JP2005286129A - COMPOUND SEMICONDUCTOR SUBSTRATE WITH p-n JUNCTION - Google Patents

COMPOUND SEMICONDUCTOR SUBSTRATE WITH p-n JUNCTION Download PDF

Info

Publication number
JP2005286129A
JP2005286129A JP2004098504A JP2004098504A JP2005286129A JP 2005286129 A JP2005286129 A JP 2005286129A JP 2004098504 A JP2004098504 A JP 2004098504A JP 2004098504 A JP2004098504 A JP 2004098504A JP 2005286129 A JP2005286129 A JP 2005286129A
Authority
JP
Japan
Prior art keywords
layer
ingap
semiconductor substrate
compound semiconductor
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004098504A
Other languages
Japanese (ja)
Other versions
JP4923384B2 (en
Inventor
Satoshi Inoue
聡 井上
Kenji Kohiro
健司 小廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2004098504A priority Critical patent/JP4923384B2/en
Publication of JP2005286129A publication Critical patent/JP2005286129A/en
Application granted granted Critical
Publication of JP4923384B2 publication Critical patent/JP4923384B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compound semiconductor substrate, whereby semiconductor element deterioration in the electrical characteristics of which is less than that of prior arts is manufactured. <P>SOLUTION: The compound semiconductor substrate includes a p-n junction comprising a p-layer and an n-layer, and at least one InGap layer between the p-layer and the n-layer. The InGap layer is not ordered and its carrier concentration is lower than 1×10<SP>17</SP>cm<SP>-3</SP>. In the manufacturing method of the compound semiconductor substrate, the p-layer, the n-layer and the disordered InGap layer between the p-layer and the n-layer are grown on an original substrate. The disordered InGap layer is grown at a growing temperature range of 450°C or higher and 600°C or lower, by using a gas amount of trimethyl gallium (TMG), trimethyl indium (TMI), and phosphin, equivalent to the amount x within a range of 0.45≤x≤0.55 in the formula In<SB>x</SB>Ga<SB>1-x</SB>P. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、pn接合を有する化合物半導体基板およびその製造方法に関する。   The present invention relates to a compound semiconductor substrate having a pn junction and a manufacturing method thereof.

pn接合を有する化合物半導体基板は、電界効果トランジスタ(FET)、レーザーダイオード(LD)、ホトダイオード(PD)、整流器用ダイオードなどの半導体素子の製造に用いられている。   A compound semiconductor substrate having a pn junction is used for manufacturing semiconductor elements such as a field effect transistor (FET), a laser diode (LD), a photodiode (PD), and a rectifier diode.

pn接合を有する半導体基板を用いて製造される半導体素子の、整流特性、増幅率等の電気的特性は、電流を流して使用するに従って経時的に、低下することが一般的に知られており、電気的特性の低下の少ない半導体素子を与える化合物半導体基板が求められている。   It is generally known that electrical characteristics such as rectification characteristics and amplification factors of semiconductor elements manufactured using a semiconductor substrate having a pn junction decrease with time as current is applied. Therefore, there is a demand for a compound semiconductor substrate that provides a semiconductor element with little deterioration in electrical characteristics.

電気的特性の低下が従来より少ない半導体素子を与える化合物半導体基板として、pn接合間にバンドギャップが大きく、ホールのバリア(障壁)となる層である秩序化InGaP層を挟んでなる化合物半導体基板が提案されている(例えば、特許文献1参照。)が、電気的特性の低下の防止は十分ではなかった。なお、pn接合を形成しているp層とn層の間に、前記秩序化InGaP層のように他の中間層が存在する場合であっても、p層とn層の間のいずれかの位置において電子とホールの結合というpn接合の機能が発現していれば、中間層を介したp層とn層の接合をpn接合と称する。   As a compound semiconductor substrate that provides a semiconductor element with a lower electrical characteristic than before, there is a compound semiconductor substrate having a band gap between pn junctions and an ordered InGaP layer that is a layer that serves as a barrier for holes. Although it has been proposed (see, for example, Patent Document 1), prevention of deterioration of electrical characteristics has not been sufficient. Even if another intermediate layer is present between the p layer and the n layer forming the pn junction, such as the ordered InGaP layer, any one of the layers between the p layer and the n layer is present. If the pn junction function of bonding of electrons and holes is expressed at the position, the junction between the p layer and the n layer through the intermediate layer is referred to as a pn junction.

