JP2005285707A - Organic electrolyte battery - Google Patents

Organic electrolyte battery Download PDF

Info

Publication number
JP2005285707A
JP2005285707A JP2004101672A JP2004101672A JP2005285707A JP 2005285707 A JP2005285707 A JP 2005285707A JP 2004101672 A JP2004101672 A JP 2004101672A JP 2004101672 A JP2004101672 A JP 2004101672A JP 2005285707 A JP2005285707 A JP 2005285707A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
ppm
battery
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004101672A
Other languages
Japanese (ja)
Inventor
Mayumi Koshiishi
眞弓 輿石
Shuichi Wada
秀一 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2004101672A priority Critical patent/JP2005285707A/en
Publication of JP2005285707A publication Critical patent/JP2005285707A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic electrolyte battery, suppressing increase in the thickness of the battery, when the battery is exposed to a high temperature at voltages of a discharged state or lower than the discharged state over a long time, and also suppressing drop in charge/discharge cycles. <P>SOLUTION: In the organic electrolyte battery including a negative electrode, a positive electrode, and an organic electrolyte, a material capable of storing/releasing lithium is used as a negative active material, the negative electrode is constituted by forming a negative active material-containing coating on a conductive substrate, the contents of Zn and/or Cu in the negative active material-containing coating by ICP emission spectral analysis are/is set to 3-25 ppm. The contents of Zn and/or Cu are/is preferably 4 ppm or higher, more preferably 5 ppn or higher, and preferably 20 ppm or lower. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、有機電解液電池に関し、さらに詳しくは、放電状態または放電状態以下の電圧で高温貯蔵したときの電池厚みの増加を抑制でき、かつサイクル劣化が少ない有機電解液電池に関する。   The present invention relates to an organic electrolyte battery, and more particularly to an organic electrolyte battery that can suppress an increase in battery thickness when stored at a high temperature at a discharge state or a voltage equal to or lower than the discharge state, and has little cycle deterioration.

リチウムイオン二次電池に代表される有機電解液電池は、高電圧、高エネルギー密度であることから、ますます需要が増えている。従来、この有機電解液電池では、負極活物質としてグラファイトなどのリチウムを吸蔵・放出可能な炭素材料を用い、その負極活物質としての炭素材料をバインダーとともに金属箔などからなる導電性基体上に負極活物質含有塗膜を形成したものが負極として用いられていた。
特開昭62−90863号公報
Organic electrolyte batteries represented by lithium ion secondary batteries are in high demand because of their high voltage and high energy density. Conventionally, in this organic electrolyte battery, a carbon material capable of occluding and releasing lithium such as graphite is used as a negative electrode active material, and the carbon material as the negative electrode active material is formed on a conductive substrate made of a metal foil together with a binder. What formed the active material containing coating film was used as a negative electrode.
JP 62-90863 A

しかしながら、近年は、この有機電解液電池においても、さらなる高容量化を達成するために、正極活物質や負極活物質の充填率を高めることが行われており、そのため、電池を放電した状態で長期間高温にさらすと、電池内で発生したガスによって、電池厚みが増加するという問題があった。   However, in recent years, even in this organic electrolyte battery, in order to achieve further increase in capacity, the filling rate of the positive electrode active material and the negative electrode active material has been increased. When exposed to a high temperature for a long time, there is a problem that the thickness of the battery increases due to gas generated in the battery.

本発明は、上記のような従来の有機電解液電池における問題点を解決し、電池が放電状態や放電状態以下の電圧で長期間高温にさらされた時の電池厚みの増加を抑制でき、かつサイクル劣化が少ない有機電解液電池を提供することを目的とする。   The present invention solves the problems in the conventional organic electrolyte battery as described above, and can suppress an increase in battery thickness when the battery is exposed to a high temperature for a long period of time at a voltage equal to or lower than a discharged state, and An object of the present invention is to provide an organic electrolyte battery with little cycle deterioration.

本発明は、上記課題を達成するためになされたものであり、負極と、正極と、有機電解液を含む有機電解液電池において、負極活物質としてリチウムを吸蔵・放出可能な材料を用い、前記負極を導電性基体に負極活物質含有塗膜を形成することによって構成し、その負極活物質含有塗膜中のICP発光分析による亜鉛および/または銅の含有量を3ppm以上25ppm以下とすることによって、前記課題を解決したものである。   The present invention has been made to achieve the above object, and in an organic electrolyte battery including a negative electrode, a positive electrode, and an organic electrolyte, a material capable of inserting and extracting lithium as a negative electrode active material is used. The negative electrode is formed by forming a negative electrode active material-containing coating film on a conductive substrate, and the zinc and / or copper content by ICP emission analysis in the negative electrode active material-containing coating film is 3 ppm or more and 25 ppm or less. The above-mentioned problem is solved.

本発明において、負極における亜鉛および/または銅の含有量は、ICP発光分析により測定したものであるが、そのICP発光分析は、負極の負極活物質含有塗膜を約5g精秤し、200mlビーカーに入れ、(1+1)塩酸100mlを加え、液量およそ20〜25mlになるまで加熱濃縮し、冷却した後、アドバンテック(株)製の定量濾紙No.5Bで負極活物質などの固形物を分離し、濾液および洗液を100mlメスフラスコに入れて定容希釈したあと、日本ジャーレル・アッシュ社製のシーケンシャル型ICP発光分析装置IPIS1000を用いて測定したものである。   In the present invention, the content of zinc and / or copper in the negative electrode is measured by ICP emission analysis. The ICP emission analysis is carried out by accurately weighing about 5 g of the negative electrode active material-containing coating film of the negative electrode, and in a 200 ml beaker. And 100 ml of (1 + 1) hydrochloric acid was added, and the mixture was concentrated by heating to a liquid volume of about 20 to 25 ml, cooled, and then quantified filter paper No. manufactured by Advantech Co., Ltd. In 5B, solids such as the negative electrode active material were separated, and the filtrate and washings were placed in a 100 ml volumetric flask and diluted to a constant volume, and then measured using a sequential ICP emission analyzer IPIS1000 manufactured by Japan Jarrell Ash. It is.

本発明によれば、電池が放電状態や放電状態以下の電圧で長期間高温にさらされた時の電池厚みの増加を抑制することができ、かつサイクル劣化が少ない有機電解液電池を提供することができる。   According to the present invention, it is possible to provide an organic electrolyte battery that can suppress an increase in battery thickness when the battery is exposed to a high temperature for a long period of time at a voltage equal to or lower than that of the discharged state, and has little cycle deterioration. Can do.

本発明において、電池が放電状態や放電状態以下の電圧で長期間高温にさらされた時の電池厚みの増加を抑制できる理由は、現在のところ必ずしも明確ではないが、前記のような少量の含有量で負極活物質含有塗膜中に含まれている亜鉛および/または銅が放電状態や放電状態以下の電圧で負極の表面に被膜を形成するか、あるいは、それらの亜鉛および/または銅がガス発生源となる物質と反応して、ガス発生を抑制することによるものと考えられる。   In the present invention, the reason why the battery thickness increase when the battery is exposed to a high temperature for a long period of time at a voltage below the discharged state or the discharged state is not necessarily clear at present, but a small amount as described above The zinc and / or copper contained in the negative electrode active material-containing coating in a quantity forms a coating on the surface of the negative electrode at a voltage lower than the discharge state or the discharge state, or the zinc and / or copper is a gas This is thought to be due to the reaction with the source substance and the suppression of gas generation.

本発明において、負極活物質としてのリチウムを吸蔵・放出可能な材料としては、例えば、乱層構造を有する炭素質材料、天然黒鉛、人造黒鉛、ガラス状炭素、などの炭素材料が挙げられる。これらは製造時にはリチウムを含んでいないものもあるが、負極活物質として作用するときには、化学的手段、電気化学的手段などによりリチウムを含有した状態になる。また、上記炭素材料以外で、負極活物質として用い得るリチウムを吸蔵・放出可能な材料としては、例えば、リチウム金属またはリチウム含有化合物が挙げられるが、そのリチウム含有化合物としてはリチウム合金とそれ以外のものがある。前記リチウム合金としては、例えば、リチウム−アルミニウム、リチウム−鉛、リチウム−ビスマス、リチウム−インジウム、リチウム−ガリウム、リチウム−インジウム−ガリウムなどのリチウムと他の金属との合金が挙げられる。   In the present invention, examples of the material capable of occluding and releasing lithium as the negative electrode active material include carbon materials such as a carbonaceous material having a turbulent layer structure, natural graphite, artificial graphite, and glassy carbon. Some of them do not contain lithium at the time of manufacture, but when they act as a negative electrode active material, they are in a state containing lithium by chemical means, electrochemical means, or the like. In addition to the above carbon materials, examples of materials capable of inserting and extracting lithium that can be used as the negative electrode active material include lithium metal and lithium-containing compounds. Examples of the lithium-containing compounds include lithium alloys and other materials. There is something. Examples of the lithium alloy include alloys of lithium and other metals such as lithium-aluminum, lithium-lead, lithium-bismuth, lithium-indium, lithium-gallium, and lithium-indium-gallium.

負極は、例えば、上記負極活物質に、必要に応じて、バインダーを加え、さらに要すれば、電子伝導助剤を加え、さらに溶剤を加え、混合して負極活物質含有塗料を調製し、その塗料を導電性基体に塗布し、乾燥して、負極活物質含有塗膜を形成する工程を経て作製される。上記負極活物質含有塗料の調製に当たって、バインダーはあらかじめ有機溶剤、水、水溶液に溶解させた溶液として用い、上記負極活物質などの固体粒子と混合して塗料を調製することが好ましい。   For example, a negative electrode is prepared by adding a binder to the negative electrode active material as necessary, and if necessary, adding an electron conduction assistant, further adding a solvent, and mixing to prepare a negative electrode active material-containing coating, The coating material is applied to a conductive substrate and dried to form a negative electrode active material-containing coating film. In preparing the negative electrode active material-containing paint, the binder is preferably used as a solution previously dissolved in an organic solvent, water, or an aqueous solution, and mixed with solid particles such as the negative electrode active material to prepare the paint.

上記バインダーとしては、例えば、ポリビニリデンフルオライド系ポリマー(主成分モノマーであるビニリデンフルオライドを80質量%以上含有する含フッ素モノマー群の重合体)、ゴム系ポリマー、セルロース系ポリマーなどが好適に用いられる。上記ポリマーは、混合して用いてもよい。   As the binder, for example, a polyvinylidene fluoride polymer (a polymer of a fluorine-containing monomer group containing 80% by mass or more of vinylidene fluoride as a main component monomer), a rubber polymer, a cellulose polymer, and the like are preferably used. It is done. You may use the said polymer in mixture.

上記ポリビニリデンフルオライド系ポリマーを合成するにあたっての主成分モノマーとなるビニリデンフルオライドを80質量%以上含有する含フッ素系モノマー群としては、例えば、ビニリデンフルオライド単独、あるいは、ビニリデンフルオライドと他のモノマーの少なくとも1種との混合物が挙げられる。この他のモノマーとしては、例えば、ビニルフルオライド、トリフルオロエチレン、トリフルオロクロロエチレン、テトラフルオロエチレン、ヘキサフルオロプロピレン、フルオロアルキルビニルエーテルなどが挙げられる。   Examples of the fluorine-containing monomer group containing 80% by mass or more of vinylidene fluoride as a main component monomer in the synthesis of the polyvinylidene fluoride-based polymer include, for example, vinylidene fluoride alone, or vinylidene fluoride and other A mixture with at least one of the monomers may be mentioned. Examples of the other monomer include vinyl fluoride, trifluoroethylene, trifluorochloroethylene, tetrafluoroethylene, hexafluoropropylene, and fluoroalkyl vinyl ether.

また、上記のゴム系ポリマーとしては、例えば、スチレンブタジエンゴム、エチレンプロピレンジエンゴム、フッ素ゴムなどが挙げられる。   Examples of the rubber-based polymer include styrene butadiene rubber, ethylene propylene diene rubber, and fluorine rubber.

また、上記のセルロース系ポリマーとしては、例えば、カルボキシメチルセルロース、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロースなどが挙げられる。   Examples of the cellulose polymer include carboxymethyl cellulose, methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, hydroxyethyl methyl cellulose, and hydroxypropyl methyl cellulose.

