JP2005286130A - Mounting structure of cooling device - Google Patents

Mounting structure of cooling device Download PDF

Info

Publication number
JP2005286130A
JP2005286130A JP2004098525A JP2004098525A JP2005286130A JP 2005286130 A JP2005286130 A JP 2005286130A JP 2004098525 A JP2004098525 A JP 2004098525A JP 2004098525 A JP2004098525 A JP 2004098525A JP 2005286130 A JP2005286130 A JP 2005286130A
Authority
JP
Japan
Prior art keywords
cooling device
heat
coil spring
mpu
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004098525A
Other languages
Japanese (ja)
Inventor
Takashi Kobayashi
敬 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Home Technology Corp
Original Assignee
Toshiba Home Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Home Technology Corp filed Critical Toshiba Home Technology Corp
Priority to JP2004098525A priority Critical patent/JP2005286130A/en
Publication of JP2005286130A publication Critical patent/JP2005286130A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

<P>PROBLEM TO BE SOLVED: To provide the mounting structure of a cooling device, whereby superior and stable contact with high accuracy can be obtained between a heat generating body and the cooling device, while attaining low profile for the cooling device. <P>SOLUTION: An energizing member for energizing and press-contacting a cooling module 4 to an MPU 3 employs no cylindrical coil nor a plate spring, but rather employs a conical coil spring 42. Thus, the height directional dimension can be reduced more than the case with the use of the cylindrical coil spring 26, and low profile of a fitting mechanism 41, and then that of the cooling module 4 can be attained. Further, the conical coil spring 42 can easily set a weight applied to a side of the MPU 3 and apply a stable weight thereto, in comparison with the case with the plate spring 31. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えばノート型パソコンなどの薄型筐体内に装着され、薄型でありながら筐体内部に設けられた発熱体を効率よく冷却する冷却装置の取付構造に関する。   The present invention relates to a mounting structure for a cooling device that is mounted in a thin housing such as a notebook personal computer and efficiently cools a heating element provided inside the housing while being thin.

従来、ノート型パソコン等の薄型電子機器の筐体内部には、機能部品としてMPU(マイクロプロセッサユニット)などの発熱部品が使用されており、こうした発熱部品の著しい温度上昇を防ぐために、送風ファンや受熱部,放熱部を備えた冷却装置が組み込まれている。   Conventionally, heat generating parts such as MPU (microprocessor unit) are used as functional parts inside the casing of thin electronic devices such as notebook computers, and in order to prevent a significant temperature rise of such heat generating parts, A cooling device having a heat receiving part and a heat radiating part is incorporated.

図5は、こうした冷却装置を示すもので、同様の構造は例えば特許文献1に開示されている。同図において、1はノート型パソコンの筐体であり、筐体1内部に収納された基板2上には、MPU3が実装固定され、MPU3の上部には当該MPU3を冷却するための横長矩形形状の冷却装置4が配置されている。   FIG. 5 shows such a cooling device, and a similar structure is disclosed in Patent Document 1, for example. In the figure, reference numeral 1 denotes a case of a notebook personal computer. An MPU 3 is mounted and fixed on a substrate 2 housed inside the case 1, and a horizontally long rectangular shape for cooling the MPU 3 is provided above the MPU 3. The cooling device 4 is arranged.

冷却装置4はアルミニウム,銅,マグネシウムなどの熱伝導性に優れた材料により一体的にダイカスト形成されたケース5と、該ケース5と共に放熱部であるファン収納部6を形成するためのカバー7とを、その外郭部材として備えている。ケース5の一側に形成される受熱部8は、中央部が下に僅かに突き出した断面が台形形状の接続部8Aを備え、この接続部8Aが肉厚となっている。またファン収納部6は、ケース5の他側を上面部とし、金属板材からなるカバー7を下面部として、その間に風洞となる空間9を形成しており、この空間9には複数のファンブレード10をカップ状のロータ(図示せず)の外周側面に一体形成してなる回動可能なファン11と、このファン11に回転力を与える駆動部12とにより構成される送風装置13が取り付けられている。そして、送風装置13の回転軸方向に対向するケース5とカバー7のそれぞれには、空間9内に空気を取り込むための吸気孔14,15が設けられると共に、これらの吸気孔14,15に直交して、送風装置13の放射方向には排気孔16が設けられる。   The cooling device 4 includes a case 5 that is integrally die-cast with a material having excellent thermal conductivity such as aluminum, copper, and magnesium, and a cover 7 that forms a fan housing portion 6 that is a heat radiating portion together with the case 5. Are provided as the outer member. The heat receiving portion 8 formed on one side of the case 5 includes a connecting portion 8A having a trapezoidal cross section with the central portion slightly protruding downward, and the connecting portion 8A is thick. In addition, the fan housing portion 6 has the other side of the case 5 as an upper surface portion, and a cover 7 made of a metal plate material as a lower surface portion, and a space 9 serving as a wind tunnel is formed therebetween, in which a plurality of fan blades are formed. A blower 13 comprising a rotatable fan 11 in which 10 is integrally formed on the outer peripheral side surface of a cup-shaped rotor (not shown) and a drive unit 12 that applies a rotational force to the fan 11 is attached. ing. Each of the case 5 and the cover 7 facing the rotation axis direction of the blower 13 is provided with intake holes 14 and 15 for taking air into the space 9 and orthogonal to these intake holes 14 and 15. An exhaust hole 16 is provided in the radial direction of the blower 13.