特開2001−250939号公報JP 2001-250939 A

本発明の目的は、電気的特性の低下が従来より少ない半導体素子を与える化合物半導体基板を提供することにある。   An object of the present invention is to provide a compound semiconductor substrate that provides a semiconductor device with less deterioration in electrical characteristics than in the past.

そこで本発明者らは、上記課題を解決するために、pn接合を有する化合物半導体基板のpn接合について鋭意検討した結果、pn接合間に、InGaPからなる層を設け、しかもこのInGaPが秩序化しておらず、かつキャリア濃度が1×1017cm-3未満である場合に、この化合物半導体基板が、電気的特性の低下が従来より少ない半導体素子を与える化合物半導体基板となることを見出し、本発明を完成させるに到った。 In order to solve the above problems, the present inventors have intensively studied a pn junction of a compound semiconductor substrate having a pn junction. As a result, a layer made of InGaP is provided between the pn junctions, and the InGaP is ordered. The compound semiconductor substrate becomes a compound semiconductor substrate that gives a semiconductor element with lower electrical characteristics than the conventional one when the carrier concentration is less than 1 × 10 17 cm −3. It came to complete.

すなわち本発明は、pn接合と、該pn接合の間に、InGaPからなる層を少なくとも一つ有する化合物半導体基板であって、該InGaPが秩序化しておらず、該InGaPのキャリア濃度が1×1017cm-3未満であることを特徴とする化合物半導体基板を提供する。 That is, the present invention is a compound semiconductor substrate having a pn junction and at least one layer made of InGaP between the pn junction, the InGaP is not ordered, and the carrier concentration of the InGaP is 1 × 10 Provided is a compound semiconductor substrate characterized by being less than 17 cm −3 .

本発明の化合物半導体基板を用いれば、使用に伴う電気的特性の低下が従来より少ない半導体素子を製造することができるので、本発明は工業的に極めて有用である。   The use of the compound semiconductor substrate of the present invention makes it possible to produce a semiconductor device with less deterioration in electrical characteristics due to use than before, and the present invention is extremely useful industrially.

本発明の化合物半導体基板は、pn接合と、該pn接合間に挟まれ、InGaPからなる層を少なくとも一つ有し、かつ該InGaPが秩序化しておらず、該InGaPのキャリア濃度が1×1017cm-3未満であることを特徴とする。 The compound semiconductor substrate of the present invention has a pn junction and at least one layer made of InGaP sandwiched between the pn junctions, the InGaP is not ordered, and the carrier concentration of the InGaP is 1 × 10 It is characterized by being less than 17 cm −3 .

ここでいうpn接合は、ダイオードのpn接合、トランジスタにのpnp接合の二つのpn接合、トランジスタのnpn接合の二つのpn接合のいずれをも意味するが、本発明においては、pn接合がダイオードにおけるpn接合、トランジスタのnpn接合におけるベースとコレクタ間のpn接合である場合に、本発明の化合物半導体基板は特に電気的特性の低下が従来より少ない半導体素子を与える傾向がある。   Here, the pn junction means any one of a pn junction of a diode, two pn junctions of a pnp junction of a transistor, and two pn junctions of an npn junction of a transistor. In the present invention, the pn junction is a diode pn junction. When the pn junction is a pn junction between the base and the collector in the npn junction of the transistor, the compound semiconductor substrate of the present invention tends to give a semiconductor element in which the electrical characteristics are particularly less deteriorated than before.

