JP2005290219A - Hydrocarbon oil for hydrogen production, and hydrogen production system - Google Patents

Hydrocarbon oil for hydrogen production, and hydrogen production system Download PDF

Info

Publication number
JP2005290219A
JP2005290219A JP2004108142A JP2004108142A JP2005290219A JP 2005290219 A JP2005290219 A JP 2005290219A JP 2004108142 A JP2004108142 A JP 2004108142A JP 2004108142 A JP2004108142 A JP 2004108142A JP 2005290219 A JP2005290219 A JP 2005290219A
Authority
JP
Japan
Prior art keywords
hydrocarbon
mol
hydrogen
oil
hydrocarbon oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004108142A
Other languages
Japanese (ja)
Other versions
JP4227927B2 (en
JP2005290219A5 (en
Inventor
Tadatoshi Sone
忠豪 曽根
Masanori Hirose
正典 廣瀬
Osamu Sadakane
修 定兼
Iwao Anzai
巌 安斉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2004108142A priority Critical patent/JP4227927B2/en
Priority to CNA2005800161341A priority patent/CN1957072A/en
Priority to KR1020067022416A priority patent/KR101163249B1/en
Priority to PCT/JP2005/006706 priority patent/WO2005095554A1/en
Publication of JP2005290219A publication Critical patent/JP2005290219A/en
Publication of JP2005290219A5 publication Critical patent/JP2005290219A5/ja
Application granted granted Critical
Publication of JP4227927B2 publication Critical patent/JP4227927B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrocarbon oil for high-efficiency hydrogen production with the durability of the hydrogen production system less affected in the presence of reforming catalyst deterioration. <P>SOLUTION: The hydrocarbon oil for hydrogen production for use in a reformer-equipped hydrogen production system contains a hydrocarbon base obtained by treating a specified hydrocarbon mixture in a specified process, and has a flash point of ≥40°C, an initial boiling point of ≥145°C but ≤170°C, a 50 vol% distillation point of ≥180°C but ≤220°C, a 95 vol% distillation point of ≥220°C but ≤260°C, a sulfur content of ≤0.5 mass ppm, a smoke point of ≥26 mm, an aromatic content of ≤10 vol%, and a oxidation point of ≥210°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、水素製造用炭化水素油および水素製造システムに関する。   The present invention relates to a hydrocarbon oil for hydrogen production and a hydrogen production system.

近年、将来の地球環境に対する危機感の高まりから、地球にやさしいエネルギー供給システムの開発が求められ、エネルギー効率が高いこと及び排出ガスがクリーンである点から、燃料電池、水素エンジン等の水素を燃料とするシステムが脚光を浴びている。なかでも、燃料電池への水素の供給方法としては、圧縮あるいは液化といった形で直接水素を供給する方法の他、メタノール等の含酸素燃料、及びナフサ、灯油等の炭化水素の改質による供給方法が知られている(例えば、非特許文献1参照。)。このうち、直接水素を供給する方法は、そのまま燃料として利用できる利点はあるが、常温で気体のため貯蔵性および車両等に用いた場合の搭載性に問題がある。また、メタノールはシステム内での改質による水素の製造が比較的容易であるが、重量当たりのエネルギー効率が低く、有毒かつ腐食性を持つために、取り扱い性、貯蔵性にも難点がある。一方、ナフサ、灯油等の炭化水素の改質による水素の製造は、既存の燃料供給インフラが使用できること、トータルでのエネルギー効率が高いこと等により注目を集めている。こうした炭化水素は水素発生のために改質工程が必要であるが、改質システムの耐久性に問題が生じ、高い水素発生効率の得られない場合があった。
池松正樹,「エンジンテクノロジー」,山海堂社,2001年1月,第3巻,第1号,p.35
In recent years, due to the growing sense of crisis about the global environment in the future, development of an energy supply system that is friendly to the earth has been demanded. From the viewpoint of high energy efficiency and clean exhaust gas, fuel such as fuel cells and hydrogen engines can be used as fuel. The system is in the limelight. In particular, as a method for supplying hydrogen to the fuel cell, in addition to a method of directly supplying hydrogen in the form of compression or liquefaction, a supply method by reforming of an oxygen-containing fuel such as methanol and hydrocarbons such as naphtha and kerosene. Is known (see, for example, Non-Patent Document 1). Among these, the method of supplying hydrogen directly has an advantage that it can be used as a fuel as it is, but it has a problem in storability and mountability when used in a vehicle or the like because it is a gas at room temperature. Methanol is relatively easy to produce hydrogen by reforming in the system, but has low energy efficiency per weight and is toxic and corrosive, so that it is difficult to handle and store. On the other hand, the production of hydrogen by reforming hydrocarbons such as naphtha and kerosene has attracted attention due to the fact that the existing fuel supply infrastructure can be used and the total energy efficiency is high. Such hydrocarbons require a reforming step for hydrogen generation, but there are problems with the durability of the reforming system, and high hydrogen generation efficiency may not be obtained.
Masaki Ikematsu, “Engine Technology”, Sankaidosha, January 2001, Vol. 3, No. 1, p. 35

本発明は、このような状況に鑑み、改質器の耐久性に優れた水素製造用炭化水素油および水素製造システムを提供することを目的とする。   In view of such circumstances, an object of the present invention is to provide a hydrocarbon oil for hydrogen production and a hydrogen production system excellent in durability of a reformer.

本発明者らは鋭意研究した結果、特定の原料を特定の工程で処理して得られる特定性状を有する炭化水素油が前記課題を解決できることを見いだし、本発明を完成したものである。
すなわち、本発明は、初留点が140〜180℃、90容量%留出温度が200〜270℃、芳香族含有量が20容量%以下、直鎖飽和炭化水素含有量が25質量%以上、炭素数10〜15の直鎖飽和炭化水素含有量が20質量%以上、硫黄含有量が300質量ppm以下である炭化水素混合物を原料油として、下記工程(1)〜(4)を経て得られる炭化水素基材を含有してなる、引火点が40℃以上、初留点が145℃以上170℃以下、50容量%留出温度が180℃以上220℃以下、95容量%留出温度が220℃以上260℃以下、硫黄含有量が0.5質量ppm以下、煙点が26mm以上、芳香族含有量が10容量%以下、酸化開始温度が210℃以上であることを特徴とする改質器を配置した水素製造システムの水素製造用炭化水素油に関する。
工程(1):原料油を、反応温度250〜310℃、水素圧力5〜10MPa、LHSV0.5〜3.0h-1、水素/炭化水素容量比0.15〜0.6の条件で、Ni−W、Ni−Mo、Co−Mo、Co−W、およびNi−Co−Moから選択されるいずれかを含有する触媒により水素化脱硫処理する工程
工程(2):工程(1)で得られた水素化脱硫処理油から軽質分の1〜35容量%をストリップする工程
工程(3):軽質分をストリップした後、温度150℃〜250℃、圧力1〜5MPaの条件下でゼオライトにより直鎖飽和炭化水素を10容量%以上抽出除去する工程
工程(4):工程(3)で得られた炭化水素混合物および工程(2)でストリップした軽質分の60容量%以上を混合する工程
As a result of intensive studies, the present inventors have found that a hydrocarbon oil having a specific property obtained by treating a specific raw material in a specific process can solve the above problems, and has completed the present invention.
That is, the present invention has an initial boiling point of 140 to 180 ° C., a 90% by volume distillation temperature of 200 to 270 ° C., an aromatic content of 20% by volume or less, and a linear saturated hydrocarbon content of 25% by mass or more, It is obtained through the following steps (1) to (4) using a hydrocarbon mixture having a straight-chain saturated hydrocarbon content of 10 to 15 carbon atoms and a sulfur content of 300 mass ppm or less as a raw material oil. Containing a hydrocarbon base material, having a flash point of 40 ° C. or higher, an initial boiling point of 145 ° C. or higher and 170 ° C. or lower, a 50 vol% distillation temperature of 180 ° C. or higher and 220 ° C. or lower, and a 95 vol% distillation temperature of 220 ° C. A reformer characterized by having a sulfur content of 0.5 mass ppm or less, a smoke point of 26 mm or more, an aromatic content of 10 vol% or less, and an oxidation start temperature of 210 ° C or more. For hydrogen production of hydrogen production system Reduction on hydrocarbon oils.
Step (1): The raw material oil is prepared under the conditions of a reaction temperature of 250 to 310 ° C., a hydrogen pressure of 5 to 10 MPa, an LHSV of 0.5 to 3.0 h −1 , and a hydrogen / hydrocarbon capacity ratio of 0.15 to 0.6. Step of hydrodesulfurization treatment with a catalyst containing any one selected from -W, Ni-Mo, Co-Mo, Co-W, and Ni-Co-Mo Step (2): obtained in step (1) Step of stripping 1 to 35% by volume of light component from hydrodesulfurized oil Step (3): After stripping light component, linearized with zeolite under conditions of temperature 150 ° C to 250 ° C and pressure 1 to 5 MPa Step of extracting and removing 10% by volume or more of saturated hydrocarbon Step (4): Step of mixing the hydrocarbon mixture obtained in step (3) and 60% by volume or more of the light portion stripped in step (2)

また、本発明は、前記記載の炭化水素油と水蒸気との混合ガスを、周期律表第VIII族元素を活性金属として含む改質触媒の存在下、反応温度400〜1000℃、水と炭化水素油の混合比率(S/C)が1〜5モル/モルで反応させることにより、水素を主成分とする生成物を得る水蒸気改質型改質器を具備する水素製造システムに関する。   The present invention also provides a mixed gas of the hydrocarbon oil and steam described above in the presence of a reforming catalyst containing a Group VIII element of the periodic table as an active metal, a reaction temperature of 400 to 1000 ° C., water and hydrocarbon. The present invention relates to a hydrogen production system including a steam reforming reformer that obtains a product containing hydrogen as a main component by reacting at an oil mixing ratio (S / C) of 1 to 5 mol / mol.

