possible to obtain sufficiently magnetically hard magnetic abrasive grains. On the other hand, if the thickness of the magnetic thin film exceeds 200 μm, for example, processes such as pulverization and forging to reduce the thickness of the magnetic thin film to 30 μm or less may be complicated and may not be manufactured.

このような磁性薄膜を切断、粉砕又は鍛造して、扁平度が1.5以上の扁平状の磁性砥粒が形成される。切断を行う手段としては、磁性薄膜を細かくして扁平状の磁性砥粒を形成できれば特に限定されず、例えば、切断刃等が挙げられる。粉砕を行う手段としては、磁性薄膜を細かくして扁平状の磁性砥粒を形成できれば特に限定されず、例えば、ボールミル等のミル、シュレッダー等が挙げられる。鍛造は、磁性薄膜を打撃や加圧等することにより、扁平状の磁性砥粒を形成するものである。鍛造は、例えば、図4に示すように、容器10内に所定量の磁性薄膜11を入れてこれら磁性薄膜11を棒状の押し潰し部材12で容器10の底壁等に押しつけて、扁平状の磁性砥粒を形成するようにしてもよい。これら切断、粉砕及び鍛造のうち鍛造により本発明の磁性砥粒1を形成することが好ましい。これは、鍛造により扁平状の磁性砥粒1を形成すると、形成された磁性砥粒1が磁気異方性を有し易くなるからである。なお、扁平状の磁性砥粒1に磁気異方性を付与することができれば、鍛造に限定されず、プレス等により扁平状の磁性砥粒1を形成するようにしてもよい。   Such a magnetic thin film is cut, ground or forged to form flat magnetic abrasive grains having a flatness of 1.5 or more. The means for cutting is not particularly limited as long as the magnetic thin film can be made fine to form flat magnetic abrasive grains, and examples thereof include a cutting blade. The means for pulverizing is not particularly limited as long as the magnetic thin film can be made fine to form flat magnetic abrasive grains, and examples thereof include a mill such as a ball mill and a shredder. Forging is to form flat magnetic abrasive grains by hitting or pressing a magnetic thin film. Forging, for example, as shown in FIG. 4, a predetermined amount of magnetic thin film 11 is placed in a container 10, and these magnetic thin films 11 are pressed against the bottom wall of the container 10 with a rod-shaped crushing member 12 to form a flat shape. Magnetic abrasive grains may be formed. Of these cutting, grinding and forging, it is preferable to form the magnetic abrasive grain 1 of the present invention by forging. This is because when the flat magnetic abrasive grains 1 are formed by forging, the formed magnetic abrasive grains 1 are likely to have magnetic anisotropy. In addition, as long as magnetic anisotropy can be imparted to the flat magnetic abrasive grains 1, the flat magnetic abrasive grains 1 may be formed by pressing or the like without being limited to forging.

このように、磁性薄膜を切断、粉砕又は鍛造することにより、容易に扁平度が1.5以上の扁平状の磁性砥粒を形成することができる。   In this way, flat magnetic abrasive grains having a flatness of 1.5 or more can be easily formed by cutting, pulverizing, or forging the magnetic thin film.

(磁気研磨方法)
本発明の磁気研磨法は、前記の本発明の磁性砥粒1を用いて被加工物の表面を研磨することを特徴とする。本発明の磁性砥粒1は、各種被加工物の精密加工への適用が期待でき、例えば、管の内面の研磨に利用することができる。この本発明の磁気研磨法を実施するための磁気研磨装置の一例が図5に示されている。
(Magnetic polishing method)
The magnetic polishing method of the present invention is characterized by polishing the surface of a workpiece using the magnetic abrasive grain 1 of the present invention. The magnetic abrasive grain 1 of the present invention can be expected to be applied to precision machining of various workpieces, and can be used, for example, for polishing the inner surface of a tube. An example of a magnetic polishing apparatus for carrying out the magnetic polishing method of the present invention is shown in FIG.

