JP2005285561A - Use method for alloy-type temperature fuse, and the alloy-type temperature fuse - Google Patents

Use method for alloy-type temperature fuse, and the alloy-type temperature fuse Download PDF

Info

Publication number
JP2005285561A
JP2005285561A JP2004097937A JP2004097937A JP2005285561A JP 2005285561 A JP2005285561 A JP 2005285561A JP 2004097937 A JP2004097937 A JP 2004097937A JP 2004097937 A JP2004097937 A JP 2004097937A JP 2005285561 A JP2005285561 A JP 2005285561A
Authority
JP
Japan
Prior art keywords
alloy
fuse
type thermal
thermal fuse
fuse element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004097937A
Other languages
Japanese (ja)
Other versions
JP4387229B2 (en
Inventor
Yoshiaki Tanaka
嘉明 田中
Naotaka Igawa
直孝 井川
Yoshishiro Iwamoto
美城 岩本
Toshiaki Saruwatari
利章 猿渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Uchihashi Estec Co Ltd
Original Assignee
Uchihashi Estec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchihashi Estec Co Ltd filed Critical Uchihashi Estec Co Ltd
Priority to JP2004097937A priority Critical patent/JP4387229B2/en
Priority to US11/085,392 priority patent/US20050220661A1/en
Priority to EP05102375A priority patent/EP1583125A1/en
Priority to CN200510062566.8A priority patent/CN1677596A/en
Publication of JP2005285561A publication Critical patent/JP2005285561A/en
Application granted granted Critical
Publication of JP4387229B2 publication Critical patent/JP4387229B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Fuses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for using an alloy-type temperature fuse rationally by imposing long time direct current carrying stability which is an excessive load condition more than a case of use under alternate current, when using the alloy type temperature fuse using In-Sn alloy as a fuse element under direct current because there is inconvenience by long time direct current carrying, for example, fatal defects for direct current, such as long-term direct current carrying destruction, irrespective of the advantages for removing unevenness in operation temperature by In-Sn alloy of In 85 to 52% and ensuring satisfactory yield for proper ductility. <P>SOLUTION: The alloy type temperature fuse exclusively for alternate current at predetermined operation temperature, using the fuse element made of an In-Sn alloy and alternate current electronic/electric equipment are protected from overheating. Protection of direct current electronic/electric equipment for overheating at the temperature is performed by the alloy-type temperature fuse for direct current, having alloy component of the fuse element having alloy element different from that of the alloy-type temperature fuse exclusively for alternate current. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、In−Sn系合金をヒューズエレメントとする合金型温度ヒューズを直流下で使用する場合に交流下使用の場合よりも過重の条件である長期直流通電安定性を課し、当該合金型温度ヒューズを合理的に使用する方法に関するものである。   The present invention imposes long-term DC current stability, which is an overload condition when using an alloy-type thermal fuse having an In-Sn alloy as a fuse element under direct current, compared to when using it under alternating current. It relates to a method for rationally using a thermal fuse.

合金型温度ヒューズにおいては、ヒューズエレメントに所定融点の可溶合金を用い、そのヒューズエレメントにフラックスを塗布しており、電子・電気機器に熱的に接触させて取付け、電子・電気機器の異常に基づく発熱でヒューズエレメントを溶融させ、この溶融合金を溶融フラックスとの共存下、表面張力により球状化分断させ、この球状化分断による通電遮断に伴う機器の温度降下で溶融分断合金を凝固させて通電遮断を完結させるようにしている。   In an alloy type thermal fuse, a fusible alloy with a predetermined melting point is used for the fuse element, and a flux is applied to the fuse element, which is attached in thermal contact with the electronic / electrical equipment, causing abnormalities in the electronic / electrical equipment. The fuse element is melted by heat generation based on this, and the molten alloy is spheroidized by surface tension in the coexistence with the molten flux, and the molten severed alloy is solidified by the temperature drop of the equipment due to the current interruption due to the spheroidized severance and energized. It tries to complete the shut-off.

近来、電子・電気機器の器材においては、鉛フリー化が進められている。すなわち、電子・電気機器に鉛が含まれていると、その廃棄物から鉛が溶出し、生体系に悪影響を与えるので、例えばはんだの鉛フリー化が進められている。
合金型温度ヒューズのヒューズエレメントにおいても、鉛フリー化が進められている。
使用実績の多い合金型温度ヒューズの動作温度は、120℃〜150℃に属する。
従来、動作温度120℃〜150℃の合金型温度ヒューズの鉛フリーヒューズエレメントとして、In−Sn系合金を使用することが提案されている(例えば、特許文献1、特許文献2、特許文献3)。
In recent years, lead-free products have been promoted for electronic and electrical equipment. That is, if lead is contained in the electronic / electrical equipment, lead is eluted from the waste and adversely affects the living system. For example, lead-free solder is being promoted.
Lead-free is also being promoted in the fuse elements of alloy-type thermal fuses.
The operating temperature of alloy-type thermal fuses that have been widely used belongs to 120 ° C to 150 ° C.
Conventionally, it has been proposed to use an In—Sn alloy as a lead-free fuse element of an alloy-type thermal fuse having an operating temperature of 120 ° C. to 150 ° C. (for example, Patent Document 1, Patent Document 2, and Patent Document 3). .

特開平11−25829号公報JP 11-25829 A 特開2002−25402号公報JP 2002-25402 A 特開2003−13167号公報JP 2003-13167 A

図1はIn−Sn合金の温度状態図を示し、In85%〜52%(Sn15〜48%)の範囲では、固相線温度がほぼ120℃〜150℃の範囲内にあり、固溶体のβ相と溶融体L相との間の固液共存巾が3℃〜4℃と極めて狭く、動作温度のバラツキの狭小化が期待できる。   FIG. 1 shows a temperature state diagram of an In—Sn alloy. In the range of In 85% to 52% (Sn 15 to 48%), the solidus temperature is in the range of about 120 ° C. to 150 ° C., and the β phase of the solid solution The solid-liquid coexistence width between the liquid and the melt L phase is extremely narrow, 3 ° C. to 4 ° C., and the variation in the operating temperature can be expected to be narrow.

しかしながら、In−Sn系合金をヒューズエレメントとした合金型温度ヒューズについての本発明者等の鋭意検討結果によれば、予想外にも直流電流を長時間通電すると、長期直流通電による不具合、例えばヒューズエレメントの融点以下の温度でヒューズエレメントが剪断破壊することを知見した。この現象は交流通電では発生せず、直流に固有の現象であることも確認済みである。
この長期直流電流通電破断の一例を示すと、In74%,Sn26%のIn−Sn合金を線引きして得た直径500μmφの線材をヒューズエレメントとした筒型温度ヒューズ(箇数50箇)を動作温度より35℃低い恒温槽に入れ、直流5Aを3000時間通電したところ、ヒューズエレメントが融点以下の固溶体の状態であるにもかかわらず、試料のほぼ50%がヒューズエレメントの中間で剪断破壊した。
これに対し、実効値が前記直流値に等しい交流(波高値√2×5A),3000時間通電では何らの異常も認められなかった。
However, according to the results of earnest study by the present inventors regarding an alloy-type thermal fuse using an In—Sn alloy as a fuse element, unexpectedly, if a direct current is applied for a long time, a problem caused by a long-term direct current application, for example, a fuse It has been found that the fuse element shears at a temperature below the melting point of the element. This phenomenon does not occur with AC energization, and it has been confirmed that this phenomenon is unique to DC.
As an example of this long-term DC current energization break, a cylindrical thermal fuse (50 pieces) with a wire element of diameter 500 μmφ obtained by drawing an In-Sn alloy of In74% and Sn26% is used as the operating temperature. When a DC 5A was energized for 3000 hours in a constant temperature bath lower by 35 ° C., almost 50% of the sample was sheared and destroyed in the middle of the fuse element, although the fuse element was in a solid solution state below the melting point.
On the other hand, no abnormality was recognized when the alternating current (crest value √2 × 5 A) having an effective value equal to the direct current value was applied for 3000 hours.