また、本発明は、前記記載の炭化水素油、水蒸気及び空気の混合ガスを、周期律表第VIII族元素を活性金属として含む改質触媒の存在下、反応温度400〜1000℃、水と炭化水素油の混合比率(S/C)が0.5〜5モル/モル、酸素と炭化水素油の混合比率(O2/C)が0.1〜0.5モル/モルで反応させることにより、水素を主成分とする生成物を得る自己熱改質型改質器を具備する水素製造システムに関する。 The present invention also provides a mixture of the hydrocarbon oil, water vapor and air described above in the presence of a reforming catalyst containing a Group VIII element of the periodic table as an active metal, a reaction temperature of 400 to 1000 ° C., water and carbonization. By reacting at a mixing ratio of hydrogen oil (S / C) of 0.5 to 5 mol / mol and a mixing ratio of oxygen and hydrocarbon oil (O 2 / C) of 0.1 to 0.5 mol / mol. The present invention relates to a hydrogen production system including a self-thermal reforming reformer that obtains a product containing hydrogen as a main component.

以下、本発明について詳述する。
本発明の水素製造用炭化水素油は、特定の炭化水素混合物を原料油として用い、これを特定の工程で処理して得られる炭化水素基材を含有してなる、特定性状を有する炭化水素油である。
Hereinafter, the present invention will be described in detail.
The hydrocarbon oil for hydrogen production of the present invention is a hydrocarbon oil having a specific property, comprising a hydrocarbon base material obtained by treating a specific hydrocarbon mixture as a raw material oil and treating it in a specific process. It is.

原料油となる炭化水素混合物は、初留点が140〜180℃、90容量%留出温度が200〜270℃、芳香族含有量が20容量%以下、直鎖飽和炭化水素含有量が25質量%以上、炭素数10〜15の直鎖飽和炭化水素含有量が20質量%以上、硫黄含有量が300質量ppm以下であることが必要である。好ましくは、初留点が150〜170℃、90容量%留出温度が225〜245℃、芳香族含有量が15容量%以下、直鎖飽和炭化水素含有量が35容量%以上、炭素数10〜15の直鎖飽和炭化水素含有量が25容量%以上、硫黄含有量が200質量ppm以下である。原料油の性状が上述の範囲を外れると、本発明の炭化水素油が得にくくなるため好ましくない。   The hydrocarbon mixture used as the feedstock has an initial boiling point of 140 to 180 ° C., a 90% by volume distillation temperature of 200 to 270 ° C., an aromatic content of 20% by volume or less, and a linear saturated hydrocarbon content of 25 mass. % Or more, the linear saturated hydrocarbon content of 10 to 15 carbon atoms must be 20 mass% or more, and the sulfur content must be 300 mass ppm or less. Preferably, the initial boiling point is 150 to 170 ° C., the 90 vol% distillation temperature is 225 to 245 ° C., the aromatic content is 15 vol% or less, the linear saturated hydrocarbon content is 35 vol% or more, and the number of carbon atoms is 10 The linear saturated hydrocarbon content of -15 is 25% by volume or more, and the sulfur content is 200 ppm by mass or less. If the properties of the raw material oil are outside the above range, it is difficult to obtain the hydrocarbon oil of the present invention, which is not preferable.

ここでいう、初留点、90容量%留出温度は、JIS K2254「石油製品−蒸留試験方法−常圧法蒸留試験方法」により、芳香族含有量は、JIS K2536「石油製品−炭化水素タイプ試験方法」の蛍光指示薬吸着法により測定される値、直鎖飽和炭化水素含有量、炭素数10〜15の直鎖飽和炭化水素含有量は、GC−FIDを用いて測定される値(質量%)である。すなわち、カラムにはメチルシリコンのキャピラリーカラム(ULTRAALLOY−1)、キャリアガスにはヘリウムを、検出器には水素イオン検出器(FID)を用い、カラム長30m、キャリアガス流量1.0mL/min、分割比1:79、試料注入温度360℃、カラム昇温条件140℃→(8℃/min)→355℃、検出器温度360℃の条件で測定された値である。
硫黄含有量は、JIS K 2541「原油及び石油製品−硫黄分試験方法」により測定される値である。
Here, the initial boiling point and the 90 vol% distillation temperature are JIS K2254 "Petroleum products-Distillation test method-Atmospheric pressure distillation test method", and the aromatic content is JIS K2536 "Petroleum products-Hydrocarbon type test". Values measured by the fluorescent indicator adsorption method of method, linear saturated hydrocarbon content, and linear saturated hydrocarbon content of 10 to 15 carbon atoms are values (mass%) measured using GC-FID. It is. That is, a capillary column of methyl silicon (ULTRAALLOY-1) is used for the column, helium is used for the carrier gas, a hydrogen ion detector (FID) is used for the detector, a column length of 30 m, a carrier gas flow rate of 1.0 mL / min, and a splitting. It is a value measured under the conditions of ratio 1:79, sample injection temperature 360 ° C., column temperature rising condition 140 ° C. → (8 ° C./min)→355° C., detector temperature 360 ° C.
The sulfur content is a value measured according to JIS K 2541 “Crude oil and petroleum products—sulfur content test method”.

原料油は、以下の工程(1)〜(4)にて処理される。
工程(1)においては、前記原料油を、反応温度250〜310℃、水素圧力5〜10MPa、LHSV0.5〜3.0h-1、水素/炭化水素容量比0.15〜0.6の条件で、Ni−W、Ni−Mo、Co−Mo、Co−W、およびNi−Co−Moから選択されるいずれかを含有する触媒により水素化脱硫処理を行う。
水素化脱硫処理の反応温度は、250〜310℃であり、好ましくは280〜305℃である。反応温度が250℃未満であると十分な水素化脱硫反応速度が得られず、一方、310℃を超えると水素化脱硫反応が反応平衡の点で不十分となる。
水素化脱硫処理における水素圧力は、5〜10MPaであり、好ましくは7〜9MPaである。
水素化脱硫処理におけるLHSVは0.5〜3.0h-1であり、好ましくは1〜2h-1である。LHSVは低いほど反応に有利であるが、0.5h-1未満の場合には、極めて大きな反応塔容積が必要となる。
また、水素/炭化水素容量比は、0.15〜0.6であり、好ましくは0.2〜0.4である。
水素圧力が5MPa未満の場合、及び水素/炭化水素容量比が0.15未満の場合には、脱硫反応又は水素化反応の促進効果が不十分となる。また、水素圧力が10MPaを超える場合、及び水素/炭化水素容量比が0.6を超える場合には、装置コストが増大してしまう。
The raw material oil is processed in the following steps (1) to (4).
In step (1), the raw material oil is subjected to a reaction temperature of 250 to 310 ° C., a hydrogen pressure of 5 to 10 MPa, LHSV of 0.5 to 3.0 h −1 , and a hydrogen / hydrocarbon capacity ratio of 0.15 to 0.6. Then, the hydrodesulfurization treatment is performed with a catalyst containing any one selected from Ni-W, Ni-Mo, Co-Mo, Co-W, and Ni-Co-Mo.
The reaction temperature of the hydrodesulfurization treatment is 250 to 310 ° C, preferably 280 to 305 ° C. When the reaction temperature is less than 250 ° C., a sufficient hydrodesulfurization reaction rate cannot be obtained. On the other hand, when the reaction temperature exceeds 310 ° C., the hydrodesulfurization reaction becomes insufficient in terms of reaction equilibrium.
The hydrogen pressure in the hydrodesulfurization treatment is 5 to 10 MPa, preferably 7 to 9 MPa.
The LHSV in the hydrodesulfurization treatment is 0.5 to 3.0 h −1 , preferably 1 to 2 h −1 . A lower LHSV is advantageous for the reaction, but if it is less than 0.5 h −1 , a very large reaction column volume is required.
The hydrogen / hydrocarbon capacity ratio is 0.15 to 0.6, preferably 0.2 to 0.4.
When the hydrogen pressure is less than 5 MPa and when the hydrogen / hydrocarbon capacity ratio is less than 0.15, the effect of promoting the desulfurization reaction or the hydrogenation reaction becomes insufficient. In addition, when the hydrogen pressure exceeds 10 MPa and the hydrogen / hydrocarbon capacity ratio exceeds 0.6, the apparatus cost increases.

水素化脱硫処理に用いる触媒は、触媒の活性金属としてNi−W、Ni−Mo、Co−Mo、Co−W、およびNi−Co−Moから選択されるいずれかを含有することが必要である。前記活性金属は、好ましくは多孔質担体に担持して使用される。多孔質担体としては無機酸化物が好ましく用いられる。具体的な無機酸化物としては、アルミナ、チタニア、ジルコニア、ボリア、シリカ、あるいはゼオライトが挙げられ、このうちチタニア、ジルコニア、ボリア、シリカ、ゼオライトのうち少なくとも1種類とアルミナによって構成されているものが本発明において好適に用いられる。上述の活性金属の担持量は特に限定されないが、触媒質量に対し金属酸化物量合計で20〜35質量%であることが望ましい。
触媒は水素および硫黄化合物により予備硫化処理を施した後に用いるのが好ましい。一般的には水素および硫黄化合物を含むガスを流通し、200℃以上の熱を所定の手順に従って与えることにより触媒上の活性金属を予備硫化し、水素化および脱硫活性を発現することになる。
The catalyst used for the hydrodesulfurization treatment needs to contain any one selected from Ni—W, Ni—Mo, Co—Mo, Co—W, and Ni—Co—Mo as an active metal of the catalyst. . The active metal is preferably used by being supported on a porous carrier. An inorganic oxide is preferably used as the porous carrier. Specific examples of the inorganic oxide include alumina, titania, zirconia, boria, silica, and zeolite. Among these, at least one of titania, zirconia, boria, silica, and zeolite and an alumina is used. It is suitably used in the present invention. The amount of the above-mentioned active metal supported is not particularly limited, but the total amount of metal oxide is preferably 20 to 35% by mass with respect to the catalyst mass.
The catalyst is preferably used after presulfiding with hydrogen and a sulfur compound. In general, a gas containing hydrogen and a sulfur compound is circulated, and heat of 200 ° C. or higher is given in accordance with a predetermined procedure to presulfurize the active metal on the catalyst and develop hydrogenation and desulfurization activities.