この磁気研磨装置は、図5に示すように、被加工物である円管21をその周方向に回転可能に支持する管支持部(図示せず)と、円管21の外部に配置された磁極22とから主に構成されている。磁極22は、例えば、その周方向に略90°間隔で4個、ヨーク23を介して配置されている。これら磁極22が配置されているヨーク23は、円管21の軸方向に往復移動(例えば振幅)可能に設けられ、これにより磁極22が円管21の軸方向に振幅されるようになっている。磁極22は、円管21内に磁場を発生させることができればどのようなものでもよく、永久磁石でも電磁石でもよい。また、磁極22の個数及び配置もどのようなものでもよい。円管21の内部に本発明の磁性砥粒1が入れられ、入れられた磁性砥粒1は円管21内に発生した磁場によって円管21の内壁にくっつく。すなわち、磁性砥粒1が円管21の内壁を押圧して押圧力が発生する。   As shown in FIG. 5, this magnetic polishing apparatus is disposed outside a circular tube 21 and a tube support portion (not shown) that rotatably supports a circular tube 21 that is a workpiece in the circumferential direction. Mainly composed of the magnetic pole 22. For example, four magnetic poles 22 are arranged at approximately 90 ° intervals in the circumferential direction via yokes 23. The yokes 23 on which the magnetic poles 22 are arranged are provided so as to be reciprocally movable (for example, amplitude) in the axial direction of the circular tube 21, so that the magnetic poles 22 are amplified in the axial direction of the circular tube 21. . The magnetic pole 22 may be anything as long as it can generate a magnetic field in the circular tube 21, and may be a permanent magnet or an electromagnet. Further, the number and arrangement of the magnetic poles 22 may be arbitrary. The magnetic abrasive grain 1 of the present invention is placed inside the circular pipe 21, and the magnetic abrasive grain 1 that has been put in contact with the inner wall of the circular pipe 21 by the magnetic field generated in the circular pipe 21. That is, the magnetic abrasive grain 1 presses the inner wall of the circular tube 21 to generate a pressing force.

この状態のまま、円管21をその周方向に回転させると、磁性砥粒1は円管21の内面との間に相対運動を行い、磁性砥粒1が例えば電気ブラシとして作用してその内面が研磨加工される。なお、円管21を回転させて研磨加工を行う場合について説明したが、円管21を固定して磁極22を回転させて研磨加工を行うようにしてもよく、また、円管21と磁極22の両方を回転させて研磨加工を行うようにしてもよい。   When the circular tube 21 is rotated in the circumferential direction in this state, the magnetic abrasive grains 1 move relative to the inner surface of the circular tube 21, and the magnetic abrasive particles 1 act as an electric brush, for example. Is polished. In addition, although the case where the circular pipe 21 is rotated to perform the polishing process has been described, the circular pipe 21 may be fixed and the magnetic pole 22 may be rotated to perform the polishing process, or the circular pipe 21 and the magnetic pole 22 may be processed. Both may be rotated to perform polishing.

このように、円管21の内面が研磨加工されるとき、本発明の磁性砥粒1は、扁平状に形成されているために被加工物である円管21の内面に対する摩擦力及び破壊力が小さいので、内面を必要以上に深く削ることがなく、より精密な表面加工を行うことができる。   Thus, when the inner surface of the circular tube 21 is polished, the magnetic abrasive grain 1 of the present invention is formed in a flat shape, so that the frictional force and the destructive force against the inner surface of the circular tube 21 that is a workpiece are formed. Therefore, the inner surface is not cut deeper than necessary and more precise surface processing can be performed.

本発明の磁気研磨法は、円管の内面を研磨加工する場合に限定されず、本発明の磁性砥粒及び磁気研磨法の機能を発揮できる各種の用途に広く適用可能である。例えば、本発明の磁気研磨法の他の使用例として、ハードディスク装置のハードディスク基板表面のテクスチャ加工への応用が期待できる。また、半導体基板に銅配線を形成するダマシン工程で使用される化学的機械的研磨(CMP)の代替工程としての応用が期待できる。   The magnetic polishing method of the present invention is not limited to the case of polishing the inner surface of a circular tube, and can be widely applied to various applications that can exhibit the functions of the magnetic abrasive grains and the magnetic polishing method of the present invention. For example, as another example of use of the magnetic polishing method of the present invention, application to texture processing of the hard disk substrate surface of a hard disk device can be expected. Moreover, application as an alternative process of chemical mechanical polishing (CMP) used in a damascene process for forming a copper wiring on a semiconductor substrate can be expected.