本発明において、バインダーは負極活物質含有塗膜中において0.2〜20質量%、特に0.5〜10質量%であることが好ましい。バインダーの含有量が上記範囲より少ない場合は、負極活物質含有塗膜の機械的強度が不足して負極活物質含有塗膜が導電性基体から剥離するおそれがあり、また、バインダーの含有量が上記範囲より多い場合は、負極活物質含有塗膜中の負極活物質が減少して電池容量が低下するおそれがある。   In this invention, it is preferable that a binder is 0.2-20 mass% in a negative electrode active material containing coating film, especially 0.5-10 mass%. When the binder content is less than the above range, the negative electrode active material-containing coating film may be insufficient in mechanical strength, and the negative electrode active material-containing coating film may be peeled off from the conductive substrate. When more than the said range, there exists a possibility that the negative electrode active material in a negative electrode active material containing coating film may reduce, and battery capacity may fall.

また、上記電子伝導助剤としては、例えば、鱗片状黒鉛、カーボンブラック、ケッチェンブラック、アセチレンブラック、カーボンファイバーなどが好適に用いられる。   In addition, as the electron conduction aid, for example, flaky graphite, carbon black, ketjen black, acetylene black, carbon fiber and the like are preferably used.

本発明において、上記負極活物質含有塗料を導電性基体に塗布する際の塗布方法としては、例えば、押出しコーター、リバースローラー、ドクターブレード、アプリケーターなどをはじめ、各種の塗布方法を採用することができる。   In the present invention, various coating methods such as an extrusion coater, a reverse roller, a doctor blade, and an applicator can be employed as a coating method when the negative electrode active material-containing paint is applied to a conductive substrate. .

また、負極の導電性基体としては、例えば、アルミニウム、ステンレス鋼、チタン、銅などの金属性導電材料を網、パンチドメタル、フォームメタルや、板状に加工した箔などが用いられる。   Further, as the negative electrode conductive substrate, for example, a metal, a punched metal, a foam metal, a foil processed into a plate shape, or the like made of a metal conductive material such as aluminum, stainless steel, titanium, or copper is used.

本発明において、上記負極は、その負極活物質含有塗膜中のICP発光分析による測定で亜鉛および/または銅の含有量が3ppm以上25ppm以下であることを要するが、この亜鉛や銅は、亜鉛だけで3ppm以上25ppm以下の含有量であってもよいし、銅だけで3ppm以上25ppm以下の含有量であってもよく、また、亜鉛と銅との総量で3ppm以上25ppm以下の含有量であってもよい。   In the present invention, the negative electrode is required to have a zinc and / or copper content of 3 ppm or more and 25 ppm or less as measured by ICP emission analysis in the negative electrode active material-containing coating film. The content of 3 ppm to 25 ppm alone may be sufficient, the content of copper alone may be 3 ppm to 25 ppm, and the total amount of zinc and copper is 3 ppm to 25 ppm. May be.

本発明において、負極の負極活物質含有塗膜中のICP発光分析による亜鉛および/または銅の含有量を3ppm以上にしているのは、亜鉛および/または銅の含有量が3ppmより少なくなると電池が放電状態や放電状態以下の電圧で長期間高温にさらされた時の電池の厚み増加を充分に抑制することができないからであり、また、亜鉛および/または銅の含有量を25ppm以下としているのは、亜鉛および/または銅の含有量が25ppmより多くなるとサイクル特性が低下するからである。そして、電池が放電状態や放電状態以下の電圧で長期間高温にさらされた時の電池の厚み増加をより適切に抑制するためには、亜鉛および/または銅の含有量を4ppm以上にすることが好ましく、5ppm以上にすることがより好ましい。また、サイクル特性をより優れた状態に保つためには、亜鉛および/または銅の含有量を20ppm以下にすることが好ましく、亜鉛または銅のそれぞれ単独で考えると、亜鉛の含有量を15ppm以下、銅の含有量を15ppm以下にすることが好ましい。   In the present invention, the content of zinc and / or copper by the ICP emission analysis in the negative electrode active material-containing coating film of the negative electrode is set to 3 ppm or more because when the zinc and / or copper content is less than 3 ppm, the battery This is because the increase in the thickness of the battery when exposed to a high temperature for a long period of time at a discharge state or a voltage below the discharge state cannot be sufficiently suppressed, and the zinc and / or copper content is 25 ppm or less. This is because the cycle characteristics deteriorate when the content of zinc and / or copper exceeds 25 ppm. And in order to suppress more appropriately the thickness increase of the battery when the battery is exposed to a high temperature for a long period of time at a voltage below the discharge state or the discharge state, the content of zinc and / or copper should be 4 ppm or more. Is preferable, and it is more preferable to set it as 5 ppm or more. Further, in order to keep the cycle characteristics in a more excellent state, it is preferable to set the content of zinc and / or copper to 20 ppm or less, and when considering zinc or copper alone, the content of zinc is 15 ppm or less, The copper content is preferably 15 ppm or less.

負極活物質含有塗膜中の亜鉛および/または銅の含有量を上記のようにするには、亜鉛および/または銅をそのような含有量で負極活物質含有塗膜を構成できるような負極活物質を用いるか、あるいは、負極活物質に亜鉛粉末および/または銅粉末を添加するか、負極を塩化亜鉛などの亜鉛化合物を含む溶液や塩化銅などの銅化合物を含む溶液で処理することによって亜鉛および/または銅の含有量を3ppm以上25ppm以下にすればよい。   In order to make the content of zinc and / or copper in the negative electrode active material-containing coating film as described above, the negative electrode active material capable of constituting the negative electrode active material-containing coating film with such a content of zinc and / or copper. Zinc by using a substance or adding zinc powder and / or copper powder to the negative electrode active material, or treating the negative electrode with a solution containing a zinc compound such as zinc chloride or a solution containing a copper compound such as copper chloride And / or copper content should just be 3 ppm or more and 25 ppm or less.

通常、負極活物質として用いられる炭素材料は、後記の比較例1に示すように、ICP発光分析において、亜鉛や銅の含有量が装置の検出限界(0.005ppm)以下にまで精製されているが、亜鉛や銅に関して、精製工程をコントロールをすることによって、負極の負極活物質含有塗膜を前記のような含有量にすることができる。   Usually, as shown in Comparative Example 1 described later, the carbon material used as the negative electrode active material is refined to have a zinc or copper content below the detection limit (0.005 ppm) of the device in ICP emission analysis. However, with respect to zinc and copper, the content of the negative electrode active material-containing coating film of the negative electrode can be adjusted to the above-mentioned content by controlling the purification process.

本発明において、上記負極の対極となる正極を構成するにあたり、正極活物質としては、例えば、リチウムニッケル酸化物、リチウムコバルト酸化物、リチウムマンガン酸化物(これらは、通常、LiNiO2 、LiCoO2 、LiMn2 4 で表されるが、LiとNiの比、LiとCoとの比、LiとMnとの比が化学量論組成から若干ずれている場合が多いが、そのような若干のずれがあってもさしつかえない)などのリチウム含有複合金属酸化物が単独でまたは2種以上の混合物として、あるいはそれらの固溶体として用いられる。 In the present invention, in constituting a positive electrode serving as a counter electrode of the negative electrode, as the positive electrode active material, for example, lithium nickel oxide, lithium cobalt oxide, lithium manganese oxide (these are usually LiNiO 2 , LiCoO 2 , Although represented by LiMn 2 O 4 , the ratio of Li to Ni, the ratio of Li to Co, and the ratio of Li to Mn often deviate slightly from the stoichiometric composition, but such a slight deviation Lithium-containing composite metal oxides such as may be used alone or as a mixture of two or more thereof or as a solid solution thereof.

正極は、例えば、上記正極活物質を含み、必要に応じて、鱗片状黒鉛、カーボンブラックなどの電子伝導助剤を含み、さらにバインダーを含む正極活物質含有塗料を調製し、その塗料を導電性基体に塗布し、乾燥して正極活物質含有塗膜を形成する工程を経て作製される。   The positive electrode includes, for example, the above-described positive electrode active material, and optionally includes an electron conduction assistant such as flaky graphite and carbon black, and further prepares a positive electrode active material-containing paint containing a binder, and the paint is made conductive. It is produced through a process of applying to a substrate and drying to form a coating film containing a positive electrode active material.

この正極の作製にあたっても、バインダー、電子伝導助剤、導電性基体などには前記負極の場合と同様のものを用いることができ、また、正極活物質含有塗料の塗布方法に関しても、前記負極活物質含有塗料の塗布の場合と同様の方法を採用することができる。   In the production of this positive electrode, the same materials as in the case of the negative electrode can be used for the binder, the electron conduction auxiliary agent, the conductive substrate, and the negative electrode active material can be applied with respect to the coating method of the positive electrode active material-containing paint. The same method as in the case of applying the substance-containing paint can be employed.

本発明において、電解液としては、有機溶媒にリチウム塩などの電解質を溶解させたものが用いられるが、その電解質としては、例えば、一般式LiMFn (式中、MはP、As、SbまたはBであり、nはMがP、AsまたはSbのときは6で、MがBのときは4である)で表される無機リチウム塩や含フッ素有機リチウムイミド塩などが挙げられ、これらの電解質は、それぞれ単独で用いることができるし、また、2種以上併用してもよい。 In the present invention, an electrolytic solution in which an electrolyte such as a lithium salt is dissolved in an organic solvent is used. As the electrolyte, for example, a general formula LiMF n (wherein M is P, As, Sb or B, and n is 6 when M is P, As or Sb, and 4 when M is B). These include inorganic lithium salts and fluorine-containing organic lithium imide salts. The electrolytes can be used alone or in combination of two or more.

電解液中における上記電解質の濃度としては、異なる2種類以上の電解質を含んでいても、全体として0.4mol/l〜1.6mol/lであることが好ましく、特に0.6mol/l〜1.4mol/lであることが好ましい。   The concentration of the electrolyte in the electrolytic solution is preferably 0.4 mol / l to 1.6 mol / l as a whole even if two or more different types of electrolytes are included, and particularly 0.6 mol / l to 1 It is preferably 4 mol / l.

また、上記電解質を溶解させるため使用する有機溶媒としては、例えば、1,2−ジメトキシエタン、1.2−ジエトキシエタン、ジメトキシプロパン、1,3−ジオキソラン、テトラヒドロフラン、2−メチルテトラヒドロフランなどのエーテル類、プロピレンカーボネート、エチレンカーボネート、γ−ブチロラクトン、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネートなどのエステル類、さらにはスルフォランなどが、それぞれ単独で、または2種以上の混合溶媒として用いられる。   Examples of the organic solvent used for dissolving the electrolyte include ethers such as 1,2-dimethoxyethane, 1.2-diethoxyethane, dimethoxypropane, 1,3-dioxolane, tetrahydrofuran, and 2-methyltetrahydrofuran. , Propylene carbonate, ethylene carbonate, γ-butyrolactone, esters such as diethyl carbonate, dimethyl carbonate, and ethyl methyl carbonate, and sulfolane are used alone or as a mixed solvent of two or more.

上記有機溶媒の中でも、エステル類は高電圧下においても正極活物質との反応性が少なく貯蔵特性を向上させる効果が大きいので好ましい。このエステル類は全電解液溶媒中20体積%以上であることが充電時の電解液の安定性のために好ましい。   Among the organic solvents, esters are preferable because they have little reactivity with the positive electrode active material even under a high voltage and have a large effect of improving storage characteristics. This ester is preferably 20% by volume or more in the total electrolytic solution solvent for the stability of the electrolytic solution during charging.

セパレータとしては、例えば、厚さ10〜50μmで、開孔率30〜70%の微多孔性ポリエチレンフィルムまたは微多孔性ポリプロピレンフィルムなどが好適に用いられる。   As the separator, for example, a microporous polyethylene film or a microporous polypropylene film having a thickness of 10 to 50 μm and a porosity of 30 to 70% is preferably used.

電池は、例えば、上記のようにして作製される正極と負極との間にセパレータを介在させて渦巻状に巻回して作製した渦巻状電極体を、アルミニウム、アルミニウム合金、ニッケルメッキを施した鉄やステンレス鋼製などの電池ケース内に挿入し、電解液を注入し、封口する工程を経て作製される。また、上記電池には、通常、電池内部に発生したガスをある一定圧力まで上昇した段階で電池外部に排出して、電池の高圧下での破裂を防止するための防爆機構が取り入れられる。   The battery is made of, for example, a spiral electrode body manufactured by winding a separator between a positive electrode and a negative electrode manufactured as described above, and aluminum, aluminum alloy, or nickel-plated iron. It is manufactured through a process of inserting into a battery case made of stainless steel or the like, injecting an electrolyte, and sealing. The battery usually incorporates an explosion-proof mechanism that discharges gas generated inside the battery to a certain pressure to the outside of the battery to prevent the battery from bursting under high pressure.

次に、実施例を挙げて本発明をより具体的に説明する。ただし、本発明はそれらの実施例のみに限定されるものではない。   Next, the present invention will be described more specifically with reference to examples. However, this invention is not limited only to those Examples.

実施例1
この実施例1において用いる負極を以下のとおり作製した。
まず、負極活物質としての比表面積が3. 6m2 /gの黒鉛98質量部と、バインダーとしてのスチレンブタジエンゴムの懸濁液および1. 5質量%カルボキシメチルセルロース水溶液をそれぞれ固形分が1質量部(バインダー全体として2質量部)となるように混合して負極活物質含有塗料を調製した。
Example 1
The negative electrode used in Example 1 was produced as follows.
First, 98 parts by mass of graphite having a specific surface area of 3.6 m 2 / g as a negative electrode active material, a suspension of styrene-butadiene rubber as a binder, and a 1.5% by mass carboxymethylcellulose aqueous solution each having a solid content of 1 part by mass. A negative electrode active material-containing paint was prepared by mixing so as to be (2 parts by mass as a whole binder).

得られた塗料を厚さ8μmの銅箔からなる導電性基体上にアプリケーターを用いて塗布し、100℃で乾燥して負極活物質含有塗膜を形成した。また、上記銅箔からなる導電性基体の裏面側にも前記塗料を塗布し乾燥して電極体を作製した。その後、この電極体を100℃で10時間真空乾燥後、ロールプレスして、シート状の負極を作製した。この負極の全厚は125μmであり、負極活物質含有塗膜の密度は1. 7g/cm3 であった。また、上記負極活物質含有塗膜中のICP発光分析による亜鉛の含有量は5ppmであり、銅の含有量は7ppmであった。ただし、上記銅の含有量は、導電性基体として用いた銅箔の影響を避けるため、前記負極活物質含有塗料をプラスチックシート上に前記と同様に塗布し乾燥して形成した負極活物質含有塗膜について測定したものである。 The obtained paint was applied onto a conductive substrate made of copper foil having a thickness of 8 μm using an applicator and dried at 100 ° C. to form a negative electrode active material-containing coating film. Moreover, the said coating material was apply | coated also to the back surface side of the electroconductive base | substrate which consists of said copper foil, and it dried and produced the electrode body. Thereafter, this electrode body was vacuum-dried at 100 ° C. for 10 hours and then roll-pressed to produce a sheet-like negative electrode. The total thickness of this negative electrode was 125 μm, and the density of the negative electrode active material-containing coating film was 1.7 g / cm 3 . Moreover, the zinc content by ICP emission analysis in the said negative electrode active material containing coating film was 5 ppm, and copper content was 7 ppm. However, in order to avoid the influence of the copper foil used as the conductive substrate, the content of copper described above is a coating containing a negative electrode active material formed by applying the negative electrode active material-containing paint onto a plastic sheet and drying it as described above. Measured on the membrane.

上記負極の対極となる正極は以下のとおり作製した。リチウムコバルト酸化物を96質量部と、電子伝導助剤としてのカーボンブラックと鱗片状黒鉛をそれぞれ1質量部ずつと、バインダーとしてのポリビニリデンフルオライド2質量部のN−メチルピロリドン溶液とを混合して、正極活物質含有塗料を調製した。   A positive electrode serving as a counter electrode of the negative electrode was produced as follows. 96 parts by mass of lithium cobalt oxide, 1 part by mass of carbon black and scaly graphite as electron conduction assistants, and 2 parts by mass of polyvinylidene fluoride as a binder are mixed with an N-methylpyrrolidone solution. Thus, a positive electrode active material-containing paint was prepared.

そして、得られた塗料を厚さ15μmのアルミニウム箔からなる導電性基体上にアプリケーターを用いて塗布し、100〜120℃で乾燥して正極活物質含有塗膜を形成した。また、上記アルミニウム箔からなる導電性基体の裏面側にも前記塗料を前記と同様に塗布し乾燥して電極体を作製した。この電極体を100℃で10時間真空乾燥した後、ロールプレスして、シート状の正極を作製した。このときの正極の全厚は130μmであり、正極活物質含有塗膜の密度は3. 8g/cm3 であった。 And the obtained coating material was apply | coated using the applicator on the electroconductive base | substrate which consists of 15-micrometer-thick aluminum foil, and it dried at 100-120 degreeC, and formed the positive electrode active material containing coating film. In addition, the paint was applied to the back side of the conductive substrate made of the aluminum foil in the same manner as described above and dried to prepare an electrode body. The electrode body was vacuum-dried at 100 ° C. for 10 hours and then roll-pressed to produce a sheet-like positive electrode. The total thickness of the positive electrode at this time was 130 μm, and the density of the positive electrode active material-containing coating film was 3.8 g / cm 3 .

電解液としては、エチレンカーボネートとメチルエチルカーボネートとの体積比が1:2の混合溶媒にLiPF6 を1.0mol/lの濃度に溶解したものを用いた。 As the electrolytic solution, a solution obtained by dissolving LiPF 6 at a concentration of 1.0 mol / l in a mixed solvent having a volume ratio of ethylene carbonate and methyl ethyl carbonate of 1: 2 was used.

前記シート状の正極とシート状の負極のそれぞれに集電タブを取り付け、それらのシート状正極とシート状負極を厚さ20μmの微孔性ポリエチレンフィルムからなるセパレータを介して重ね、渦巻状に巻回した後、扁平状になるように加圧して扁平状巻回構造の電極積層体としたのち、絶縁テープを取り付け、外寸が5mm×30mm×48mmの角形の電池ケース〔厚み(奥行き)5mm、幅30mm、高さ48mmの角形の電池ケース〕内に挿入し、リード体の溶接と封口用蓋板の電池ケースの開口端部へのレーザー溶接を行い、封口用蓋板に設けた電解液注入口から前記の電解液を電池ケース内に注入し、電解液がセパレータなどに充分に浸透した後、電解液注入口を封止して密閉状態にした後、予備充電、エイジングを行い、図1に示すような構造で図2に示すような外観を有する角形の有機電解液二次電池を作製した。   A current collecting tab is attached to each of the sheet-like positive electrode and the sheet-like negative electrode, and the sheet-like positive electrode and the sheet-like negative electrode are overlapped via a separator made of a microporous polyethylene film having a thickness of 20 μm and wound in a spiral shape. After turning, pressurize so that it is flattened to form an electrode laminate with a flat winding structure, and then attach an insulating tape, and a rectangular battery case with an outer dimension of 5 mm × 30 mm × 48 mm [thickness (depth) 5 mm , 30 mm wide and 48 mm high rectangular battery case], the lead body is welded, and the sealing lid plate is laser welded to the opening end of the battery case, and the electrolyte provided on the sealing lid plate After injecting the above electrolyte into the battery case from the inlet and sufficiently infiltrating the separator, etc., the electrolyte inlet is sealed and sealed, and then precharged and aged. 1 To produce an organic electrolyte secondary battery of prismatic having an appearance as shown in FIG. 2 in Suyo structure.

ここで図1〜2に示す電池について説明すると、正極1と負極2は前記のようにセパレータ3を介して渦巻状に巻回した後、扁平状になるように加圧して扁平状巻回構造の電極積層体6として、角形の電池ケース4に上記電解液とともに収容されている。ただし、図1では、煩雑化を避けるため、正極1や負極2の作製にあたって使用した導電性基体としての金属箔や電解液などは図示していない。   The battery shown in FIGS. 1 and 2 will now be described. The positive electrode 1 and the negative electrode 2 are spirally wound through the separator 3 as described above, and then pressed so as to be flattened, thereby forming a flat winding structure. The electrode laminate 6 is housed in the rectangular battery case 4 together with the electrolyte solution. However, in FIG. 1, in order to avoid complication, a metal foil, an electrolytic solution, or the like as a conductive substrate used in manufacturing the positive electrode 1 and the negative electrode 2 is not illustrated.

電池ケース4はアルミニウム合金製で電池の外装材を構成するものであり、この電池ケース4は正極端子を兼ねている。そして、電池ケース4の底部にはポリテトラフルオロエチレンシートからなる絶縁体5が配置され、前記正極1、負極2およびセパレータ3からなる扁平状巻回構造の電極積層体6からは正極1および負極2のそれぞれ一端に接続された正極リード体7と負極リード体8が引き出されている。また、電池ケース4の開口部を封口するアルミニウム合金製の蓋板9にはポリプロピレン製の絶縁パッキング10を介してステンレス鋼製の端子11が取り付けられ、この端子11には絶縁体12を介してステンレス鋼製のリード板13が取り付けられている。   The battery case 4 is made of an aluminum alloy and constitutes a battery exterior material. The battery case 4 also serves as a positive electrode terminal. An insulator 5 made of a polytetrafluoroethylene sheet is disposed at the bottom of the battery case 4, and the positive electrode 1 and the negative electrode are formed from the flat electrode structure 6 made of the positive electrode 1, the negative electrode 2 and the separator 3. A positive electrode lead body 7 and a negative electrode lead body 8 connected to one end of each of the two are drawn out. A stainless steel terminal 11 is attached to an aluminum alloy cover plate 9 that seals the opening of the battery case 4 via a polypropylene insulating packing 10, and an insulator 12 is connected to the terminal 11. A stainless steel lead plate 13 is attached.

そして、この蓋板9は上記電池ケース4の開口部に挿入され、両者の接合部を溶接することによって、電池ケース4の開口部が封口され、電池内部が密閉されている。   And this cover plate 9 is inserted in the opening part of the said battery case 4, and the opening part of the battery case 4 is sealed by welding the junction part of both, and the inside of a battery is sealed.

この実施例1の電池では、正極リード体7を蓋板9に直接溶接することによって電池ケース4と蓋板9とが正極端子として機能し、負極リード体8をリード板13に溶接し、そのリード板13を介して負極リード体8と端子11とを導通させることによって端子11が負極端子として機能するようになっているが、電池ケース4の材質などによっては、その正負が逆になる場合もある。   In the battery of Example 1, the battery case 4 and the cover plate 9 function as positive terminals by directly welding the positive electrode lead body 7 to the cover plate 9, and the negative electrode lead body 8 is welded to the lead plate 13, The terminal 11 functions as a negative electrode terminal by conducting the negative electrode lead body 8 and the terminal 11 through the lead plate 13, but depending on the material of the battery case 4, the sign may be reversed. There is also.

図2は上記図1に示す電池の外観を模式的に示す斜視図であり、この図2は上記電池が角形電池であることを示すことを目的として図示されたものであって、この図2では電池を概略的に示しており、電池の構成部材のうち特定のものしか図示していない。また、図1においても、電極体の内周側の部分は断面にしていない。   FIG. 2 is a perspective view schematically showing the external appearance of the battery shown in FIG. 1. FIG. 2 is shown for the purpose of showing that the battery is a square battery. FIG. 1 schematically shows a battery, and only specific members of the battery are shown. Also in FIG. 1, the inner peripheral portion of the electrode body is not cross-sectional.

実施例2
実施例1で作製した電極体を、1. 0質量%塩化亜鉛(ZnCl2 )水溶液中に10分間浸漬し、水洗したのち、100℃で10時間真空乾燥後、ロールプレスして、シート状の負極を作製した。この負極の全厚は125μmであり、負極活物質含有塗膜の密度は1. 7g/cm3 であった。また、前記負極の負極活物質含有塗膜中のICP発光分析による亜鉛の含有量は10ppmであり、銅の含有量は7ppmであった。そして、この負極を用いた以外は、実施例1と同様に角形の有機電解液二次電池を作製した。
Example 2
The electrode body produced in Example 1 was immersed in a 1.0 mass% zinc chloride (ZnCl 2 ) aqueous solution for 10 minutes, washed with water, vacuum-dried at 100 ° C. for 10 hours, roll-pressed, and sheet-shaped. A negative electrode was produced. The total thickness of this negative electrode was 125 μm, and the density of the negative electrode active material-containing coating film was 1.7 g / cm 3 . Further, the content of zinc in the negative electrode active material-containing coating film of the negative electrode by ICP emission analysis was 10 ppm, and the content of copper was 7 ppm. And the square organic electrolyte secondary battery was produced similarly to Example 1 except having used this negative electrode.

実施例3
実施例1で作製した電極体を、1. 0質量%塩化第二銅(CuCl2 )水溶液中に10分間浸漬し、水洗したのち、100℃で10時間真空乾燥後、ロールプレスして、シート状の負極を作製した。この負極の全厚は125μmであり、負極活物質含有塗膜の密度は1. 7g/cm3 であった。また、前記負極の負極活物質含有塗膜中のICP発光分析による亜鉛の含有量は5ppmであり、銅の含有量は12ppmであった。そして、この負極を用いた以外は、実施例1と同様に角形の有機電解液二次電池を作製した。
Example 3
The electrode body produced in Example 1 was immersed in a 1.0% by mass cupric chloride (CuCl 2 ) aqueous solution for 10 minutes, washed with water, vacuum-dried at 100 ° C. for 10 hours, roll-pressed, and sheet A negative electrode was prepared. The total thickness of this negative electrode was 125 μm, and the density of the negative electrode active material-containing coating film was 1.7 g / cm 3 . Further, the content of zinc in the negative electrode active material-containing coating film of the negative electrode by an ICP emission analysis was 5 ppm, and the content of copper was 12 ppm. And the square organic electrolyte secondary battery was produced similarly to Example 1 except having used this negative electrode.

実施例4
負極活物質として比表面積が4. 0m2 /gの黒鉛を用いた以外は、実施例1と同様にシート状の負極を作製した。この負極の全厚は127μmであり、負極活物質含有塗膜の密度は1. 67g/cm3 であった。また、前記負極の負極活物質含有塗膜中のICP発光分析による亜鉛の含有量は5ppmであり、銅の含有量は5ppmであった。そして、この負極を用いた以外は、実施例1と同様に角形の有機電解液二次電池を作製した。
Example 4
A sheet-like negative electrode was produced in the same manner as in Example 1 except that graphite having a specific surface area of 4.0 m 2 / g was used as the negative electrode active material. The total thickness of this negative electrode was 127 μm, and the density of the negative electrode active material-containing coating film was 1.67 g / cm 3 . Further, the content of zinc in the negative electrode active material-containing coating film of the negative electrode by ICP emission analysis was 5 ppm, and the content of copper was 5 ppm. And the square organic electrolyte secondary battery was produced similarly to Example 1 except having used this negative electrode.

実施例5
実施例4で作製した電極体を用い、実施例2と同様の塩化亜鉛溶液で処理した以外は、実施例2と同様にしシート状の負極を作製した。この負極の全厚は127μmであり、負極活物質含有塗膜の密度は1. 67g/cm3 であった。また、前記負極の負極活物質含有塗膜中のICP発光分析による亜鉛の含有量は14ppmであり、銅の含有量は5ppmであった。そして、この負極を用いた以外は、実施例1と同様に角形の有機電解液二次電池を作製した。
Example 5
A sheet-like negative electrode was produced in the same manner as in Example 2 except that the electrode body produced in Example 4 was treated with the same zinc chloride solution as in Example 2. The total thickness of this negative electrode was 127 μm, and the density of the negative electrode active material-containing coating film was 1.67 g / cm 3 . Further, the content of zinc in the negative electrode active material-containing coating film of the negative electrode by ICP emission analysis was 14 ppm, and the content of copper was 5 ppm. And the square organic electrolyte secondary battery was produced similarly to Example 1 except having used this negative electrode.

実施例6
実施例4で作製した電極体を用い、実施例3と同様の塩化銅溶液で処理した以外は、実施例3と同様にシート状の負極を作製した。この負極の全厚は127μmであり、負極活物質含有塗膜の密度は1. 67g/cm3 であった。また、前記負極の負極活物質含有塗膜中のICP発光分析による亜鉛の含有量は5ppmであり、銅の含有量は15ppmであった。そして、この負極を用いた以外は、実施例1と同様に角形の有機電解液二次電池を作製した。
Example 6
A sheet-like negative electrode was produced in the same manner as in Example 3 except that the electrode body produced in Example 4 was treated with the same copper chloride solution as in Example 3. The total thickness of this negative electrode was 127 μm, and the density of the negative electrode active material-containing coating film was 1.67 g / cm 3 . Further, the content of zinc in the negative electrode active material-containing coating film of the negative electrode by an ICP emission analysis was 5 ppm, and the content of copper was 15 ppm. And the square organic electrolyte secondary battery was produced similarly to Example 1 except having used this negative electrode.

比較例1
負極活物質として比表面積が3. 4m2 /gの黒鉛を用いた以外は、実施例1と同様にシート状の負極を作製した。この負極の全厚は125μmであり、負極活物質含有塗膜の密度は1. 7g/cm3 であった。また、前記負極の負極活物質含有塗膜中のICP発光分析による亜鉛の含有量は装置の検出限界(0. 005ppm) 以下であり、また、銅の含有量も検出限界(0. 01ppm) 以下であった。そして、この負極を用いた以外は、実施例1と同様に角形の有機電解液二次電池を作製した。
Comparative Example 1
A sheet-like negative electrode was produced in the same manner as in Example 1 except that graphite having a specific surface area of 3.4 m 2 / g was used as the negative electrode active material. The total thickness of this negative electrode was 125 μm, and the density of the negative electrode active material-containing coating film was 1.7 g / cm 3 . In addition, the content of zinc in the negative electrode active material-containing coating film of the negative electrode is not more than the detection limit (0.005 ppm) of the apparatus, and the copper content is also not more than the detection limit (0.01 ppm). Met. And the square organic electrolyte secondary battery was produced similarly to Example 1 except having used this negative electrode.

上記のようにして作製した実施例1〜6および比較例1の電池について、充放電電流をCで表示した場合、750mAを1Cとして1Cの電流制限回路を設けて4.2Vの定電圧で初回充電を行い、その後、3.0Vまで放電した。このときの充放電の繰り返しにおいて10サイクル目の放電後、80℃の恒温槽中で100日貯蔵し、貯蔵による電池厚みの増加を調べた。その結果を表1に示す。   For the batteries of Examples 1 to 6 and Comparative Example 1 manufactured as described above, when the charge / discharge current is indicated by C, a current limit circuit of 1 C is provided with 750 mA as 1 C, and the initial voltage is 4.2 V. The battery was charged and then discharged to 3.0V. In the repetition of charging and discharging at this time, after discharging for the 10th cycle, it was stored in a constant temperature bath at 80 ° C. for 100 days, and the increase in battery thickness due to storage was examined. The results are shown in Table 1.

また、前記の充放電の繰り返しにおいて、500サイクル目の放電容量を1サイクル目の放電容量で割った値に100をかけたものをサイクル特性(%)として、表1に示す。   Table 1 shows the cycle characteristics (%) obtained by multiplying the value obtained by dividing the discharge capacity at the 500th cycle by the discharge capacity at the first cycle in the repetition of the charge / discharge.

Figure 2005285707
Figure 2005285707

表1に示すように、実施例1〜6の電池は、比較例1の電池に比べて、放電状態で高温貯蔵したときの電池厚みの増加が少なく、また、比較例1の電池とほぼ同等のサイクル特性を有していて、負極活物質含有塗膜中に亜鉛および/または銅を含有させたことによるサイクル劣化はほとんど認められなかった。   As shown in Table 1, the batteries of Examples 1 to 6 have less increase in battery thickness when stored at a high temperature in a discharged state than the battery of Comparative Example 1, and are almost equivalent to the battery of Comparative Example 1. The cycle deterioration due to inclusion of zinc and / or copper in the negative electrode active material-containing coating film was hardly observed.

本発明に係る有機電解液電池の一例を模式的に示す図で、(a)はその平面図、(b)はその部分縦断面図である。It is a figure which shows typically an example of the organic electrolyte battery which concerns on this invention, (a) is the top view, (b) is the fragmentary longitudinal cross-sectional view. 図1に示す有機電解液電池の斜視図である。It is a perspective view of the organic electrolyte battery shown in FIG.

符号の説明Explanation of symbols

1 正極
2 負極
3 セパレータ
4 電池ケース
5 絶縁体
6 電極積層体
7 正極リード体
8 負極リード体
9 蓋板
11 端子
12 絶縁体
13 リード板
DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Separator 4 Battery case 5 Insulator 6 Electrode laminated body 7 Positive electrode lead body 8 Negative electrode lead body 9 Cover plate 11 Terminal 12 Insulator 13 Lead plate

Claims (4)

負極と、正極と、有機電解液を含む有機電解液電池であって、負極活物質としてリチウムを吸蔵・放出可能な材料を用い、前記負極が導電性基体に負極活物質含有塗膜を形成したものからなり、その負極活物質含有塗膜中のICP発光分析による亜鉛および/または銅の含有量が3ppm以上25ppm以下であることを特徴とする有機電解液電池。 An organic electrolyte battery including a negative electrode, a positive electrode, and an organic electrolyte, wherein a material capable of inserting and extracting lithium is used as a negative electrode active material, and the negative electrode forms a negative electrode active material-containing coating film on a conductive substrate An organic electrolyte battery comprising a negative electrode active material-containing coating film, wherein the content of zinc and / or copper by ICP emission analysis is 3 ppm or more and 25 ppm or less. 亜鉛および/または銅の含有量が4ppm以上である請求項1記載の有機電解液電池。 The organic electrolyte battery according to claim 1, wherein the content of zinc and / or copper is 4 ppm or more. 亜鉛および/または銅の含有量が5ppm以上である請求項1記載の有機電解液電池。 The organic electrolyte battery according to claim 1, wherein the content of zinc and / or copper is 5 ppm or more. 亜鉛および/または銅の含有量が20ppm以下である請求項1〜3のいずれかに記載の有機電解液電池。 The organic electrolyte battery according to any one of claims 1 to 3, wherein the content of zinc and / or copper is 20 ppm or less.
JP2004101672A 2004-03-31 2004-03-31 Organic electrolyte battery Withdrawn JP2005285707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004101672A JP2005285707A (en) 2004-03-31 2004-03-31 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004101672A JP2005285707A (en) 2004-03-31 2004-03-31 Organic electrolyte battery

Publications (1)

Publication Number Publication Date
JP2005285707A true JP2005285707A (en) 2005-10-13

Family

ID=35183843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004101672A Withdrawn JP2005285707A (en) 2004-03-31 2004-03-31 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JP2005285707A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020102337A (en) * 2018-12-21 2020-07-02 三洋電機株式会社 Manufacturing method of mixture layer material, manufacturing method of secondary battery, and secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020102337A (en) * 2018-12-21 2020-07-02 三洋電機株式会社 Manufacturing method of mixture layer material, manufacturing method of secondary battery, and secondary battery
JP7138038B2 (en) 2018-12-21 2022-09-15 三洋電機株式会社 Method for manufacturing composite layer material and method for manufacturing secondary battery

Similar Documents

Publication Publication Date Title
JP4743752B2 (en) Lithium ion secondary battery
JP4222519B2 (en) Lithium ion secondary battery and equipment using the same
JP5522844B2 (en) Electrode for electrochemical element and lithium ion secondary battery
JP2012174569A (en) Preparation method of slurry for forming positive electrode mixture layer, and method of manufacturing nonaqueous electrolyte secondary battery
JP2007265731A (en) Lithium ion secondary battery
JP6366109B2 (en) Lithium ion secondary battery and charging method thereof
JP6304746B2 (en) Lithium ion secondary battery
JP2009016302A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method of positive electrode active material for nonaqueous electrolyte secondary battery
JP2005123047A (en) Lithium secondary battery and manufacturing method thereof
JP2019140039A (en) Nonaqueous electrolyte secondary battery
JP2003100309A (en) Nonaqueous electrolyte cell and method of manufacturing the same
JP2006253157A (en) Lithium secondary battery and manufacturing method thereof
JP5863631B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2013062164A (en) Nonaqueous electrolyte for electrochemical element, and electrochemical element
JP2019040796A (en) Nonaqueous electrolyte secondary battery
JPH1145720A (en) Lithium secondary battery
KR101001567B1 (en) Lithium ion secondary battery
JP2008282617A (en) Lithium-ion secondary battery
JP2004296420A (en) Organic electrolyte battery
JPWO2019065196A1 (en) Non-aqueous electrolyte secondary battery
JP2002298934A (en) Nonaqueous electrolyte battery
WO2022054279A1 (en) Lithium secondary battery
JP2002216768A (en) Nonaqueous secondary battery
JP2004158362A (en) Organic electrolyte liquid battery
JP2003151559A (en) Organic electrolyte battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605