工程(1)の水素化脱硫処理油は、工程(2)として、軽質分(一般的には、沸点200℃以下)をストリップ(除去)する。水素化脱硫処理油を基準として、1〜35容量%であり、好ましくは10〜35容量%であり、より好ましくは20〜35容量%である。ストリップを行わない場合、またはストリップ量が十分でない場合、後段の直鎖飽和炭化水素の除去装置の負荷が上がり精製効率が低下する。また、ストリップ量が過大(35容量%超)な場合、ストリップ処理に要する時間が増加する。   The hydrodesulfurized oil in step (1) strips (removes) light components (generally, boiling point of 200 ° C. or lower) as step (2). It is 1-35 volume% on the basis of hydrodesulfurization process oil, Preferably it is 10-35 volume%, More preferably, it is 20-35 volume%. When stripping is not performed or when the strip amount is not sufficient, the load of the subsequent straight-chain saturated hydrocarbon removing device increases and the purification efficiency decreases. Further, when the strip amount is excessive (over 35% by volume), the time required for strip processing increases.

工程(3)では、工程(1)の水素化脱硫処理油を工程(2)で軽質分をストリップ(除去)した後、温度150℃〜250℃、圧力1〜5MPaの条件下でゼオライトにより直鎖飽和炭化水素を10容量%以上抽出除去する。
直鎖飽和炭化水素の除去の抽出温度は150℃〜250℃であり、好ましくは180〜200℃である。抽出温度が150℃未満の場合、十分な直鎖飽和炭化水素の除去速度が得られない。一方、250℃を超えると、直鎖飽和炭化水素の除去効率が低下する。また、この時の圧力は、1〜5MPaであり、好ましくは1.5〜3MPaである。圧力が1.5MPa未満であると十分な直鎖飽和炭化水素の除去速度が得られない。一方、3MPaを超えると十分な直鎖飽和炭化水素の除去速度が得られない。直鎖飽和炭化水素の除去に使用するゼオライトは特には限定されないが一般的にはA型ゼオライトが使用され、その中でもモレキュラーシーブ5Aが好ましい。以上の条件で、直鎖飽和炭化水素を10容量%以上、好ましくは20容量%以上抽出除去することが必要である。
In step (3), the hydrodesulfurized oil from step (1) is stripped (removed) of light components in step (2), and then straightened with zeolite under conditions of a temperature of 150 ° C. to 250 ° C. and a pressure of 1 to 5 MPa. Extract and remove 10% by volume or more of chain saturated hydrocarbons.
The extraction temperature for the removal of the linear saturated hydrocarbon is 150 to 250 ° C, preferably 180 to 200 ° C. When the extraction temperature is less than 150 ° C., a sufficient removal rate of linear saturated hydrocarbon cannot be obtained. On the other hand, when it exceeds 250 degreeC, the removal efficiency of a linear saturated hydrocarbon will fall. Moreover, the pressure at this time is 1-5 MPa, Preferably it is 1.5-3 MPa. If the pressure is less than 1.5 MPa, a sufficient removal rate of linear saturated hydrocarbons cannot be obtained. On the other hand, if it exceeds 3 MPa, a sufficient removal rate of linear saturated hydrocarbons cannot be obtained. The zeolite used for the removal of the linear saturated hydrocarbon is not particularly limited, but generally, A-type zeolite is used, and among these, the molecular sieve 5A is preferable. Under the above conditions, it is necessary to extract and remove linear saturated hydrocarbons by 10 volume% or more, preferably 20 volume% or more.

工程(4)は、工程(3)で直鎖飽和炭化水素を10容量%以上抽出除去して得られた炭化水素混合物と、工程(2)でストリップした軽質分を混合する。工程(2)でストリップした軽質分の混合量は60容量%以上であり、好ましくは70容量%以上である。   In the step (4), the hydrocarbon mixture obtained by extracting and removing 10% by volume or more of the linear saturated hydrocarbon in the step (3) is mixed with the light component stripped in the step (2). The mixing amount of the light component stripped in the step (2) is 60% by volume or more, and preferably 70% by volume or more.

本発明の水素製造用炭化水素油は、上記の原料油を工程(1)〜(4)で処理して得られる炭化水素基材を含有してなり、以下の特定性状を有する炭化水素油である。   The hydrocarbon oil for hydrogen production of the present invention comprises a hydrocarbon base material obtained by treating the above-mentioned raw material oil in steps (1) to (4), and is a hydrocarbon oil having the following specific properties. is there.

本発明の水素製造用炭化水素油(以下、本発明の炭化水素油ともいう。)の引火点は引火性、取扱い易さの観点から、40℃以上であることが必要であり、42℃以上が好ましく、45℃以上がより好ましい。
なお、ここでいう引火点は、JIS K2265「原油及び石油製品−引火点試験方法」によって測定される値である。
The flash point of the hydrocarbon oil for hydrogen production of the present invention (hereinafter also referred to as the hydrocarbon oil of the present invention) needs to be 40 ° C. or higher from the viewpoint of flammability and ease of handling, and 42 ° C. or higher. Is preferable, and 45 degreeC or more is more preferable.
The flash point here is a value measured by JIS K2265 “Crude oil and petroleum products—flash point test method”.

本発明の炭化水素油の初留点(IBP)の下限は145℃以上であることが必要であり、150℃以上が好ましい。一方、上限は170℃以下であることが必要であり、165℃以下が好ましく、160℃以下がより好ましく、155℃以下がさらに好ましい。IBPが145℃より低いと引火性、蒸発ガス(THC)の増加、取り扱い性の観点から好ましくなく、165℃を超えると水素製造システムの始動時間悪化の理由で好ましくない。   The lower limit of the initial boiling point (IBP) of the hydrocarbon oil of the present invention needs to be 145 ° C. or higher, preferably 150 ° C. or higher. On the other hand, the upper limit needs to be 170 ° C. or lower, preferably 165 ° C. or lower, more preferably 160 ° C. or lower, and further preferably 155 ° C. or lower. If the IBP is lower than 145 ° C., it is not preferable from the viewpoints of flammability, increased evaporation gas (THC), and handleability.

本発明の炭化水素油の50容量%留出温度(T50)の下限は、180℃以上であることが必要であり、185℃以上が好ましく、190℃以上がより好ましい。一方、上限は220℃以下であることが必要であり、215℃以下が好ましく、210℃以下がより好ましい。T50が180℃より低いと重量あたりの水素発生量、二酸化炭素発生量あたりの水素発生量が減少するため好ましくなく、220℃を超えると水素製造システムの始動時間悪化の理由で好ましくない。   The lower limit of the 50 vol% distillation temperature (T50) of the hydrocarbon oil of the present invention is required to be 180 ° C or higher, preferably 185 ° C or higher, and more preferably 190 ° C or higher. On the other hand, the upper limit needs to be 220 ° C. or lower, preferably 215 ° C. or lower, and more preferably 210 ° C. or lower. If T50 is lower than 180 ° C., the amount of hydrogen generated per weight and the amount of hydrogen generated per carbon dioxide generated are not preferable, and if it exceeds 220 ° C., it is not preferable because the start time of the hydrogen production system is deteriorated.

本発明の炭化水素油の95容量%留出温度(T95)の下限は、220℃以上であることが必要であり、225℃以上が好ましく、230℃以上がより好ましい。一方、上限は260℃以下であることが必要であり、255℃以下が好ましく、250℃以下がより好ましい。T95が220℃より低いと重量あたりの水素発生量、二酸化炭素発生量あたりの水素発生量が減少するため好ましくなく、260℃を超えると排出ガス中のTHCが増加するため好ましくない。   The lower limit of the 95 vol% distillation temperature (T95) of the hydrocarbon oil of the present invention needs to be 220 ° C. or higher, preferably 225 ° C. or higher, and more preferably 230 ° C. or higher. On the other hand, the upper limit needs to be 260 ° C. or less, preferably 255 ° C. or less, and more preferably 250 ° C. or less. When T95 is lower than 220 ° C., the amount of hydrogen generated per weight and the amount of hydrogen generated per carbon dioxide generated decrease, which is not preferable. When the temperature exceeds 260 ° C., THC in the exhaust gas increases, which is not preferable.