以下に、実施例を挙げて本発明を更に具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to examples.

(実施例1)
縦100mm×横100mm×厚さ10mmのステンレス鋼製の母型を用意した。また、硫酸ニッケル1〜2mol/L(リットル。以下同じ。)、塩化ニッケル0.1〜0.2mol/L、ホウ酸0.4〜0.5mol/L、光沢剤及び平滑剤を含むワット浴を、硫酸を用いてpH3〜5に調整した。このワット浴に前記の母型を浸漬して、めっき液の温度を55℃として、エア攪拌しながら電気めっきを120分間行って、母型の表面上に100μm厚のニッケルの磁性薄膜を形成した。形成した磁性薄膜を母型から剥離した。
(Example 1)
A stainless steel matrix having a length of 100 mm, a width of 100 mm, and a thickness of 10 mm was prepared. Also, a Watt bath containing nickel sulfate 1 to 2 mol / L (liter, the same shall apply hereinafter), nickel chloride 0.1 to 0.2 mol / L, boric acid 0.4 to 0.5 mol / L, brightener and smoothing agent. Was adjusted to pH 3-5 with sulfuric acid. The mother die was immersed in this watt bath, the temperature of the plating solution was 55 ° C., and electroplating was performed for 120 minutes while stirring with air to form a nickel magnetic thin film having a thickness of 100 μm on the surface of the mother die. . The formed magnetic thin film was peeled from the matrix.

次に、剥離した磁性薄膜を切断刃を用いて縦10mm×横1mm×厚さ100μm程度に切断して細かくした。これら細かくした磁性薄膜を図4に示すように容器10内に入れて棒状の押し潰し部材12で容器10の底壁等に押しつけて鍛造し、厚さ10μm〜30μmの本発明の磁性砥粒1を形成した。この形成した本発明の磁性砥粒1の扁平度は、4〜30であった。この本発明の磁性砥粒1を走査型電子顕微鏡(SEM)を用いて観察し、その観察結果を図6に示した。図6(a)は倍率が100倍の図である。   Next, the peeled magnetic thin film was finely cut into a length of about 10 mm × width of 1 mm × thickness of about 100 μm using a cutting blade. As shown in FIG. 4, these fine magnetic thin films are placed in a container 10 and pressed against the bottom wall of the container 10 with a bar-shaped crushing member 12 to forge them, and the magnetic abrasive grains 1 of the present invention having a thickness of 10 μm to 30 μm. Formed. The flatness of the formed magnetic abrasive grain 1 of the present invention was 4-30. The magnetic abrasive grains 1 of the present invention were observed using a scanning electron microscope (SEM), and the observation results are shown in FIG. FIG. 6A is a diagram with a magnification of 100 times.

このようにして形成した磁性砥粒1を用いて、ステンレス鋼円管(外径20mm、内径18mmSUS304ステンレス鋼(BA管))内面の磁気研磨を行い、その研磨性能を評価した。磁極としては、Nd−Fe−B希土類永久磁石をステンレス鋼円管の外周にその周方向に90°間隔で4個配置した。永久磁石によりステンレス鋼円管内に与えられる磁場は、3600ガウスであった。磁性砥粒を1.0g、ステンレス鋼円管内に入れて、このステンレス鋼円管を1800rpmで回転させると共に、磁極を5cmの振幅、振幅数0.8Hzで振動させて、5分間及び10分間の内面加工を行った。   Using the magnetic abrasive grain 1 thus formed, the inner surface of a stainless steel tube (outer diameter 20 mm, inner diameter 18 mm SUS304 stainless steel (BA tube)) was magnetically polished, and the polishing performance was evaluated. As the magnetic poles, four Nd—Fe—B rare earth permanent magnets were arranged on the outer circumference of the stainless steel circular tube at 90 ° intervals in the circumferential direction. The magnetic field applied to the stainless steel tube by the permanent magnet was 3600 gauss. 1.0 g of magnetic abrasive grains are put in a stainless steel circular tube, and the stainless steel circular tube is rotated at 1800 rpm, and the magnetic pole is vibrated at an amplitude of 5 cm and an amplitude of 0.8 Hz for 5 minutes and 10 minutes. Internal processing was performed.