このpn接合間に設けられ、InGaPからなり、秩序化していない層は、式(1)
InxGa1-xP(0<x<1) (1)
で示される化合物からなり、In原子とGa原子が結晶格子上にランダムに配置されている層である。そして、xが0.45未満または0.55を超える場合はInGaP層は秩序化していないことが知られている。xが0.45以上0.55以下の場合においては、エネルギーギャップの値A(eV)の範囲はxに依存し、式(2)
2.28−0.8x≦A≦2.33−0.8x (2)
で表されるの範囲であるときに秩序化していないので好ましく、式(3)
2.29−0.8x≦A≦2.31−0.8x (3)
で表されるの範囲であることが、さらに好ましい。なお、エネルギーギャップの測定は、フォトルミネッセンスにより行うことができ、エネルギーギャップの値はフォトルミネッセンスのピークエネルギーとして測定される。
The unordered layer provided between the pn junctions and made of InGaP has the formula (1)
In x Ga 1-x P (0 <x <1) (1)
And a layer in which In atoms and Ga atoms are randomly arranged on the crystal lattice. And when x is less than 0.45 or more than 0.55, it is known that the InGaP layer is not ordered. When x is 0.45 or more and 0.55 or less, the range of the energy gap value A (eV) depends on x, and the formula (2)
2.28−0.8x ≦ A ≦ 2.33−0.8x (2)
Since it is not ordered when it is in the range represented by formula (3)
2.29−0.8x ≦ A ≦ 2.31−0.8x (3)
More preferably, the range is represented by The energy gap can be measured by photoluminescence, and the value of the energy gap is measured as the peak energy of photoluminescence.

また、本発明のInGaP層は、キャリア濃度が1×1017cm-3未満である。キャリア濃度がこの範囲であるときに、pn接合と、該pn接合間に挟まれ、InGaPからなる層を少なくとも一つ有する化合物半導体基板は、電気的特性の低下が従来より少ない半導体素子を与える。InGaP層のキャリアは、キャリアの極性に関わらず(キャリアが電子であるがホールであるかに関わらず)1×1017cm-3未満であり、InGaP層のキャリア濃度は低い方がよく、好ましくは1×1016cm-3以下である。 In the InGaP layer of the present invention, the carrier concentration is less than 1 × 10 17 cm −3 . When the carrier concentration is in this range, a compound semiconductor substrate having a pn junction and at least one layer made of InGaP sandwiched between the pn junctions gives a semiconductor element with lower electrical characteristics than before. The carrier of the InGaP layer is less than 1 × 10 17 cm −3 regardless of the carrier polarity (whether the carrier is an electron or a hole), and the carrier concentration of the InGaP layer is preferably low, preferably Is 1 × 10 16 cm −3 or less.

なお、pn接合間には、InGaPからなり、秩序化しておらず、キャリア濃度が1×1017cm-3未満である本発明のInGaP層以外に、本発明の目的を阻害しない範囲で、他の層を配置することができるが、pn接合間には本発明のInGaP層のみが配置されていることが好ましい。 The pn junction is made of InGaP, is not ordered, and other than the InGaP layer of the present invention in which the carrier concentration is less than 1 × 10 17 cm −3 , in the range not impairing the object of the present invention. However, it is preferable that only the InGaP layer of the present invention is disposed between the pn junctions.

本発明の化合物半導体基板は、有機金属化学気相成長法(MOCVD)、分子線エピタキシー法(MBE)等を用いて公知の方法により製造することができる。化合物半導体基板は、pn接合を有したものであれば、LD、PD、整流器用ダイオード、FET、接合型電界効果トランジスタ(JFET)等のいずれでもよい。   The compound semiconductor substrate of the present invention can be produced by a known method using metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE) or the like. The compound semiconductor substrate may be any of LD, PD, rectifier diode, FET, junction field effect transistor (JFET) and the like as long as it has a pn junction.

本発明の化合物半導体基板を製造する場合は、元基板の上に、p層とn層と、該p層と該n層の間にInGaP層を成長させて製造することができる。そして、秩序化していないInGaP層は、MOCVD法で製造する場合は、トリメチルガリウム(TMG)、トリメチルインジウム(TMI)、ホスフィンの各ガスを出発原料として、式(1)において0.45≦x≦0.55となるような量を用い、さらに必要であれば前記各ガスに、キャリア濃度を増加させ得るドーパントとなるSi源のジシラン等のガスをキャリア濃度が1×1017cm-3未満になるように調整した量を加え、成長温度を450℃以上600℃以下の温度範囲として成長させることにより製造することができる。成長温度が600℃を超えると、生成するInGaP層は秩序化する傾向があり、450℃未満であると成長速度が遅くなって工業的な製造が困難となる。 When the compound semiconductor substrate of the present invention is manufactured, it can be manufactured by growing a p layer and an n layer and an InGaP layer between the p layer and the n layer on the original substrate. When the unordered InGaP layer is manufactured by the MOCVD method, 0.45 ≦ x ≦ in the formula (1) using each gas of trimethylgallium (TMG), trimethylindium (TMI), and phosphine as starting materials. An amount of 0.55 is used, and if necessary, a gas such as disilane as a Si source serving as a dopant capable of increasing the carrier concentration is added to each of the above gases so that the carrier concentration is less than 1 × 10 17 cm −3 . It can manufacture by adding the quantity adjusted so that it may become and making it grow in the temperature range of 450 degreeC or more and 600 degrees C or less. When the growth temperature exceeds 600 ° C., the generated InGaP layer tends to be ordered. When the growth temperature is lower than 450 ° C., the growth rate becomes slow and industrial production becomes difficult.

以下、図面を参照して本発明の実施形態の一例につき詳細に説明する。本図面は本発明の一例に過ぎず、本発明はこの図面の示す素子構造に何ら限定されるものではない。   Hereinafter, an exemplary embodiment of the present invention will be described in detail with reference to the drawings. This drawing is only an example of the present invention, and the present invention is not limited to the element structure shown in this drawing.

図1は、本発明による半導体材料の実施形態の一例を示すpn接合となる層を有する化合物半導体基板10の構造図である。
図1において、1は半絶縁性GaAs元基板、2はバッファ層、3はn+−AlGaAs層である。n+−AlGaAs層上部には、i−InGaP層5があり、その上にp+−GaAs層4が積層されている。化合物半導体基板10をMOCVD法を用いて製造するものとして以下に説明する。
FIG. 1 is a structural diagram of a compound semiconductor substrate 10 having a layer that becomes a pn junction, showing an example of an embodiment of a semiconductor material according to the present invention.
In FIG. 1, 1 is a semi-insulating GaAs base substrate, 2 is a buffer layer, and 3 is an n + -AlGaAs layer. The n + -AlGaAs layer top, there are i-InGaP layer 5, p + -GaAs layer 4 is laminated thereon. The following description will be made assuming that the compound semiconductor substrate 10 is manufactured using the MOCVD method.

化合物半導体基板10において、n+−AlGaAs層3の目標とするAl量、キャリア濃度、膜厚は其々、0.25、3×1018cm-3、150Åである。成長温度は650℃、トリメチルアルミニウム、トリメチルガリウム(TMG)、アルシン(AsH3)を用い、キャリアドーパント原料としてジシランを用いる。p+−GaAs層4の目標とするキャリア濃度、膜厚は其々、4×1019cm-3、800Åとする。成長温度は510℃、原料としてTMG、AsH3を用い、ドーパント出発原料としてCBrCl3を用いる。層3および4の間に挿入する秩序化していないi−InGaP層5のIn組成は式(1)においてx=0.48とし、膜厚は、400Åとする。層7の成長はInとGaが秩序化しない約550℃にて、トリメチルインジウム、TMG、AsH3を出発原料として用い、キャリアドーパントの原料となるガスを流さずに成長を行うことができる。また、バッファ層2は不純物を取り込む目的にてAlGaAsを含む多層からなるものを用いる。 In the compound semiconductor substrate 10, the target Al amount, carrier concentration, and film thickness of the n + -AlGaAs layer 3 are 0.25, 3 × 10 18 cm −3 , and 150 μm, respectively. The growth temperature is 650 ° C., trimethylaluminum, trimethylgallium (TMG), and arsine (AsH 3 ) are used, and disilane is used as a carrier dopant material. The target carrier concentration and film thickness of the p + -GaAs layer 4 are 4 × 10 19 cm −3 and 800 mm, respectively. The growth temperature is 510 ° C., TMG and AsH 3 are used as raw materials, and CBrCl 3 is used as dopant starting materials. The In composition of the unordered i-InGaP layer 5 inserted between the layers 3 and 4 is x = 0.48 in the formula (1) and the film thickness is 400Å. The layer 7 can be grown at about 550 ° C. at which In and Ga are not ordered, using trimethylindium, TMG, and AsH 3 as starting materials and without flowing a gas serving as a carrier dopant material. The buffer layer 2 is made of a multilayer containing AlGaAs for the purpose of taking in impurities.

以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらにより限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.

実施例1
図1示すエピタキシャル基板を以下のような手順にて作製した。アルカリ溶液にて洗浄したGaAs基板1を、エピタキシャル膜製造装置に装着し、約700℃のAsH3ガス雰囲気中にて、基板表面の清浄化を行った。次に、該GaAs基板1上にAlGaAs層を含む層をバッファ層として650℃にて、約2000Å成長させた。次に、n+−AlGaAs層3を650℃にて成長し、温度を550℃にしてi−InGaP(ただし、式(1)においてx=0.48。)層5を成長させた。この成長条件ではInGaPのバンドギャップをフォトルミネッセンスにより測定した結果、1.92eVとなり(式(2)の範囲は1.90≦A≦1.95)、InとGaの配列に規則性のない、いわゆる無秩序状態になった。その上にp+−GaAs層4を510℃にて成長させた。
Example 1
The epitaxial substrate shown in FIG. 1 was produced by the following procedure. The GaAs substrate 1 cleaned with an alkaline solution was mounted on an epitaxial film manufacturing apparatus, and the substrate surface was cleaned in an AsH 3 gas atmosphere at about 700 ° C. Next, on the GaAs substrate 1, a layer including an AlGaAs layer was grown as a buffer layer at about 650 ° C. at 650 ° C. Next, the n + -AlGaAs layer 3 was grown at 650 ° C., and the temperature was set to 550 ° C. to grow the i-InGaP (where x = 0.48 in the formula (1)) layer 5. Under this growth condition, the band gap of InGaP was measured by photoluminescence, and as a result, it was 1.92 eV (the range of formula (2) was 1.90 ≦ A ≦ 1.95), and there was no regularity in the arrangement of In and Ga. It became a so-called disordered state. A p + -GaAs layer 4 was grown thereon at 510 ° C.

比較例1
図1示すエピタキシャル基板を、620℃にてi−InGaP(ただし、式(1)においてx=0.48。)層5を成長する事を除き実施例1と同じ条件で作製した。このとき、InGaPのバンドギャップをフォトルミネッセンスにより測定した結果1.86eVとなり(式(2)の範囲は1.90≦A≦1.95)、InとGaが秩序的に配列し、いわゆる秩序化状態となった。
Comparative Example 1
The epitaxial substrate shown in FIG. 1 was produced under the same conditions as in Example 1 except that an i-InGaP (x = 0.48 in Formula (1)) layer 5 was grown at 620 ° C. At this time, the band gap of InGaP was measured by photoluminescence to be 1.86 eV (the range of the formula (2) is 1.90 ≦ A ≦ 1.95), and In and Ga are regularly arranged, so-called ordering. It became a state.