また、本発明の炭化水素油のIBP、T50、T95以外の蒸留性状は特に制限はないが、10容量%留出温度(T10)は160℃以上190℃以下が好ましい。引火性が高くなり、蒸発ガス(THC)が発生しやすくなるため、165℃以上がより好ましく、170℃以上がさらに好ましい。一方、水素製造システムの始動時間悪化の理由から185℃以下がより好ましく、180℃以下がさらに好ましい。
90容量%留出温度(T90)は210℃以上255℃以下が好ましい。重量あたりの水素発生量、二酸化炭素発生量あたりの水素発生量が減少するため、220℃以上がより好ましく、230℃以上がさらに好ましい。一方、排出ガス中のTHCが増加するため245℃以下がより好ましく、240℃以下がさらに好ましい。
終点(EP)は230℃以上280℃以下が好ましい。重量あたりの水素発生量、二酸化炭素発生量あたりの水素発生量が減少するため240℃以上がより好ましく、245℃以上がさらに好ましい。一方、排出ガス中のTHCが増加するため、270℃以下がより好ましく、260℃以下がさらに好ましい。
なお、ここでいうIBP、T10、T50、T90、T95、及びEPは、JIS K2254「石油製品−蒸留試験方法−常圧法蒸留試験方法」によって測定される値である。
The distillation properties of the hydrocarbon oil of the present invention other than IBP, T50, and T95 are not particularly limited, but the 10 vol% distillation temperature (T10) is preferably 160 ° C or higher and 190 ° C or lower. Since flammability becomes high and evaporative gas (THC) is easily generated, 165 ° C. or higher is more preferable, and 170 ° C. or higher is more preferable. On the other hand, 185 ° C. or lower is more preferable, and 180 ° C. or lower is more preferable because of the deterioration of the start time of the hydrogen production system.
The 90 vol% distillation temperature (T90) is preferably 210 ° C or higher and 255 ° C or lower. Since the hydrogen generation amount per weight and the hydrogen generation amount per carbon dioxide generation amount are reduced, 220 ° C. or higher is more preferable, and 230 ° C. or higher is more preferable. On the other hand, since THC in exhaust gas increases, 245 ° C. or lower is more preferable, and 240 ° C. or lower is further preferable.
The end point (EP) is preferably 230 ° C. or higher and 280 ° C. or lower. Since the hydrogen generation amount per weight and the hydrogen generation amount per carbon dioxide generation amount are decreased, 240 ° C. or higher is more preferable, and 245 ° C. or higher is further preferable. On the other hand, since THC in exhaust gas increases, 270 ° C. or lower is more preferable, and 260 ° C. or lower is further preferable.
Here, IBP, T10, T50, T90, T95, and EP are values measured according to JIS K2254 “Petroleum products—Distillation test method—Atmospheric pressure distillation test method”.

本発明の炭化水素油の硫黄含有量は、脱硫率、脱硫触媒の耐久性、改質触媒の耐久性、改質反応性の低下、二酸化炭素発生量当り水素発生量の点から0.5質量ppm以下であることが必要であり、0.3質量ppm以下が好ましく、0.2質量ppm以下がより好ましい。
ここで、硫黄含有量とは、ASTM D4045−96「Standard Test Method for Sulfur in Petroleum Products by Hydrogenolysis and Rateometric Colorimetry」により測定される値である。
The sulfur content of the hydrocarbon oil of the present invention is 0.5 mass in terms of the desulfurization rate, the durability of the desulfurization catalyst, the durability of the reforming catalyst, the reduction in reforming reactivity, and the amount of hydrogen generated per carbon dioxide generation. It is necessary to be not more than ppm, preferably not more than 0.3 mass ppm, more preferably not more than 0.2 mass ppm.
Here, the sulfur content is a value measured by ASTM D 4045-96 “Standard Test Method for Sulfur in Petroleum Products by Hydrogenolysis and Rateometric Colorimetry”.

本発明の炭化水素油の煙点は、重量当りの水素発生量が多いこと、二酸化炭素発生量当りの水素発生量が多いこと、排出ガス中のTHCが少ないこと、システムの起動時間が短いこと、改質触媒の劣化が小さく初期性能を長時間持続できることなどから、26mm以上が必要であり、27mm以上が好ましく、28mm以上がより好ましい。   The smoke point of the hydrocarbon oil of the present invention has a large amount of hydrogen generation per weight, a large amount of hydrogen generation per carbon dioxide generation amount, a low THC in exhaust gas, and a short system start-up time. Further, since the deterioration of the reforming catalyst is small and the initial performance can be maintained for a long time, the thickness is required to be 26 mm or more, preferably 27 mm or more, and more preferably 28 mm or more.

本発明の炭化水素油の芳香族含有量は、重量当りの水素発生量が多いこと、二酸化炭素発生量当りの水素発生量が多いこと、排出ガス中のTHCが少ないこと、システム起動時間が短いこと、改質触媒の劣化が小さく初期性能が長時間持続できることなどの観点から、10容量%以下であることが必要であり、8容量%以下が好ましい。   The aromatic content of the hydrocarbon oil of the present invention includes a large amount of hydrogen generation per weight, a large amount of hydrogen generation per carbon dioxide generation amount, a small amount of THC in the exhaust gas, and a short system startup time. In view of the fact that the deterioration of the reforming catalyst is small and the initial performance can be sustained for a long time, it is necessary to be 10% by volume or less, and preferably 8% by volume or less.

本発明の炭化水素油のオレフィン含有量については何ら制限はないが、重量当りの水素発生量が多いこと、二酸化炭素発生量当りの水素発生量が多いこと、排出ガス中のTHCが少ないこと、システム起動時間が短いこと、改質触媒の劣化が小さく初期性能が長時間持続できること、貯蔵安定性が良いことなどの観点から、5容量%以下であることが好ましく、1容量%以下がより好ましく、0.5容量%以下がさらに好ましい。   There is no limitation on the olefin content of the hydrocarbon oil of the present invention, but there is a large amount of hydrogen generation per weight, a large amount of hydrogen generation per carbon dioxide generation amount, a small amount of THC in the exhaust gas, From the viewpoints of short system start-up time, low deterioration of the reforming catalyst and sustaining initial performance for a long time, and good storage stability, it is preferably 5% by volume or less, more preferably 1% by volume or less. More preferably, it is 0.5 volume% or less.

本発明の炭化水素油の飽和炭化水素含有量(飽和分とナフテン分の総量)については何ら制限はないが、重量当りの水素発生量が多いこと、二酸化炭素発生量当りの水素発生量が多いこと、排出ガス中のTHCが少ないこと、システム起動時間が短いことなどの観点から、85容量%以上であることが好ましく、90容量%以上がより好ましく、95容量%以上が最も好ましい。
なお、上述の芳香族含有量、オレフィン含有量、飽和炭化水素含有量は、JIS K2536「石油製品−炭化水素タイプ試験方法」の蛍光指示薬吸着法により測定される値である。
There is no restriction on the saturated hydrocarbon content (total amount of saturated and naphthene) of the hydrocarbon oil of the present invention, but there is a large amount of hydrogen generated per weight and a large amount of hydrogen generated per carbon dioxide generated. From the viewpoints of low THC in the exhaust gas and short system start-up time, it is preferably 85% by volume or more, more preferably 90% by volume or more, and most preferably 95% by volume or more.
The above-mentioned aromatic content, olefin content, and saturated hydrocarbon content are values measured by the fluorescent indicator adsorption method of JIS K2536 “Petroleum products-hydrocarbon type test method”.

本発明の炭化水素油のナフテン系炭化水素含有量については何ら制限はないが、ナフテン系炭化水素の含有量が低くなると、脱硫率の低下、脱硫触媒の耐久性の低下、改質触媒の耐久性の低下、改質反応性の低下、二酸化炭素発生量あたり水素発生量の低下などの抑制の観点から30容量%以上であることが好ましく、40容量%以上がより好ましく、45容量%以上がさらに好ましい。
なお、ここでいうナフテン系炭化水素の含有量は、ASTM D2425(Standard Test Method for Hydrocarbon Types in Middle Distillates by Mass Spectrometry)に準拠した方法にて測定される。
There is no limitation on the naphthenic hydrocarbon content of the hydrocarbon oil of the present invention, but when the naphthenic hydrocarbon content decreases, the desulfurization rate decreases, the desulfurization catalyst durability decreases, and the reforming catalyst durability increases. From the viewpoint of suppression such as reduction in property, reduction in reforming reactivity, reduction in hydrogen generation amount per carbon dioxide generation amount, it is preferably 30% by volume or more, more preferably 40% by volume or more, and 45% by volume or more. Further preferred.
The content of naphthenic hydrocarbon referred to here is measured by a method based on ASTM D2425 (Standard Test Method for Hydrocarbon Types in Middle Distillates by Mass Spectrometry).

本発明の炭化水素油の酸化開始温度は、210℃以上であることが必要であり、212℃以上が好ましく、215℃以上がより好ましい。酸化開始温度が210℃未満の場合、改質触媒のコーキングによる水素製造装置の耐久性悪化の点から好ましくない。
ここでいう酸化開始温度とは、高圧示差走査熱量計(High-Pressure Differential Scanning Calorimeter、以下、「高圧DSC」という。)を用いて測定されるものである。より具体的には、DSC加圧セル(例えばメトラードレド社製)に試料を導入し、4MPaの空気雰囲気下、試料を30℃から500℃まで20℃/分で昇温することにより、発熱量と温度との相関曲線が得られる。そして、かかる相関曲線の最初に発現する発熱ピークに基づいて酸化開始温度が決定される。
図1は高圧DSCを用いて測定される発熱量と温度との相関曲線の一例を示すグラフであり、後述する炭化水素油Bについての測定結果を示したものである。図1中、縦軸は発熱量、横軸は温度である。また、図2は図1に示した曲線の微分曲線を示すグラフである。図1中、直線l1は単位時間当たりの発熱量が最大となる点(図2中の点Bに相当する点)における接線を示している。また、図1中のl2は発熱の開始点(曲線が立ち上がる点)における接線を示している。そして、l1とl2との交点Aに対応する温度が本発明で規定する酸化開始温度である。
The oxidation start temperature of the hydrocarbon oil of the present invention needs to be 210 ° C. or higher, preferably 212 ° C. or higher, and more preferably 215 ° C. or higher. When the oxidation start temperature is less than 210 ° C., it is not preferable from the viewpoint of deterioration in durability of the hydrogen production apparatus due to coking of the reforming catalyst.
The oxidation start temperature here is measured using a high-pressure differential scanning calorimeter (hereinafter referred to as “high-pressure DSC”). More specifically, the sample is introduced into a DSC pressure cell (for example, manufactured by Metradred), and the sample is heated from 30 ° C. to 500 ° C. at a rate of 20 ° C./minute in an air atmosphere of 4 MPa. A correlation curve with temperature is obtained. The oxidation start temperature is determined based on the exothermic peak that appears first in the correlation curve.
FIG. 1 is a graph showing an example of a correlation curve between a calorific value and temperature measured using a high-pressure DSC, and shows a measurement result of hydrocarbon oil B described later. In FIG. 1, the vertical axis represents the amount of heat generated, and the horizontal axis represents the temperature. FIG. 2 is a graph showing a differential curve of the curve shown in FIG. In FIG. 1, a straight line l 1 indicates a tangent at a point where the amount of heat generation per unit time is maximum (a point corresponding to the point B in FIG. 2). Further, l 2 in FIG. 1 indicates a tangent at the start point of heat generation (a point at which the curve rises). The temperature corresponding to the intersection A between l 1 and l 2 is the oxidation start temperature defined in the present invention.