加工後、研磨量(M)及びステンレス鋼円管内面の表面粗さを測定した。表面粗さは、JISB0601−2001(ISO4287−1997準拠)に基づき粗さ曲線の算術平均高さ(Ra)及び最大高さ(Rz)について触針式表面粗さ測定機にて測定した。その結果を図7及び図8に示した。なお、研磨量は重量減少量ということがある。また、10分間の加工を行った後のステンレス鋼円管内面を走査型電子顕微鏡(SEM)を用いて700倍の倍率で観察した。この観察結果を図9に示した。図9(a)と図9(b)は異なる2箇所を示した図である。なお、図10は加工前のステンレス鋼円管の内面を示した図である。   After processing, the polishing amount (M) and the surface roughness of the inner surface of the stainless steel circular tube were measured. The surface roughness was measured with a stylus type surface roughness measuring machine for the arithmetic average height (Ra) and maximum height (Rz) of the roughness curve based on JISB0601-2001 (based on ISO4287-1997). The results are shown in FIGS. The polishing amount may be referred to as a weight reduction amount. Further, the inner surface of the stainless steel circular tube after processing for 10 minutes was observed at a magnification of 700 times using a scanning electron microscope (SEM). The observation results are shown in FIG. FIG. 9A and FIG. 9B are diagrams showing two different places. FIG. 10 is a view showing the inner surface of the stainless steel circular tube before processing.

(比較例1)
また、比較のために、市販されている磁性砥粒(東洋研磨材工業株式会社;KMX−80)を使用して前述の実施例1と同様にしてステンレス鋼円管の内面加工を行った。加工後、研磨量(M)及びステンレス鋼円管内面の表面粗さを測定した。表面粗さは、JISB0601−2001(ISO4287−1997準拠)に基づき粗さ曲線の算術平均高さ(Ra)及び最大高さ(Rz)について触針式表面粗さ測定機にて測定した。その結果を図7及び図8に示した。また、実施例1と同様に10分間の加工を行った後のステンレス鋼円管内面を走査型電子顕微鏡(SEM)を用いて700倍の倍率で観察し、その結果を図11に示した。
(Comparative Example 1)
For comparison, the inner surface of a stainless steel circular tube was processed in the same manner as in Example 1 described above using commercially available magnetic abrasive grains (Toyo Abrasive Co., Ltd .; KMX-80). After processing, the polishing amount (M) and the surface roughness of the inner surface of the stainless steel circular tube were measured. The surface roughness was measured with a stylus type surface roughness measuring machine for the arithmetic average height (Ra) and maximum height (Rz) of the roughness curve based on JISB0601-2001 (based on ISO4287-1997). The results are shown in FIGS. Moreover, the stainless steel circular tube inner surface after processing for 10 minutes as in Example 1 was observed with a scanning electron microscope (SEM) at a magnification of 700 times, and the result is shown in FIG.

図7〜図11の結果から明らかなように、本発明の磁性砥粒(E−02と併記することもある。)1を用いた実施例1の場合は、研磨量(M)が少なく極めて平滑な表面となっていた。これに対して市販されている磁性砥粒(KMX−80)を用いた比較例1の場合は、研磨量(M)が多く、表面が研磨前より粗くなっていた。なお、図11(b)は平滑な表面と見えるが、必要以上に被加工物の表面が一方向に研磨されていた。すなわち、図11(b)において加工方向となる縦方向に延びる凹凸が形成され、表面が研磨前より粗くなっていた。   As is apparent from the results of FIGS. 7 to 11, in the case of Example 1 using the magnetic abrasive grain 1 of the present invention (sometimes referred to as E-02), the polishing amount (M) is extremely small. The surface was smooth. On the other hand, in the case of Comparative Example 1 using commercially available magnetic abrasive grains (KMX-80), the polishing amount (M) was large and the surface was rougher than before polishing. In addition, although FIG.11 (b) seems to be a smooth surface, the surface of the to-be-processed object was grind | polished in one direction more than necessary. That is, the unevenness | corrugation extended in the vertical direction used as a process direction in FIG.11 (b) was formed, and the surface was rougher than before grinding | polishing.