図2に示す層構造のpn接合素子11を、実施例1および比較例1において作製した化合物半導体基板を用いて作製した。まず直径約130μmの部分を残しp+−GaAs層4をリン酸にてエッチングした。エッチングは選択性によりi−InGaP層5の上で止まる。次に、残されたp+−GaAs層4の外周より約10μm外側を内周とするような形状のn電極6を、AuGe、Ni、Auをこの順番に蒸着し、約400℃にてアニールを行いアロイ化することによってi−InGaP層5の下部のn+−AlGaAs層3とのオーミックコンタクトを形成した。次に、残されたp+−GaAs層4の外周より約10μm内側を外周とする円形のp電極7を、AuZn、Auをこの順番に蒸着して作製した。この電極はアニールを行わなくともオーミック電極となった。 A pn junction element 11 having a layer structure shown in FIG. 2 was produced using the compound semiconductor substrate produced in Example 1 and Comparative Example 1. First, the p + -GaAs layer 4 was etched with phosphoric acid, leaving a portion with a diameter of about 130 μm. Etching stops on the i-InGaP layer 5 due to selectivity. Next, AuGe, Ni, and Au are vapor-deposited in this order on the n-electrode 6 having an outer periphery of about 10 μm from the outer periphery of the remaining p + -GaAs layer 4 and annealed at about 400 ° C. The ohmic contact with the n + -AlGaAs layer 3 below the i-InGaP layer 5 was formed by alloying. Next, a circular p-electrode 7 having an outer periphery of about 10 μm from the outer periphery of the remaining p + -GaAs layer 4 was prepared by depositing AuZn and Au in this order. This electrode became an ohmic electrode without annealing.

実施例1、比較例1の化合物半導体基板を用いて作製した図2に示すpn接合素子の順方向特性の、電流ストレス印加の前後における変化を、それぞれ図3および図4に示した。実施例1の化合物半導体基板を用いた素子においては、9.5Vで2.8kA/cm2の電流を、比較例1の化合物半導体基板を用いた素子においては、9.5Vで2.4kA/cm2の電流を、どちらも60分間順方向に流し、電流ストレスの印加を行った。電流ストレス印加前後を比べると、比較例1の基板を用いた素子においては電流ストレス印加前後の電流−電圧曲線は低電圧における電流量が増加し、逆バイアス方向に電圧をかけた場合にリーク電流が見られるようになっている。つまり、pn接合に依るダイオードのバリアに漏れが生じるようになっており、整流特性が劣化していることがわかる。一方、実施例1の基板を用いた素子では、電流ストレス印加前後の電流−電圧曲線に変化が見られず、逆方向のリーク電流も生じていないことから、整流特性に劣化が生じていないことがわかる。 Changes in the forward characteristics of the pn junction element shown in FIG. 2 fabricated using the compound semiconductor substrate of Example 1 and Comparative Example 1 before and after the application of the current stress are shown in FIGS. 3 and 4, respectively. In the element using the compound semiconductor substrate of Example 1, a current of 2.8 kA / cm 2 at 9.5 V, and in the element using the compound semiconductor substrate of Comparative Example 1, it is 2.4 kA / at 9.5 V. A current of cm 2 was applied in the forward direction for 60 minutes to apply current stress. Comparing before and after current stress application, in the element using the substrate of Comparative Example 1, the current-voltage curve before and after application of current stress increases the amount of current at low voltage, and leakage current is applied when voltage is applied in the reverse bias direction. Can be seen. That is, it can be seen that leakage occurs in the barrier of the diode due to the pn junction, and the rectification characteristics are deteriorated. On the other hand, in the element using the substrate of Example 1, there is no change in the current-voltage curve before and after the application of the current stress, and no reverse leakage current is generated, so that the rectification characteristics are not deteriorated. I understand.

本発明の実施形態の一例を示すエピタキシャル基板の層構造図。The layer structure figure of the epitaxial substrate which shows an example of embodiment of this invention. 本発明のエピタキシャル基板を用いて作成したpn接合素子の断面構造図。The cross-section figure of the pn junction element produced using the epitaxial substrate of this invention. 実施例1の化合物半導体基板を用いたpn接合素子の順方向電流−電圧特性図であって、電流ストレス印加前後加の電流−電圧特性の変化を示す図。FIG. 6 is a diagram of forward current-voltage characteristics of a pn junction element using the compound semiconductor substrate of Example 1, and shows changes in current-voltage characteristics before and after application of current stress. 比較例1の化合物半導体基板を用いたpn接合素子の順方向電流−電圧特性図であって、電流ストレス印加前後加の電流−電圧特性の変化を示す図。It is a forward direction current-voltage characteristic view of the pn junction element using the compound semiconductor substrate of the comparative example 1, Comprising: The figure which shows the change of the current-voltage characteristic applied before and after current stress application.

符号の説明Explanation of symbols

1 GaAs基板
2 バッファ層
3 n+−AlGaAs層
4 p+−GaAs層
5 i−InGaP層
6 n電極
7 p電極
8 エッチングにより円形に残されたp+−GaAs層
9 n電極のアロイ化部分
10 化合物半導体基板
11 ダイオード
DESCRIPTION OF SYMBOLS 1 GaAs substrate 2 Buffer layer 3 n <+> -AlGaAs layer 4 p <+> -GaAs layer 5 i-InGaP layer 6 n electrode 7 p electrode 8 p + -GaAs layer 9 left circularly by etching 10 Alloying part 10 of n electrode Compound semiconductor substrate 11 Diode

Claims (4)

pn接合と、該pn接合の間に、InGaPからなる層を少なくとも一つ有する化合物半導体基板であって、該InGaPが秩序化しておらず、該InGaPのキャリア濃度が1×1017cm-3未満であることを特徴とする化合物半導体基板。 A compound semiconductor substrate having at least one InGaP layer between a pn junction and the pn junction, the InGaP is not ordered, and the carrier concentration of the InGaP is less than 1 × 10 17 cm −3 A compound semiconductor substrate characterized in that: InGaPからなる層のエネルギーギャップの値A(eV)の範囲が、式
InxGa1-x
におけるxを用いて、
2.28−0.8x≦A≦2.33−0.8x
(ただし、0.45≦x≦0.55)
で表されるの範囲である請求項1記載の化合物半導体基板。
The range of the energy gap value A (eV) of the layer made of InGaP is expressed by the formula In x Ga 1-x P
Using x in
2.28−0.8x ≦ A ≦ 2.33−0.8x
(However, 0.45 ≦ x ≦ 0.55)
The compound semiconductor substrate according to claim 1, which is in a range represented by:
元基板の上に、p層とn層と、該p層と該n層の間に秩序化していないInGaP層とを成長させることを特徴とする請求項1記載の化合物半導体基板の製造方法。   2. The method of manufacturing a compound semiconductor substrate according to claim 1, wherein a p layer, an n layer, and an unordered InGaP layer are grown between the p layer and the n layer on the original substrate. 該秩序化していないInGaP層を、トリメチルガリウム(TMG)、トリメチルインジウム(TMI)、ホスフィンの各ガスを、式InxGa1-xPにおいて0.45≦x≦0.55となるような量を用いて、成長温度を450℃以上600℃以下の範囲として成長させることを特徴とする請求項3記載の製造方法。
The unordered InGaP layer is added in amounts such that trimethylgallium (TMG), trimethylindium (TMI), and phosphine are 0.45 ≦ x ≦ 0.55 in the formula In x Ga 1-x P. The growth method according to claim 3, wherein the growth temperature is in the range of 450 ° C to 600 ° C.
JP2004098504A 2004-03-30 2004-03-30 Compound semiconductor substrate having pn junction Expired - Fee Related JP4923384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004098504A JP4923384B2 (en) 2004-03-30 2004-03-30 Compound semiconductor substrate having pn junction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004098504A JP4923384B2 (en) 2004-03-30 2004-03-30 Compound semiconductor substrate having pn junction

Publications (2)

Publication Number Publication Date
JP2005286129A true JP2005286129A (en) 2005-10-13
JP4923384B2 JP4923384B2 (en) 2012-04-25