図1において、In85〜52%の範囲で曲線abに沿い(γ+β)混合相からβ相への相変態が発生しているが、直流通電前の常温から100℃への昇温では破壊が生じないことを確認しており、前記の長時間直流通電破断がこの相変態に基づくものでないことは明らかである。
導体を通電すると周方向磁界が発生し、この周方向磁界と導体電流との間に電流を導体中心に吸引する力が作用する。前記ヒューズエレメントの長期直流通電破断の原因として、推測の域をでないが、直流通電のためにヒューズエレメントの全長にわたり前記電磁作用により中心方向圧縮力が作用し、その結果ポアソン比に基づく軸方向圧縮応力が作用し、多量に含有するInのために柔らかいIn−Sn合金ヒューズエレメントが前記軸方向圧縮応力に基づき剪断応力が発生する面で剪断破壊することが想定できる。
この剪断破壊が直流で生じても、交流では生じない理由としては、交流では角周波数をωとすると、前記斜面での剪断応力が周波数を2ωとする交番力となり、その交番応力が0となる間に結晶間の歪が回復されてしまうのに対し、直流では周波数が0であり、結晶間の歪が累積されていき、遂には剪断破壊に至る破壊機構を想像できる。
In FIG. 1, a phase transformation from (γ + β) mixed phase to β phase occurs along the curve ab in the range of In 85 to 52%, but destruction occurs at a temperature rise from room temperature to 100 ° C. before direct current application. It is clear that the long-time DC energization breakage is not based on this phase transformation.
When a conductor is energized, a circumferential magnetic field is generated, and a force that attracts current to the center of the conductor acts between the circumferential magnetic field and the conductor current. As a cause of long-term DC energization breakage of the fuse element, although it is not an estimated area, a center direction compressive force acts by the electromagnetic action over the entire length of the fuse element for DC energization, and as a result, axial compression based on the Poisson's ratio It can be assumed that stress acts and the soft In—Sn alloy fuse element due to In contained in a large amount undergoes shear failure on the surface where shear stress is generated based on the axial compressive stress.
Even if this shear fracture occurs in direct current, it does not occur in alternating current. In alternating current, if the angular frequency is ω, the shear stress on the slope becomes an alternating force with a frequency of 2ω, and the alternating stress becomes zero. While the strain between crystals is recovered in the meantime, the frequency is zero in direct current, the strain between crystals is accumulated, and a fracture mechanism that eventually leads to shear fracture can be imagined.

電池パックの保護回路におけるFETの異常発熱時の回路保護、ACアダプター内のトランジスタ、コイル、トランス等の過熱保護等にサーモプロテクタが使用されている。この場合に要求されるサーモプロテクタの動作温度は120℃〜150℃である。
しかしながら、In−Sn系合金をヒューズエレメントとして使用した合金型温度ヒューズは、前記プロテクタの動作温度条件を充足するにもかかわらず、前記した長期直流通電による不具合、例えば長期直流通電破壊性のためにサーモプロテクタとして使用し難い。
The thermo protector is used for circuit protection in the case of abnormal heat generation of the FET in the protection circuit of the battery pack, overheating protection of transistors, coils, transformers, etc. in the AC adapter. The operating temperature of the thermo protector required in this case is 120 ° C to 150 ° C.
However, an alloy-type thermal fuse using an In-Sn alloy as a fuse element is not suitable for the above-mentioned malfunction due to long-term DC energization, for example, long-term DC energization breakdown despite satisfying the operating temperature condition of the protector. It is difficult to use as a thermo protector.

一方、In85〜52%の範囲で動作温度のバラツキが狭小であり、In85〜52%の範囲が適度の延性を有し、線引き中での断線を排除でき、良好な歩留りを担保できるために、交流電子・電気機器用のサーモプロテクタとしては極めて有用である。なお、交流電子・電気機器とは、それを保護している合金型温度ヒューズに交流電流が流れるものをいい、同様に直流電子・電気機器とは、それを保護している合金型温度ヒューズに直流電流が流れるものをいう。   On the other hand, the variation in operating temperature is narrow in the range of In85 to 52%, the range of In85 to 52% has moderate ductility, can eliminate disconnection during wire drawing, and can guarantee a good yield. It is extremely useful as a thermo protector for AC electronic / electric equipment. AC electronic / electrical equipment refers to the one in which an alternating current flows through an alloy-type thermal fuse that protects it. Similarly, DC electronic / electrical equipment refers to an alloy-type thermal fuse that protects it. This means that a direct current flows.

本発明の目的は、In85〜52%のIn−Sn系合金によれば動作温度のバラツキをよく排除でき、適度の延性のために良好な歩留りを確保できる有利性が得られるにもかかわらず長期間直流通電による不具合、例えば長期直流通電破壊という直流用にとっては致命的な欠陥があることに鑑み、In−Sn系合金をヒューズエレメントとする合金型温度ヒューズを直流下で使用する場合に交流下使用の場合よりも過重の条件である長期直流通電安定性を課し、当該合金型温度ヒューズを合理的に使用することにある。   The object of the present invention is that the In-Sn alloy of In85 to 52% can eliminate the variation of the operating temperature well, and can obtain the advantage of ensuring a good yield due to moderate ductility. Considering the fact that there is a fatal defect for direct current such as long-term direct current failure, such as long-term direct current failure, when using an alloy-type thermal fuse whose fuse element is an In-Sn alloy under direct current The purpose is to impose long-term DC current stability, which is an overload condition than in use, and to rationally use the alloy-type thermal fuse.

請求項1に係る合金型温度ヒューズの使用方法は、ヒューズエレメントを(In%+Sn%)>93.4%かつIn%>48.5%のIn−Sn系合金製とした動作温度120〜150℃の交流専用合金型温度ヒューズを交流電子・電気機器を過熱から保護し、同温度の過熱に対する直流電子・電気機器の保護を、ヒューズエレメントの合金組成を前記交流専用合金型温度ヒューズのそれとは合金元素を異ならしめた直流用合金型温度ヒューズにより行なうことを特徴とする。
請求項2に係る合金型温度ヒューズの使用方法は、請求項1記載の合金型温度ヒューズの使用方法において、交流専用合金型温度ヒューズのヒューズエレメントの合金組成が52%≦In≦85%、残部Snの組成であることを特徴とする。
請求項3に係る合金型温度ヒューズの使用方法は、請求項1記載の合金型温度ヒューズの使用方法において、交流専用合金型温度ヒューズのヒューズエレメントの合金組成が52%≦In≦85%、残部Snの100重量部にAg、Au、Ni、Pd、Pt、Sbの少なくとも一種を0.01〜7重量部添加した組成であることを特徴とする。
請求項4に係る合金型温度ヒューズの使用方法は、請求項2または3記載の合金型温度ヒューズの使用方法において、直流用合金型温度ヒューズのヒューズエレメントの合金組成を20%≦Bi≦56.5%,43%<Sn≦70%、0.5%≦In≦10%、または20%≦Bi≦56.5%,43%<Sn≦70%、0.5%≦In≦10%の100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの少なくとも一種を0.01〜7重量部添加した組成であることを特徴とする。
請求項5に係る合金型温度ヒューズの使用方法は、ヒューズエレメントを(In%+Sn%)>93.4%かつIn%>48.5%のIn−Sn系合金製とした動作温度120〜150℃の交流専用合金型温度ヒューズを交・直流電子・電気機器のうちの交流電子・電気機器のみの過熱からの保護に使用することを特徴とする。
請求項6に係る合金型温度ヒューズの使用方法は、請求項5記載の合金型温度ヒューズの使用方法において、交流専用合金型温度ヒューズのヒューズエレメントの合金組成が52%≦In≦85%、残部Snの組成であることを特徴とする。
請求項7に係る合金型温度ヒューズの使用方法は、請求項5記載の合金型温度ヒューズの使用方法において、交流専用合金型温度ヒューズのヒューズエレメントの合金組成が52%≦In≦85%、残部Snの100重量部にAg、Au、Ni、Pd、Pt、Sbの少なくとも一種を0.01〜7重量部添加した組成であることを特徴とする。
請求項8に係る合金型温度ヒューズの使用方法は、請求項1〜7何れかの合金型温度ヒューズの使用方法において、合金型温度ヒューズにヒューズエレメントを溶断させるための発熱体を付設したことを特徴とする。
The method of using the alloy-type thermal fuse according to claim 1 is that the fuse element is made of an In—Sn alloy having (In% + Sn%)> 93.4% and In%> 48.5%. ℃ AC dedicated alloy type thermal fuse protects AC electronic and electrical equipment from overheating, protects DC electronic and electrical equipment against overheating at the same temperature, fuse element alloy composition with that of the above-mentioned AC dedicated alloy type thermal fuse It is characterized by using an alloy type thermal fuse for direct current with different alloying elements.
The method of using an alloy type thermal fuse according to claim 2 is the method of using the alloy type thermal fuse according to claim 1, wherein the alloy composition of the fuse element of the AC-dedicated alloy type thermal fuse is 52% ≦ In ≦ 85%, and the balance It is characterized by the composition of Sn.
The method of using the alloy type thermal fuse according to claim 3 is the method of using the alloy type thermal fuse according to claim 1, wherein the alloy composition of the fuse element of the AC-dedicated alloy type thermal fuse is 52% ≦ In ≦ 85%, and the balance The composition is characterized by adding 0.01 to 7 parts by weight of at least one of Ag, Au, Ni, Pd, Pt, and Sb to 100 parts by weight of Sn.
The method of using an alloy type thermal fuse according to claim 4 is the method of using the alloy type thermal fuse according to claim 2 or 3, wherein the alloy composition of the fuse element of the direct current alloy type thermal fuse is 20% ≦ Bi ≦ 56. 5%, 43% <Sn ≦ 70%, 0.5% ≦ In ≦ 10%, or 20% ≦ Bi ≦ 56.5%, 43% <Sn ≦ 70%, 0.5% ≦ In ≦ 10% The composition is characterized by adding 0.01 to 7 parts by weight of at least one of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, and P to 100 parts by weight.
The method of using the alloy type thermal fuse according to claim 5 is that the fuse element is made of an In—Sn alloy with (In% + Sn%)> 93.4% and In%> 48.5%. It is characterized in that an AC-dedicated alloy-type thermal fuse of ℃ is used for protection from overheating of only AC electronic / electrical equipment among AC / DC electronic / electrical equipment.
The method of using the alloy type thermal fuse according to claim 6 is the method of using the alloy type thermal fuse according to claim 5, wherein the alloy composition of the fuse element of the AC-dedicated alloy type thermal fuse is 52% ≦ In ≦ 85%, and the balance It is characterized by the composition of Sn.
The method of using an alloy type thermal fuse according to claim 7 is the method of using an alloy type thermal fuse according to claim 5, wherein the alloy composition of the fuse element of the AC-dedicated alloy type thermal fuse is 52% ≦ In ≦ 85%, and the balance The composition is characterized by adding 0.01 to 7 parts by weight of at least one of Ag, Au, Ni, Pd, Pt, and Sb to 100 parts by weight of Sn.
The method of using the alloy type thermal fuse according to claim 8 is the method of using the alloy type thermal fuse according to any one of claims 1 to 7, wherein a heating element for fusing the fuse element is attached to the alloy type thermal fuse. Features.

上記請求項1〜8の合金型温度ヒューズの使用方法において、交流用合金型温度ヒューズと直流用合金型温度ヒューズの動作温度は実質的に同じとされる〔動作温度の公差(±値)の範囲内で両者に一致点を有するもの、公称動作温度+0、−7℃の範囲で両者に一致点を有するものを含む〕。   In the method of using an alloy type thermal fuse according to any one of claims 1 to 8, the operating temperature of the AC alloy type thermal fuse and the DC alloy type thermal fuse is substantially the same [the operating temperature tolerance (± value) Including those having a coincidence point within the range, and those having a coincidence point in both within the range of the nominal operating temperature +0 and −7 ° C.).

請求項9に係る合金型温度ヒューズは、請求項1〜8何れかの合金型温度ヒューズの使用方法において使用する、ヒューズエレメントがIn−Sn系合金製の交流専用合金型温度ヒューズであり、交流専用または直流使用禁止の指示を直接または間接的に表示したことを特徴とする。この場合、直接的表示は合金型温度ヒューズのボディへの印刷等により行なうことができ、間接的表示は使用説明書若しくは仕様書、カタログ等での記載により行なうことができる。   An alloy-type thermal fuse according to claim 9 is an AC-dedicated alloy-type thermal fuse made of an In-Sn alloy, wherein the fuse element is used in the method for using an alloy-type thermal fuse according to any one of claims 1-8. A dedicated or direct use prohibition instruction is displayed directly or indirectly. In this case, direct display can be performed by printing on the body of the alloy-type thermal fuse or the like, and indirect display can be performed by description in an instruction manual, specification, catalog, or the like.

In−Sn系合金特に、In85〜52%(Sn15%〜48%)のIn−Sn二元合金をヒューズエレメントとする合金型温度ヒューズでは、長期直流通電下でその通電が原因で破壊する事実に鑑み、そのIn−Sn系合金をヒューズエレメントとする合金型温度ヒューズを交流専用として使用し、またはそのIn−Sn系合金をヒューズエレメントとする合金型温度ヒューズを交流専用として使用し、かつ優れた長期直流通電安定性の別合金組成のヒューズエレメントを用いた合金型温度ヒューズを直流用として使用しているから、In85〜52%のIn−Sn系合金をヒューズエレメントとする合金型温度ヒューズを安全、かつ合理的に使用できる。   In-Sn alloys, especially alloy-type thermal fuses that use In85-52% (Sn15% -48%) In-Sn binary alloys as fuse elements break down due to their energization under long-term DC energization. In view of this, an alloy type thermal fuse having the In-Sn alloy as a fuse element is used exclusively for alternating current, or an alloy type thermal fuse having the In-Sn alloy as a fuse element is used exclusively for alternating current, and excellent Since an alloy type thermal fuse using a fuse element of another alloy composition with long-term direct current stability is used for direct current, an alloy type thermal fuse having an In-Sn alloy of In85 to 52% as a fuse element is safe. Can be used reasonably.

特に、ノートパソコン、携帯電話等の電源として用いられている二次電池、例えばリチウムイオン二次電池、リチウムポリマー二次電池の電池パック内やACアダプター内のサーモプロテクタとして合金型温度ヒューズを使用する場合、前記In85〜52%のIn−Sn系合金をヒューズエレメントとする合金型温度ヒューズの使用を禁じ、優れた長期直流通電安定性の別合金組成のヒューズエレメントを用いた合金型温度ヒューズを電池パック用やACアダプター用のサーモプロテクタ専用として使用することにより、ノートパソコン、携帯電話等の熱的保護の信頼性を向上できる。   In particular, an alloy-type thermal fuse is used as a thermo-protector in a secondary battery used as a power source for a notebook computer, a mobile phone, etc., for example, a lithium ion secondary battery, a lithium polymer secondary battery pack or an AC adapter. In this case, it is prohibited to use an alloy-type thermal fuse having the In-Sn alloy of In85 to 52% as a fuse element, and an alloy-type thermal fuse using a fuse element having a different alloy composition with excellent long-term DC current stability is used as a battery. By using it exclusively for thermo protectors for packs and AC adapters, it is possible to improve the reliability of thermal protection for notebook computers and mobile phones.

更に、In85〜52%のIn−Sn系合金の固液共存巾が狭く、かつ適度の延性を有するために、その合金をヒューズエレメントに用いた合金型温度ヒューズでは、動作温度のバラツキを僅小にでき、良好な歩留りで線引き製線できる有利性を有し、当該合金型温度ヒューズを交流専用で使用することにより、その有利性を享受できる。   Furthermore, since the solid-liquid coexistence width of In85-52% In-Sn alloy is narrow and has an appropriate ductility, an alloy type thermal fuse using the alloy as a fuse element has a small variation in operating temperature. It has the advantage that it can be drawn and drawn with a good yield, and the advantage can be enjoyed by using the alloy type thermal fuse exclusively for AC.

図1は本発明において使用する合金型温度ヒューズのヒューズエレメントのIn−Sn合金の温度状態図を示し、In85〜52%の範囲を使用している。
この範囲では、β固溶体→β固溶体と溶液Lとの共存相→溶液Lの相変化で溶融していき、共存域でヒューズエレメントが球状分断される。すなわち、ヒューズエレメントの温度が固相線温度を越えると溶融フラックスの活性作用との相乗効果で前記共存相が合金型温度ヒューズのリード導体や電極に表面張力により濡れ拡がり球状化されつつ分断される。従って、合金型温度ヒューズの動作温度は固相線温度と液相線温度との間の温度となるが、その間の温度巾が3℃程度と狭く、動作温度のバラツキを僅小にできる。
使用頻度の高い合金型温度ヒューズの動作温度は120℃〜150℃であるが、In−Sn系合金の前記In85〜52%の範囲はこの動作温度を充足している。
FIG. 1 shows a temperature state diagram of an In—Sn alloy of a fuse element of an alloy type thermal fuse used in the present invention, and a range of In85 to 52% is used.
In this range, the β solid solution → the coexisting phase of the β solid solution and the solution L → the solution L melts by phase change, and the fuse element is spherically divided in the coexisting region. In other words, when the temperature of the fuse element exceeds the solidus temperature, the coexisting phase is divided into a lead conductor and an electrode of the alloy-type thermal fuse by spreading and spheroidizing due to surface tension due to a synergistic effect with the active action of the molten flux. . Therefore, the operating temperature of the alloy-type thermal fuse is a temperature between the solidus temperature and the liquidus temperature, but the temperature range between them is as narrow as about 3 ° C., and the variation in operating temperature can be minimized.
The operating temperature of a frequently used alloy type thermal fuse is 120 ° C. to 150 ° C., but the range of In 85 to 52% of the In—Sn alloy satisfies this operating temperature.

ヒューズエレメントは、原料配合工程、ビレット製作工程、伸線工程を経て製造できる。まず、SnとInの地金を所定の配合とするように秤量して溶解炉に投入し、溶融合金を型に流し込んでビレットを製作し、このビレットを押出機により粗線に成形し、この粗線をダイスに通し線引きして所定径の線材を得、これを所定長さに切断してヒューズエレメントを得ることができる。
In単体では延性が大き過ぎて線引きが困難であるが、In85〜52%のIn−Sn系合金では、適度の延性のために良好な歩留りで、しかも500μmφ以下の細線への線引きも容易である。
The fuse element can be manufactured through a raw material blending process, a billet manufacturing process, and a wire drawing process. First, Sn and In ingots are weighed so as to have a predetermined composition, put into a melting furnace, a molten alloy is poured into a mold to produce a billet, and this billet is formed into a rough wire by an extruder. A rough wire is drawn through a die to obtain a wire having a predetermined diameter, and the wire is cut into a predetermined length to obtain a fuse element.
In In alone, ductility is too large and drawing is difficult, but In85-52% In—Sn alloy has a good yield due to moderate ductility, and it is easy to draw to fine wires of 500 μmφ or less. .

従来、同一合金の合金型温度ヒューズを交流・直流の両用に区別することなく使用しており、その定格の例として、動作温度126±2℃での定格AC3.5A×AC50VとDC3.5A×DC50V、動作温度130±2℃での定格AC3A×AC50VとDC3A×DC50V、動作温度145±2℃での定格AC4A×AC50VとDC4A×DC50V等を挙げることができる。
しかしながら、In85〜52%のIn−Sn系合金をヒューズエレメントとする合金型温度ヒューズでは、長期直流通電による不具合、例えば長期直流通電破壊のために、かかる両用使用に問題があることは既述した通りである。
Conventionally, alloy-type thermal fuses of the same alloy are used without distinction for both AC and DC. As an example of the rating, rated AC3.5A × AC50V and DC3.5A × at an operating temperature of 126 ± 2 ° C. And rated AC3A × AC50V and DC3A × DC50V at an operating temperature of 130 ± 2 ° C., rated AC4A × AC50V and DC4A × DC50V at an operating temperature of 145 ± 2 ° C., and the like.
However, it has already been described that an alloy type thermal fuse having an In85 to 52% In—Sn alloy as a fuse element has a problem in such dual use due to a failure due to a long-term DC current supply, for example, a long-term DC current breakdown. Street.

長期直流通電破壊の原因としては、既述した通り電磁力による破壊を推察でき、この電磁力について考察する。
すなわち、ヒューズエレメントの電流密度をiとすると、半径rの箇所での磁界Hは、H=ir/2で与えられ、その箇所での半径方向の圧縮力をfとすると、

Figure 2005285561
が成立するから(dはヒューズエレメントの外径)、 As described above, the cause of the long-term DC energization breakdown can be inferred from the breakdown due to the electromagnetic force.
That is, if the current density of the fuse element is i, the magnetic field H at the location of radius r is given by H = ir / 2, and if the radial compressive force at that location is f,
Figure 2005285561
(D is the outer diameter of the fuse element),

f=〔(d/2)−r〕i/(6r)
で与えられ、ヒューズエレメント中心に至るほど圧縮力fが大となり、ヒューズエレメントがその軟質のためにクリープ破断することが推察される。
f = [(d / 2) 3 −r 3 ] i 2 / (6r)
It is assumed that the compression force f increases toward the center of the fuse element, and the fuse element creeps due to its softness.

In85〜52%のIn−Sn系合金のヒューズエレメントの長期直流通電破壊は直流固有の現象であり、交流通電では既述した通り発生しない。現に、長期直流通電破壊が生じた直流電流と同実効値の交流電流を通電したところ、長期直流通電破壊が生じた時間を大きく越える時間の経過でも破断は観察されなかった。   The long-term direct current failure of the In-Sn alloy fuse element of In85 to 52% is a phenomenon inherent to direct current, and does not occur in alternating current as described above. In fact, when an AC current having the same effective value as that of the DC current in which the long-term DC energization breakdown occurred was energized, no breakage was observed even after a time significantly exceeding the time in which the long-term DC energization breakdown occurred.

In85〜52%のIn−Sn系合金のヒューズエレメントの長期直流通電破壊は、この合金組成が応力変形を生じ易いことに起因している。而して、大きな熱応力変化が生じるヒートサイクルのもとでは、繰返し応力変化により断面積変化や長さ変化が生じて抵抗値が増加し易い。かかる抵抗値増加のもとでは、ジュール発熱によりヒューズエレメントが昇温され、その上昇温度をΔTとすれば、合金型温度ヒューズ温度が機器許容温度に達するまえのその上昇温度ΔTだけ低い温度で動作してしまい、その上昇温度ΔTが大きくなると由々しい動作誤差が招来される。
そこで、前記In−Sn合金の52%≦In≦85%、残部Snの100重量部にAg、Au、Ni、Pd、Pt、Sbの少なくとも一種を0.01〜7重量部添加することが有効である。Ag、Au、Ni、Pd、Pt、Sbの少なくとも一種を0.01重量部以上添加する理由は、Ag、Au、Ni、Pd、Pt、Sbの少なくとも一種の金属とInまたはSnとの金属間化合物を生成させ、その金属間化合物によるくさび効果で結晶間のすべりを生じ難くさせ、前記ヒートサイクル下でのヒューズエレメントの変形を抑制して抵抗値変化を軽減するためであり、7重量部以下とする理由は、液相線温度の上昇及び固液共存温度巾の増加が大きくなり過ぎ、動作温度120℃〜150℃のもとでの動作温度のバラツキの狭小化を達成し難くなるからである。
The long-term direct current energization failure of the fuse element of In85 to 52% In—Sn alloy is due to the fact that this alloy composition easily causes stress deformation. Therefore, under a heat cycle in which a large change in thermal stress occurs, a change in cross-sectional area or a change in length occurs due to a repeated stress change, and the resistance value tends to increase. Under such an increase in resistance value, if the temperature of the fuse element is raised by Joule heat generation and the rise temperature is ΔT, the temperature is lowered by the rise temperature ΔT before the alloy type temperature fuse temperature reaches the equipment allowable temperature. Therefore, if the temperature rise ΔT is increased, a serious operation error is caused.
Therefore, it is effective to add 0.01 to 7 parts by weight of at least one of Ag, Au, Ni, Pd, Pt, and Sb to 100 parts by weight of 52% ≦ In ≦ 85% of the In—Sn alloy and the remaining Sn. It is. The reason for adding at least 0.01 part by weight of at least one of Ag, Au, Ni, Pd, Pt, and Sb is that between at least one of Ag, Au, Ni, Pd, Pt, and Sb and In or Sn. This is to produce a compound, to prevent slip between crystals due to the wedge effect by the intermetallic compound, to suppress the deformation of the fuse element under the heat cycle and reduce the resistance value change, 7 parts by weight or less The reason is that the increase in the liquidus temperature and the increase in the solid-liquid coexistence temperature range become too large, and it becomes difficult to narrow the variation of the operating temperature under the operating temperature of 120 ° C to 150 ° C. is there.

本発明においては、In−Sn系合金の52%≦In≦85%、残部Snまたはこの組成100重量部にAg、Au、Ni、Pd、Pt、Sbの少なくとも一種を0.01〜7重量部添加した合金のヒューズエレメントを用いた合金型温度ヒューズの直流での使用を禁じ交流専用で使用する形態で実施することができる。   In the present invention, 52% ≦ In ≦ 85% of the In—Sn alloy, the remaining Sn or 100 parts by weight of this composition is 0.01 to 7 parts by weight of at least one of Ag, Au, Ni, Pd, Pt, and Sb. An alloy type thermal fuse using the added alloy fuse element is prohibited from being used in direct current, and can be implemented in a form for exclusive use in alternating current.

また、In−Sn系合金の52%≦In≦85%、残部Snまたはこの組成100重量部にAg、Au、Ni、Pd、Pt、Sbの少なくとも一種を0.01〜7重量部添加した合金のヒューズエレメントを用いた合金型温度ヒューズの直流での使用を禁じ交流専用で使用し、長期直流通電による不具合、例えば長期直流通電破壊をよく排除できる合金組成のヒューズエレメントを用いた合金型温度ヒューズを直流用として使用する形態で実施することもできる。この長期直流通電破壊の評価基準としては、動作温度−35℃の温度下での直流5A、通電時間3000時間合格を採ることができる。
かかる条件を満足する合金としては、20%≦Bi≦56.5%,43%<Sn≦70%、0.5%≦In≦10%、または20%≦Bi≦56.5%,43%<Sn≦70%、0.5%≦In≦10%の100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの少なくとも一種を0.01〜7重量部添加した組成を使用できる。
この合金組成においては、Sn量(43%<Sn≦70%)とBi量(20%≦Bi≦56.5%)により線引き加工を可能とする延性が与えられ、これらとIn量(0.5%≦In≦10%)とにより融点が120℃〜150℃の範囲を含むように設定される。SnやInに対して殆ど固溶しないBi相(α相)とSn相(γ相)とが混在する中にInが入ると硬く脆いα相とSn−In金属間化合物相が析出し相間の機械的特性差が大となって加工性が劣悪となり、Inが多くなるほど線引き加工が困難となるので、In量を10%以下に抑えている。
Ag、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの少なくとも一種を0.01〜7重量部添加する理由は、合金の比抵抗を低減すると共に結晶組織を微細化させ合金中の異相界面を小さくして加工歪や応力の分散をは図るためであり、0.01重量部未満ではその効果を得難く、7重量部を越えると合金型温度ヒューズの動作温度を120℃〜150℃の範囲内に設定することが困難になる。
本発明において、ヒュ−ズエレメントは線引き後の断面丸形のまま、または、さらに扁平に圧縮加工して使用でき、ヒュ−ズエレメントの径は、円形線の場合、外径200μmφ〜1050μmφとされる。
Further, 52% ≦ In ≦ 85% of In—Sn based alloy, remaining Sn or an alloy obtained by adding 0.01 to 7 parts by weight of at least one of Ag, Au, Ni, Pd, Pt, and Sb to 100 parts by weight of this composition. Alloy-type thermal fuse using a fuse element with an alloy composition that can be used exclusively for alternating current and for the long-term direct current energization, for example, long-term direct current breakdown can be well eliminated. Can also be implemented in a form in which is used for direct current. As an evaluation standard for this long-term DC energization breakdown, it is possible to take a pass of 5 A DC at an operating temperature of −35 ° C. and an energization time of 3000 hours.
Alloys satisfying such conditions include 20% ≦ Bi ≦ 56.5%, 43% <Sn ≦ 70%, 0.5% ≦ In ≦ 10%, or 20% ≦ Bi ≦ 56.5%, 43%. <Sn ≦ 70%, 0.5% ≦ In ≦ 10% by weight of 0.01 to 7 parts by weight of at least one of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, P Added compositions can be used.
In this alloy composition, the Sn amount (43% <Sn ≦ 70%) and the Bi amount (20% ≦ Bi ≦ 56.5%) provide ductility that enables drawing, and these and the In amount (0. 5% ≦ In ≦ 10%), the melting point is set to include the range of 120 ° C. to 150 ° C. When In is mixed in the Bi phase (α phase) and Sn phase (γ phase), which are hardly dissolved in Sn or In, a hard and brittle α phase and an Sn-In intermetallic compound phase precipitate and the interphase Since the mechanical property difference becomes large and the workability becomes poor, and the drawing process becomes more difficult as the In content increases, the In content is suppressed to 10% or less.
The reason for adding 0.01 to 7 parts by weight of at least one of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, and P is to reduce the specific resistance of the alloy and refine the crystal structure. This is to reduce the strain interface and stress distribution by reducing the interface between the different phases. If it is less than 0.01 part by weight, it is difficult to obtain the effect. If it exceeds 7 parts by weight, the operating temperature of the alloy-type thermal fuse is 120 ° C. It becomes difficult to set within the range of -150 degreeC.
In the present invention, the fuse element can be used with a round cross-section after drawing or further compressed into a flat shape. The diameter of the fuse element is 200 μmφ to 1050 μm outer diameter in the case of a circular wire. The

本発明は図2〜図6に示す温度ヒューズの形態で実施される。その外、半導体装置やコンデンサや抵抗体に温度ヒューズエレメントを直列に接続し、このエレメントにフラックスを塗布し、このフラックス塗布エレメントを半導体やコンデンサ素子や抵抗素子に近接配置して半導体やコンデンサ素子や抵抗素子と共に樹脂モールドやケース等により封止した形態で実施することもできる。   The present invention is implemented in the form of a thermal fuse shown in FIGS. In addition, a thermal fuse element is connected in series to a semiconductor device, a capacitor, or a resistor, and a flux is applied to the element, and the flux application element is disposed close to the semiconductor, the capacitor element, or the resistance element, and the semiconductor, capacitor element, It can also be implemented in a form sealed together with a resistor element by a resin mold or a case.

図2は筒型ケ−スタイプの合金型温度ヒュ−ズを示し、一対のリ−ド線1,1間に低融点可溶合金片2を接続し、該低融点可溶合金片2上にフラックス3を塗布し、このフラックス塗布低融点可溶合金片上に耐熱性・良熱伝導性の絶縁筒4、例えば、セラミックス筒を挿通し、該絶縁筒4の各端と各リ−ド線1との間を常温硬化の封止剤5、例えば、エポキシ樹脂で封止してある。   FIG. 2 shows an alloy type temperature fuse of a cylindrical case type. A low melting point soluble alloy piece 2 is connected between a pair of lead wires 1 and 1, and the low melting point soluble alloy piece 2 is placed on the low melting point soluble alloy piece 2. A flux 3 is applied, and a heat-resistant and heat-conductive insulating cylinder 4, for example, a ceramic cylinder, is inserted over the flux-applied low melting point soluble alloy piece, and each end of the insulating cylinder 4 and each lead wire 1 are inserted. Is sealed with a normal temperature curing sealant 5, for example, an epoxy resin.

図3は、テ−プタイプの合金型温度ヒュ−ズを示し、厚み100〜300μmのプラスチックベ−スフィルム41に厚み100〜200μmの帯状リ−ド導体1,1を接着剤または融着により固着し、帯状リ−ド導体間に線径250μmφ〜500μmφのヒュ−ズエレメント2を接続し、このヒュ−ズエレメント2にフラックス3を塗布し、このフラックス塗布ヒュ−ズエレメントを厚み100〜300μmのプラスチックカバ−フィルム41の接着剤または融着による固着で封止してある。   FIG. 3 shows a tape-type alloy-type temperature fuse, and a strip-shaped lead conductor 1, 1 having a thickness of 100 to 200 μm is fixed to a plastic base film 41 having a thickness of 100 to 300 μm by an adhesive or fusion. Then, a fuse element 2 having a wire diameter of 250 μmφ to 500 μmφ is connected between the strip-shaped lead conductors, and a flux 3 is applied to the fuse element 2, and the flux application fuse element is formed to a thickness of 100 to 300 μm. The plastic cover film 41 is sealed by fixing with an adhesive or fusion.

図4はケ−スタイプラジアル型を示し、並行リ−ド導体1,1の先端部間にヒュ−ズエレメント2を溶接により接合し、ヒュ−ズエレメント2にフラックス3を塗布し、このフラックス塗布ヒュ−ズエレメントを一端開口の絶縁ケ−ス4、例えばセラミックスケ−スで包囲し、この絶縁ケ−ス4の開口をエポキシ樹脂等の封止剤5で封止してある。   FIG. 4 shows a case type radial type, in which a fuse element 2 is joined between the leading ends of the parallel lead conductors 1 and 1 by welding, and a flux 3 is applied to the fuse element 2. The coating fuse element is surrounded by an insulating case 4 having an opening at one end, for example, a ceramic case, and the opening of the insulating case 4 is sealed with a sealing agent 5 such as an epoxy resin.

図5は基板タイプを示し、絶縁基板4、例えばセラミックス基板上に一対の膜電極1,1を導電ペ−スト(例えば銀ペ−スト)の印刷焼付けにより形成し、各電極1にリ−ド導体11を溶接等により接続し、電極1,1間にヒュ−ズエレメント2を溶接により接合し、ヒュ−ズエレメント2にフラックス3を塗布し、このフラックス塗布ヒュ−ズエレメントを封止剤5例えばエポキシ樹脂で被覆してある。   FIG. 5 shows a substrate type. A pair of film electrodes 1 and 1 are formed on an insulating substrate 4, for example, a ceramic substrate, by printing and baking a conductive paste (for example, a silver paste). The conductor 11 is connected by welding or the like, the fuse element 2 is joined between the electrodes 1 and 1 by welding, the flux 3 is applied to the fuse element 2, and the flux application fuse element is connected to the sealant 5. For example, it is coated with an epoxy resin.

図6は樹脂ディツピングタイプラジアル型を示し、並行リ−ド導体1,1の先端部間にヒュ−ズエレメント2を溶接により接合し、ヒュ−ズエレメント2にフラックス3を塗布し、このフラックス塗布ヒュ−ズエレメントを樹脂液ディッピングにより絶縁封止剤例えばエポキシ樹脂5で封止してある。   FIG. 6 shows a resin dipping type radial type, in which a fuse element 2 is joined between the leading ends of the parallel lead conductors 1 and 1 by welding, and a flux 3 is applied to the fuse element 2. The flux application fuse element is sealed with an insulating sealant such as epoxy resin 5 by resin liquid dipping.

本発明は合金型温度ヒューズに発熱体を付設し、例えば抵抗ペースト(例えば、酸化ルテニウム等の酸化金属粉のペースト)の塗布・焼き付けにより膜抵抗を付設し、平常時はヒューズエレメントを回路の直列路としてヒューズエレメントに回路電流を流通させ、膜抵抗は回路の一部とはせずに回路電流不通とし、機器の異常発熱の原因となる前兆を検出したときにこの検出信号で膜抵抗を通電発熱させ、この発熱でヒューズエレメントを溶断させて回路電流を遮断させる形態で実施することもできる。この場合、平常時、ヒューズエレメントに回路電流が流されるから、直流の場合、前記した長期直流通電による不具合、例えば長期直流通電破壊が問題となるから、前記In−Sn系合金製ヒューズエレメントを用いた発熱体付き温度ヒューズの使用が禁じられ、前記Bi−Sn−In系合金製ヒューズエレメントに用いた発熱体付き温度ヒューズが使用される。   In the present invention, a heating element is attached to an alloy-type thermal fuse, and a film resistance is attached by, for example, applying and baking a resistance paste (for example, a paste of metal oxide powder such as ruthenium oxide). A circuit current is passed through the fuse element as a path, the membrane resistance is not part of the circuit, the circuit current is not passed, and the membrane resistance is energized with this detection signal when a precursor causing abnormal heat generation of the device is detected It can also be implemented in a form in which heat is generated and the fuse element is melted by this heat to cut off the circuit current. In this case, since a circuit current is normally passed through the fuse element, in the case of direct current, the above-described problems caused by long-term direct current energization, such as long-term direct current energization breakdown, become a problem, so the In-Sn alloy fuse element is used. The use of the thermal fuse with a heating element is prohibited, and the thermal fuse with a heating element used in the Bi-Sn-In alloy fuse element is used.

上記のフラックスには、通常、融点がヒュ−ズエレメントの融点よりも低いものが使用され、例えば、ロジン90〜60重量部、ステアリン酸10〜40重量部、活性剤0〜3重量部を使用できる。この場合、ロジンには、天然ロジン、変性ロジン(例えば、水添ロジン、不均化ロジン、重合ロジン)またはこれらの精製ロジンを使用でき、活性剤には、ジエチルアミンの塩酸塩や臭化水素酸塩、アジピン酸等の有機酸を使用できる。   As the above-mentioned flux, one having a melting point lower than that of the fuse element is usually used. For example, 90 to 60 parts by weight of rosin, 10 to 40 parts by weight of stearic acid, and 0 to 3 parts by weight of an activator are used. it can. In this case, natural rosin, modified rosin (eg, hydrogenated rosin, disproportionated rosin, polymerized rosin) or purified rosin can be used as the rosin, and diethylamine hydrochloride or hydrobromic acid can be used as the activator. Organic acids such as salts and adipic acid can be used.

以下の実施例及び比較例において、合金型温度ヒューズには、直径600μmφ、長さ3.5mmのヒューズエレメントの両端にリード導体を接続し、ロジンを主成分としてアジピン酸1重量%を添加したフラックスをヒューズエレメントに塗布し、このフラックス塗布ヒューズエレメントに外径2.5mmφ、厚み0.5mm、長さ9mmのセラミックス筒を挿通し、このセラミックス筒各端と各リード導体との間を常温硬化型のエポキシ樹脂で封止した図2に示す筒型温度ヒューズを使用した。
合金型温度ヒューズの動作温度は、試料数を50箇とし、0.1アンペアの電流を通電しつつ、昇温速度1℃/分のオイルバスに浸漬し、溶断による通電遮断時のオイル温度を測定した。
長期直流通電エージング評価については、試料数を50箇とし、動作温度よりも35℃低い恒温槽内に入れ、DC5Aを3000時間通電し、その通電後にヒューズエレメントの破断の有無を軟長期直流通電による不具合、例えば線観察装置で検査し、全数破断無しの場合を合格とした。
長期直流通電エージング試験後の動作温度は、0.1アンペアの電流を通電しつつ、昇温速度1℃/分のオイルバスに浸漬し、溶断による通電遮断時のオイル温度を測定した。
この長期直流通電破壊が直流固有のものであることを確認するために、試料数を50箇とし、前記と同温度の恒温槽内に入れ、実効値がDC5Aと同一値であるAC電流(波高値√2×5A)を3000時間通電し、その通電後にヒューズエレメントの破断の有無を軟長期直流通電による不具合、例えば線装置で検査する試験(長期通電エージング試験)を行なった。
ヒューズエレメントの線引き加工においては、1ダイスについての引落率を6.5%とし、線引き速度を45m/minとして直径300μmφに線引した。
In the following examples and comparative examples, a flux in which a lead conductor is connected to both ends of a fuse element having a diameter of 600 μmφ and a length of 3.5 mm and 1% by weight of adipic acid is added as a main component is rosin. Is applied to the fuse element, and a ceramic cylinder having an outer diameter of 2.5 mmφ, a thickness of 0.5 mm, and a length of 9 mm is inserted into the flux-applied fuse element, and a room temperature curing type is provided between each end of the ceramic cylinder and each lead conductor. A cylindrical thermal fuse shown in FIG. 2 sealed with an epoxy resin was used.
The operating temperature of the alloy-type thermal fuse is 50 samples, immersed in an oil bath at a heating rate of 1 ° C / min while energizing a current of 0.1 ampere, and the oil temperature when the energization is cut off by fusing It was measured.
For long-term DC energization aging evaluation, the number of samples was 50, placed in a thermostatic chamber lower by 35 ° C. than the operating temperature, and DC5A was energized for 3000 hours. A defect, for example, a line observation device was inspected, and a case where all the pieces were not broken was regarded as acceptable.
The operating temperature after the long-term DC energization aging test was immersed in an oil bath at a heating rate of 1 ° C./min while energizing a current of 0.1 ampere, and the oil temperature when the energization was interrupted by fusing was measured.
In order to confirm that this long-term DC energization breakdown is peculiar to DC, the number of samples was set to 50, placed in a thermostatic chamber at the same temperature as described above, and the AC current (wave) having the same effective value as DC5A A high value √2 × 5 A) was energized for 3000 hours, and after the energization, a test (long-term energization aging test) was conducted to inspect whether the fuse element was broken by soft long-term DC energization, for example, with a wire device.
In drawing the fuse element, the drawing rate per die was set to 6.5%, the drawing speed was set to 45 m / min, and drawing was performed to a diameter of 300 μmφ.

In74%,Sn26%のIn−Sn合金をヒューズエレメントとした筒型温度ヒューズを交流用として使用し、Bi50%,Sn45%,In5%のBi−Sn−In合金をヒューズエレメントとした筒型温度ヒューズを直流用として使用した。
動作温度は前者が129.2±1℃であり、後者が129.7±1℃であって実質的に同一動作温度であった。
交流用では長期直流通電エージング試験でヒューズエレメントが破断したものは50箇中28箇あり、長期直流通電エージングに対する評価は不合格であったが、直流用では長期直流通電エージング試験でヒューズエレメントが破断したものは皆無であり、長期直流通電エージングに対する評価は合格であった。
長期直流通電エージング試験後の試料50箇の動作温度を測定したところ、エージング試験前に対し実質的な変化は認められず、動作性能を安定に維持できた。
直流用ヒューズエレメントの線引き加工は交流用に較べて困難であったが、断線したものはなかった。
長期交流通電エージング試験では、交流用・直流用の何れにおいてもヒューズエレメントが破断したものは皆無であった。
Cylindrical thermal fuses using Bi-Sn-In alloys with Bi50%, Sn45%, and In5% as fuse elements, using cylindrical thermal fuses with In74% and Sn26% In-Sn alloys as fuse elements Was used for direct current.
The operating temperature was 129.2 ± 1 ° C. for the former and 129.7 ± 1 ° C. for the latter, which was substantially the same operating temperature.
For AC use, there were 28 out of 50 fuse elements that broke in the long-term DC energization aging test, and the evaluation for long-term DC energization aging failed. None of the products were evaluated, and the evaluation for long-term direct current aging was acceptable.
When the operating temperature of 50 samples after the long-term direct current aging test was measured, no substantial change was observed compared to before the aging test, and the operating performance could be maintained stably.
Drawing of the DC fuse element was more difficult than AC, but none of them was disconnected.
In the long-term AC energization aging test, no fuse element was broken in both AC and DC.

この実施例から、In85〜52%のIn−Sn二元合金をヒューズエレメントとする合金型温度ヒューズが長期直流通電下でその通電が原因で破壊することが直流固有の現象であり、そのIn−Sn系合金をヒューズエレメントとする合金型温度ヒューズを交流専用として使用し、Bi−Sn−In系合金をヒューズエレメントとする合金型温度ヒューズを直流用として使用することにより、交流用・直流用それぞれのもとで電子・電気機器を動作温度120〜150℃の合金型温度ヒューズで安全、かつ合理的に保護できることが明らかである。   From this example, it is a phenomenon peculiar to direct current that an alloy-type thermal fuse having an In85-52% In—Sn binary alloy as a fuse element breaks due to the energization under long-term direct current energization. By using an alloy-type thermal fuse with a Sn-based alloy fuse element as a dedicated AC element, and using an alloy-type thermal fuse with a Bi-Sn-In alloy alloy fuse element as a direct current element, both for AC and DC use It is clear that electronic and electrical equipment can be safely and reasonably protected with an alloy-type thermal fuse having an operating temperature of 120 to 150 ° C.

〔比較例〕
In74%,Sn26%のIn−Sn合金をヒューズエレメントとした筒型温度ヒューズを従来通り交流用・直流用に併用した。
この比較例では、直流用で長期わたって使用する間に直流通電破壊が生じることが予測でき、直流用電子・電気機器を安全に保護できない。
[Comparative example]
A cylindrical temperature fuse using In-Sn alloy of In74% and Sn26% as a fuse element was used for both AC and DC as usual.
In this comparative example, it can be predicted that a DC energization breakage will occur during long-term use for DC, and the DC electronic / electrical device cannot be safely protected.

In−Sn合金の温度状態図である。It is a temperature state figure of an In-Sn alloy. 本発明において使用する合金型温度ヒュ−ズの一例を示す図面である。It is drawing which shows an example of the alloy type temperature fuse used in this invention. 本発明において使用する合金型温度ヒュ−ズの上記とは別の例を示す図面である。It is drawing which shows an example different from the above of the alloy type temperature fuse used in this invention. 本発明において使用する合金型温度ヒュ−ズの上記とは別の例を示す図面である。It is drawing which shows an example different from the above of the alloy type temperature fuse used in this invention. 本発明において使用する合金型温度ヒュ−ズの上記とは別の例を示す図面である。It is drawing which shows an example different from the above of the alloy type temperature fuse used in this invention. 本発明において使用する合金型温度ヒュ−ズの上記とは別の例を示す図面である。It is drawing which shows an example different from the above of the alloy type temperature fuse used in this invention.

符号の説明Explanation of symbols

1 リード導体または電極
2 ヒューズエレメント
3 フラックス
4 絶縁体
5 封止材
1 Lead conductor or electrode 2 Fuse element 3 Flux 4 Insulator 5 Sealing material

Claims (9)

ヒューズエレメントを(In%+Sn%)>93.4%かつIn%>48.5%のIn−Sn系合金製とした動作温度120〜150℃の交流専用合金型温度ヒューズを交流電子・電気機器を過熱から保護し、同温度の過熱に対する直流電子・電気機器の保護を、ヒューズエレメントの合金組成を前記交流専用合金型温度ヒューズのそれとは合金元素を異ならしめた直流用合金型温度ヒューズにより行なうことを特徴とする合金型温度ヒューズの使用方法。 An AC-only alloy type thermal fuse with an operating temperature of 120 to 150 ° C. in which the fuse element is made of an In—Sn alloy with (In% + Sn%)> 93.4% and In%> 48.5%. Is protected from overheating, and direct current electronic equipment is protected against overheating at the same temperature by using an alloy type thermal fuse for direct current in which the alloy composition of the fuse element is different from that of the above-mentioned dedicated alloy type thermal fuse. A method of using an alloy-type thermal fuse characterized by the above. 交流専用合金型温度ヒューズのヒューズエレメントの合金組成が52%≦In≦85%、残部Snの組成である請求項1記載の合金型温度ヒューズの使用方法。 2. The method of using an alloy type thermal fuse according to claim 1, wherein the alloy composition of the fuse element of the AC-only alloy type thermal fuse is 52% ≦ In ≦ 85% and the remaining Sn composition. 交流専用合金型温度ヒューズのヒューズエレメントの合金組成が52%≦In≦85%、残部Snの100重量部にAg、Au、Ni、Pd、Pt、Sbの少なくとも一種を0.01〜7重量部添加した組成である請求項1記載の合金型温度ヒューズの使用方法。 The alloy composition of the fuse element of the AC-dedicated alloy type thermal fuse is 52% ≦ In ≦ 85%, and the remaining Sn is 100 to 10 parts by weight. At least one of Ag, Au, Ni, Pd, Pt, and Sb is 0.01 to 7 parts by weight. The method of using an alloy type thermal fuse according to claim 1, wherein the composition is an added composition. 直流用合金型温度ヒューズのヒューズエレメントの合金組成を20%≦Bi≦56.5%,43%<Sn≦70%、0.5%≦In≦10%、または20%≦Bi≦56.5%,43%<Sn≦70%、0.5%≦In≦10%の100重量部にAg、Au、Cu、Ni、Pd、Pt、Sb、Ga、Ge、Pの少なくとも一種を0.01〜7重量部添加した組成である請求項2または3記載の合金型温度ヒューズの使用方法。 The alloy composition of the fuse element of the direct current alloy type thermal fuse is 20% ≦ Bi ≦ 56.5%, 43% <Sn ≦ 70%, 0.5% ≦ In ≦ 10%, or 20% ≦ Bi ≦ 56.5. %, 43% <Sn ≦ 70%, 0.5% ≦ In ≦ 10%, 100 parts by weight of at least one of Ag, Au, Cu, Ni, Pd, Pt, Sb, Ga, Ge, and P is 0.01 The method of using an alloy type thermal fuse according to claim 2 or 3, wherein the composition is added with -7 parts by weight. ヒューズエレメントを(In%+Sn%)>93.4%かつIn%>48.5%のIn−Sn系合金製とした動作温度120〜150℃の交流専用合金型温度ヒューズを交・直流電子・電気機器のうちの交流電子・電気機器のみの過熱からの保護に使用することを特徴とする合金型温度ヒューズの使用方法。 The fuse element is made of an In-Sn alloy with (In% + Sn%)> 93.4% and In%> 48.5%. A method of using an alloy-type thermal fuse, characterized in that it is used for protection from overheating of only AC electronics and electrical equipment among electrical equipment. 交流専用合金型温度ヒューズのヒューズエレメントの合金組成が52%≦In≦85%、残部Snの組成である請求項5記載の合金型温度ヒューズの使用方法。 6. The method of using an alloy type thermal fuse according to claim 5, wherein the alloy composition of the fuse element of the AC-only alloy type thermal fuse is 52% ≦ In ≦ 85% and the remaining Sn composition. 交流専用合金型温度ヒューズのヒューズエレメントの合金組成が52%≦In≦85%、残部Snの100重量部にAg、Au、Ni、Pd、Pt、Sbの少なくとも一種を0.01〜7重量部添加した組成である請求項5記載の合金型温度ヒューズの使用方法。 The alloy composition of the fuse element of the AC-dedicated alloy type thermal fuse is 52% ≦ In ≦ 85%, and the remaining Sn is 100 to 10 parts by weight. At least one of Ag, Au, Ni, Pd, Pt, and Sb is 0.01 to 7 parts by weight. 6. The method of using an alloy type thermal fuse according to claim 5, wherein the composition is an added composition. 合金型温度ヒューズにヒューズエレメントを溶断させるための発熱体を付設したことを特徴とする請求項1〜7何れか記載の合金型温度ヒューズの使用方法。 The method of using an alloy type thermal fuse according to any one of claims 1 to 7, wherein a heating element for fusing the fuse element is attached to the alloy type thermal fuse. 請求項1〜8何れか記載の合金型温度ヒューズの使用方法において使用する、ヒューズエレメントがIn−Sn系合金製の交流専用合金型温度ヒューズであり、交流専用または直流使用禁止の指示を直接または間接的に表示したことを特徴とする合金型温度ヒューズ。 The fuse element used in the method for using an alloy-type thermal fuse according to any one of claims 1 to 8, wherein the fuse element is an In-Sn alloy alloy-only alloy-type temperature fuse, and direct or direct use is prohibited. An alloy type thermal fuse characterized by being indirectly displayed.
JP2004097937A 2004-03-30 2004-03-30 Method of using alloy-type thermal fuse and alloy-type thermal fuse Expired - Lifetime JP4387229B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004097937A JP4387229B2 (en) 2004-03-30 2004-03-30 Method of using alloy-type thermal fuse and alloy-type thermal fuse
US11/085,392 US20050220661A1 (en) 2004-03-30 2005-03-21 Method of using an alloy type thermal fuse, and alloy type thermal fuse
EP05102375A EP1583125A1 (en) 2004-03-30 2005-03-24 Method of using an alloy type thermal fuse, and alloy type thermal fuse
CN200510062566.8A CN1677596A (en) 2004-03-30 2005-03-29 Method of using an alloy type thermal fuse, and alloy type thermal fuse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004097937A JP4387229B2 (en) 2004-03-30 2004-03-30 Method of using alloy-type thermal fuse and alloy-type thermal fuse

Publications (2)

Publication Number Publication Date
JP2005285561A true JP2005285561A (en) 2005-10-13
JP4387229B2 JP4387229B2 (en) 2009-12-16

Family

ID=34879942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004097937A Expired - Lifetime JP4387229B2 (en) 2004-03-30 2004-03-30 Method of using alloy-type thermal fuse and alloy-type thermal fuse

Country Status (4)

Country Link
US (1) US20050220661A1 (en)
EP (1) EP1583125A1 (en)
JP (1) JP4387229B2 (en)
CN (1) CN1677596A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008097943A (en) * 2006-10-11 2008-04-24 Uchihashi Estec Co Ltd Temperature fuse built-in resistor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102437319B (en) * 2011-12-27 2014-07-02 北京科技大学 Cathode material for lithium ion battery and preparation method thereof
EP3544041B1 (en) * 2016-11-21 2021-09-15 Sony Group Corporation Connection member, moving body and power supply system
CN107087316A (en) * 2017-04-28 2017-08-22 宁波柔碳电子科技有限公司 A kind of method for excessive heating protection of graphene Electric radiant Heating Film and graphene Electric radiant Heating Film with overtemperature protection system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4360666B2 (en) * 2002-07-16 2009-11-11 内橋エステック株式会社 Alloy type thermal fuse and wire for thermal fuse element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008097943A (en) * 2006-10-11 2008-04-24 Uchihashi Estec Co Ltd Temperature fuse built-in resistor

Also Published As

Publication number Publication date
CN1677596A (en) 2005-10-05
JP4387229B2 (en) 2009-12-16
US20050220661A1 (en) 2005-10-06
EP1583125A1 (en) 2005-10-05

Similar Documents

Publication Publication Date Title
JP4230194B2 (en) Alloy type thermal fuse and wire for thermal fuse element
JP4204852B2 (en) Alloy type thermal fuse and material for thermal fuse element
JP4001757B2 (en) Alloy type temperature fuse
JP3990169B2 (en) Alloy type temperature fuse
JP2004265812A (en) Alloy type thermal fuse and material for thermal fuse element
JP4064217B2 (en) Alloy type thermal fuse and material for thermal fuse element
JP4360666B2 (en) Alloy type thermal fuse and wire for thermal fuse element
JP4387229B2 (en) Method of using alloy-type thermal fuse and alloy-type thermal fuse
JP4230204B2 (en) Alloy type thermal fuse and material for thermal fuse element
JP2004043894A (en) Alloy type thermal fuse and wire member for thermal fuse element
JP4409747B2 (en) Alloy type thermal fuse
JP2005171371A (en) Alloy type thermal fuse and wire material for thermal fuse element
EP1343186B1 (en) Alloy type thermal fuse and fuse element thereof
JP2010077459A (en) Element for thermal fuse, and alloy-type thermal fuse
JP4162941B2 (en) Alloy type thermal fuse and wire for thermal fuse element
JPH1140025A (en) Thermal alloy fuse
JP2004035929A (en) Lead-free alloy type thermal fuse
JP2001143588A (en) Alloy fuse
JP2001143591A (en) Alloy fuse
JP2001135215A (en) Alloy-type thermal fuse

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090930

R150 Certificate of patent or registration of utility model

Ref document number: 4387229

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250