(実施例2)
実施例1で形成した磁性砥粒(E−02)と平均粒径が330μmの鉄粉(電解Fe)を用いて、実施例1と同様にしてステンレス鋼円管の内面加工を行った。ステンレス鋼円管内には、磁性砥粒(E−02)を0.2g、鉄粉(電解Fe)を0.8g入れた。加工時間(t)5分後、10分後、15分後、20分後の研磨量(M)及びステンレス鋼円管内面の表面粗さを測定した。表面粗さは、JISB0601−2001(ISO4287−1997準拠)に基づき粗さ曲線の算術平均高さ(Ra)及び最大高さ(Rz)について触針式表面粗さ測定機にて測定した。その結果を図12及び図13に示した。
(Example 2)
Using the magnetic abrasive grains (E-02) formed in Example 1 and iron powder (electrolytic Fe) having an average particle size of 330 μm, the inner surface processing of the stainless steel circular tube was performed in the same manner as in Example 1. In a stainless steel circular tube, 0.2 g of magnetic abrasive grains (E-02) and 0.8 g of iron powder (electrolytic Fe) were put. Processing time (t) After 5 minutes, 10 minutes, 15 minutes and 20 minutes, the polishing amount (M) and the surface roughness of the inner surface of the stainless steel circular tube were measured. The surface roughness was measured with a stylus type surface roughness measuring machine for the arithmetic average height (Ra) and maximum height (Rz) of the roughness curve based on JISB0601-2001 (based on ISO4287-1997). The results are shown in FIGS.

(比較例2)
比較例1で用いた磁性砥粒(KMX−80)と平均粒径が330μmの鉄粉(電解Fe)を用いて、実施例1と同様にしてステンレス鋼円管の内面加工を行った。ステンレス鋼円管内には、磁性砥粒(KMX−80)を0.2g、鉄粉(電解Fe)を0.8g入れた。加工時間(t)5分後、10分後、15分後、20分後、25分後、30分後の研磨量(重量減少量)及びステンレス鋼円管内面の表面粗さを測定した。表面粗さは、JISB0601−2001(ISO4287−1997準拠)に基づき粗さ曲線の算術平均高さ(Ra)及び最大高さ(Rz)について触針式表面粗さ測定機にて測定した。その結果を図12及び図13に示した。
(Comparative Example 2)
Using the magnetic abrasive grains (KMX-80) used in Comparative Example 1 and iron powder (electrolytic Fe) having an average particle size of 330 μm, the inner surface processing of the stainless steel circular tube was performed in the same manner as in Example 1. In a stainless steel circular tube, 0.2 g of magnetic abrasive grains (KMX-80) and 0.8 g of iron powder (electrolytic Fe) were put. Processing time (t) After 5 minutes, 10 minutes, 15 minutes, 20 minutes, 25 minutes, and 30 minutes, the polishing amount (weight reduction amount) and the surface roughness of the stainless steel circular tube inner surface were measured. The surface roughness was measured with a stylus type surface roughness measuring machine for the arithmetic average height (Ra) and maximum height (Rz) of the roughness curve based on JISB0601-2001 (based on ISO4287-1997). The results are shown in FIGS.

図12及び図13の結果から明らかなように、本発明の磁性砥粒(E−02)1を用いた実施例2の場合は、5分間の短時間で十分に研磨を行え極めて平滑な表面となった。これに対して磁性砥粒(KMX−80)を用いた比較例2の場合は、加工に時間がかかり、例えば、実施例2の5分間で加工して得られた表面粗さと略同様の表面粗さを得るには、20分間以上加工を行わなければならなかった。   As is apparent from the results of FIGS. 12 and 13, in the case of Example 2 using the magnetic abrasive grain (E-02) 1 of the present invention, the surface can be polished sufficiently in a short time of 5 minutes and extremely smooth. It became. On the other hand, in the case of Comparative Example 2 using magnetic abrasive grains (KMX-80), it takes time to process, for example, a surface substantially similar to the surface roughness obtained by processing in 5 minutes of Example 2. In order to obtain roughness, processing had to be performed for 20 minutes or more.