MPU3が固定された基板2は、筐体1の底面上に複数形成され、ねじ孔18を有する突起19の上面に載置され、MPU3の上面と受熱部8の接続部8Aとの間には弾性を有する熱伝導ラバー20が設けられる。また、MPU3と受熱部8とを熱的に接続するために、前記受熱部8には冷却装置4を被取付部である筐体1に取付ける取付機構21が設けられる。基板2には、ねじ孔18に対応する位置に、後述するねじ25の雄ねじ部25Aを挿通する挿通孔2Aが設けられる。   A plurality of substrates 2 to which the MPU 3 is fixed are formed on the bottom surface of the housing 1 and are placed on the top surface of the projection 19 having the screw holes 18, and between the top surface of the MPU 3 and the connection portion 8 </ b> A of the heat receiving unit 8. A heat conducting rubber 20 having elasticity is provided. In addition, in order to thermally connect the MPU 3 and the heat receiving portion 8, the heat receiving portion 8 is provided with an attachment mechanism 21 for attaching the cooling device 4 to the housing 1 that is the attached portion. The substrate 2 is provided with an insertion hole 2A through which a male screw portion 25A of a screw 25 described later is inserted at a position corresponding to the screw hole 18.

ここで取付機構21の構成を説明すると、前記突起19のねじ孔18にそれぞれ対応して、受熱部8の周囲部には、底部中央に円形の底孔23を有する窪み24が形成され、その窪み24には、取付ねじ25付きのスタッド26が底孔23に挿通可能に設けられる。スタッド26は、その下端が底孔23を貫通して基板2の上面に接する筒部26Aと、この筒部26Aの上端放射方向に形成され、窪み24に挿入されるフランジ部26Bとからなり、窪み24の底面とフランジ部26Bの下面との間には、熱伝導ラバー20の付勢に抗してMPU3側に冷却装置4を付勢圧接する円筒コイルばね28が設けられる。また前記取付ねじ25は、雄ねじ部25Aの下端がスタッド26の筒部26Aおよび基板2に設けた挿通孔2Aを貫通して、筐体1に形成したねじ孔18にねじ込まれるようになっている。さらに29は、窪み24の下方にあって筒部26Aの下端部に装着された止め輪で、これは受熱部8の窪み24に円筒コイルばね28を介在させた状態でスタッド26を装着した時に、円筒コイルばね28の弾発力によって窪み24からスタッド26が飛び出すのを防止するためにある。   Here, the structure of the attachment mechanism 21 will be described. A recess 24 having a circular bottom hole 23 at the center of the bottom portion is formed around the heat receiving portion 8 so as to correspond to the screw holes 18 of the protrusions 19, respectively. A stud 26 with a mounting screw 25 is provided in the recess 24 so that it can be inserted into the bottom hole 23. The stud 26 includes a cylindrical portion 26A whose lower end passes through the bottom hole 23 and is in contact with the upper surface of the substrate 2, and a flange portion 26B that is formed in the upper end radial direction of the cylindrical portion 26A and is inserted into the recess 24. A cylindrical coil spring 28 is provided between the bottom surface of the recess 24 and the lower surface of the flange portion 26B to press the cooling device 4 against the MPU 3 against the bias of the heat conducting rubber 20. The lower end of the male screw portion 25A passes through the cylindrical portion 26A of the stud 26 and the insertion hole 2A provided in the substrate 2, and is screwed into the screw hole 18 formed in the housing 1. . Further, 29 is a retaining ring that is located below the recess 24 and is attached to the lower end portion of the cylindrical portion 26A. This is when the stud 26 is attached with the cylindrical coil spring 28 interposed in the recess 24 of the heat receiving portion 8. This is to prevent the stud 26 from jumping out of the recess 24 due to the elastic force of the cylindrical coil spring 28.

そして上記構成では、MPU3から熱伝導ラバー20を介して受熱部8に達した熱が、熱伝導性の良好な部材からなるケース5によってファン収納部6側に伝導すると共に、駆動部12によってファン収納部6内のファン11が回転すると、筐体1内において冷却装置4の吸気孔14,15周辺の空気が、ケース5に伝導した熱を奪いながら、吸気孔14,15を通過してファン収納部6内の空間9に吸い込まれる。そして、この空間9内に取り込まれた空気は、吸気孔14,15と直交する方向に有る排気孔16より、冷却装置4ひいては筐体1の外部にスムースに排出される。これにより、筐体1内のMPU3の温度上昇を冷却装置4により抑制できる。   In the above configuration, the heat reaching the heat receiving portion 8 from the MPU 3 via the heat conducting rubber 20 is conducted to the fan housing portion 6 side by the case 5 made of a member having good heat conductivity, and the fan 12 is driven by the drive portion 12. When the fan 11 in the storage unit 6 rotates, the air around the intake holes 14 and 15 of the cooling device 4 in the housing 1 passes through the intake holes 14 and 15 while taking the heat conducted to the case 5. It is sucked into the space 9 in the storage unit 6. Then, the air taken into the space 9 is smoothly discharged from the exhaust hole 16 in a direction orthogonal to the intake holes 14 and 15 to the outside of the cooling device 4 and the casing 1. Thereby, the temperature rise of MPU3 in the housing | casing 1 can be suppressed by the cooling device 4. FIG.