本発明の水素製造用炭化水素油としては、前述の工程(1)〜(4)を経て得られる炭化水素基材を使用することができる。また、前記した性状が維持される範囲で、当該炭化水素基材に、他の水素製造用基材を適宜混合することもできる。混合できる他の基材の配合割合は、炭化水素油全量基準で20容量%以下であることが好ましく、15容量%以下であることがより好ましく、10容量%以下であることがさらに好ましい。他の基材の含有量が20容量%を超えると、運転初期の水素分に富む改質ガスへの転化率の低下および100時間運転後の転化率の変化の点で好ましくない。   As the hydrocarbon oil for hydrogen production of the present invention, a hydrocarbon base material obtained through the above-described steps (1) to (4) can be used. In addition, other hydrogen production base materials can be appropriately mixed with the hydrocarbon base material as long as the above properties are maintained. The blending ratio of other base materials that can be mixed is preferably 20% by volume or less, more preferably 15% by volume or less, and still more preferably 10% by volume or less, based on the total amount of hydrocarbon oil. If the content of the other substrate exceeds 20% by volume, it is not preferable in terms of a decrease in the conversion rate to a reformed gas rich in hydrogen at the beginning of operation and a change in the conversion rate after 100 hours of operation.

本発明の炭化水素油は、後述の水蒸気改質型改質器もしくは自己熱改質型改質器を具備する水素製造システムの原料として使用される。改質器は、炭化水素を改質して水素を得るための装置であり、本発明の炭化水素油を用いることで、改質器の耐久性をより高めることができ、ひいては水素製造システムとしての耐久性が向上する。
すなわち、本発明の水素製造システムは以下のものである。
The hydrocarbon oil of the present invention is used as a raw material for a hydrogen production system including a steam reforming reformer or an autothermal reforming reformer described later. The reformer is a device for reforming hydrocarbons to obtain hydrogen, and by using the hydrocarbon oil of the present invention, the reformer can be further improved in durability, and as a hydrogen production system. Improves durability.
That is, the hydrogen production system of the present invention is as follows.

(1)本発明の炭化水素油と水蒸気との混合ガスを、周期律表第VIII族元素を活性金属として含む改質触媒の存在下、反応温度400〜1000℃、水と炭化水素油の混合比率(S/C)が1〜5モル/モルで反応させることにより、水素を主成分とする生成物を得る水蒸気改質型改質器を具備する水素製造システム。 (1) Mixing of water and hydrocarbon oil at a reaction temperature of 400 to 1000 ° C. in the presence of a reforming catalyst containing a group VIII element of the periodic table as an active metal. A hydrogen production system comprising a steam reforming reformer that obtains a product containing hydrogen as a main component by reacting at a ratio (S / C) of 1 to 5 mol / mol.

(2)本発明の炭化水素油、水蒸気及び空気の混合ガスを、周期律表第VIII族元素を活性金属として含む改質触媒の存在下、反応温度400〜1000℃、水と炭化水素油の混合比率(S/C)が0.5〜5モル/モル、酸素と炭化水素油の混合比率(O2/C)が0.1〜0.5モル/モルで反応させることにより、水素を主成分とする生成物を得る自己熱改質型改質器を具備する水素製造システム。 (2) A mixture gas of hydrocarbon oil, water vapor and air of the present invention, in the presence of a reforming catalyst containing a group VIII element of the periodic table as an active metal, reaction temperature of 400 to 1000 ° C., water and hydrocarbon oil By reacting at a mixing ratio (S / C) of 0.5 to 5 mol / mol and a mixing ratio of oxygen and hydrocarbon oil (O 2 / C) of 0.1 to 0.5 mol / mol, hydrogen is reacted. A hydrogen production system including a self-thermal reforming reformer that obtains a product having a main component.

なお、本発明でいう「水と炭化水素油の混合比率(S/C)」において、Sは水(分子)のモル数、Cは炭化水素油(分子)中の炭素のモル数を意味する。従って、「水と炭化水素油の混合比率(S/C)」の求め方に関し例を挙げて説明すると、水(分子):6モルと、炭化水素油にエタン(C26):1モルを用いた場合、水と炭化水素油の混合比率(S/C)は、炭化水素油であるエタン:1モル中の炭素のモル数は2モルであるので、「S/C=6モル/2モル=3」となる。
また、同様に、本発明でいう「酸素と炭化水素油の混合比率(O2/C)」において、O2は酸素(分子)のモル数、Cは炭化水素油(分子)中の炭素のモル数を意味する。従って、「酸素と炭化水素油の混合比率(O2/C)」の求め方に関し例を挙げて説明すると、酸素(分子):0.6モルと、炭化水素油にエタン(C26):1モルを用いた場合、酸素と炭化水素油の混合比率(O2/C)は、炭化水素油であるエタン:1モル中の炭素のモル数は2モルであるので、「O2/C=0.6モル/2モル=0.3」となる。
In the “mixing ratio of water and hydrocarbon oil (S / C)” in the present invention, S means the number of moles of water (molecule), and C means the number of moles of carbon in the hydrocarbon oil (molecule). . Accordingly, an example of how to obtain the “mixing ratio of water and hydrocarbon oil (S / C)” will be described. Water (molecule): 6 mol, and hydrocarbon oil to ethane (C 2 H 6 ): 1 When moles are used, the mixing ratio (S / C) of water and hydrocarbon oil is ethane, which is a hydrocarbon oil: The number of moles of carbon in 1 mole is 2 moles, so “S / C = 6 moles”. / 2 mol = 3 ”.
Similarly, in the “mixing ratio of oxygen and hydrocarbon oil (O 2 / C)” referred to in the present invention, O 2 is the number of moles of oxygen (molecules), and C is the carbon in the hydrocarbon oil (molecules). It means the number of moles. Accordingly, an example of how to obtain the “mixing ratio of oxygen and hydrocarbon oil (O 2 / C)” will be described. Oxygen (molecules): 0.6 mol, ethane (C 2 H 6 ) When 1 mol is used, the mixing ratio of oxygen and hydrocarbon oil (O 2 / C) is ethane, which is a hydrocarbon oil. Since the number of moles of carbon in 1 mol is 2 mol, “O 2 /C=0.6 mol / 2 mol = 0.3 ”.

水蒸気改質型改質器に用いる触媒の活性金属は、炭化水素化合物より水素を得るための改質反応性の点で、ルテニウム、ロジウム、白金等が好ましく、中でもルテニウム、ロジウムが特に好ましい。また、反応温度は、改質反応性の点で400℃以上が好ましく、500℃以上がさらに好ましく、触媒上のコーキング発生量抑制の点で1000℃以下が好ましく、800℃以下がさらに好ましい。水と炭化水素油の混合比率(S/C)は触媒上のコーキング発生量抑制の点で1モル/モル以上が好ましく、2モル/モル以上がさらに好ましく、改質器効率の点から5モル/モル以下が好ましく、4モル/モル以下がさらに好ましい。   As the active metal of the catalyst used in the steam reforming reformer, ruthenium, rhodium, platinum and the like are preferable, and ruthenium and rhodium are particularly preferable in terms of reforming reactivity for obtaining hydrogen from the hydrocarbon compound. In addition, the reaction temperature is preferably 400 ° C. or higher, more preferably 500 ° C. or higher in terms of reforming reactivity, 1000 ° C. or lower is preferable, and 800 ° C. or lower is more preferable in terms of suppressing the amount of coking on the catalyst. The mixing ratio of water and hydrocarbon oil (S / C) is preferably 1 mol / mol or more, more preferably 2 mol / mol or more from the viewpoint of suppressing the amount of coking on the catalyst, and 5 mol from the viewpoint of reformer efficiency. / Mol or less is preferable, and 4 mol / mol or less is more preferable.