本発明の磁性砥粒の一例を示す図で、(a)は平面図で、(b)立面図である。It is a figure which shows an example of the magnetic abrasive grain of this invention, (a) is a top view, (b) is an elevation view. 本発明の磁性砥粒の他の例を示す図で、(a)は平面図で、(b)立面図である。It is a figure which shows the other example of the magnetic abrasive grain of this invention, (a) is a top view, (b) is an elevation view. 本発明の磁性砥粒を磁場内に置いた状態を示す概略断面図である。It is a schematic sectional drawing which shows the state which put the magnetic abrasive grain of this invention in the magnetic field. 粉砕及び鍛造の一例を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating an example of crushing and forging. 磁気研磨装置の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of a magnetic polishing apparatus. 本発明の磁性砥粒の走査型電子顕微鏡(SEM)観察写真である。It is a scanning electron microscope (SEM) observation photograph of the magnetic abrasive grain of this invention. 加工時間(t)と算術平均高さ(Ra)及び研磨量(M)との関係を示す図である。It is a figure which shows the relationship between processing time (t), arithmetic mean height (Ra), and polishing amount (M). 加工時間(t)と最大高さ(Rz)及び研磨量(M)との関係を示す図である。It is a figure which shows the relationship between processing time (t), maximum height (Rz), and polishing amount (M). 本発明の磁性砥粒で加工したステンレス鋼円管の内面の走査型電子顕微鏡(SEM)観察写真である。It is a scanning electron microscope (SEM) observation photograph of the inner surface of the stainless steel circular tube processed with the magnetic abrasive grain of the present invention. 加工する前のステンレス鋼円管の内面の走査型電子顕微鏡(SEM)観察写真である。It is a scanning electron microscope (SEM) observation photograph of the inner surface of the stainless steel circular tube before processing. 市販の磁性砥粒(KMX−80)で加工したステンレス鋼円管の内面の走査型電子顕微鏡(SEM)観察写真である。It is a scanning electron microscope (SEM) observation photograph of the inner surface of a stainless steel circular tube processed with a commercially available magnetic abrasive grain (KMX-80). 加工時間(t)と算術平均高さ(Ra)及び研磨量(M)との関係を示す図である。It is a figure which shows the relationship between processing time (t), arithmetic mean height (Ra), and polishing amount (M). 加工時間(t)と最大高さ(Rz)及び研磨量(M)との関係を示す図である。It is a figure which shows the relationship between processing time (t), maximum height (Rz), and polishing amount (M).

符号の説明Explanation of symbols

1 磁性砥粒
2 周縁部
5 研磨粒子
10 容器
11 磁性薄膜
12 押し潰し部材
21 円管
22 磁極
23 ヨーク
DESCRIPTION OF SYMBOLS 1 Magnetic abrasive grain 2 Peripheral part 5 Abrasive particle 10 Container 11 Magnetic thin film 12 Crushing member 21 Circular tube 22 Magnetic pole 23 York

Claims (4)

磁性を有する扁平状の磁性砥粒であって、当該磁性砥粒の扁平度が1.5以上であることを特徴とする磁性砥粒。   A magnetic abrasive grain having magnetic properties, wherein the magnetic abrasive grain has a flatness of 1.5 or more. 前記磁性砥粒が、ニッケル、コバルト又はそれらの合金により形成されていることを特徴とする請求項1に記載の磁性砥粒。   2. The magnetic abrasive grain according to claim 1, wherein the magnetic abrasive grain is made of nickel, cobalt, or an alloy thereof. 磁性を有する磁性薄膜を切断、粉砕又は鍛造して、扁平度が1.5以上の扁平状の磁性砥粒を形成することを特徴とする磁性砥粒の製造方法。   A method for producing a magnetic abrasive grain comprising cutting a magnetic thin film having magnetism, crushing or forging to form a flat magnetic abrasive grain having a flatness of 1.5 or more. 前記請求項1又は2に記載の磁性砥粒を用いて被加工物の表面を研磨することを特徴とする磁気研磨法。   A magnetic polishing method comprising polishing a surface of a workpiece using the magnetic abrasive grain according to claim 1.
JP2004108446A 2004-03-31 2004-03-31 Magnetic abrasive grain, manufacturing method thereof, and magnetic polishing method Expired - Lifetime JP4189446B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004108446A JP4189446B2 (en) 2004-03-31 2004-03-31 Magnetic abrasive grain, manufacturing method thereof, and magnetic polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004108446A JP4189446B2 (en) 2004-03-31 2004-03-31 Magnetic abrasive grain, manufacturing method thereof, and magnetic polishing method