また、筐体1の突起19に基板2とスタッド26とを載せた状態で、取付ねじ25の雄ねじ部25Aを筐体1のねじ孔18に螺着すると、受熱部8の窪み24に装着されたスタッド26が、基板2と共に筐体1の突起19上に取付け固定される。このとき、取付機構21を構成する円筒コイルばね28の弾性力により、冷却装置4の受熱部8がMPU3側に適切な加重で密着され、MPU3からの熱を受熱部8の接続部8Aに効率よく伝えることができる。   Further, when the male screw portion 25A of the mounting screw 25 is screwed into the screw hole 18 of the housing 1 with the substrate 2 and the stud 26 placed on the protrusion 19 of the housing 1, the mounting screw 25 is mounted in the recess 24 of the heat receiving portion 8. The stud 26 is fixedly mounted on the projection 19 of the housing 1 together with the substrate 2. At this time, due to the elastic force of the cylindrical coil spring 28 constituting the attachment mechanism 21, the heat receiving portion 8 of the cooling device 4 is brought into close contact with the MPU 3 with an appropriate load, and the heat from the MPU 3 is efficiently applied to the connecting portion 8A of the heat receiving portion 8. I can tell you well.

また別な例として、前記円筒コイルばね28の代わりに板ばね31を使用したものを図6に示す。板ばね31は、受熱部8の上面に設けた突起32に接する箇所を支点として、その周囲部が弾性変形するようになっており、板ばね31の周囲部には各スタッド26の筒部26Aを挿通する孔33が開口形成される。またここでは、板ばね31が受熱部8の上面に載置される関係で、前記窪み24に代わり孔33と略同形状の貫通孔34が設けられ、スタッド26の筒部26Aは、その下端部が貫通孔34を貫通して基板2の上面に接している。そしてこの場合は、スタッド26の筒部26Aが板ばね31の孔33と受熱部8の貫通孔34の順に挿通され、筐体1の突起19に基板2とスタッド26とを載せた状態で、取付ねじ25の雄ねじ部25Aが筐体1のねじ孔18に螺着される。これにより、冷却装置4の受熱部8をMPU3側に適切な加重で密着するように板ばね31の弾性力が作用し、図5の場合と同様に、MPU3からの熱を受熱部8の接続部8Aに効率よく伝えることができる。
特開2001−85585号公報
FIG. 6 shows another example in which a plate spring 31 is used in place of the cylindrical coil spring 28. The leaf spring 31 is elastically deformed around a portion that contacts the protrusion 32 provided on the upper surface of the heat receiving portion 8 as a fulcrum, and a cylindrical portion 26A of each stud 26 is provided around the leaf spring 31. A hole 33 through which is inserted is formed. Further, here, the leaf spring 31 is placed on the upper surface of the heat receiving portion 8, so that a through hole 34 having substantially the same shape as the hole 33 is provided in place of the recess 24, and the cylindrical portion 26A of the stud 26 has a lower end thereof. The portion passes through the through hole 34 and is in contact with the upper surface of the substrate 2. In this case, the cylindrical portion 26A of the stud 26 is inserted through the hole 33 of the leaf spring 31 and the through hole 34 of the heat receiving portion 8 in this order, and the substrate 2 and the stud 26 are placed on the protrusion 19 of the housing 1, A male screw portion 25A of the mounting screw 25 is screwed into the screw hole 18 of the housing 1. As a result, the elastic force of the leaf spring 31 acts so that the heat receiving portion 8 of the cooling device 4 is in close contact with the MPU 3 with an appropriate load, and the heat from the MPU 3 is connected to the heat receiving portion 8 as in the case of FIG. It can be efficiently transmitted to the part 8A.
JP 2001-85585 A

しかし、図5に示す冷却装置の取付構造では、円筒コイルばね28の母材となるばね材(ばねを形成する針金)が、その高さ方向のどの位置にあっても同一のコイル径で螺旋状に巻回されるので、冷却装置4をMPU3に付勢圧接する付勢部材として、ある程度の高さ寸法が必要となり、冷却装置を薄型化するには限界があった。   However, in the cooling device mounting structure shown in FIG. 5, the spring material (the wire forming the spring) that is the base material of the cylindrical coil spring 28 spirals at the same coil diameter regardless of the position in the height direction. Therefore, the urging member that urges and presses the cooling device 4 against the MPU 3 needs a certain height, and there is a limit to making the cooling device thinner.

こうした問題を回避するために、図6に示す板ばね31を使用する構造を採用することが考えられるが、板ばね31の製造精度からすると、円筒コイルばね28を使用する構造と比較して、MPU3側に加える荷重の設定が困難であり、更に量産時には荷重のばらつきがあって、安定した熱接続を実現できなった。   In order to avoid such a problem, it is conceivable to adopt a structure using the leaf spring 31 shown in FIG. 6, but from the manufacturing accuracy of the leaf spring 31, compared to a structure using the cylindrical coil spring 28, It was difficult to set the load to be applied to the MPU 3 side, and furthermore, there was a variation in load during mass production, and stable thermal connection could not be realized.

そこで本発明は上記問題点に鑑みてなされたもので、冷却装置の薄型化を図りつつも、発熱体と冷却装置との間で精度良く且つ安定した良好な接触が得られる冷却装置の取付構造を提供することを目的とする。   Accordingly, the present invention has been made in view of the above-described problems, and has a cooling device mounting structure capable of obtaining a good and stable and accurate contact between the heating element and the cooling device while reducing the thickness of the cooling device. The purpose is to provide.

本発明の請求項1における冷却装置の取付構造では、冷却装置の受熱部を発熱体側に付勢圧接する付勢部材として、そのコイル径が高さ方向に変化する円錐コイルばねを用いているので、円筒コイルばねよりも高さ方向の寸法差を縮めることができ、取付機構ひいては冷却装置の薄型化を達成できる。しかも、板ばねではなく円錐コイルばねであれば、発熱体側に加える加重の設定が容易であり、安定した荷重を加えることができる。   In the mounting structure of the cooling device according to claim 1 of the present invention, a conical coil spring whose coil diameter changes in the height direction is used as the biasing member that biases and presses the heat receiving portion of the cooling device toward the heating element. The dimensional difference in the height direction can be reduced as compared with the cylindrical coil spring, and the mounting mechanism, and thus the cooling device can be made thinner. And if it is a conical coil spring instead of a leaf | plate spring, the setting of the load added to the heat generating body side is easy, and the stable load can be applied.

請求項2における冷却装置の取付構造では、発熱体からの熱を奪い取る受熱部が板金部材で形成されるので、この受熱部を更に薄くすることができ、付勢部材を円錐コイルばねにしたことと相俟って、冷却装置の更なる薄型化を実現できる。   In the cooling device mounting structure according to claim 2, since the heat receiving portion that takes away heat from the heating element is formed of a sheet metal member, the heat receiving portion can be further thinned, and the biasing member is a conical coil spring. Together with this, the cooling device can be made thinner.

請求項3における冷却装置の取付構造では、冷却装置に熱輸送部を具備したことを特徴とする。これにより、熱輸送部によって発熱体からの熱を送風部に導くことができ、冷却性能が向上する。また、熱輸送部は熱応答性に優れているので、例えば発熱体の温度が急激に上昇した場合であっても、その温度上昇を効果的に抑制できる。   The cooling device mounting structure according to claim 3 is characterized in that the cooling device is provided with a heat transport portion. Thereby, the heat from a heat generating body can be guide | induced to a ventilation part by a heat transport part, and cooling performance improves. Moreover, since the heat transport part is excellent in thermal responsiveness, for example, even when the temperature of the heating element rapidly increases, the temperature increase can be effectively suppressed.

請求項1における冷却装置の取付構造によれば、冷却装置の薄型化を図りつつも、発熱体と冷却装置との間で精度良く且つ安定した良好な接触を得ることができる。   According to the mounting structure of the cooling device in claim 1, it is possible to obtain a good and stable good contact between the heating element and the cooling device while reducing the thickness of the cooling device.

請求項2における冷却装置の取付構造によれば、冷却装置の更なる薄型化を実現できる。   According to the mounting structure of the cooling device in claim 2, the cooling device can be further reduced in thickness.

請求項3における冷却装置の取付構造によれば、冷却装置の冷却性能を高めることができる他、発熱体の温度が急激に上昇した場合でも、その温度上昇を効果的に抑制できる。   According to the cooling device mounting structure of the third aspect, the cooling performance of the cooling device can be enhanced, and even when the temperature of the heating element rises rapidly, the temperature rise can be effectively suppressed.

以下、本発明における冷却装置の取付構造の各実施形態について、添付図面を参照しながら説明する。なお、各実施形態における冷却装置としての冷却モジュールは、いずれもノート型パソコンなどの薄型電子機器に使用されるものであり、従来例に示す図5及び図6と同一部分には同一符号を付し、その共通する箇所の説明は重複するため省略する。   Embodiments of the cooling device mounting structure according to the present invention will be described below with reference to the accompanying drawings. The cooling module as the cooling device in each embodiment is used for a thin electronic device such as a notebook personal computer, and the same parts as those in FIGS. However, the description of the common part is duplicated and will be omitted.

図1及び図2は本発明の第1実施形態を示すものである。筐体1の底面上には、ねじ穴18が設けられた複数(本実施例では4つ)の突設部19が設けられている。その突設部19上には略矩形の基板2が載置され、基板2上には通電状態で熱を発生するMPU3が取り付けられている。また、基板2のねじ穴18に対応した位置には貫通穴2Aが設けられている。そして、MPU3の上部には、熱伝導ラバー20を介して冷却モジュール4の一側にあるヒートシンク部8が配置されていると共に、冷却モジュール4の他側にあるファン収納部6には空間9が設けられ、その空間9には送風装置13が取り付けられている。なお、冷却モジュール4のケース5は、アルミニウム,銅,マグネシウムなどの良熱伝導性材料により一体的にダイカスト形成されているが、熱伝導性が優れていれば他の材料であってもよい。また、形成方法もダイカスト形成にも限定されず、他の方法であってもよい。なお、以上の点は従来例で示した図5及び図6と共通している。   1 and 2 show a first embodiment of the present invention. On the bottom surface of the housing 1, a plurality (four in this embodiment) of projecting portions 19 provided with screw holes 18 are provided. A substantially rectangular substrate 2 is placed on the projecting portion 19, and an MPU 3 that generates heat in an energized state is attached to the substrate 2. A through hole 2 </ b> A is provided at a position corresponding to the screw hole 18 of the substrate 2. A heat sink portion 8 on one side of the cooling module 4 is disposed above the MPU 3 via a heat conducting rubber 20, and a space 9 is provided in the fan housing portion 6 on the other side of the cooling module 4. The air blower 13 is attached to the space 9. The case 5 of the cooling module 4 is integrally formed by die-casting with a good heat conductive material such as aluminum, copper, or magnesium. However, other materials may be used as long as the heat conductivity is excellent. Further, the forming method is not limited to die casting, and other methods may be used. The above points are common to FIGS. 5 and 6 shown in the conventional example.

41は、冷却モジュール4を被取付部である筐体1に取付けるための取付機構である。ここでの取付機構41は、発熱体であるMPU3に冷却モジュール4のヒートシンク部8を付勢圧接する付勢部材として、従来例のような円筒コイルばね26や板ばね31ではなく、そのコイル径が上方に向かうに従って徐々に小さくなる円錐コイルばね42を使用している点が着目される。   Reference numeral 41 denotes an attachment mechanism for attaching the cooling module 4 to the housing 1 which is an attachment portion. The mounting mechanism 41 here is not a cylindrical coil spring 26 or a leaf spring 31 as in the conventional example, but a coil diameter as a biasing member for biasing and pressing the heat sink portion 8 of the cooling module 4 to the MPU 3 that is a heating element. It is noted that a conical coil spring 42 is used which gradually decreases as the angle increases upward.

より具体的には、ヒートシンク部8の周囲には、円形の底穴23をその底部中央に有する窪み24が形成され、その窪み24には、取付ねじ25付きのスタッド26が底孔23に挿通可能に設けられる。また、前述の円錐コイルばね42はスタッド26の筒部26Aに挿通された状態で、コイル部の大径側を下にして、窪み24の底面とスタッド26のフランジ部26Bとの間に設けられる。取付ねじ25の雄ねじ部25Aは、その下端がスタッド26の筒部26Aおよび基板2に設けた挿通孔2Aを貫通して、筐体1に形成したねじ孔18にねじ込まれており、基板2上に固着されたスタッド26とヒートシンク部8との間に円錐コイルばね42を介在させることで、ヒートシンク部8の接続部8AがMPU3側に押圧密着されるようになっている。なお、本実施形態では取付ねじ25とスタッド26は別個の部材として形成しているが、一体構造とすることもできる。   More specifically, a recess 24 having a circular bottom hole 23 at the center of the bottom is formed around the heat sink portion 8, and a stud 26 with a mounting screw 25 is inserted into the bottom hole 23 in the recess 24. Provided possible. The conical coil spring 42 is provided between the bottom surface of the recess 24 and the flange portion 26B of the stud 26 with the large-diameter side of the coil portion facing downward while being inserted through the cylindrical portion 26A of the stud 26. . The lower end of the male screw portion 25A of the mounting screw 25 passes through the cylindrical portion 26A of the stud 26 and the insertion hole 2A provided in the substrate 2, and is screwed into the screw hole 18 formed in the housing 1. The conical coil spring 42 is interposed between the stud 26 fixed to the heat sink portion 8 and the connecting portion 8A of the heat sink portion 8 is pressed and adhered to the MPU 3 side. In the present embodiment, the mounting screw 25 and the stud 26 are formed as separate members, but may be integrated.

上記構成において、筐体1に冷却モジュール4を取付ける手順を説明する。まず、冷却モジュール4のヒートシンク部8に形成した4つの窪み24に、円錐コイルばね42を大径部分を下にしてそれぞれ配置し、フランジ部26Bを上にして、円錐コイルばね42の中心部にスタッド26を差込む。次いで、スタッド26のフランジ部26Bを押し込んで、円錐コイルばね42を圧縮させ、スタッド26の下端を窪み24の底孔23から突き出させる。その突き出したスタッド26の下端にリング状の止め輪29を差し込んで、スタッド28が円錐コイルばね425の付勢によって窪み24から抜けないように、スタッド28の上方への移動を規制する。そして最後に、突起19のねじ穴18と基板2の貫通穴2Aとを合わせて、MPU3が取り付けられた基板2を筐体1に載せ、MPU3と接続部8Aとの間に熱伝導ラバー20または熱伝導グリースを挟んだ状態で、スタッド28の下端から突出した取付ねじ25の雄ねじ部25Aを突起19のねじ穴18に螺着する。このとき、取付ねじ25をねじ込んでいくに従って円錐コイルばね42が縮まり、ヒートシンク部8は、円錐コイルばね42の弾性によってMPU3側に所定の力で押しつけられる。   A procedure for attaching the cooling module 4 to the housing 1 in the above configuration will be described. First, conical coil springs 42 are respectively arranged in the four recesses 24 formed in the heat sink portion 8 of the cooling module 4 with the large-diameter portion facing down, and the flange portion 26B is facing up, in the central portion of the conical coil spring 42. Insert the stud 26. Next, the flange portion 26 </ b> B of the stud 26 is pushed in, the conical coil spring 42 is compressed, and the lower end of the stud 26 is protruded from the bottom hole 23 of the recess 24. A ring-shaped retaining ring 29 is inserted into the protruding lower end of the stud 26 to restrict the upward movement of the stud 28 so that the stud 28 does not come out of the recess 24 due to the bias of the conical coil spring 425. Finally, the screw hole 18 of the protrusion 19 and the through hole 2A of the substrate 2 are aligned, and the substrate 2 to which the MPU 3 is attached is placed on the housing 1, and a heat conducting rubber 20 or between the MPU 3 and the connecting portion 8A is placed. The male screw portion 25A of the mounting screw 25 protruding from the lower end of the stud 28 is screwed into the screw hole 18 of the protrusion 19 with the thermal grease interposed therebetween. At this time, the conical coil spring 42 contracts as the mounting screw 25 is screwed in, and the heat sink portion 8 is pressed against the MPU 3 side with a predetermined force by the elasticity of the conical coil spring 42.

図3は、図5に示す円筒コイルばね26と図2に示す円錐コイルばね42を使用して、冷却モジュール4を筐体1に取り付けた場合の、冷却モジュール4の高さの差を示したものである。図示するように、円錐コイルばね42を使用した場合のスタッド26の下端を基準とした冷却モジュール4の高さは、同じ太さで同じ巻数の円筒コイルばね16を使用した場合と比べてΔhだけ低い。その理由は、円筒コイルばね16の高さ寸法は、構造的に線材の直径とターン数を掛け合わせた値未満にはできないが、円錐コイルばね42であれば、線材の直径とターン数を掛け合わせた値未満にその高さ寸法を形成できるからである。しかも、円錐コイルばね42の場合、従来例の板ばね31のような製造精度を要求しなくても、MPU3側に加える荷重を容易に設定でき、しかも量産時における荷重のばらつきも少ない。結果的に、冷却モジュール4としての薄型化を達成できると共に、MPU3に対し精度よく安定した熱接続を実現できる。   FIG. 3 shows the difference in height of the cooling module 4 when the cooling module 4 is attached to the housing 1 using the cylindrical coil spring 26 shown in FIG. 5 and the conical coil spring 42 shown in FIG. Is. As shown in the figure, the height of the cooling module 4 with respect to the lower end of the stud 26 when the conical coil spring 42 is used is Δh compared to the case where the cylindrical coil spring 16 having the same thickness and the same number of turns is used. Low. The reason is that the height of the cylindrical coil spring 16 cannot be structurally less than the product of the wire diameter and the number of turns. This is because the height dimension can be formed below the combined value. In addition, in the case of the conical coil spring 42, the load applied to the MPU 3 side can be easily set without requiring manufacturing accuracy as in the case of the leaf spring 31 of the conventional example, and the load variation during mass production is small. As a result, it is possible to reduce the thickness of the cooling module 4 and to achieve a stable and accurate thermal connection to the MPU 3.

以上のように本実施例では、送風部である送風装置13と受熱部であるヒートシンク部8および放熱部であるファン収納部6とを一体に備え、発熱体であるMPU3を冷却する冷却装置としての冷却モジュール4と、この冷却モジュール4を被取付部である例えばパソコンの筐体1に取付ける取付機構41とからなり、MPU3に冷却モジュール4を付勢圧接する付勢部材を取付機構41に備えた冷却モジュール4の取付構造において、取付機構41の少なくとも一箇所以上に、付勢部材として円錐コイルばね42を用いている。   As described above, in the present embodiment, as a cooling device that integrally includes the air blower 13 that is a blower, the heat sink portion 8 that is a heat receiving portion, and the fan housing portion 6 that is a heat radiating portion, the MPU 3 that is a heating element is cooled. The cooling module 4 and an attachment mechanism 41 that attaches the cooling module 4 to the housing 1 of the personal computer, which is an attachment portion, are provided in the attachment mechanism 41 with an urging member that urges and cools the cooling module 4 against the MPU 3. In the mounting structure of the cooling module 4, the conical coil spring 42 is used as an urging member in at least one place of the mounting mechanism 41.

この場合、冷却モジュール4をMPU3側に付勢圧接する付勢部材として、そのコイル径が高さ方向に変化する円錐コイルばね42を用いているので、円筒コイルばね26よりも高さ方向の寸法差を縮めることができ、取付機構41ひいては冷却モジュール4の薄型化を達成できる。しかも、板ばね31ではなく円錐コイルばね42であれば、MPU3側に加える加重の設定が容易であり、安定した荷重を加えることができる。そのため、冷却モジュール4の薄型化を図りつつも、MPU3と冷却モジュール4との間で精度良く且つ安定した良好な接触を得ることができる。   In this case, since the conical coil spring 42 whose coil diameter changes in the height direction is used as the urging member that urges and presses the cooling module 4 toward the MPU 3, the dimension in the height direction is larger than that of the cylindrical coil spring 26. The difference can be reduced, and the attachment mechanism 41, and thus the cooling module 4, can be made thinner. Moreover, if the conical coil spring 42 is used instead of the leaf spring 31, the load applied to the MPU 3 side can be easily set, and a stable load can be applied. Therefore, it is possible to obtain an accurate and stable good contact between the MPU 3 and the cooling module 4 while reducing the thickness of the cooling module 4.

次に本発明の第2実施形態を図4に基づき説明する。なお、上記第1実施形態と同一部分には同一符号を付し、その共通する箇所の説明は重複するため省略する。   Next, a second embodiment of the present invention will be described with reference to FIG. In addition, the same code | symbol is attached | subjected to the same part as the said 1st Embodiment, and since the description of the common location overlaps, it abbreviate | omits.

この第2実施形態では、ヒートシンク部8とファン収納部6の上面部を形成するケース5に代わって、適宜折曲げ形成された板金部材51が用いられ、さらにこの板金部材51の上面に、冷却性能を高めるためのヒートパイプ52が配設されている点が、第1実施形態とは異なる。   In the second embodiment, a sheet metal member 51 that is appropriately bent is used in place of the case 5 that forms the upper surface portions of the heat sink portion 8 and the fan housing portion 6, and cooling is further performed on the upper surface of the sheet metal member 51. The point from which the heat pipe 52 for improving performance is arrange | positioned differs from 1st Embodiment.

ヒートパイプ52は、熱伝導性に優れた銅などで外郭管部を形成しており、その内部には微少量の作動液(図示せず)が注入され、この作動液を管体内部で還流させることにより冷却効果が得られる。このようにヒートパイプ52を取り付けることによって、板金部材51のみならずヒートパイプ52によっても、MPU3の熱を送風装置13側に導くことができ、冷却性能を向上できる。またヒートパイプ52は熱応答性に優れているので、発熱源であるMPU3の温度が急激に上昇した場合などでもその温度上昇を効果的に抑制できる。   The heat pipe 52 forms an outer tube portion made of copper or the like having excellent heat conductivity, and a small amount of working fluid (not shown) is injected into the inside of the pipe, and this working fluid is circulated inside the tube body. By doing so, a cooling effect can be obtained. By attaching the heat pipe 52 in this way, not only the sheet metal member 51 but also the heat pipe 52 can guide the heat of the MPU 3 to the blower 13 side, and the cooling performance can be improved. Moreover, since the heat pipe 52 is excellent in heat responsiveness, even when the temperature of the MPU 3 that is a heat generation source is rapidly increased, the temperature increase can be effectively suppressed.

また、冷却モジュール4の外郭部材が何れも金属板材からなるカバー7や板金部材51により形成されている。したがってダイカスト形成によるものよりも冷却モジュール4を薄くすることができ、これを利用したパソコンなどの薄型電子機器の一層の薄型化が可能になる。   Further, the outer members of the cooling module 4 are each formed by a cover 7 made of a metal plate material or a sheet metal member 51. Therefore, the cooling module 4 can be made thinner than that by die casting, and it is possible to further reduce the thickness of a thin electronic device such as a personal computer using this.

図4の構成において、ヒートシンク部8と送風装置13を収納するファン収納部6とは別体でもよく、その場合はヒートシンク部8とファン収納部6との間をヒートパイプ52で熱的に接続すればよい。また、このヒートパイプ52は任意であって、ヒートパイプ52を有さない構造であってもよい。その他、筐体1に冷却モジュール4を取付ける手順や、円錐コイルばね42による作用は、第1実施形態で説明したとおりである。   In the configuration of FIG. 4, the heat sink portion 8 and the fan accommodating portion 6 that accommodates the air blower 13 may be separated, and in that case, the heat pipe 52 and the fan accommodating portion 6 are thermally connected by the heat pipe 52. do it. Further, the heat pipe 52 is optional and may have a structure without the heat pipe 52. In addition, the procedure for attaching the cooling module 4 to the housing 1 and the operation of the conical coil spring 42 are as described in the first embodiment.

本実施形態によるとMPU3からの熱を奪い取るヒートシンク部8が板金部材51で形成されるので、このヒートシンク部8を更に薄くすることができ、付勢部材を円錐コイルばね42にしたことと相俟って、冷却モジュール4の更なる薄型化を実現できる。   According to the present embodiment, since the heat sink portion 8 that takes away heat from the MPU 3 is formed by the sheet metal member 51, the heat sink portion 8 can be further thinned, and this is in combination with the fact that the biasing member is the conical coil spring 42. Thus, the cooling module 4 can be further reduced in thickness.

また、冷却モジュール4に熱輸送部としてのヒートパイプ52を備えているので、このヒートパイプ52によってMPU3からの熱を送風装置13のあるファン収納部6に導くことができ、冷却性能が向上する。また、ヒートパイプ52は熱応答性に優れているので、例えばMPU3の温度が急激に上昇した場合であっても、その温度上昇を効果的に抑制できる。   In addition, since the cooling module 4 includes the heat pipe 52 as a heat transport section, the heat pipe 52 can guide the heat from the MPU 3 to the fan housing section 6 where the blower 13 is provided, thereby improving the cooling performance. . Moreover, since the heat pipe 52 is excellent in heat responsiveness, for example, even when the temperature of the MPU 3 rapidly increases, the temperature increase can be effectively suppressed.

なお、本発明は上記実施形態に限定されるものではなく、種々の変更が可能である。例えば、上記実施形態では、ヒートシンク部8周辺の4箇所で円錐コイルばね42を使用しているが、4箇所に限定されるものではなく、例えば他の構造との関係上一箇所のみ使用してもよい。   In addition, this invention is not limited to the said embodiment, A various change is possible. For example, in the above embodiment, the conical coil springs 42 are used at four locations around the heat sink portion 8, but are not limited to four locations. For example, only one location is used in relation to other structures. Also good.

本発明の第1実施形態における冷却装置の取付構造を示す平面図である。It is a top view which shows the attachment structure of the cooling device in 1st Embodiment of this invention. 同上、冷却装置の断面図である。It is sectional drawing of a cooling device same as the above. 円筒コイルばねと円錐コイルばねを使用した場合の、取付構造の高さの差を示した図である、It is the figure which showed the difference in the height of an attachment structure at the time of using a cylindrical coil spring and a cone coil spring. 本発明の第2実施形態の冷却装置の取付構造を示す断面図である。It is sectional drawing which shows the attachment structure of the cooling device of 2nd Embodiment of this invention. 従来例における冷却装置の取付構造を示した断面図である。It is sectional drawing which showed the attachment structure of the cooling device in a prior art example. 従来例における冷却装置の他の取付構造を示した断面図である。It is sectional drawing which showed the other attachment structure of the cooling device in a prior art example.

符号の説明Explanation of symbols

3 MPU(発熱体)
4 冷却モジュール(冷却装置)
6 ファン収納部(放熱部)
8 ヒートシンク部(受熱部)
13 送風装置(送風部)
41 取付機構
42 円錐コイルばね(付勢部材)
52 ヒートパイプ(熱輸送部)
3 MPU (heating element)
4 Cooling module (cooling device)
6 Fan storage part (heat dissipation part)
8 Heat sink (heat receiving part)
13 Blower (Blower)
41 Mounting mechanism
42 Conical coil spring (biasing member)
52 Heat pipe (heat transport section)

Claims (3)

送風部と受熱部および放熱部とを一体に備え、発熱体を冷却する冷却装置と、この冷却装置を被取付部に取付ける取付機構とからなり、前記発熱体に前記冷却装置の受熱部を付勢圧接する付勢部材を前記取付機構に備えた冷却装置の取付構造において、前記取付機構の少なくとも一箇所以上に、前記付勢部材として円錐コイルばねを用いることを特徴とする冷却装置の取付構造。   A cooling unit that integrally includes a blower unit, a heat receiving unit, and a heat radiating unit and cools the heating element, and an attachment mechanism that attaches the cooling unit to the mounted part. The heating unit is provided with the heat receiving unit of the cooling unit. In the mounting structure of the cooling device provided with an urging member in pressure contact with the mounting mechanism, a conical coil spring is used as the urging member in at least one place of the mounting mechanism. . 前記受熱部が板金部材で形成されることを特徴とする請求項1記載の冷却装置の取付構造。   The cooling device mounting structure according to claim 1, wherein the heat receiving portion is formed of a sheet metal member. 前記冷却装置に熱輸送部を具備したことを特徴とする請求項1または2記載の冷却装置の取付構造。

The cooling device mounting structure according to claim 1, wherein the cooling device includes a heat transport portion.

JP2004098525A 2004-03-30 2004-03-30 Mounting structure of cooling device Pending JP2005286130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004098525A JP2005286130A (en) 2004-03-30 2004-03-30 Mounting structure of cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004098525A JP2005286130A (en) 2004-03-30 2004-03-30 Mounting structure of cooling device

Publications (1)

Publication Number Publication Date
JP2005286130A true JP2005286130A (en) 2005-10-13

Family

ID=35184160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004098525A Pending JP2005286130A (en) 2004-03-30 2004-03-30 Mounting structure of cooling device

Country Status (1)

Country Link
JP (1) JP2005286130A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7742295B2 (en) 2006-10-26 2010-06-22 Kabushiki Kaisha Toshiba Cooling device and electronic device
JP2011035265A (en) * 2009-08-04 2011-02-17 Mitsubishi Electric Corp Semiconductor device
JP2014112737A (en) * 2014-03-19 2014-06-19 Mitsubishi Electric Corp Semiconductor device
WO2020261382A1 (en) * 2019-06-25 2020-12-30 三菱電機株式会社 Semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7742295B2 (en) 2006-10-26 2010-06-22 Kabushiki Kaisha Toshiba Cooling device and electronic device
JP2011035265A (en) * 2009-08-04 2011-02-17 Mitsubishi Electric Corp Semiconductor device
JP2014112737A (en) * 2014-03-19 2014-06-19 Mitsubishi Electric Corp Semiconductor device
WO2020261382A1 (en) * 2019-06-25 2020-12-30 三菱電機株式会社 Semiconductor device
JPWO2020261382A1 (en) * 2019-06-25 2021-10-21 三菱電機株式会社 Semiconductor device
JP7170870B2 (en) 2019-06-25 2022-11-14 三菱電機株式会社 semiconductor equipment

Similar Documents

Publication Publication Date Title
US7990713B2 (en) Heat dissipation device and method for manufacturing the same
US7262965B2 (en) Thermal structure for electric devices
US8144460B2 (en) Portable computer with heat dissipation unit
US8210241B2 (en) Heat sink fan
US7495921B2 (en) Fan bracket and heat dissipation apparatus incorporating the same
JP2006216678A (en) Radiator for semiconductor
US7859843B2 (en) Heat dissipation structure
US7286362B2 (en) Heat dissipating apparatus
JP4635101B1 (en) Cooling device and electronic device
JP2006280089A (en) Motor controller
JP4512124B2 (en) Radiation module and radiator
US20140182822A1 (en) Heat dissipation module
JP3515552B2 (en) Cooling device and electronic device with built-in cooling device
JP2005286130A (en) Mounting structure of cooling device
US20080149321A1 (en) Thermal module mounted on carrier by using magnetic force
JP2001085585A (en) Cooling fan fixing device
JP5221252B2 (en) Heat dissipation device
JP4682969B2 (en) Blower fan device
US20090165998A1 (en) Heat dissipation device
JP2006332148A (en) Cooler
US20210259132A1 (en) Electronic device with a heat dissipating function and heat dissipating module thereof
JP2008291796A (en) Blower fan device and its manufacturing method
JP2016004839A (en) Heat module
JP2008103577A (en) Heat dissipating structure for power module, and motor controller equipped with the same
JP2004134696A (en) Cooling device and heat sink used therefor