自己熱改質型改質器に用いる触媒の活性金属は、炭化水素化合物より水素を得るための改質反応性の点で、ルテニウム、ロジウム、白金等が好ましく、中でもルテニウム、ロジウムが特に好ましい。また、反応温度は、改質反応性の点で400℃以上が好ましく、500℃以上がさらに好ましく、触媒上のコーキング発生量抑制の点で1000℃以下が好ましく、800℃以下がさらに好ましい。水と炭化水素油の混合比率(S/C)は触媒上のコーキング発生量抑制の点で0.5モル/モル以上が好ましく、1モル/モル以上がさらに好ましく、改質器効率の点から5モル/モル以下が好ましく、3モル/モル以下がさらに好ましい。酸素と炭化水素油の混合比率(O2/C)は改質反応性の点で0.1モル/モル以上が好ましく、0.2モル/モル以上がさらに好ましく、触媒上のコーキング発生量抑制の点で0.5モル/モル以下が好ましく、0.4モル/モル以下がさらに好ましい。 The active metal of the catalyst used in the autothermal reforming reformer is preferably ruthenium, rhodium, platinum or the like in terms of reforming reactivity for obtaining hydrogen from a hydrocarbon compound, and particularly preferably ruthenium or rhodium. In addition, the reaction temperature is preferably 400 ° C. or higher, more preferably 500 ° C. or higher in terms of reforming reactivity, 1000 ° C. or lower is preferable, and 800 ° C. or lower is more preferable in terms of suppressing the amount of coking on the catalyst. The mixing ratio (S / C) of water and hydrocarbon oil is preferably 0.5 mol / mol or more, more preferably 1 mol / mol or more from the viewpoint of suppressing the amount of coking on the catalyst, and from the viewpoint of reformer efficiency. 5 mol / mol or less is preferable and 3 mol / mol or less is more preferable. The mixing ratio of oxygen and hydrocarbon oil (O 2 / C) is preferably 0.1 mol / mol or more, more preferably 0.2 mol / mol or more in terms of reforming reactivity, and the amount of coking on the catalyst is suppressed. In this respect, 0.5 mol / mol or less is preferable, and 0.4 mol / mol or less is more preferable.

本発明の水素製造システムにおいては、改質器と組み合わせて、他の機器を具備するのが好ましい。改質器と組み合わされる他の機器については特に限定されるものではないが、例えば、脱硫器、一酸化炭素浄化器などが挙げられ、その配置としては、例えば、(a)脱硫器・改質器・一酸化炭素浄化器、(b)脱硫器・改質器・脱硫器(再脱硫)・一酸化炭素浄化器、(c)改質器・脱硫器・一酸化炭素浄化器などを挙げることができる。   In the hydrogen production system of the present invention, it is preferable to provide other equipment in combination with the reformer. The other equipment combined with the reformer is not particularly limited, and examples thereof include a desulfurizer, a carbon monoxide purifier, and the like, for example, (a) Desulfurizer / reformer. , Carbon monoxide purifier, (b) desulfurizer, reformer, desulfurizer (re-desulfurization), carbon monoxide purifier, (c) reformer, desulfurizer, carbon monoxide purifier, etc. Can do.

脱硫器は、炭化水素油中の硫黄分を除去する装置であり、本発明においては、触媒として銅−亜鉛系、ニッケル系等を用い、反応条件として反応温度20〜300℃、LHSV0.1〜10h-1、反応圧力1MPa未満で脱硫処理を行う脱硫器などが挙げられる。 A desulfurizer is an apparatus for removing sulfur content in hydrocarbon oil. In the present invention, a copper-zinc system, a nickel system, or the like is used as a catalyst, a reaction temperature is 20 to 300 ° C., and an LHSV is 0.1 to 0.1. Examples thereof include a desulfurizer that performs desulfurization treatment at 10 h −1 and a reaction pressure of less than 1 MPa.

一酸化炭素浄化器は、改質器で生成したガスに含まれ、燃料電池の触媒毒となる一酸化炭素の除去を行うものである。一酸化炭素浄化器としては次のような例が挙げられる。
(1)改質器より得られた改質ガスと加熱気化した水蒸気を混合し、触媒として銅、亜鉛、白金、ルテニウム、ロジウム等を用い、反応温度200〜500℃、ガス空間速度1000〜10000h-1、反応圧力1MPa未満、水と改質ガス中の一酸化炭素の比0.5〜3.0モル/モルの反応条件により、一酸化炭素と水蒸気とから二酸化炭素と水素を生成物として得る水性ガスシフト反応器。
(2)改質器より得られた改質ガスと圧縮空気とを混合し、触媒として銅、ニッケル、白金、ルテニウム、ロジウム等を用い、反応温度100〜300℃、ガス空間速度1000〜10000h-1、反応圧力1MPa未満、空気と改質ガス中の一酸化炭素の比0.5〜3.0モル/モルの反応条件により、一酸化炭素と空気とから一酸化炭素を二酸化炭素に変換する選択酸化反応器。
The carbon monoxide purifier removes carbon monoxide, which is contained in the gas generated by the reformer and becomes the catalyst poison of the fuel cell. Examples of carbon monoxide purifiers include the following.
(1) The reformed gas obtained from the reformer is mixed with steam vaporized by heating, and copper, zinc, platinum, ruthenium, rhodium or the like is used as a catalyst, the reaction temperature is 200 to 500 ° C., and the gas space velocity is 1000 to 10,000 h. -1 , carbon dioxide and hydrogen from carbon monoxide and water vapor as a product under reaction conditions of reaction pressure of less than 1 MPa and a ratio of water and carbon monoxide in the reformed gas of 0.5 to 3.0 mol / mol Obtain water gas shift reactor.
(2) The reformed gas obtained from the reformer and compressed air are mixed, and copper, nickel, platinum, ruthenium, rhodium, etc. are used as a catalyst, the reaction temperature is 100 to 300 ° C., and the gas space velocity is 1000 to 10,000 h −. 1. Carbon monoxide is converted from carbon monoxide and air to carbon dioxide under reaction conditions of reaction pressure of less than 1 MPa and a ratio of air to carbon monoxide in the reformed gas of 0.5 to 3.0 mol / mol. Selective oxidation reactor.

本発明の水素製造用炭化水素油は、改質効率が高く、また長時間改質器の性能を維持することができるため水素製造用炭化水素油として好適である。   The hydrocarbon oil for hydrogen production of the present invention is suitable as a hydrocarbon oil for hydrogen production because it has high reforming efficiency and can maintain the performance of the reformer for a long time.

以下に、実施例及び比較例を挙げて本発明を具体的に説明するが、本発明はこれらの例に限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples and comparative examples, but the present invention is not limited to these examples.

[実施例1〜5及び比較例1〜3]
表1に示すような条件で炭化水素基材(1)〜(5)を製造した。炭化水素基材(1)〜(5)を配合して炭化水素油A〜Eを製造し、その性状を表2に示す。
[Examples 1 to 5 and Comparative Examples 1 to 3]
Hydrocarbon substrates (1) to (5) were produced under the conditions shown in Table 1. Hydrocarbon base materials (1) to (5) are blended to produce hydrocarbon oils A to E. Table 2 shows the properties thereof.

(性状測定)
炭化水素油A〜Eの一般性状は、以下の試験法により測定した。
密度は、JIS K 2249「原油及び石油製品の密度試験方法並びに密度・質量・容量換算表」により測定される密度を指す。
引火点は、JIS K 2265「原油及び石油製品−引火点試験方法」によって測定される引火点を指す。
蒸留性状(IBP、T10、T50、T90、T95、EP)は、全てJIS K 2254「石油製品−蒸留試験方法-常圧法蒸留試験方法」によって測定される値である。
硫黄分は、ASTM D4045−96「Standard Test Method for Sulfur in Petroleum Products by Hydrogenolysis and Rateometric Colorimetry」により測定される硫黄分含有量を指す。
芳香族分、オレフィン分、飽和分は、JIS K2536「石油製品−炭化水素タイプ試験方法」の蛍光指示薬吸着法により測定される芳香族分含有量、オレフィン分含有量、飽和炭化水素(ナフテン系炭化水素を含む)含有量を指す。
ナフテン分は、ASTM D2425(Standard Test Method for Hydrocarbon Types in Middle Distillates by Mass Spectrometry)に準拠した方法にて測定されるナフテン系炭化水素含有量を指す。
酸化開始温度は、前述のとおり、高圧示差走査熱量計(High-Pressure Differential Scanning Calorimeter)を用いて測定される温度を指す。
煙点は、JIS K 2537「石油製品−灯油及び航空タービン燃料油−煙点試験方法」によって測定される煙点を指す。
(Property measurement)
The general properties of the hydrocarbon oils A to E were measured by the following test methods.
The density refers to a density measured according to JIS K 2249 “Determination method of density of crude oil and petroleum products and density / mass / capacity conversion table”.
The flash point refers to a flash point measured by JIS K 2265 “Crude oil and petroleum products—flash point test method”.
The distillation properties (IBP, T10, T50, T90, T95, EP) are all values measured according to JIS K 2254 “Petroleum products—Distillation test method—Atmospheric pressure distillation test method”.
Sulfur content refers to the sulfur content measured by ASTM D 4045-96 “Standard Test Method for Sulfur in Petroleum Products by Hydrogenolysis and Rateometric Colorimetry”.
The aromatic content, olefin content, and saturated content are the aromatic content, olefin content, saturated hydrocarbon (naphthenic carbonization) measured by the fluorescent indicator adsorption method of JIS K2536 “Petroleum products-hydrocarbon type test method”. (Including hydrogen) content.
The naphthene content refers to the naphthenic hydrocarbon content measured by a method in accordance with ASTM D2425 (Standard Test Method for Hydrocarbon Types in Middle Distillates by Mass Spectrometry).
As described above, the oxidation start temperature refers to a temperature measured using a high-pressure differential scanning calorimeter.
Smoke point refers to the smoke point measured by JIS K 2537 “Petroleum products—kerosene and aviation turbine fuel oil—smoke point test method”.