Publications (2)

Publication Number Publication Date
JP2005290233A true JP2005290233A (en) 2005-10-20
JP4189446B2 JP4189446B2 (en) 2008-12-03

Family

ID=35323532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004108446A Expired - Lifetime JP4189446B2 (en) 2004-03-31 2004-03-31 Magnetic abrasive grain, manufacturing method thereof, and magnetic polishing method

Country Status (1)

Country Link
JP (1) JP4189446B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326183A (en) * 2006-06-08 2007-12-20 Fdk Corp Magnetic polishing liquid
JP2008105169A (en) * 2006-09-30 2008-05-08 Fdk Corp Paste material
JP2020155525A (en) * 2019-03-19 2020-09-24 株式会社東芝 Multiple flat magnetic metal particles, compact material, and rotary electric machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326183A (en) * 2006-06-08 2007-12-20 Fdk Corp Magnetic polishing liquid
JP2008105169A (en) * 2006-09-30 2008-05-08 Fdk Corp Paste material
JP2020155525A (en) * 2019-03-19 2020-09-24 株式会社東芝 Multiple flat magnetic metal particles, compact material, and rotary electric machine
US12015306B2 (en) 2019-03-19 2024-06-18 Kabushiki Kaisha Toshiba Plurality of flaky magnetic metal particles, pressed powder material, and rotating electric machine

Also Published As

Publication number Publication date
JP4189446B2 (en) 2008-12-03

Similar Documents

Publication Publication Date Title
Mulik et al. Magnetic abrasive finishing of hardened AISI 52100 steel
Lin et al. Study of magnetic abrasive finishing in free-form surface operations using the Taguchi method
Liu et al. Comprehensive performance evaluation of the magnetic abrasive particles
JP2009072901A (en) Magnetic spiral polishing device
JP2013026499A (en) Dust core, its manufacturing method, and coil component
JP2008071857A (en) Catalytic chemical processing method and apparatus using magnetic fine particles
Babbar et al. Parametric study of magnetic abrasive finishing of UNS C26000 flat brass plate
Yang et al. Optimization in MAF operations using Taguchi parameter design for AISI304 stainless steel
Kim et al. Magnetic force improvement and parameter optimization for magnetic abrasive polishing of AZ31 magnesium alloy
JP6371645B2 (en) Magnetic polishing method and magnetic polishing apparatus using a magnet tool
JP5352872B2 (en) Method for producing composite particles for polishing
JP4189446B2 (en) Magnetic abrasive grain, manufacturing method thereof, and magnetic polishing method
Singh et al. Performance of abrasives used in magnetically assisted finishing: a state of the art review
CN100384590C (en) Liquid magnetic grinding and it preparation method
Sran et al. Nano finishing of brass tubes by using mechanically alloyed magnetic abrasives
Wu et al. Effect of magnetic pole on finishing characteristics in low-frequency alternating magnetic field for micro-groove surface
JP5499414B2 (en) Method for increasing shape restoring force of particle-dispersed mixed functional fluid using fluctuating magnetic field, polishing apparatus and polishing method using the same
Patil et al. Magnetic abrasive finishing–A Review
Gupta et al. Effects of process parameters on the surface finish of flat surfaces in magnetic assist abrasive finishing process
JP2009006438A (en) Supporting member for centerless grinder
JP2006272520A (en) Magnetism-assisted processing method and magnetic tool for use in it
JP4478795B2 (en) Magnetic abrasive grains and magnetic polishing method
JP7026927B2 (en) Magnetic polishing method and magnetic polishing equipment
JP2015168029A (en) magnetic polishing method and polishing slurry
JP4185985B2 (en) Magnetically assisted processing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080527

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Ref document number: 4189446

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term