Family

ID=35184159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004098504A Expired - Fee Related JP4923384B2 (en) 2004-03-30 2004-03-30 Compound semiconductor substrate having pn junction

Country Status (1)

Country Link
JP (1) JP4923384B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008342A1 (en) * 2013-07-17 2015-01-22 株式会社 日立製作所 Lithium ion secondary battery and battery control system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11243058A (en) * 1998-02-24 1999-09-07 Fujitsu Ltd Semiconductor device and manufacture thereof
JP2003086603A (en) * 2001-07-04 2003-03-20 Sumitomo Chem Co Ltd THIN FILM CRYSTAL WAFER HAVING pn JUNCTION AND ITS MANUFACTURING METHOD
JP2004022818A (en) * 2002-06-17 2004-01-22 Toshiba Corp Double heterojunction bipolar transistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11243058A (en) * 1998-02-24 1999-09-07 Fujitsu Ltd Semiconductor device and manufacture thereof
JP2003086603A (en) * 2001-07-04 2003-03-20 Sumitomo Chem Co Ltd THIN FILM CRYSTAL WAFER HAVING pn JUNCTION AND ITS MANUFACTURING METHOD
JP2004022818A (en) * 2002-06-17 2004-01-22 Toshiba Corp Double heterojunction bipolar transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008342A1 (en) * 2013-07-17 2015-01-22 株式会社 日立製作所 Lithium ion secondary battery and battery control system

Also Published As

Publication number Publication date
JP4923384B2 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
JP4095066B2 (en) Semiconductor structure of gallium nitride based semiconductor
KR100448662B1 (en) Nitride semiconductor device and method for manufacturing the same
US7875534B2 (en) Realizing N-face III-nitride semiconductors by nitridation treatment
US8044409B2 (en) III-nitride based semiconductor structure with multiple conductive tunneling layer
JP2006108585A (en) Group iii nitride compound semiconductor light emitting element
JPH1093137A (en) Iii-v nitride semiconductor element
WO2012137781A1 (en) Semiconductor stacked body, method for manufacturing same, and semiconductor element
WO2013125185A1 (en) Epitaxial substrate, semiconductor device, and method for manufacturing semiconductor device
US20150243736A1 (en) High voltage gallium nitride based semiconductor device and manufacturing method of the same
JP2016058693A (en) Semiconductor device, semiconductor wafer, and method of manufacturing semiconductor device
JP4444230B2 (en) Gallium nitride semiconductor device
US20120086017A1 (en) Heterogeneous substrate, nitride-based semiconductor device using same, and manufacturing method thereof
EP2009706B1 (en) Method for manufacturing light emitting element, compound semiconductor wafer
JP4923384B2 (en) Compound semiconductor substrate having pn junction
KR101337615B1 (en) GaN-BASED COMPOUND SEMICONDUCTOR AND THE FABRICATION METHOD THEREOF
JP2007214378A (en) Nitride-based semiconductor element
JP2645055B2 (en) Double hetero wafer and double hetero junction type semiconductor laser device
KR101321936B1 (en) LIGHT EMITTING DIODE HAVING ZnO LAYER P-TYPED AND THE METHOD OF FABRICATING THE LIGHT EMITTING DIODE
JP3561243B2 (en) Compound semiconductor growth method and compound semiconductor light emitting device
KR101140679B1 (en) GaN-BASED COMPOUND SEMICONDUCTOR
JP2007103925A (en) Semiconductor device and method for manufacturing the same
KR101239851B1 (en) GaN-BASED COMPOUND SEMICONDUCTOR AND THE FABRICATION METHOD THEREOF
WO2011105066A1 (en) Semiconductor substrate, semiconductor device, and method for manufacturing semiconductor substrate
JP4987240B2 (en) Compound semiconductor device, method of manufacturing compound semiconductor device, diode device
US20190189843A1 (en) Light extraction structures for semiconductor devices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070301

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080130

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees