JP2005288351A - Ultrasonic compound vibrator and forming method of ultrasonic compound vibrator - Google Patents

Ultrasonic compound vibrator and forming method of ultrasonic compound vibrator Download PDF

Info

Publication number
JP2005288351A
JP2005288351A JP2004108265A JP2004108265A JP2005288351A JP 2005288351 A JP2005288351 A JP 2005288351A JP 2004108265 A JP2004108265 A JP 2004108265A JP 2004108265 A JP2004108265 A JP 2004108265A JP 2005288351 A JP2005288351 A JP 2005288351A
Authority
JP
Japan
Prior art keywords
vibration
longitudinal
vibrator
ultrasonic
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004108265A
Other languages
Japanese (ja)
Other versions
JP5036124B2 (en
Inventor
Kimihiko Tanizawa
公彦 谷澤
Tadashi Hanada
忠 花田
Jiromaru Tsujino
次郎丸 辻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi EMS Co Ltd
Original Assignee
Asahi EMS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi EMS Co Ltd filed Critical Asahi EMS Co Ltd
Priority to JP2004108265A priority Critical patent/JP5036124B2/en
Publication of JP2005288351A publication Critical patent/JP2005288351A/en
Application granted granted Critical
Publication of JP5036124B2 publication Critical patent/JP5036124B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic compound vibrator for an ultrasonic processing machine which is rich in rigidity of a vibrator, has high positioning accuracy of a top end and has low loss. <P>SOLUTION: The ultrasonic compound vibrator in which phase difference between a longitudinal wave and a twisting wave at a driving frequency of a vibrator in close proximity of a longitudinal wave resonance frequency is not zero but is near π/2 and further which is formed so that one end face is a node face of vibration and another end face is an antinode face of vibration, is designed and its optimal structure is determined by simulation. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体集積回路、金属、プラスチックス、セラミックス等を振動加工(接合、切削、研磨等)するための超音波加工機に用いられる超音波複合振動体に関する。   The present invention relates to an ultrasonic composite vibrator used in an ultrasonic processing machine for vibration processing (bonding, cutting, polishing, etc.) of semiconductor integrated circuits, metals, plastics, ceramics, and the like.

従来、超音波複合振動体としては、特許文献1が公知である。
上記従来技術では、図7に例示するように、振動系を縦振動および捩り振動を合成するホーン(以下、スクリュー振動ホーンという)構造とすることにより、縦・捩り振動を実現するものである。
Conventionally, Patent Document 1 is known as an ultrasonic composite vibrator.
In the above prior art, as illustrated in FIG. 7, longitudinal and torsional vibrations are realized by making the vibration system have a horn structure (hereinafter referred to as a screw vibration horn) that synthesizes longitudinal vibrations and torsional vibrations.

しかしながら、上記スクリュー振動ホーン1は、縦振動で1波長共振、捩り振動で1.5波長共振となっていて、両方の振動モードに共通した振動の節は存在しない。従って、当該スクリュー振動ホーン1を保持体で支持する場合、強固に固定すると振動損失が増大し、低損失となるように支持すると剛性に欠けるという問題がある。   However, the screw vibration horn 1 has one wavelength resonance due to longitudinal vibration and 1.5 wavelength resonance due to torsion vibration, and there is no vibration node common to both vibration modes. Accordingly, when the screw vibration horn 1 is supported by the holding body, there is a problem that vibration loss increases when the screw vibration horn 1 is firmly fixed and rigidity is lacking when the screw vibration horn 1 is supported so as to have a low loss.

また、上記スクリュー振動ホーン1は、その基端部側に、縦振動を印加するためのホーン2と、捩り振動を印加するためのホーン3が装着されているので、ホーン2の先端は捩り振動で駆動され、ホーン3の先端は縦振動による曲げ振動で駆動される。そして、夫々のホーン2およびホーン3は縦振動の節面は有するが、その節面が、捩り振動若しくは曲げ振動の節面とは一致しない。
従って、ホーン2およびホーン3の支持に際しても、強固に固定すると振動損失が増大し、低損失となるように支持すると、剛性に欠ける問題がある。
Further, the screw vibration horn 1 is provided with a horn 2 for applying longitudinal vibration and a horn 3 for applying torsional vibration on the base end side thereof, so that the distal end of the horn 2 is torsionally vibrated. The tip of the horn 3 is driven by bending vibration due to longitudinal vibration. Each of the horn 2 and the horn 3 has a nodal surface for longitudinal vibration, but the nodal surface does not coincide with a nodal surface for torsional vibration or bending vibration.
Therefore, when the horn 2 and the horn 3 are supported, the vibration loss increases when the horn 2 and the horn 3 are firmly fixed.

このため、超音波加工機を構成する複合振動体の支持に際しては、剛性に富む支持でありながら、その支持部での振動損失が僅少な複合振動体が切望されている。
特開平6−29357号
For this reason, when supporting the composite vibration body constituting the ultrasonic processing machine, a composite vibration body having a small vibration loss at the support portion while being highly rigid support is desired.
JP-A-6-29357

本発明は、上記要請に応えることができる超音波複合振動体を形成するに当たり、複合振動を構成する縦波および捩り波振動モードのそれぞれの近接した共振周波数において共通の節面と腹面を有する条件を予め求め、当該節面において複合振動体を支持することにより、剛性に富む一方でその支持面での振動損失が僅少であり、かつ、先端位置決め精度も高い超音波加工機用の複合振動体を提供することを、その課題とする。   In forming an ultrasonic composite vibration body that can meet the above requirements, the present invention provides a condition having a common nodal surface and abdominal surface at resonance frequencies close to each other in the longitudinal wave and torsion wave vibration modes constituting the composite vibration. Is obtained in advance, and the composite vibration body is supported on the node surface, so that the composite vibration body for an ultrasonic processing machine has high rigidity but has little vibration loss on the support surface and high tip positioning accuracy. The issue is to provide

上記課題を解決することを目的としてなされた本発明の複合振動体の構成は、複合振動体に周波数調整要素を設置するに当り、該周波数調整要素の設置位置を調整することにより、縦波および捩り波の両振動モードでこの複合振動体の一方の端面が振動の節面に、他方の端面が振動の腹面となるように形成したことを主な特徴とするものである。   The configuration of the composite vibrator of the present invention made for the purpose of solving the above-described problems is that when installing the frequency adjustment element in the composite vibrator, the longitudinal wave and the frequency wave are adjusted by adjusting the installation position of the frequency adjustment element. In the torsional wave vibration mode, the main feature is that one end face of the composite vibrator is formed as a vibration nodal face and the other end face is a vibration antinode.

本発明は上記構成において、複合振動体に設置する周波数調整要素を、当該振動体の縦波振動の腹面から節面までの1/4波長の間の一定条件下に設置する段付部で形成することにより、この複合振動体の縦振動と捩り振動の振動モードが、当該振動体の一方の端面が節面に、他方の端面が腹面となるようにする音響伝送線路理論に基づいて完成したものである。   According to the present invention, in the above-described configuration, the frequency adjusting element to be installed in the composite vibrator is formed by a stepped portion that is installed under a constant condition between a quarter wavelength from the abdominal surface to the node surface of the longitudinal wave vibration of the vibrator. Thus, the vibration mode of the longitudinal vibration and torsional vibration of the composite vibrator is completed based on the acoustic transmission line theory in which one end face of the vibrator is a nodal face and the other end face is a ventral face. Is.

即ち、請求項1の発明は、複合振動体に周波数調整部を設置することによって、縦波共振周波数に近接した振動体の駆動周波数において縦波および捩り波の位相差が零でなくπ/2に近くなり、この複合振動体の縦・捩り両振動モードのそれぞれの共振周波数において、片方の端面が節面、他方の端面が腹面となる超音波複合振動体を構成するものである。そして、請求項2の発明は、請求項1の超音波複合振動体の縦波振動の中間の節部に電歪素子若しくは縦・捩り変換用のスリットを設置した構成であり、請求項3の発明は、請求項2の電歪素子を設置した超音波複合振動体と、縦・捩り変換用のスリットを伝送特性を考慮して設置した超音波複合振動体を共通の節面で結合した超音波複合振動体であり、請求項4の発明は、超音波複合振動体に周波数調整要素をその位置を調整して設置するとき、この複合振動体の一方の端面が振動の節面になると共に、他方の端面が振動の腹面となるように調整して周波数調整要素を設けるようにしたものである。   That is, according to the first aspect of the present invention, the phase adjustment between the longitudinal wave and the torsional wave is not zero but π / 2 at the driving frequency of the vibrating body close to the longitudinal wave resonance frequency by installing the frequency adjusting unit in the composite vibrating body. Thus, an ultrasonic composite vibration body in which one end face is a nodal surface and the other end face is an abdominal face at the resonance frequencies of both the longitudinal and torsional vibration modes of the composite vibration body is formed. The invention of claim 2 is a configuration in which an electrostrictive element or a slit for longitudinal / torsional conversion is installed at a middle node of the longitudinal wave vibration of the ultrasonic composite vibrator of claim 1, According to the invention, an ultrasonic composite vibrator in which the electrostrictive element of claim 2 is installed and an ultrasonic composite vibrator in which a slit for longitudinal / torsion conversion is installed in consideration of transmission characteristics are coupled at a common node surface. According to a fourth aspect of the present invention, when the frequency adjusting element is installed in the ultrasonic composite vibrator while adjusting the position thereof, one end face of the composite vibrator becomes a vibration nodal surface. The frequency adjustment element is provided by adjusting so that the other end surface becomes the antinode of vibration.

縦振動用の電歪振動子を設置した本発明の超音波複合振動体に電気信号を印加すると、この超音波複合振動体は縦振動モードで励振される。この超音波複合振動体を、縦・捩り変換スリットを設置した超音波複合振動体と共通節面で結合すると、縦振動は縦・捩り複合振動となって両方の超音波複合振動体を励振する。   When an electric signal is applied to the ultrasonic composite vibrator of the present invention in which an electrostrictive vibrator for longitudinal vibration is installed, the ultrasonic composite vibrator is excited in the longitudinal vibration mode. When this ultrasonic composite vibrator is coupled with an ultrasonic composite vibrator having a longitudinal / torsion conversion slit at a common node, the longitudinal vibration becomes a longitudinal / torsion composite vibration to excite both ultrasonic composite vibrators. .

結合した上記の超音波複合振動体は、共通の節面を有し、両端が振動の腹面となって振動するから、上記共通の節面を支持することにより、変換スリットを設置した超音波複合振動体の先端の複合振動によって超音波加工が実現できる。   Since the combined ultrasonic composite vibrator has a common nodal surface and both ends vibrate as vibration surfaces, the ultrasonic composite having a conversion slit installed by supporting the common nodal surface. Ultrasonic machining can be realized by the combined vibration of the tip of the vibrating body.

次に、本発明の実施の形態について、図を参照して説明する。
図1は、縦振動と捩り振動の振動モードにおける共振周波数近傍のモーショナルアドミッタンスとその位相特性を示す説明図、図2は、本発明による周波数調整要素を具備し、電歪振動子を設置した本発明超音波複合振動体の一例と、その複合振動モードの模式図、図3は、本発明による周波数調整要素を具備し、縦・捩り振動変換用のスリット部を設置した本発明超音波複合振動体の例と、その複合振動モードの模式図、図4は、図2の複合振動体における振動体と周波数調整要素の直径比(M)をパラメータとしたその周波数調整要素の設置位置(x)の周波数特性図、図5は、図3の複合振動体における振動体と周波数調整要素の直径比(M)をパラメータとしたその周波数調整要素の設置位置(x)の周波数特性図、図6は、図2と図3の超音波複合振動体を共通節面で結合した超音波加工機用の本発明超音波複合振動体の他の例とその複合振動モードの模式図である。
Next, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory diagram showing the motional admittance in the vicinity of the resonance frequency in the vibration mode of longitudinal vibration and torsional vibration, and the phase characteristics thereof, and FIG. 2 is equipped with a frequency adjusting element according to the present invention, and an electrostrictive vibrator is installed. An example of the ultrasonic composite vibrator of the present invention, and a schematic diagram of the composite vibration mode, FIG. 3 is an ultrasonic composite of the present invention provided with a frequency adjusting element according to the present invention and provided with a slit portion for longitudinal / torsional vibration conversion. FIG. 4 is a schematic diagram of an example of a vibrating body and a composite vibration mode thereof. FIG. 4 is an installation position of the frequency adjusting element (x) using the diameter ratio (M) of the vibrating body and the frequency adjusting element in the composite vibrating body of FIG. FIG. 5 is a frequency characteristic diagram of the frequency adjustment element of FIG. 3 using the diameter ratio (M) of the vibration body and the frequency adjustment element as a parameter, and FIG. Is the ultrasonic composite of FIG. 2 and FIG. Body is a schematic view of another example and its complex vibration modes of the present invention the ultrasonic complex vibration member for an ultrasonic processing machine coupled at a common node plane.

図1において、11,12および13,14は、それぞれ縦振動および捩り振動の両振動モードの共振周波数flとftにおけるモーショナルアドミッタンス|Ymo|が等しい場合のモーショナルアドミッタンス|Ym|と位相Φの周波数特性である。
15は両振動モードの位相差を示し、ここでは縦振動モードの位相と捩り振動モードの位相の差で表している。この位相差15は、駆動周波数fd1、fd2でπ/2となる。
ここで、両方の共振周波数が等し(fl=ft)ければ、両振動モードの位相特性13と14は略同一曲線となるので、位相差15は零となってπ/2にはならない。
位相差15がπ/2となる条件は、両方の共振周波数差が、両振動モードの共振時の機械的尖鋭度をQl,Qtとして次の[数1]式のときである。
In Figure 1, 11, 12 and 13, 14, motional at the resonance frequency f l and f t of both vibration modes, respectively longitudinal vibration and torsional vibration admittance | Ymo | if equal motional admittance | Ym | and phase It is a frequency characteristic of Φ.
Reference numeral 15 denotes a phase difference between the two vibration modes, which is represented by a difference between the phase of the longitudinal vibration mode and the phase of the torsional vibration mode. This phase difference 15 is π / 2 at the drive frequencies f d1 and f d2 .
Here, if both resonance frequencies are equal (f 1 = f t ), the phase characteristics 13 and 14 of both vibration modes are substantially the same curve, so the phase difference 15 becomes zero and π / 2 Don't be.
The condition for the phase difference 15 to be π / 2 is when both the resonance frequency differences are expressed by the following [Equation 1] with the mechanical sharpness at the time of resonance in both vibration modes as Q l and Q t .

Figure 2005288351
Figure 2005288351

図1において複合振動体を駆動周波数fd1(若しくはfd2)で励振すると、縦および捩り振動モードの動作点を示すモーショナルアドミッタンスと位相角は、図1にそれぞれ符号16,17および符号18、19で示す点となり、縦振動および捩り振動モードは、振動位相差がπ/2となるため振動体先端周縁部の振動は円振動を誘起する。また、振動位相差がπ/2に近付くときには、楕円振動から円振動となる。 In FIG. 1, when the composite vibrator is excited at the drive frequency f d1 (or f d2 ), the motional admittance and the phase angle indicating the operating points of the longitudinal and torsional vibration modes are indicated by reference numerals 16, 17 and 18, respectively, in FIG. In the longitudinal vibration and torsional vibration modes, the vibration phase difference is π / 2, and the vibration at the peripheral edge of the vibrating body induces circular vibration. Further, when the vibration phase difference approaches π / 2, the vibration is changed from elliptical vibration to circular vibration.

図2において、2は模式的に示した本発明超音波複合振動体で、21,22,23,24,25はこの超音波複合振動体2の構成要素である。各構成要素21〜25は、共通軸心を有する円柱一体構造、若しくは、複数の円柱体が中心ボルト(図示せず)で締結された結合構造であるが、以下の説明では、中心ボルトは無視する。   In FIG. 2, 2 is an ultrasonic composite vibrator of the present invention schematically shown, and 21, 22, 23, 24, and 25 are components of the ultrasonic composite vibrator 2. Each of the components 21 to 25 is a columnar integrated structure having a common axis, or a combined structure in which a plurality of columnar bodies are fastened by a center bolt (not shown), but the center bolt is ignored in the following description. To do.

図2の超音波複合振動体2の一方の端(図の左側)が振動の節面で、他方の端が振動の腹面となる条件は、構成要素iの長さをli、断面積をSi、縦波音響インピーダンスをZli、捩り波音響インピーダンスを ti 、縦波波長定数をβi、捩り波波長定数をαi、極慣性モーメントをIiとおくと、音響伝送線路理論より、縦波および捩り波振動モードに対して、cosβi≠0,cosαi≠0のとき、それぞれ次の[数2]式および[数3]式で表される。 The condition that one end (left side in the figure) of the ultrasonic composite vibrator 2 in FIG. 2 is a vibration nodal surface and the other end is a vibration antinode is that the length of the component i is l i , and the cross-sectional area is S i , longitudinal wave acoustic impedance is Z li , torsional wave acoustic impedance is Z ti , longitudinal wave wavelength constant is β i , torsion wave wavelength constant is α i , and polar moment of inertia is I i. When cos β i ≠ 0 and cos α i ≠ 0 with respect to the longitudinal wave and torsion wave vibration modes, they are expressed by the following [Equation 2] and [Equation 3], respectively.

Figure 2005288351
Figure 2005288351

Figure 2005288351
Figure 2005288351

いま、図2の複合振動体2の各構成要素21〜25の密度をρi、縦波音速をCli、捩り波音速をCti、半径をriとし、縦波および捩り波の共振周波数をfl,ftとすると、各パラメータは、次の式[数4]で与えられる。 Now, the density of each component 21 to 25 of the composite vibrating body 2 in FIG. 2 is ρ i , the longitudinal sound velocity is C li , the torsion wave sound velocity is C ti , the radius is r i, and the resonance frequency of the longitudinal and torsion waves. If f 1 and f t , each parameter is given by the following equation [Equation 4].

Figure 2005288351
Figure 2005288351

上記の超音波複合振動体2の各構成要素21〜25をアルミニウム合金と電歪素子(ジルコン・チタン酸鉛(PZT))とした場合の必要な諸データを表1に示す。   Table 1 shows necessary data when the components 21 to 25 of the ultrasonic composite vibrator 2 are aluminum alloys and electrostrictive elements (zircon lead titanate (PZT)).

Figure 2005288351
Figure 2005288351

図2の超音波複合振動体2において、構成要素24を縦波用電歪素子(PZT)とし、この構成要素24が構成要素25で両側を挟持された半波長共振のボルト締めランジュバン型振動子とすると、共振条件は、cosβ i i ≠0のとき次の式[数5]となる。 In the ultrasonic composite vibrator 2 of FIG. 2, the component 24 is a longitudinal wave electrostrictive element (PZT), and the component 24 is sandwiched by the component 25 on both sides, and is a bolted Langevin type vibrator with half wavelength resonance. Then, the resonance condition is expressed by the following equation [Formula 5] when cosβ i l i ≠ 0 .

Figure 2005288351
Figure 2005288351

上記式[数5]において、f=40(kHz)、S4=S5 4 =10(mm)とすると、 5 =24.82(mm)を得る。 When f = 40 (kHz), S 4 = S 5 , and l 4 = 10 (mm) in the above equation [Formula 5], l 5 = 24.82 (mm) is obtained.

図2の複合振動体2において、電歪素子24以外の構成要素21〜23,25は、同一材料のアルミニウム合金とし、周波数調整用円柱22の厚さを8(mm)、縦振動モードの腹部からの距離をxとおき、次の式[数6]の条件と表1のデータを上記の式[数2]に代入して、振動の節面から腹面までの距離を求めると、その距離は40.27(mm)となり、よって 1 =40.27+xとなる。 2, the components 21 to 23 and 25 other than the electrostrictive element 24 are made of an aluminum alloy of the same material, the thickness of the frequency adjusting column 22 is 8 (mm), and the abdomen in the longitudinal vibration mode. When the distance from is set to x and the condition of the following equation [Equation 6] and the data of Table 1 are substituted into the above equation [Equation 2] to obtain the distance from the vibration node surface to the abdominal surface, the distance Is 40.27 (mm), so l 1 = 40.27 + x.

Figure 2005288351
Figure 2005288351

周波数調整要素22の断面積をM2S(Mは直径比)とし、Mをパラメータとしたときの、xとfの相関を上述の 1 と各式[数2],[数3]および[数6]より求めると、図4の周波数特性が得られる。 When the cross-sectional area of the frequency adjusting element 22 is M 2 S (M is a diameter ratio) and M is a parameter, the correlation between x and f is expressed by the above l 1 and the equations [Equation 2], [Equation 3] and When obtained from [Equation 6], the frequency characteristic of FIG. 4 is obtained.

図4において、41、42、43は、前述の直径比Mが、M=1.1、1.2、1.3の場合のそれぞれの縦振動特性であり、また、44、45、46は、直径比MがM=1.1、1.2、1.3の場合のそれぞれの捩り振動特性である。
この図4の特性から、xを長くすると縦振動の共振周波数は高くなり、捩り振動の共振周波数は低くなってからなだらかに高くなる。
In FIG. 4, 41, 42, and 43 are longitudinal vibration characteristics when the aforementioned diameter ratio M is M = 1.1, 1.2, and 1.3, and 44, 45, and 46 are the diameter ratio M is M = Torsional vibration characteristics when 1.1, 1.2, and 1.3.
From the characteristics shown in FIG. 4, when x is lengthened, the resonance frequency of longitudinal vibration increases, and after the resonance frequency of torsional vibration decreases, it increases gently.

両方の振動特性曲線は、前述の直径比M=1.1のときは図4の点47(x=4.8)、M=1.2のとき図4の点48(x=3.2)、M=1.3のときは図4の点49(x=2.8)でそれぞれ交わっている。このことから、図2,図3の周波数調整要素22を前記の直径比Mに対応した上述の交点47,48,49のいずれかの位置に設置すると、両振動モードは同一周波数で一方の端が節面、他方の端が腹面となる。   Both vibration characteristic curves are shown in FIG. 4 at point 47 (x = 4.8) when the diameter ratio M = 1.1, at point 48 (x = 3.2) in FIG. 4 when M = 1.2, and when M = 1.3. They intersect at point 49 (x = 2.8) in FIG. Therefore, when the frequency adjusting element 22 shown in FIGS. 2 and 3 is installed at any one of the above-mentioned intersections 47, 48, and 49 corresponding to the diameter ratio M, both vibration modes have the same frequency and one end. Is the nodal surface and the other end is the abdominal surface.

この場合における縦振動および捩り振動の振動モードは、同一共振周波数のため、駆動周波数を両共振周波数(fd=fl=ft)とすると、複合振動体2の先端周縁部は直線振動となる。 Since the longitudinal vibration mode and the torsional vibration mode in this case are the same resonance frequency, if the drive frequency is set to both resonance frequencies (f d = f l = ft ), the peripheral edge of the tip of the composite vibrator 2 is linear vibration. Become.

縦振動および捩り振動の振動モードの共振周波数を図4の同一共振周波数(図4の点47,48,49)近傍で、両共振周波数差を前述の式[数1]のΔFに等しくなるように選んだ場合の縦振動および捩り振動の振動モードをそれぞれ図2の波形26および27に示す。図2において、Nは振動の節面、Lは振動の腹面を表す。   The resonance frequencies of the longitudinal vibration mode and the torsional vibration mode are set in the vicinity of the same resonance frequency in FIG. 4 (points 47, 48, and 49 in FIG. 4), and the difference between both resonance frequencies is made equal to ΔF in the above-described equation [Equation 1]. The vibration modes of the longitudinal vibration and the torsional vibration when selected in FIG. In FIG. 2, N represents a vibration node and L represents a vibration abdominal surface.

図3において、3は縦・捩り振動変換用のスリットを具備した本発明超音波複合振動体の一例で、31,32,33,34,35は、この超音波複合振動体3の構成要素である。
図3において、各構成要素31〜35は、共通軸心を有する円柱一体構造となっている。そして、構成要素34を振動変換用スリット部とし、この構成要素34が構成要素33と35で両側を挟持された形状の半波長共振のアルミニウム合金製ホーンとすると、前述の式[数5]、表1より、f=40kHz,S4=n25(n2はスリットによる等価断面積比で、深さtのスリットの場合、n2=(r4−t)2/r5 2で表わす)、 4 =7(mm)とすると 5 =25.16(mm)を得る。
In FIG. 3, 3 is an example of the ultrasonic composite vibrator of the present invention provided with slits for longitudinal / torsional vibration conversion, and 31, 32, 33, 34 and 35 are constituent elements of the ultrasonic composite vibrator 3. is there.
In FIG. 3, each of the components 31 to 35 has a columnar integrated structure having a common axis. If the component 34 is a slit for vibration conversion, and the component 34 is a half-wave resonance aluminum alloy horn having both sides sandwiched between the components 33 and 35, the above-described equation [Equation 5], From Table 1, f = 40 kHz, S 4 = n 2 S 5 (n 2 is an equivalent cross-sectional area ratio by slit, and n 2 = (r 4 −t) 2 / r 5 2 in the case of a slit of depth t. And l 4 = 7 (mm), l 5 = 25.16 (mm) is obtained.

図3において、構成要素31〜35を全て同一材料のアルミニウム合金とし、周波数調整用円柱32の厚さを7(mm)、縦振動モードの腹部からの距離をxとおき、先の式[数7]の条件と表1のデータを、先の式[数2]に代入して、振動の節面から腹面までの距離を求めると、その距離は31.25(mm)となり、 1 =31.25+xが得られる。 In FIG. 3, the components 31 to 35 are all made of an aluminum alloy of the same material, the thickness of the frequency adjusting column 32 is 7 (mm), the distance from the abdomen in the longitudinal vibration mode is x, and the above equation [several 7] and the data in Table 1 are substituted into the previous equation [Equation 2], and the distance from the vibration node surface to the abdominal surface is 31.25 (mm), and l 1 = 31.25 + x Is obtained.

Figure 2005288351
Figure 2005288351

周波数調整要素32の断面積をM2S(Mは直径比)とし、Mをパラメータとしたときのxとfの相関を上述のl1、並びに式[数2]、[数3]および[数7]より求めると、図5の周波数特性が得られる。 The cross-sectional area of the frequency adjusting element 32 is M 2 S (M is a diameter ratio), and the correlation between x and f when M is a parameter is the above-mentioned l 1 , and the equations [Equation 2], [Equation 3] and [Equation 3] From the equation (7), the frequency characteristic of FIG. 5 is obtained.

図5において、51、52、53は、直径比M=1.1、1.2、1.3の場合のそれぞれの縦振動特性であり、54、55、56は、直径比M=1.1、1.2、1.3の場合のそれぞれの捩り振動特性である。
図5の特性から、xを長くすると縦振動の共振周波数は高くなり、捩り振動の共振周波数は急激に低くなる。
In FIG. 5, 51, 52, and 53 are longitudinal vibration characteristics when the diameter ratio M = 1.1, 1.2, and 1.3, and 54, 55, and 56 are those when the diameter ratio M = 1.1, 1.2, and 1.3. Each torsional vibration characteristic.
From the characteristics shown in FIG. 5, when x is lengthened, the resonance frequency of longitudinal vibration increases and the resonance frequency of torsional vibration decreases rapidly.

両振動特性曲線は、M=1.1のときは交点が無く、M=1.2のとき点57(x=13.2)、M=1.3のとき点58(x=11.4)で交わっている。周波数調整要素32をMに対応した上述の交点の位置に設置すると、両振動モードは同一共振周波数のため、駆動周波数を両共振周波数(fd=fl=ft)とすると、複合振動体3の先端周縁部は直線振動となる。 Both vibration characteristic curves have no intersection when M = 1.1, intersect at point 57 (x = 13.2) when M = 1.2, and at point 58 (x = 11.4) when M = 1.3. When the frequency adjustment element 32 is installed at the position of the above-mentioned intersection corresponding to M, both vibration modes have the same resonance frequency. Therefore, when the drive frequency is both resonance frequencies (f d = f 1 = ft ), the composite vibration body The peripheral edge of the tip 3 is linearly oscillated.

縦振動および捩り振動の振動モードの共振周波数を、図5の同一共振周波数(57、58)近傍で両共振周波数差を前述の式[数1]のΔFに等しくなるように選んだ場合の縦振動および捩り振動の振動モードをそれぞれ図3の波形36および37に示す。図3において、Nは振動の節面、Lは振動の腹面を表す。
図2および図3の縦振動モードの波形26、36より電歪素子24および縦・捩り変換ユニット34は、振動の節部に設置されていて、歪力最大のため、電歪素子の振動効率および縦・捩り変換ユニットの縦・捩り変換効率が最大となる。
When the resonance frequency of the vibration mode of longitudinal vibration and torsional vibration is selected so that the difference between both resonance frequencies in the vicinity of the same resonance frequency (57, 58) in FIG. The vibration modes of vibration and torsional vibration are shown as waveforms 36 and 37 in FIG. 3, respectively. In FIG. 3, N represents a vibration nodal surface and L represents a vibration abdominal surface.
2 and 3, the electrostrictive element 24 and the longitudinal / torsional conversion unit 34 are installed at the vibration node and have the maximum distortion force, so that the vibration efficiency of the electrostrictive element is maximized. In addition, the vertical / torsion conversion efficiency of the vertical / torsion conversion unit is maximized.

図6に、本発明超音波複合振動体の他の例として、図2および図3の振動体2,3の節面Nを共通させて結合した構造の超音波加工機用の超音波複合振動体とその振動モードを示す。
図6では、図4および図5の周波数特性より、M=1.2の場合とすると、図4の交点48および図5の交点57近傍で両共振周波数差をΔFに等しくなるように選んだ場合、両振動モードの平均共振周波数は共に約39.9 kHzとなる。この場合の複合振動体の駆動周波数fdは、図1と式[数1]より式[数8]となる。
As another example of the ultrasonic composite vibrator of the present invention, FIG. 6 shows an ultrasonic composite vibration for an ultrasonic machine having a structure in which the joints N of the vibrators 2 and 3 of FIGS. Shows the body and its vibration modes.
In FIG. 6, from the frequency characteristics of FIGS. 4 and 5, assuming that M = 1.2, when the resonance frequency difference is selected to be equal to ΔF in the vicinity of the intersection 48 in FIG. 4 and the intersection 57 in FIG. The average resonance frequency of both vibration modes is about 39.9 kHz. In this case, the driving frequency f d of the composite vibration body is expressed by [Equation 8] from FIG. 1 and Equation [Equation 1].

Figure 2005288351
Figure 2005288351

式[数8]より、縦・捩り振動モードの共振時の機械的尖鋭度Ql,Qtがほぼ等しい時には、駆動周波数を両振動モードの平均共振周波数39.9KHzに選ぶと、両振動モードの位相差はπ/2となって、この複合振動体の先端周縁部は楕円振動となる。 From the formula [Equation 8], when the mechanical sharpness Q l and Q t at the time of resonance in the longitudinal and torsional vibration modes are almost equal, if the drive frequency is selected to be the average resonance frequency of 39.9 KHz, both vibration modes The phase difference is π / 2, and the peripheral edge of the tip of the composite vibrator is elliptically oscillated.

なお、共通節面Nで振幅の拡大(縮小)効果があり、超音波複合振動体の構成要素21および31の直径比r(r=r21/r31)に対応して、縦振動モードの先端振幅がrの二乗に比例し、捩り振動モードの先端外周の振幅がrの三乗に比例する。 Note that there is an effect of expanding (reducing) the amplitude at the common nodal plane N, and in the longitudinal vibration mode corresponding to the diameter ratio r (r = r 21 / r 31 ) of the components 21 and 31 of the ultrasonic composite vibrator. The amplitude of the tip is proportional to the square of r, and the amplitude of the outer periphery of the tip in the torsional vibration mode is proportional to the cube of r.

また、前記実施例においては、周波数調整要素22又は32を凸状(M>1)段付にしたが、凹状(M<1)段付としても同様の効果が期待できる。   Moreover, in the said Example, although the frequency adjustment element 22 or 32 was made into the convex (M> 1) step, the same effect can be anticipated even if it is a concave (M <1) step.

更に、前記実施例において、複合振動体3の構成要素を直径方向振動円板付き構造とすることにより、その円板を縦・径方向振動と捩り振動の合成された複合振動で励振し、当該円板の外周部に楕円振動モードを誘起することができる。   Furthermore, in the above-described embodiment, the component of the composite vibrating body 3 has a structure with a diametrically oscillating disk, so that the disk is excited by a combined vibration of longitudinal and radial vibrations and torsional vibrations. An elliptical vibration mode can be induced on the outer periphery of the disc.

一方、前記実施例においては、複合振動体2と3の各構成要素21,22,23,24,25、同じく構成要素31,32,33,34,35が円柱状をなす場合について説明したが、必ずしも各構成要素が円柱状をなしている必要は無く、例えばその軸心を含む長さ方向の断面積の変化が指数関数で表されるエキスポネンシャル型、円錐関数で表されるコニカル型、双曲線で表されるカテノイダル型、フ―リェ級数で表されるフーリェ型等にもそれぞれ上記断面積変化に対応したそれぞれの設計式を対応させることにより、同様に適用することができ、同様の効果が期待できる。   On the other hand, in the said Example, although each component 21, 22, 23, 24, 25 of the composite vibrating bodies 2 and 3 and the component 31, 32, 33, 34, 35 similarly made a column shape, it demonstrated. Each component does not necessarily have a cylindrical shape. For example, an exponential type in which a change in the cross-sectional area in the length direction including its axis is represented by an exponential function, or a conical type by a cone function. By applying the design formulas corresponding to the above cross-sectional area changes to the catenoidal type represented by the hyperbola, the Fourier type represented by the Fourier series, etc., the same applies. The effect can be expected.

また、前記実施例において、複合振動体3の構成要素を曲げ振動棒付き構造とすることにより、同振動棒を縦・曲げ方向振動と捩り振動の合成された複合振動で励振し、同振動棒先端に楕円振動モードを誘起することができる。   Further, in the above-described embodiment, the component of the composite vibrating body 3 has a structure with a bending vibration rod, so that the vibration rod is excited by a combined vibration of longitudinal and bending direction vibrations and torsional vibrations. An elliptical vibration mode can be induced at the tip.

更に、前記実施例において、複合振動体3の構成要素を曲げ振動円板付き構造とすることにより、同円板を縦・曲げ振動と捩り振動の合成された複合振動で励振し、同円板外周部に楕円振動モードを誘起することができる。   Further, in the above-described embodiment, the component of the composite vibrating body 3 has a structure with a bending vibration disk so that the disk is excited by a combined vibration of longitudinal / bending vibration and torsional vibration. An elliptical vibration mode can be induced on the outer periphery.

本発明は以上の通りであって、周波数調整要素を具備した超音波複合振動体を本発明によって形成することにより、縦・捩り両振動モードのシミュレーションが可能になるから、両振動の最大効率を与える複合振動体が実現できる。     The present invention is as described above, and by forming an ultrasonic composite vibration body having a frequency adjusting element according to the present invention, it is possible to simulate both longitudinal and torsional vibration modes. A composite vibrator can be realized.

また、複数の振動体を結合した本発明複合振動体では、その共通節面を支持することにより、当該振動体の剛性に富む支持が実現でき、先端位置決め制度が高く、高効率な超音波加工用の複合振動体を得ることができる。   Further, in the composite vibrator of the present invention in which a plurality of vibrators are coupled, by supporting the common nodal surface, it is possible to realize a support with rich rigidity of the vibrator, a high tip positioning system, and highly efficient ultrasonic machining. The composite vibrator for use can be obtained.

超音波複合振動体のモーショナルアドミッタンスと位相特性を示す本発明の説明図Explanatory drawing of this invention which shows the motional admittance and phase characteristic of an ultrasonic composite vibrator 本発明を適用して電歪振動子を設置した超音波複合振動体とその振動モードの模式図。The schematic diagram of the ultrasonic composite vibrator which applied the present invention and installed the electrostrictive vibrator, and its vibration mode. 本発明を適用して縦・捩り変換用スリットを設置した超音波複合振動体とその振動モードの模式図。The schematic diagram of the ultrasonic compound vibrator which applied the present invention and installed the slit for length and torsion conversion, and its vibration mode. 図1の場合の、周波数調整要素の設定位置の周波数特性図。The frequency characteristic figure of the setting position of the frequency adjustment element in the case of FIG. 図2の場合の、周波数調整要素の設定位置の周波数特性図。The frequency characteristic figure of the setting position of the frequency adjustment element in the case of FIG. 図2、図3の振動体を共通節面とした超音波加工機用の超音波複合振動体とその振動モードの模式図。FIG. 4 is a schematic diagram of an ultrasonic composite vibrator for an ultrasonic processing machine having the vibrator shown in FIGS. 2 and 3 as a common node and its vibration mode. 従来の複合振動体の例の説明図。Explanatory drawing of the example of the conventional composite vibrating body.

符号の説明Explanation of symbols

11、12 縦・捩り振動モードのモーショナルアドミッタンス特性
13,14 縦・捩り振動モードの位相特性
15 縦・捩り振動モードの位相差
2、 3 超音波複合振動体
22、32 周波数調整要素
24 電歪振動素子
34 縦・捩り変換用スリット
26、36 縦振動モード
27,37 捩り振動モード
41〜43 縦振動モード16の周波数特性
44〜46 捩り振動モード17の周波数特性
47〜49 縦・捩り振動モードの周波数一致点
51〜53 縦振動モード26の周波数特性
54〜56 捩り振動モード27の周波数特性
57、58 縦・捩り振動モードの周波数一致点
11, 12 Motional admittance characteristics of longitudinal / torsional vibration modes 13, 14 Phase characteristics of longitudinal / torsional vibration modes 15 Phase differences of longitudinal / torsional vibration modes 2, 3 Ultrasonic composite vibrators 22, 32 Frequency adjustment element 24 Electrostriction Vibration element 34 Longitudinal / torsional conversion slit 26, 36 Longitudinal vibration mode 27, 37 Torsional vibration mode 41-43 Frequency characteristic of longitudinal vibration mode 16 44-46 Frequency characteristic of torsional vibration mode 17 47-49 Longitudinal / torsional vibration mode Frequency matching points 51 to 53 Frequency characteristics of longitudinal vibration mode 26 54 to 56 Frequency characteristics of torsional vibration mode 27 57, 58 Frequency matching points of longitudinal and torsional vibration modes

Claims (4)

縦波および捩り波モードで振動する超音波複合振動体において、その振動体の縦振動の腹面1/4波長から節面1/2波長の区間に周波数調整用の要素として段付部を設置するとき該段付部の設置位置を調整することにより、縦波共振周波数に近接した振動体の駆動周波数における縦波および捩り波の位相差が零でなくπ/2に近く、かつ、縦波および捩り波のそれぞれの共振周波数における一方の端面が振動の節面、他方の端面が振動の腹面となるように形成したことを特徴とする超音波複合振動体。   In the ultrasonic composite vibrator that vibrates in the longitudinal wave and torsion wave modes, a stepped portion is installed as a frequency adjusting element in the section from the abdominal surface 1/4 wavelength to the nodal surface 1/2 wavelength of the longitudinal vibration of the vibrator. Sometimes, by adjusting the installation position of the stepped portion, the phase difference between the longitudinal wave and the torsional wave at the driving frequency of the vibrator close to the longitudinal wave resonance frequency is not zero but close to π / 2, and the longitudinal wave and An ultrasonic composite vibrator characterized in that one end face of each torsion wave at a resonance frequency is a vibration nodal face and the other end face is a vibration antinode. 前記超音波複合振動体の縦波モードの節部に、縦波用の電気音響変換器、若しくは、縦・捩り変換用のスリット部を設置した請求項1記載の超音波複合振動体。   The ultrasonic composite vibrator according to claim 1, wherein a longitudinal wave electroacoustic transducer or a longitudinal / torsional conversion slit is provided at a longitudinal wave mode node of the ultrasonic composite vibrator. 前記縦波用の電気音響変換器を設置した超音波複合振動体と、縦・捩り振動変換用のスリット部を設置した超音波複合振動体は、それぞれの節面を同一軸心で結合するか、若しくは、両方の複合振動体を一体形成して縦波モードの節面を共通に形成した請求項1および請求項2記載の超音波複合振動体。   Whether the ultrasonic composite vibrator having the electroacoustic transducer for longitudinal waves and the ultrasonic composite vibrator having slits for converting longitudinal / torsional vibrations are coupled to each other with the same axis. 3. The ultrasonic composite vibrator according to claim 1 or 2, wherein both composite vibrators are integrally formed to form a longitudinal mode mode joint face in common. 超音波複合振動体に周波数調整要素を設置するとき、縦波および捩り波の両振動モードでこの複合振動体の一方の端面が振動の節面に、及び他方の端面が振動の腹面となるように前記周波数調整要素の設置位置を調整することを特徴とする超音波複合振動体の形成方法。
When installing a frequency adjustment element on an ultrasonic composite vibrator, make sure that one end face of this composite vibrator becomes a vibration node and the other end face becomes a vibration antinode in both longitudinal and torsional vibration modes. And adjusting the installation position of the frequency adjusting element.
JP2004108265A 2004-03-31 2004-03-31 Ultrasonic composite vibrator and method of forming the vibrator Expired - Lifetime JP5036124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004108265A JP5036124B2 (en) 2004-03-31 2004-03-31 Ultrasonic composite vibrator and method of forming the vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004108265A JP5036124B2 (en) 2004-03-31 2004-03-31 Ultrasonic composite vibrator and method of forming the vibrator

Publications (2)

Publication Number Publication Date
JP2005288351A true JP2005288351A (en) 2005-10-20
JP5036124B2 JP5036124B2 (en) 2012-09-26

Family

ID=35321906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004108265A Expired - Lifetime JP5036124B2 (en) 2004-03-31 2004-03-31 Ultrasonic composite vibrator and method of forming the vibrator

Country Status (1)

Country Link
JP (1) JP5036124B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009082792A (en) * 2007-09-28 2009-04-23 Fujitsu Ltd Ultrasonic-horn design support system, and ultrasonic-horn design support method and program for the same
CN109174596A (en) * 2018-09-28 2019-01-11 河南理工大学 Novel longitudinal-torsional composite ultrasonic elliptical vibration turning method and device
WO2022264386A1 (en) * 2021-06-17 2022-12-22 株式会社新川 Ultrasonic complex vibration device, and manufacturing apparatus for semiconductor device
WO2023054733A3 (en) * 2022-11-07 2023-05-25 株式会社Link-Us Ultrasonic composite vibration device and ultrasonic bonding device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344970A (en) * 1986-08-13 1988-02-25 多賀電気株式会社 Ultrasonic vibrator and drive control method thereof
JPH07298653A (en) * 1994-04-25 1995-11-10 Asmo Co Ltd Ultrasonic motor
JPH08294673A (en) * 1995-04-27 1996-11-12 Jiromaru Tsujino Ultrasonic horn for converting composite vibration
JP2001239405A (en) * 2000-02-24 2001-09-04 Fuji Kogyo Kk Torsional oscillation device for ultrasonic machining

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6344970A (en) * 1986-08-13 1988-02-25 多賀電気株式会社 Ultrasonic vibrator and drive control method thereof
JPH07298653A (en) * 1994-04-25 1995-11-10 Asmo Co Ltd Ultrasonic motor
JPH08294673A (en) * 1995-04-27 1996-11-12 Jiromaru Tsujino Ultrasonic horn for converting composite vibration
JP2001239405A (en) * 2000-02-24 2001-09-04 Fuji Kogyo Kk Torsional oscillation device for ultrasonic machining

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009082792A (en) * 2007-09-28 2009-04-23 Fujitsu Ltd Ultrasonic-horn design support system, and ultrasonic-horn design support method and program for the same
CN109174596A (en) * 2018-09-28 2019-01-11 河南理工大学 Novel longitudinal-torsional composite ultrasonic elliptical vibration turning method and device
WO2022264386A1 (en) * 2021-06-17 2022-12-22 株式会社新川 Ultrasonic complex vibration device, and manufacturing apparatus for semiconductor device
JPWO2022264386A1 (en) * 2021-06-17 2022-12-22
KR20230057390A (en) 2021-06-17 2023-04-28 가부시키가이샤 신가와 Ultrasonic composite vibration device and semiconductor device manufacturing device
JP7343941B2 (en) 2021-06-17 2023-09-13 株式会社新川 Ultrasonic complex vibration equipment and semiconductor device manufacturing equipment
WO2023054733A3 (en) * 2022-11-07 2023-05-25 株式会社Link-Us Ultrasonic composite vibration device and ultrasonic bonding device

Also Published As

Publication number Publication date
JP5036124B2 (en) 2012-09-26

Similar Documents

Publication Publication Date Title
JP2011526797A5 (en)
JP5055423B2 (en) Ultrasonic transducer
JP2003200415A (en) Ultrasonic core bit
JP4755102B2 (en) Ultrasonic horn mount
JP2006149180A (en) Flat-type piezoelectric ultrasonic motor
WO2017082350A1 (en) Method for exciting longitudinal/torsional vibration of langevin-type ultrasonic vibrator
JP5036124B2 (en) Ultrasonic composite vibrator and method of forming the vibrator
JP2007336678A (en) Method of adjusting oscillation properties of ultrasonic oscillator, and ultrasonic oscillator used therefor
JP2008212916A (en) Apparatus for generating ultrasonic complex vibration
JPH08294673A (en) Ultrasonic horn for converting composite vibration
JP5029948B2 (en) Ultrasonic motor
JP5175434B2 (en) Support device for ultrasonic flexural vibrator
JP4082982B2 (en) Method for supporting ultrasonic flexural vibrator
JP2003290719A (en) Large capacity ultrasonic wave composite vibrator
JP3676769B2 (en) Machining tools
JP4624750B2 (en) Ultrasonic composite vibrator
JP2008022662A (en) Ultrasonic motor drive unit
JP2601653B2 (en) Wave matching method of ultrasonic transducer
JP3006433B2 (en) Ultrasonic transmitter
JP2972433B2 (en) Ultrasonic motor
JP2004283792A (en) Driving method for ultrasonic composite vibrator
JP2020137104A (en) Flat ultrasonic transducer and supporting method thereof
JP2022037621A (en) Ultrasonic coupling oscillation device
JPH0787710B2 (en) Ultrasonic linear motor
JP5219154B2 (en) Flexural-diameter combined transducer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110523

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110526

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110930

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120326

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5036124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S303 Written request for registration of pledge or change of pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316303

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term