得られた炭化水素油A〜Eを図3および図4に示した評価フローチャートに従って以下のとおり評価を行った。
なお、炭化水素油余熱器、水蒸気発生器および空気余熱器はそれぞれ300℃に設定してある。
The obtained hydrocarbon oils A to E were evaluated as follows according to the evaluation flowcharts shown in FIGS. 3 and 4.
The hydrocarbon oil afterheater, the steam generator and the air afterheater are set to 300 ° C., respectively.

(1)水蒸気改質評価
水蒸気改質評価のフローチャートを図3に示す。炭化水素油と水を電気加熱によりそれぞれ気化させ、改質触媒(ルテニウム系、φ2mm、充填量5mL)を充填し、電気ヒーターで所定の温度に維持した改質反応管に導き、水素分に富む改質ガスを発生させた。
初めに、以下の反応条件S1にて改質反応を行った。
(反応条件S1)
LHSV:0.5h-1、S/C:3モル/モル、触媒層出口温度:650℃
反応条件S1にて転化率を求めたのち、以下の反応条件A1にて100時間通油を行った。
(反応条件A1)
LHSV:5h-1、S/C:3モル/モル、触媒層出口温度:650℃
反応条件A1での運転後、反応条件をS1へ戻し、転化率を測定し、運転初期との転化率変化を算出した。
これらの評価を炭化水素油A〜Eについてそれぞれ行った。その結果を表3に示す。
(1) Steam reforming evaluation A flowchart of steam reforming evaluation is shown in FIG. Hydrocarbon oil and water are vaporized by electric heating, respectively, and a reforming catalyst (ruthenium-based, φ2 mm, filling amount 5 mL) is filled and led to a reforming reaction tube maintained at a predetermined temperature with an electric heater, rich in hydrogen. A reformed gas was generated.
First, the reforming reaction was performed under the following reaction condition S1.
(Reaction condition S1)
LHSV: 0.5 h −1 , S / C: 3 mol / mol, catalyst layer outlet temperature: 650 ° C.
After obtaining the conversion rate under the reaction condition S1, oil was passed for 100 hours under the following reaction condition A1.
(Reaction condition A1)
LHSV: 5 h −1 , S / C: 3 mol / mol, catalyst layer outlet temperature: 650 ° C.
After the operation under the reaction condition A1, the reaction condition was returned to S1, the conversion rate was measured, and the change in conversion rate from the initial operation was calculated.
These evaluations were performed for hydrocarbon oils A to E, respectively. The results are shown in Table 3.

また、反応条件の比較例として、以下の反応条件S1’にて改質反応を行った。
(反応条件S1’)
LHSV:0.5h-1、S/C:0.8モル/モル、触媒層出口温度:650℃
反応条件S1’にて転化率を求めたのち、以下の反応条件A1’にて100時間通油を行った。
(反応条件A1’)
LHSV:5h-1、S/C:0.8モル/モル、触媒層出口温度:650℃
反応条件A1’での運転後、反応条件をS1’へ戻し、転化率を測定し、運転初期との転化率変化を算出した。その結果を比較例4として表3に併記した。
Further, as a comparative example of the reaction conditions, a reforming reaction was performed under the following reaction conditions S1 ′.
(Reaction condition S1 ′)
LHSV: 0.5 h −1 , S / C: 0.8 mol / mol, catalyst layer outlet temperature: 650 ° C.
After obtaining the conversion rate under the reaction condition S1 ′, oil was passed for 100 hours under the following reaction condition A1 ′.
(Reaction condition A1 ′)
LHSV: 5 h −1 , S / C: 0.8 mol / mol, catalyst layer outlet temperature: 650 ° C.
After the operation under the reaction condition A1 ′, the reaction condition was returned to S1 ′, the conversion rate was measured, and the change in conversion rate from the initial operation was calculated. The results are also shown in Table 3 as Comparative Example 4.

(2)自己熱改質評価
自己熱改質評価のフローチャートを図4に示す。炭化水素油と水を電気加熱により気化させ、予熱した空気と共に改質触媒(ロジウム系、φ2mm、充填量5mL)を充填し、電気ヒーターで所定の温度に維持した改質反応管に導き、水素分に富む改質ガスを発生させた。
初めに、以下の反応条件S2にて改質反応を行った。
(反応条件S2)
LHSV:0.5h-1、S/C:2モル/モル、O2/C:0.25、
触媒層出口温度:650℃
反応条件S2にて転化率を求めたのち、以下の反応条件A2にて100時間通油を行った。
(反応条件A2)
LHSV:5h-1、S/C:2モル/モル、O2/C:0.25、
触媒層出口温度:650℃
反応条件A2での運転後、反応条件をS2へ戻し、転化率を測定し、運転初期との転化率変化を算出した。
これらの評価を炭化水素油A〜Eについてそれぞれ行った。その結果を表3に示す。
(2) Self-thermal reforming evaluation A flowchart of self-thermal reforming evaluation is shown in FIG. Hydrocarbon oil and water are vaporized by electric heating, charged with reforming catalyst (rhodium system, φ2mm, filling amount 5mL) together with preheated air, led to a reforming reaction tube maintained at a predetermined temperature with an electric heater, hydrogen A rich gas was generated.
First, the reforming reaction was performed under the following reaction condition S2.
(Reaction condition S2)
LHSV: 0.5 h −1 , S / C: 2 mol / mol, O 2 / C: 0.25,
Catalyst layer outlet temperature: 650 ° C
After obtaining the conversion rate under the reaction condition S2, oil was passed for 100 hours under the following reaction condition A2.
(Reaction condition A2)
LHSV: 5 h −1 , S / C: 2 mol / mol, O 2 / C: 0.25,
Catalyst layer outlet temperature: 650 ° C
After the operation under the reaction condition A2, the reaction condition was returned to S2, the conversion rate was measured, and the change in conversion rate from the initial operation was calculated.
These evaluations were performed for hydrocarbon oils A to E, respectively. The results are shown in Table 3.

また、反応条件の比較例として、以下の反応条件S2’にて改質反応を行った。
(反応条件S2’)
LHSV:0.5h-1、S/C:0.3モル/モル、O2/C:0.25、
触媒層出口温度:650℃
反応条件S2’にて転化率を求めたのち、以下の反応条件A2’にて100時間通油を行った。
(反応条件A2’)
LHSV:5h-1、S/C:0.3mol/mol、O2/C:0.25、
触媒層出口温度:650℃
反応条件A2’での運転後、反応条件をS2’へ戻し、転化率を測定し、運転初期との転化率変化を算出した。その結果を比較例4として表3に併記した。
Further, as a comparative example of the reaction conditions, the reforming reaction was performed under the following reaction conditions S2 ′.
(Reaction condition S2 ′)
LHSV: 0.5 h −1 , S / C: 0.3 mol / mol, O 2 / C: 0.25,
Catalyst layer outlet temperature: 650 ° C
After obtaining the conversion rate under the reaction condition S2 ′, oil was passed for 100 hours under the following reaction condition A2 ′.
(Reaction condition A2 ′)
LHSV: 5 h −1 , S / C: 0.3 mol / mol, O 2 / C: 0.25,
Catalyst layer outlet temperature: 650 ° C
After the operation under the reaction condition A2 ′, the reaction condition was returned to S2 ′, the conversion was measured, and the change in conversion from the initial operation was calculated. The results are also shown in Table 3 as Comparative Example 4.

なお、転化率の測定は次のように行った。各改質評価装置には、反応管出口ラインに発生した改質ガスの流量を測定できるガス流量計と発生した改質ガスの組成および未反応の炭化水素を分析できるガスクロマトグラフィーを設置した。炭化水素油および水の供給用タンクは天秤上に設置してあり、時間あたりの反応管への供給量をこの天秤にて測定した。炭化水素油供給量および発生改質ガス流量および発生ガス組成の分析結果より、炭化水素油の転化率を計算した。転化率の定義は次の通りとした。
転化率(%)=発生ガス中のC1(CO2、COおよびCH4)量/供給した炭化水
素油中のC量×100
The conversion rate was measured as follows. In each reforming evaluation apparatus, a gas flow meter capable of measuring the flow rate of the reformed gas generated in the reaction tube outlet line and a gas chromatography capable of analyzing the generated reformed gas composition and unreacted hydrocarbons were installed. Hydrocarbon oil and water supply tanks were installed on a balance, and the amount of supply to the reaction tube per hour was measured with this balance. The conversion rate of the hydrocarbon oil was calculated from the analysis results of the hydrocarbon oil supply amount, the generated reformed gas flow rate and the generated gas composition. The conversion rate was defined as follows.
Conversion (%) = C1 (CO 2 , CO and CH 4 ) in the generated gas / C in the supplied hydrocarbon oil × 100

表3に示す結果から、本発明の炭化水素油(実施例1〜2)を用いた場合には、比較例の炭化水素油及び装置条件に比べて、転化率が高く、かつ、その転化率を長期間安定して維持できることがわかる。   From the results shown in Table 3, when the hydrocarbon oils of the present invention (Examples 1 and 2) were used, the conversion rate was higher than that of the hydrocarbon oil and the apparatus conditions of the comparative example, and the conversion rate. It can be seen that can be stably maintained for a long time.

Figure 2005290219
Figure 2005290219
Figure 2005290219
Figure 2005290219
Figure 2005290219
Figure 2005290219

高圧示差走査熱量計を用いて測定される灯油組成物の発熱量と温度との相関曲線の一例を示すグラフである。It is a graph which shows an example of the correlation curve of the emitted-heat amount and temperature of a kerosene composition measured using a high-pressure differential scanning calorimeter. 図1に示した相関曲線の微分曲線を示すグラフである。It is a graph which shows the differential curve of the correlation curve shown in FIG. 水蒸気改質型改質器の評価フローチャートである。It is an evaluation flowchart of a steam reforming type reformer. 自己熱改質型改質器の評価フローチャートである。It is an evaluation flowchart of a self-heat reforming type reformer.

Claims (3)

初留点が140〜180℃、90容量%留出温度が200〜270℃、芳香族含有量が20容量%以下、直鎖飽和炭化水素含有量が25質量%以上、炭素数10〜15の直鎖飽和炭化水素含有量が20質量%以上、硫黄含有量が300質量ppm以下である炭化水素混合物を原料油として、下記工程(1)〜(4)を経て得られる炭化水素基材を含有してなる、引火点が40℃以上、初留点が145℃以上170℃以下、50容量%留出温度が180℃以上220℃以下、95容量%留出温度が220℃以上260℃以下、硫黄含有量が0.5質量ppm以下、煙点が26mm以上、芳香族含有量が10容量%以下、酸化開始温度が210℃以上であることを特徴とする改質器を配置した水素製造システムの水素製造用炭化水素油。
工程(1):原料油を、反応温度250〜310℃、水素圧力5〜10MPa、LHSV0.5〜3.0h-1、水素/炭化水素容量比0.15〜0.6の条件で、Ni−W、Ni−Mo、Co−Mo、Co−W、およびNi−Co−Moから選択されるいずれかを含有する触媒により水素化脱硫処理する工程
工程(2):工程(1)で得られた水素化脱硫処理油から軽質分の1〜35容量%をストリップする工程
工程(3):軽質分をストリップした後、温度150℃〜250℃、圧力1〜5MPaの条件下でゼオライトにより直鎖飽和炭化水素を10容量%以上抽出除去する工程
工程(4):工程(3)で得られた炭化水素混合物および工程(2)でストリップした軽質分の60容量%以上を混合する工程
The initial boiling point is 140 to 180 ° C., 90% by volume distillation temperature is 200 to 270 ° C., the aromatic content is 20% by volume or less, the linear saturated hydrocarbon content is 25% by mass or more, and the carbon number is 10 to 15 Containing a hydrocarbon base material obtained through the following steps (1) to (4) using a hydrocarbon mixture having a linear saturated hydrocarbon content of 20 mass% or more and a sulfur content of 300 mass ppm or less as a raw material oil The flash point is 40 ° C. or higher, the initial boiling point is 145 ° C. or higher and 170 ° C. or lower, the 50% by volume distillation temperature is 180 ° C. or higher and 220 ° C. or lower, and the 95% by volume distillation temperature is 220 ° C. or higher and 260 ° C. or lower. Hydrogen production system provided with a reformer having a sulfur content of 0.5 mass ppm or less, a smoke point of 26 mm or more, an aromatic content of 10 vol% or less, and an oxidation start temperature of 210 ° C. or more Hydrocarbon oil for hydrogen production.
Step (1): The raw material oil is prepared under the conditions of a reaction temperature of 250 to 310 ° C., a hydrogen pressure of 5 to 10 MPa, an LHSV of 0.5 to 3.0 h −1 , and a hydrogen / hydrocarbon capacity ratio of 0.15 to 0.6. Step of hydrodesulfurization treatment with a catalyst containing any one selected from -W, Ni-Mo, Co-Mo, Co-W, and Ni-Co-Mo Step (2): obtained in step (1) Step of stripping 1 to 35% by volume of light component from hydrodesulfurized oil Step (3): After stripping light component, linearized with zeolite under conditions of temperature 150 ° C to 250 ° C and pressure 1 to 5 MPa Step of extracting and removing 10% by volume or more of saturated hydrocarbon Step (4): Step of mixing the hydrocarbon mixture obtained in step (3) and 60% by volume or more of the light portion stripped in step (2)
請求項1記載の炭化水素油と水蒸気との混合ガスを、周期律表第VIII族元素を活性金属として含む改質触媒の存在下、反応温度400〜1000℃、水と炭化水素油の混合比率(S/C)が1〜5モル/モルで反応させることにより、水素を主成分とする生成物を得る水蒸気改質型改質器を具備する水素製造システム。   The mixed gas of hydrocarbon oil and water vapor according to claim 1, in the presence of a reforming catalyst containing a Group VIII element of the periodic table as an active metal, a reaction temperature of 400 to 1000 ° C, a mixing ratio of water and hydrocarbon oil A hydrogen production system comprising a steam reforming reformer that obtains a product mainly composed of hydrogen by reacting (S / C) at 1 to 5 mol / mol. 請求項1記載の炭化水素油、水蒸気及び空気の混合ガスを、周期律表第VIII族元素を活性金属として含む改質触媒の存在下、反応温度400〜1000℃、水と炭化水素油の混合比率(S/C)が0.5〜5モル/モル、酸素と炭化水素油の混合比率(O2/C)が0.1〜0.5モル/モルで反応させることにより、水素を主成分とする生成物を得る自己熱改質型改質器を具備する水素製造システム。


The mixed gas of the hydrocarbon oil, water vapor and air according to claim 1, in the presence of a reforming catalyst containing a group VIII element of the periodic table as an active metal, reaction temperature of 400 to 1000 ° C, mixing of water and hydrocarbon oil Hydrogen is mainly produced by reacting at a ratio (S / C) of 0.5 to 5 mol / mol and a mixing ratio of oxygen and hydrocarbon oil (O 2 / C) of 0.1 to 0.5 mol / mol. A hydrogen production system comprising a self-thermal reforming reformer for obtaining a product as a component.


JP2004108142A 2004-03-31 2004-03-31 Hydrocarbon oil for hydrogen production and hydrogen production system Expired - Fee Related JP4227927B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004108142A JP4227927B2 (en) 2004-03-31 2004-03-31 Hydrocarbon oil for hydrogen production and hydrogen production system
CNA2005800161341A CN1957072A (en) 2004-03-31 2005-03-30 Hydrocarbon oil for hydrogen production, and hydrogen production system
KR1020067022416A KR101163249B1 (en) 2004-03-31 2005-03-30 Hydrocarbon oil for hydrogen production and hydrogen production system
PCT/JP2005/006706 WO2005095554A1 (en) 2004-03-31 2005-03-30 Hydrocarbon oil for hydrogen production and hydrogen production system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004108142A JP4227927B2 (en) 2004-03-31 2004-03-31 Hydrocarbon oil for hydrogen production and hydrogen production system

Publications (3)

Publication Number Publication Date
JP2005290219A true JP2005290219A (en) 2005-10-20
JP2005290219A5 JP2005290219A5 (en) 2006-02-02
JP4227927B2 JP4227927B2 (en) 2009-02-18

Family

ID=35323521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004108142A Expired - Fee Related JP4227927B2 (en) 2004-03-31 2004-03-31 Hydrocarbon oil for hydrogen production and hydrogen production system

Country Status (2)

Country Link
JP (1) JP4227927B2 (en)
CN (1) CN1957072A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269901A (en) * 2006-03-30 2007-10-18 Nippon Oil Corp Method for treating synthetic oil, hydrocarbon oil for producing hydrogen and hydrocarbon oil for base material of diesel fuel
JP2008239811A (en) * 2007-03-27 2008-10-09 Nippon Oil Corp Fuel oil composition
JP2008255254A (en) * 2007-04-06 2008-10-23 Japan Energy Corp Method of manufacturing ultralow-sulfur light oil base material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269901A (en) * 2006-03-30 2007-10-18 Nippon Oil Corp Method for treating synthetic oil, hydrocarbon oil for producing hydrogen and hydrocarbon oil for base material of diesel fuel
JP2008239811A (en) * 2007-03-27 2008-10-09 Nippon Oil Corp Fuel oil composition
JP2008255254A (en) * 2007-04-06 2008-10-23 Japan Energy Corp Method of manufacturing ultralow-sulfur light oil base material

Also Published As

Publication number Publication date
CN1957072A (en) 2007-05-02
JP4227927B2 (en) 2009-02-18

Similar Documents

Publication Publication Date Title
JP4537666B2 (en) Fuel for fuel cell system and fuel cell system
KR101218840B1 (en) Hydrocarbon oil for hydrogen production and hydrogen production system
EP1426432A1 (en) Method for desulfurization and reforming of hydrocarbon stock
JP4227927B2 (en) Hydrocarbon oil for hydrogen production and hydrogen production system
JP4684539B2 (en) Fuel for fuel cell system, method for producing the same, and fuel cell system
JP4583666B2 (en) Fuel for fuel cell system
WO2001077262A1 (en) Fuel for use in fuel cell system
JP4227928B2 (en) Hydrocarbon oil for hydrogen production and hydrogen production system
KR101163249B1 (en) Hydrocarbon oil for hydrogen production and hydrogen production system
JP4598889B2 (en) Fuel for fuel cell system
JP4227929B2 (en) Hydrocarbon oil and hydrogen fuel for hydrogen production in hydrogen production system
JP2001279271A (en) Method for producing fuel oil for fuel cell and hydrogen for fuel cell
JP4548765B2 (en) Fuel for fuel cell system
JP4229448B2 (en) Hydrocarbon oil for hydrogen production and hydrogen production system
WO2001077263A1 (en) Fuel for use in fuel cell system
JP4227930B2 (en) Hydrocarbon oil and method for desulfurizing the hydrocarbon oil
JP5393372B2 (en) Hydrocarbon fuel oil for paraffin-based fuel cell systems
JP2006111502A (en) Hydrogen manufacturing system
JP4202058B2 (en) Fuel for fuel cell system
JP2004027083A (en) Fuel for producing hydrogen
JP2004027082A (en) Fuel for fuel cell system
JP2002083625A (en) Fuel for fuel cell system
JP2006244873A (en) Manufacturing method of hydrogen for fuel cell
JP2006249252A (en) Fuel for hydrogen production system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees