JP2005283402A - Inertia sensor - Google Patents

Inertia sensor Download PDF

Info

Publication number
JP2005283402A
JP2005283402A JP2004099250A JP2004099250A JP2005283402A JP 2005283402 A JP2005283402 A JP 2005283402A JP 2004099250 A JP2004099250 A JP 2004099250A JP 2004099250 A JP2004099250 A JP 2004099250A JP 2005283402 A JP2005283402 A JP 2005283402A
Authority
JP
Japan
Prior art keywords
inertial sensor
weight
sensor
sensor according
impact resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004099250A
Other languages
Japanese (ja)
Inventor
Hiroshi Ishikawa
寛 石川
Yoshitaka Nakamura
義孝 中村
Hiroshi Tokunaga
博司 徳永
Kenji Nagata
憲治 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Fujitsu Media Devices Ltd
Original Assignee
Fujitsu Ltd
Fujitsu Media Devices Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd, Fujitsu Media Devices Ltd filed Critical Fujitsu Ltd
Priority to JP2004099250A priority Critical patent/JP2005283402A/en
Priority to EP05251060A priority patent/EP1582878A1/en
Priority to US11/079,137 priority patent/US20050217378A1/en
Priority to KR1020050021612A priority patent/KR20060043669A/en
Priority to CNA2005100589430A priority patent/CN1677055A/en
Publication of JP2005283402A publication Critical patent/JP2005283402A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments
    • G01P1/02Housings
    • G01P1/023Housings for acceleration measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/12Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance
    • G01P15/123Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by alteration of electrical resistance by piezo-resistive elements, e.g. semiconductor strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass
    • G01P2015/0842Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass the mass being of clover leaf shape

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inertia sensor provided with a beam compatible in both high sensitivity and impact resistance. <P>SOLUTION: Easily deformable parts (thin thickness of recesses 15, holes or the like) are provided locally while avoiding a portion concentrated with a stress generated in the beam by impact. The recesses 15 are arranged line-symmetrically with respect to a straight line along an extension direction passing the center of the beam 13, and a straight line right-angled to the extension direction. A root part of the beam 13 is formed to form a gentle angle making the root part not contact with a weight 12 and a frame 14 at right angle. The sensitivity of the sensor is enhanced thereby without lowering the impact resistance of the sensor, and a stress concentrating area in the beam root part is dispersed to enhance the impact resistance without sacrificing the sensitivity of the sensor. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は加速度センサやジャイロなどの慣性センサに関し、より詳細には、高感度性と耐衝撃性とに優れた慣性センサに関する。   The present invention relates to an inertial sensor such as an acceleration sensor or a gyro, and more particularly to an inertial sensor excellent in high sensitivity and impact resistance.

近年の加速度センサやジャイロなどの慣性センサは、MEMS(Micro Electro Mechanical System)技術を応用した微細加工技術の発展により、小型化と高性能化および低価格化を同時に実現することが可能となった。このような背景の下に、MEMSデバイスとしての慣性センサは、カーナビゲーション、車載エアバッグ制御、カメラやビデオの手ぶれ防止、携帯電話、ロボットの姿勢制御、ゲーム用ジェスチャー入力認識、HDDの回転・衝撃検知などを目的とするデバイスとして、動き検知を必要とするあらゆる機器に搭載されることが期待されており、これらの機器に搭載される慣性センサには更なる高感度化が求められている。   In recent years, inertia sensors such as accelerometers and gyros have been able to achieve miniaturization, high performance, and low price at the same time due to the development of micromachining technology using MEMS (Micro Electro Mechanical System) technology. . Against this background, inertial sensors as MEMS devices are used for car navigation, in-vehicle airbag control, camera / video camera shake prevention, mobile phone, robot posture control, game gesture input recognition, HDD rotation / impact. As a device for detection or the like, it is expected to be mounted on any device that requires motion detection, and inertial sensors mounted on these devices are required to have higher sensitivity.

図1は、可動部である錘をビームで吊り下げる基本構成を有する一般的な慣性センサの主要構成例を説明するための図で、図1(a)はセンシング部の斜視図、図1(b)はセンシング部の上平面図である。これらの図において、10は慣性センサのセンシング部を作製するための基板、11は基板10に作り込まれたピエゾ抵抗、12はセンシング部の可動部である錘、13は錘12の動きを支えるビームであって複数設けられている。また、14は錘12およびビーム13を保持するための枠である。このビーム13の幅はW、厚みはT、そして長さはLである。可動部である錘12が動くと、その動きはビーム13の捩れや撓みとなりビーム13上に設けられたピエゾ抵抗11の抵抗値が変化し、この抵抗値の変化がホイーストン・ブリッジ回路の出力などの電気信号として得られる。   FIG. 1 is a diagram for explaining a main configuration example of a general inertial sensor having a basic configuration in which a weight, which is a movable portion, is suspended by a beam. FIG. 1 (a) is a perspective view of a sensing unit, and FIG. b) is a top plan view of the sensing unit. In these figures, 10 is a substrate for producing a sensing part of the inertial sensor, 11 is a piezoresistor built in the board 10, 12 is a weight that is a movable part of the sensing part, and 13 supports the movement of the weight 12. A plurality of beams are provided. Reference numeral 14 denotes a frame for holding the weight 12 and the beam 13. The beam 13 has a width W, a thickness T, and a length L. When the weight 12, which is a movable part, moves, the movement causes twisting and bending of the beam 13, and the resistance value of the piezoresistor 11 provided on the beam 13 changes. This change in resistance value is the output of the Wheatstone bridge circuit. Obtained as an electrical signal.

ところで、動きを検知する機器には、ときとして予想外の大きな衝撃が加わることがあり得るため、かかる機器に搭載されている慣性センサには大きな衝撃が印加される危険性がある。一般的な慣性センサは可動部である錘をビームで吊り下げる基本構成を有するため、偶発的に大きな衝撃が印加された場合にはビームが大きく変形したり破損したりしてセンサとして機能しなくなるなどの問題が知られている(特許文献1)。例えば、車載エアバッグなどの自動車用途では追突や横転などの場合に通常運転時には生じ得ない大きな衝撃が加わり得るし、モバイル機器などでは誤って機器を落下させた際の衝撃が予想される。また、ゲーム機などのホビー用途にあっては、ユーザが乱暴な取り扱いをした際には極めて大きな衝撃が生じ得る。このような突発的に加えられる偶発的衝撃は、3000Gとも5000Gとも言われており、これらの機器に搭載される慣性センサには高い耐衝撃性が要求されることとなる。
特開2000−187041号公報
By the way, since an unexpected large impact can sometimes be applied to a device that detects motion, there is a risk that a large impact is applied to an inertial sensor mounted on the device. Since a general inertial sensor has a basic configuration that suspends a weight, which is a movable part, with a beam, if a large impact is accidentally applied, the beam will be greatly deformed or damaged, and will not function as a sensor. Such a problem is known (Patent Document 1). For example, in an automobile application such as an in-vehicle airbag, a large impact that cannot occur during normal operation can be applied in the case of a rear-end collision or rollover, and in a mobile device or the like, an impact when the device is accidentally dropped is expected. In addition, in hobby applications such as game machines, an extremely large impact can occur when the user performs rough handling. Such an accidental impact applied suddenly is said to be 3000G or 5000G, and high impact resistance is required for inertial sensors mounted on these devices.
JP 2000-187041 A

図1に示した一般的構成の慣性センサの感度を向上させるためには、ビーム13の幅Wを狭く、厚みTを薄く、長さLを長くしたり、あるいは錘12の重量を重くするという方法が考えられる。しかしながら、一般にセンサ感度と耐衝撃性とは逆比例の関係にあり、上記のような手法によりセンサ感度を高めた場合には、耐衝撃性が低下せざるを得ない。また逆に、センサの耐衝撃性を向上させるためにビーム13の形状や錘12の重量を設計するとセンサとしての感度が低下してしまう。このように、慣性センサの高感度性と耐衝撃性とを両立させることは困難であるという問題があった。   In order to improve the sensitivity of the inertial sensor having the general configuration shown in FIG. 1, the width W of the beam 13 is narrowed, the thickness T is thin, the length L is long, or the weight 12 is heavy. A method is conceivable. However, in general, sensor sensitivity and impact resistance are in an inversely proportional relationship, and when the sensor sensitivity is increased by the above-described method, the impact resistance must be reduced. Conversely, if the shape of the beam 13 or the weight of the weight 12 is designed in order to improve the impact resistance of the sensor, the sensitivity as the sensor is reduced. Thus, there is a problem that it is difficult to achieve both high sensitivity and impact resistance of the inertial sensor.

本発明はかかる問題に鑑みてなされたもので、その目的とするところは、高感度性と耐衝撃性とを両立可能とするビームを備えた慣性センサを提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to provide an inertial sensor including a beam that can achieve both high sensitivity and impact resistance.

本発明はかかる課題を解決するために、請求項1に記載の発明は、可動部である錘を複数のビームで吊り下げる構成のセンシング部を有する慣性センサであって、前記ビームは局所的に容易変形部を有し、当該容易変形部は前記ビームの応力集中部位である端部を避けて設けられていることを特徴とする。   In order to solve this problem, the present invention provides an inertial sensor having a sensing unit configured to suspend a weight as a movable unit with a plurality of beams, and the beam is locally It has an easily deformable part, The easy deformable part is provided avoiding the edge part which is a stress concentration site | part of the said beam, It is characterized by the above-mentioned.

請求項2に記載の発明は、請求項1に記載の慣性センサにおいて、前記容易変形部は局所的に厚みが薄い凹部であり、請求項3に記載の発明は、前記凹部は穴であることを特徴とする。   According to a second aspect of the present invention, in the inertial sensor according to the first aspect, the easily deformable portion is a concave portion having a locally thin thickness, and in the third aspect of the invention, the concave portion is a hole. It is characterized by.

請求項4に記載の発明は、請求項1に記載の慣性センサにおいて、前記容易変形部は、前記ビームの一部領域に設けられた幅狭部であることを特徴とする。   According to a fourth aspect of the present invention, in the inertial sensor according to the first aspect, the easily deformable portion is a narrow portion provided in a partial region of the beam.

請求項5に記載の発明は、請求項1乃至4の何れかに記載の慣性センサにおいて、前記容易変形部は複数設けられており、前記ビームの中心を通る延在方向および当該延在方向と直角方向の直線に対して線対称に配置されていることを特徴とする。   According to a fifth aspect of the present invention, in the inertial sensor according to any of the first to fourth aspects, a plurality of the easily deformable portions are provided, and the extending direction passing through the center of the beam and the extending direction They are arranged symmetrically with respect to a straight line in a perpendicular direction.

請求項6に記載の発明は、可動部である錘をビームで吊り下げる構成の慣性センサであって、前記ビームは、当該ビーム端部の輪郭の任意の箇所が直角より緩やかな角度を有する形状を有することを特徴とし、請求項7に記載の発明は、請求項6に記載の慣性センサにおいて、前記ビーム端部の輪郭は曲線であることを特徴とする。   The invention according to claim 6 is an inertial sensor configured to suspend a weight, which is a movable part, with a beam, and the beam has a shape in which an arbitrary portion of the contour of the beam end has a gentler angle than a right angle. According to a seventh aspect of the present invention, in the inertial sensor of the sixth aspect, the contour of the beam end is a curve.

請求項8に記載の発明は、請求項6または7に記載の慣性センサにおいて、前記ビームには、請求項1乃至5の何れかに記載の容易変形部が設けられていることを特徴とする。   The invention according to claim 8 is the inertial sensor according to claim 6 or 7, wherein the beam is provided with the easily deformable portion according to any one of claims 1 to 5. .

請求項9に記載の発明は、請求項1乃至8の何れかに記載の慣性センサにおいて、前記センシング部の近傍には、前記錘の可動範囲を所定範囲に制限する錘ストッパが設けられていることを特徴とする。   According to a ninth aspect of the present invention, in the inertial sensor according to any one of the first to eighth aspects, a weight stopper that limits a movable range of the weight to a predetermined range is provided in the vicinity of the sensing portion. It is characterized by that.

本発明によれば、衝撃によってビームに生じる応力が集中する部分を避けて容易変形部(例えば、凹部や穴もしくは幅狭部)が設けられるとともにその容易変形部が適切に配置されることととしたので、センサの耐衝撃性を低下させることなくセンサの感度を向上させることが可能となる。   According to the present invention, an easily deformable portion (for example, a recess, a hole, or a narrow portion) is provided while avoiding a portion where stress generated in the beam by impact is concentrated, and the easily deformable portion is appropriately disposed. Therefore, it is possible to improve the sensitivity of the sensor without reducing the impact resistance of the sensor.

また、本発明によれば、ビームの根元部が錘および枠とは直角に接することなくより緩やかな角度となるように根元部を形成することとしたので、ビーム根元部の応力集中エリアを分散させることが可能となりセンサの感度を犠牲にすることなくその耐衝撃性を向上させることが可能となる。   In addition, according to the present invention, since the base portion is formed so that the base portion of the beam has a gentler angle without contacting the weight and the frame at right angles, the stress concentration area of the beam base portion is dispersed. The impact resistance can be improved without sacrificing the sensitivity of the sensor.

このように、本発明によってセンサの高感度性と耐衝撃性の両立が可能となる。   Thus, the present invention makes it possible to achieve both high sensitivity and impact resistance of the sensor.

以下に図面を参照して、本発明を実施するための最良の形態について説明する。なお、本発明の慣性センサのセンシング部の基本構造は図1に示したものと同様であり、シリコン基板内にMEMS技術により作り込まれたものである。そして、このセンシング部をガラス基板などの固定部材上に載置してパッケージ内に封止して素子化されている。   The best mode for carrying out the present invention will be described below with reference to the drawings. The basic structure of the sensing part of the inertial sensor of the present invention is the same as that shown in FIG. 1, and is built in a silicon substrate by MEMS technology. And this sensing part is mounted on fixing members, such as a glass substrate, and it seals in a package and is made into the element.

慣性センサの感度を向上させるためには、ビームの幅を狭くしたり、厚みを薄くしたり、長さを長くしたり、あるいは錘の重量を重くする以外にも、ビームに穴を設けてその変形を容易化するという方法が考えられる。しかし、ビームが衝撃により変形することで生じる応力分布は一様ではないため、穴が応力集中部分に設けられるとビームの機械的強度が低下してしまうこととなる。したがって、本発明の慣性センサが備えるセンシング部のビームには、衝撃によって生じる応力が集中する部分を避けて容易変形部(厚みが薄く設定されている凹部など)が設けられるとともにその配置が工夫され、これにより高感度性と耐衝撃性との両立が図られている。   In order to improve the sensitivity of the inertial sensor, in addition to reducing the width of the beam, reducing the thickness, increasing the length, or increasing the weight of the weight, a hole is provided in the beam. A method of facilitating deformation can be considered. However, since the stress distribution generated by the deformation of the beam due to the impact is not uniform, the mechanical strength of the beam is reduced when the hole is provided in the stress concentration portion. Therefore, the beam of the sensing unit provided in the inertial sensor of the present invention is provided with an easily deformable part (such as a concave part whose thickness is set thin) to avoid the part where stress caused by impact is concentrated and the arrangement thereof is devised. Thus, both high sensitivity and impact resistance are achieved.

先ず、衝撃が印加された際にビームに生じる応力について説明する。センシング部に衝撃が加わるとその衝撃によってビームに大きな変形が生じ、内部に応力が発生する。   First, the stress generated in the beam when an impact is applied will be described. When an impact is applied to the sensing unit, the impact causes a large deformation of the beam, and stress is generated inside.

図2は慣性センサに衝撃が印加された際にビームが変形する様子を説明するための図で、図2(a)はx方向に衝撃が印加された状態でのセンシング部の斜視図、図2(b)はz方向に衝撃が印加された状態でのセンシング部の斜視図である。x方向に衝撃が加えられた場合には、y方向に延在して設けられているビーム13yを軸として錘12が揺れ、x方向に延在しているビーム13xが大きく撓むこととなる。このときのビーム13は、枠14側の根元部分R1、R4および錘12側の根元部分R2、R3が最も大きく撓み、これらの部分に応力が集中することとなる。また、z方向に衝撃が加えられた場合には4つのビーム13全てが撓み、このときもビーム13は枠14側の根元部分R1、R4および錘12側の根元部分R2、R3が最も大きく撓み、これらの部分に応力が集中することとなる。   FIG. 2 is a diagram for explaining how the beam is deformed when an impact is applied to the inertial sensor. FIG. 2A is a perspective view of the sensing unit in a state where the impact is applied in the x direction. FIG. 2B is a perspective view of the sensing unit in a state where an impact is applied in the z direction. When an impact is applied in the x direction, the weight 12 swings around the beam 13y provided extending in the y direction, and the beam 13x extending in the x direction is greatly bent. . In this case, the base portion R1 and R4 on the frame 14 side and the base portion R2 and R3 on the weight 12 side are bent most greatly, and stress concentrates on these portions. Further, when an impact is applied in the z direction, all four beams 13 are bent, and at this time, the beam 13 is bent most at the base portions R1 and R4 on the frame 14 side and the root portions R2 and R3 on the weight 12 side. Stress is concentrated on these parts.

このように、外部からの衝撃が加わった場合に応力が集中するのはビーム13の根元部分であり、衝撃によって破壊されやすい部分となる。したがって、本発明の慣性センサでは、これらの応力集中部分を避けた場所に容易変形部(ビームの厚みが局所的に薄く設定されている凹部など)が設けられる。このような容易変形部として凹部を設ける場合には、この凹部の厚みはビームの長さや幅、得るべき耐衝撃性、あるいは凹部の広さなどの諸条件を勘案して決定される。また、その厚みをゼロとして穴を設けることとしてもよい。以下の説明においてはこの凹部の厚みがゼロの場合を例に説明する。   As described above, when an impact from the outside is applied, the stress is concentrated at the root portion of the beam 13 and is easily broken by the impact. Therefore, in the inertial sensor of the present invention, an easily deformable portion (such as a concave portion in which the beam thickness is set to be locally thin) is provided at a place avoiding these stress concentration portions. When a concave portion is provided as such an easily deformable portion, the thickness of the concave portion is determined in consideration of various conditions such as the length and width of the beam, the impact resistance to be obtained, or the width of the concave portion. Moreover, it is good also as providing a hole by making the thickness into zero. In the following description, the case where the thickness of the recess is zero will be described as an example.

図3は、本発明の慣性センサのセンシング部に設けられたビーム穴の様子を説明するための図で、図3(a)はセンシング部の斜視図、図3(b)はビームに設けられた穴の様子を説明するためのビーム近傍の上平面図である。錘12と枠14との間に設けられているビーム13には、その根元部を避けて穴15が設けられており、ビーム13が変形した際に応力集中が生じるビーム部分の機械的強度を落とすことなくビーム13の容易な変形を可能とし、これにより耐衝撃性の低下を招くことなくセンサ感度が高められている。   3A and 3B are diagrams for explaining the state of the beam hole provided in the sensing unit of the inertial sensor of the present invention. FIG. 3A is a perspective view of the sensing unit, and FIG. 3B is provided in the beam. It is an upper plan view near the beam for explaining the state of the hole. A hole 15 is provided in the beam 13 provided between the weight 12 and the frame 14 so as to avoid the root portion, and the mechanical strength of the beam portion where stress concentration occurs when the beam 13 is deformed is provided. The beam 13 can be easily deformed without dropping, thereby increasing the sensor sensitivity without causing a drop in impact resistance.

このような穴は、全長Lのビーム13の幅dの根元部を避けて設けられるとともに、好ましくはビーム13の中線A−AおよびB−Bを中心として線対称となるように配置される。なお、センサの感度向上の観点からは根元部を避ける幅dは可能な限り小さくとることが好ましいため、要求される耐衝撃性との関係を考慮して最小となるように決定される。また、図3にはこのような穴15が6つ設けられているがこれは一例に過ぎず、穴の数やその大きさおよび形状はビーム13上に設けられる配線などとの関係を考慮して設計され最適化される。   Such a hole is provided so as to avoid the root portion of the width d of the beam 13 having the full length L, and is preferably arranged so as to be symmetric with respect to the midlines AA and BB of the beam 13. . From the viewpoint of improving the sensitivity of the sensor, the width d that avoids the root portion is preferably as small as possible. Therefore, the width d is determined to be minimum in consideration of the relationship with the required impact resistance. In FIG. 3, six such holes 15 are provided, but this is only an example, and the number of holes, their size and shape are considered in relation to the wiring provided on the beam 13 and the like. Designed and optimized.

発明者らの確認実験によれば、ビーム穴が設けられていない同サイズのセンシング部を備えた慣性センサ(特に応力の変化を検出するピエゾ抵抗型加速度センサ)との比較において、上記のような穴を設けることにより感度が約2倍に向上すること及び穴の有無で耐衝撃性に差がないことが実験的に確かめられ、耐衝撃性を低下させることなく高感度化が図れることが確認された。なお、例えば図3(c)に示すように、ビーム穴に代えて(あるいはビーム穴とともに)ビームの応力集中部位である端部を避け且つビームの中心を通る延在方向および当該延在方向と直角方向の直線に対して線対称位置に幅狭部15´を設けることとしてもよい。幅狭部15´を設けることにより、x軸方向に加速度が作用した場合、y軸方向にビームがねじれ易くなり、検出感度が向上するという効果が得られる。   According to the confirmation experiment by the inventors, in comparison with an inertial sensor (especially a piezoresistive acceleration sensor that detects a change in stress) having a sensing unit of the same size not provided with a beam hole, It is confirmed experimentally that the sensitivity is improved by about 2 times by providing a hole and that there is no difference in impact resistance with and without the hole, and it is confirmed that high sensitivity can be achieved without reducing the impact resistance. It was done. For example, as shown in FIG. 3C, instead of the beam hole (or together with the beam hole), an extension direction that passes through the center of the beam and avoids an end portion that is a stress concentration portion of the beam, It is good also as providing narrow part 15 'in a line symmetrical position with respect to the straight line of a perpendicular direction. By providing the narrow portion 15 ′, when acceleration is applied in the x-axis direction, the beam is easily twisted in the y-axis direction, and the detection sensitivity is improved.

実施例1ではビームの根元形状は従来のセンシング部の根元形状と同一であるものとして説明したが、耐衝撃性を向上させるという観点に絞れば、ビームの機械的強度を積極的に向上させる工夫が必要となる。本実施例では、ビームの機械的強度を上げる目的で、衝撃印加時に応力が集中する根元部分(端部)の形状を工夫することでセンサの耐衝撃性を向上させている。   In the first embodiment, it has been described that the base shape of the beam is the same as the base shape of the conventional sensing unit. However, from the viewpoint of improving the impact resistance, a device for positively improving the mechanical strength of the beam. Is required. In this embodiment, for the purpose of increasing the mechanical strength of the beam, the impact resistance of the sensor is improved by devising the shape of the root (end) where stress is concentrated when an impact is applied.

図4は、本実施例のビーム根元部の形状を説明するための図で、図4(a)は根元部形状の第1例、図4(b)は第2例、そして図4(c)は従来の根元部形状を示す図である。従来のビームは、図4(c)に示した実施例1の図3で例示したビームのように、錘12および枠14と接する根元部分が直角となる形状とされていたのに対して、本実施例においては、ビーム13の根元部が錘12および枠14とは直角に接することなくより緩やかな角度となるように、テーパ(図4(a))やアール(図4(b))をもたせた根元部が形成されている。このような根元部形状とすることで、ビーム根元部の応力集中エリアを分散させることが可能となり耐衝撃性を向上させることができる。   4A and 4B are diagrams for explaining the shape of the beam root portion of the present embodiment. FIG. 4A is a first example of the root portion shape, FIG. 4B is a second example, and FIG. ) Is a diagram showing a conventional root shape. In contrast to the conventional beam illustrated in FIG. 3 of the first embodiment illustrated in FIG. 4C, the conventional beam has a shape in which the root portion in contact with the weight 12 and the frame 14 is a right angle. In this embodiment, the taper (FIG. 4 (a)) and the round (FIG. 4 (b)) are formed so that the base portion of the beam 13 has a gentler angle without contacting the weight 12 and the frame 14 at right angles. A root portion is formed. By adopting such a root portion shape, it is possible to disperse the stress concentration area of the beam root portion and to improve the impact resistance.

なお、図4(a)に示したように単に直角部分をなくした形状とすることでも耐衝撃性を向上させることが可能であるが、図4(b)に示したようにアールを設けて輪郭が緩やかに変化する根元形状とすると耐衝撃性の向上にさらに有効である。   Although it is possible to improve the impact resistance by simply eliminating the right-angled portion as shown in FIG. 4A, it is possible to provide a round as shown in FIG. 4B. A root shape with a gradually changing contour is more effective in improving impact resistance.

また、図5に示すように、例えばテーパC(ここでは50μm)をもつ根元部形状とすることに加え、ビーム13に設ける穴をアールR(ここでは20μm)をもたせた形状とするとより効果的である。   Further, as shown in FIG. 5, for example, in addition to the shape of the root having a taper C (here, 50 μm), it is more effective if the hole provided in the beam 13 has a shape having a radius R (here, 20 μm). It is.

なお、このような根元形状とすることにより得られる耐衝撃性の向上という効果はビームに穴を設けることによるセンサ感度向上という効果とは独立に得られるものであるから、ビーム穴を設けることなく、その輪郭に直角以上の角度をもたない根元形状とすることで耐衝撃性を向上させることができることは明らかである。また、このような根元形状の効果は、例えば図4(d)に示すようにビーム穴に代えて(あるいはビーム穴とともに)幅狭部15´を設けることとした場合にも同様に得られることはいうまでもない。   In addition, since the effect of improving the impact resistance obtained by adopting such a root shape is obtained independently of the effect of improving the sensor sensitivity by providing a hole in the beam, without providing a beam hole. It is apparent that the impact resistance can be improved by forming a root shape having no angle greater than or equal to a right angle in the outline. In addition, the effect of such a root shape can be obtained in the same manner when a narrow portion 15 'is provided instead of (or with a beam hole) as shown in FIG. 4D, for example. Needless to say.

図6は、本発明の慣性センサが備えるビームの形状例を説明するための図である。ビーム13にはこのビーム13の中心を通る延在方向および当該延在方向と直角方向の直線に対して線対称に配置された穴15が設けられており、この穴15を避けてビーム13上に設けられたピエゾ抵抗11は、枠14に設けられた電極21と配線22で接続されて錘12の動きに起因する抵抗値の変化を図示しないホイーストン・ブリッジ回路などへと出力する。なお、これらの形状はあくまでも例示に過ぎず適宜変更され得ることはいうまでもない。   FIG. 6 is a diagram for explaining an example of the shape of a beam provided in the inertial sensor of the present invention. The beam 13 is provided with a hole 15 arranged in line symmetry with respect to an extending direction passing through the center of the beam 13 and a straight line perpendicular to the extending direction. The piezoresistor 11 provided in the circuit is connected to the electrode 21 provided in the frame 14 by the wiring 22 and outputs a change in resistance value caused by the movement of the weight 12 to a Wheatstone bridge circuit (not shown). Needless to say, these shapes are merely examples and can be changed as appropriate.

実施例1乃至実施例3で示したビームを備えた慣性センサの耐衝撃性をさらに高めるために、本実施例ではかかるセンシング部の錘の可動範囲を所定の範囲に制限するための錘ストッパを設ける。   In order to further improve the impact resistance of the inertial sensor having the beam shown in the first to third embodiments, a weight stopper for limiting the movable range of the weight of the sensing unit to a predetermined range is used in this embodiment. Provide.

図7は、本発明の慣性センサに備えられる錘ストッパの構成例で、これらの錘ストッパ16はMEMS技術により微細加工されてセンシング部近傍に一定のクリアランスをもって設けられる。このような錘ストッパ16を設けると、センサの規定感度範囲に対応する変位量を超えて錘12が動く場合には錘ストッパ16によってその動きが妨げられるため、偶発的に大きな衝撃が印加された場合にもビーム13が大きく変形したり破損したりしてセンサとして機能しなくなるなどの問題が回避されることとなる。   FIG. 7 shows a configuration example of weight stoppers provided in the inertial sensor of the present invention. These weight stoppers 16 are finely processed by the MEMS technology and are provided with a certain clearance near the sensing portion. When such a weight stopper 16 is provided, when the weight 12 moves beyond the amount of displacement corresponding to the specified sensitivity range of the sensor, the movement of the weight 12 is hindered by the weight stopper 16, so that a large impact was accidentally applied. Even in such a case, problems such as the beam 13 being greatly deformed or damaged and not functioning as a sensor can be avoided.

図8は、パッケージのキャップおよびパッケージの底面に上下の錘ストッパを形成した場合の慣性センサの断面図である。センシング部17はパッケージ18の底面部に接着剤20で固定され、このパッケージ18にキャップ19が被せられて格納されている。パッケージ18の底面部およびキャップ19には図7に示したような錘ストッパが形成されている。   FIG. 8 is a cross-sectional view of the inertial sensor when upper and lower weight stoppers are formed on the package cap and the bottom surface of the package. The sensing unit 17 is fixed to the bottom surface of the package 18 with an adhesive 20, and the package 18 is covered with a cap 19 and stored. A weight stopper as shown in FIG. 7 is formed on the bottom surface of the package 18 and the cap 19.

センシング部の錘12の上下面は単純な平面としてもよいが、これらの面に凸部を設けることとしてもよい。このような凸部を設けた場合には、この凸部の先端面とこの凸部に対向する錘ストッパ面との間隔が実効的なクリアランスとなる。したがって、錘ストッパと錘との距離を比較的大きくとった場合であっても耐衝撃性を向上させることができるという利点がある。なお、これとは逆に錘ストッパの錘対向面に同様の凸部を設けることとしてもよいことはいうまでもない。   The upper and lower surfaces of the weight 12 of the sensing unit may be simple planes, or convex portions may be provided on these surfaces. When such a convex portion is provided, the effective clearance is the distance between the tip surface of the convex portion and the weight stopper surface facing the convex portion. Therefore, there is an advantage that the impact resistance can be improved even when the distance between the weight stopper and the weight is relatively large. In contrast to this, it goes without saying that a similar convex portion may be provided on the weight-facing surface of the weight stopper.

なお、これらの錘ストッパとセンシング部(錘)とのクリアランスを狭く取れば耐衝撃性は向上するが錘の可動範囲が狭くなってセンサのダイナミックレンジは低下する。一方、クリアランスを広く取れば錘の可動範囲が広くなってセンサのダイナミックレンジは広がるが広く取りすぎると錘ストッパが有効に機能せずに期待する耐衝撃性が得られない結果となる。したがって、本発明の慣性センサが備えるセンシング部と錘ストッパとの間のクリアランスは、センサのダイナミックレンジと付与したい耐衝撃性の双方を満足するように決定される。なお、クリアランスは可能な限り狭く取ることが好ましい。これは、クリアランスを必要以上に広く取ると、偶発的な衝撃により動き始めた錘がストッパによりその動きを制限されるまでの間に大きく加速されてしまい、ストッパに当たった時に破損などすることが考えられ得るからである。   If the clearance between the weight stopper and the sensing portion (weight) is narrowed, the impact resistance is improved, but the movable range of the weight is narrowed and the dynamic range of the sensor is lowered. On the other hand, if the clearance is wide, the movable range of the weight is widened and the dynamic range of the sensor is widened. However, if the clearance is too large, the weight stopper does not function effectively and the expected impact resistance cannot be obtained. Therefore, the clearance between the sensing unit and the weight stopper provided in the inertial sensor of the present invention is determined so as to satisfy both the dynamic range of the sensor and the impact resistance to be imparted. The clearance is preferably as narrow as possible. This is because if the clearance is made wider than necessary, the weight that started to move due to accidental impact will be greatly accelerated until the movement is restricted by the stopper, and it may be damaged when it hits the stopper. Because it can be considered.

本発明により、センサの耐衝撃性を低下させることなくセンサの感度を向上させること、および、センサの感度を犠牲にすることなくその耐衝撃性を向上させること、が可能となる。すなわち、本発明によってセンサの高感度性と耐衝撃性の両立が可能となる。   According to the present invention, it is possible to improve the sensitivity of the sensor without reducing the impact resistance of the sensor, and to improve the impact resistance without sacrificing the sensitivity of the sensor. That is, the present invention makes it possible to achieve both high sensitivity and impact resistance of the sensor.

可動部である錘をビームで吊り下げる基本構成を有する一般的な慣性センサの主要構成例を説明するための図で、(a)はセンシング部の斜視図、(b)はセンシング部の上平面図である。It is a figure for demonstrating the main structural example of the general inertial sensor which has the basic composition which suspends the weight which is a movable part with a beam, (a) is a perspective view of a sensing part, (b) is an upper surface of a sensing part. FIG. 慣性センサに衝撃が印加された際にビームが変形する様子を説明するための図で、(a)はx方向に衝撃が印加された状態でのセンシング部の斜視図、(b)はz方向に衝撃が印加された状態でのセンシング部の斜視図である。It is a figure for demonstrating a mode that a beam deform | transforms when an impact is applied to an inertial sensor, (a) is a perspective view of the sensing part in the state where the impact was applied to the x direction, (b) is az direction. It is a perspective view of the sensing part in the state where the impact was applied to. 本発明の慣性センサのセンシング部に設けられたビーム穴の様子を説明するための図で、(a)はセンシング部の斜視図、(b)はビームに設けられた穴の様子を説明するためのビーム近傍の上平面図、(c)は幅狭部を設けたビーム近傍の上平面図である。It is a figure for demonstrating the mode of the beam hole provided in the sensing part of the inertial sensor of this invention, (a) is a perspective view of a sensing part, (b) is for demonstrating the mode of the hole provided in the beam. (C) is an upper plan view in the vicinity of the beam provided with a narrow portion. 実施例2のビーム根元部の形状を説明するための図で、(a)は根元部形状の第1例、(b)は第2例、(c)は従来の根元部形状を示す図、そして(d)は幅狭部を設けたビームの根元形状を示す図である。It is a figure for demonstrating the shape of the beam base part of Example 2, (a) is a 1st example of a root part shape, (b) is a 2nd example, (c) is a figure which shows the conventional root part shape, And (d) is a figure which shows the base shape of the beam which provided the narrow part. テーパCをもつ根元部形状とすることに加え、ビームに設ける穴をアールRをもたせた形状としたビームを説明するための図である。It is a figure for demonstrating the beam which made the hole provided in the beam the shape which gave the radius R in addition to setting it as the root part shape which has the taper C. FIG. 本発明の慣性センサが備えるビームの形状例を説明するための図である。It is a figure for demonstrating the example of the shape of the beam with which the inertial sensor of this invention is provided. 本発明の慣性センサに備えられる錘ストッパの構成例を説明するための図である。It is a figure for demonstrating the structural example of the weight stopper with which the inertial sensor of this invention is equipped. パッケージのキャップおよびパッケージの底面に上下の錘ストッパを形成した場合の慣性センサの断面図である。It is sectional drawing of an inertial sensor at the time of forming the upper and lower weight stopper in the cap of a package and the bottom face of a package.

符号の説明Explanation of symbols

10 基板
11 ピエゾ抵抗
12 錘
13 ビーム
14 枠
15 ビームに設けた穴
15´ 幅狭部
16 錘ストッパ
17 センシング部
18 パッケージ
19 キャップ
20 接着剤
21 電極
22 配線
DESCRIPTION OF SYMBOLS 10 Board | substrate 11 Piezoresistor 12 Weight 13 Beam 14 Frame 15 Hole provided in beam 15 'Narrow part 16 Weight stopper 17 Sensing part 18 Package 19 Cap 20 Adhesive 21 Electrode 22 Wiring

Claims (9)

可動部である錘を複数のビームで吊り下げる構成のセンシング部を有する慣性センサであって、
前記ビームは局所的に容易変形部を有し、当該容易変形部は前記ビームの応力集中部位である端部を避けて設けられていることを特徴とする慣性センサ。
An inertial sensor having a sensing part configured to suspend a weight that is a movable part with a plurality of beams,
The inertial sensor according to claim 1, wherein the beam has an easily deformable portion locally, and the easy deformable portion is provided to avoid an end portion that is a stress concentration portion of the beam.
前記容易変形部は局所的に厚みが薄い凹部であることを特徴とする請求項1に記載の慣性センサ。 The inertial sensor according to claim 1, wherein the easily deformable portion is a concave portion having a locally thin thickness. 前記凹部は穴であることを特徴とする請求項2に記載の慣性センサ。 The inertial sensor according to claim 2, wherein the recess is a hole. 前記容易変形部は、前記ビームの一部領域に設けられた幅狭部であることを特徴とする請求項1に記載の慣性センサ。 The inertial sensor according to claim 1, wherein the easily deformable portion is a narrow portion provided in a partial region of the beam. 前記容易変形部は複数設けられており、前記ビームの中心を通る延在方向および当該延在方向と直角方向の直線に対して線対称に配置されていることを特徴とする請求項1乃至4の何れかに記載の慣性センサ。 5. The plurality of easily deformable portions are provided, and are arranged symmetrically with respect to an extending direction passing through the center of the beam and a straight line perpendicular to the extending direction. The inertial sensor according to any one of the above. 可動部である錘をビームで吊り下げる構成の慣性センサであって、
前記ビームは、当該ビーム端部の輪郭の任意の箇所が直角より緩やかな角度を有する形状を有することを特徴とする慣性センサ。
An inertial sensor configured to suspend a weight, which is a movable part, with a beam,
The inertial sensor according to claim 1, wherein the beam has a shape in which an arbitrary portion of the contour of the beam end has a gentler angle than a right angle.
前記ビーム端部の輪郭は曲線であることを特徴とする請求項6に記載の慣性センサ。 The inertial sensor according to claim 6, wherein a contour of the beam end portion is a curve. 前記ビームには、請求項1乃至5の何れかに記載の容易変形部が設けられていることを特徴とする請求項6または7に記載の慣性センサ。 The inertial sensor according to claim 6 or 7, wherein the beam is provided with the easily deformable portion according to any one of claims 1 to 5. 前記センシング部の近傍には、前記錘の可動範囲を所定範囲に制限する錘ストッパが設けられていることを特徴とする請求項1乃至8の何れかに記載の慣性センサ。

The inertial sensor according to any one of claims 1 to 8, wherein a weight stopper that limits a movable range of the weight to a predetermined range is provided in the vicinity of the sensing unit.

JP2004099250A 2004-03-30 2004-03-30 Inertia sensor Pending JP2005283402A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004099250A JP2005283402A (en) 2004-03-30 2004-03-30 Inertia sensor
EP05251060A EP1582878A1 (en) 2004-03-30 2005-02-23 Intertial sensor
US11/079,137 US20050217378A1 (en) 2004-03-30 2005-03-15 Inertial sensor
KR1020050021612A KR20060043669A (en) 2004-03-30 2005-03-16 Inertial sensor
CNA2005100589430A CN1677055A (en) 2004-03-30 2005-03-25 Inertial sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004099250A JP2005283402A (en) 2004-03-30 2004-03-30 Inertia sensor

Publications (1)

Publication Number Publication Date
JP2005283402A true JP2005283402A (en) 2005-10-13

Family

ID=34879972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004099250A Pending JP2005283402A (en) 2004-03-30 2004-03-30 Inertia sensor

Country Status (5)

Country Link
US (1) US20050217378A1 (en)
EP (1) EP1582878A1 (en)
JP (1) JP2005283402A (en)
KR (1) KR20060043669A (en)
CN (1) CN1677055A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007108044A (en) * 2005-10-14 2007-04-26 Nec Tokin Corp Element for vibrating gyroscope, and vibrating gyroscope
JP2008046058A (en) * 2006-08-21 2008-02-28 Matsushita Electric Ind Co Ltd Inertial force sensor
JP2009244070A (en) * 2008-03-31 2009-10-22 Alps Electric Co Ltd Physical quantity sensor
JP2009276210A (en) * 2008-05-15 2009-11-26 Yamaha Corp Mems
JPWO2008023566A1 (en) * 2006-08-21 2010-01-07 パナソニック株式会社 Angular velocity sensor
JP2010210424A (en) * 2009-03-10 2010-09-24 Panasonic Electric Works Co Ltd Acceleration sensor
JP2011237390A (en) * 2010-05-13 2011-11-24 Gunma Univ Acceleration sensor
JP2013532273A (en) * 2010-04-30 2013-08-15 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Micromachined piezoelectric X-axis gyroscope
JP2013210283A (en) * 2012-03-30 2013-10-10 Denso Corp Rollover gyro sensor
WO2014092040A1 (en) * 2012-12-13 2014-06-19 株式会社村田製作所 Angular acceleration sensor and acceleration sensor
WO2014092039A1 (en) * 2012-12-13 2014-06-19 株式会社村田製作所 Angular acceleration sensor and acceleration sensor
JP2015087126A (en) * 2013-10-28 2015-05-07 セイコーエプソン株式会社 Vibration element, vibrator, electronic apparatus, and mobile body
WO2015075899A1 (en) * 2013-11-22 2015-05-28 パナソニックIpマネジメント株式会社 Angular-velocity sensor element and angular-velocity sensor
WO2015141771A1 (en) * 2014-03-20 2015-09-24 京セラ株式会社 Sensor
WO2017204057A1 (en) * 2016-05-26 2017-11-30 ソニー株式会社 Gyro sensor and electronic device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248147A (en) * 2006-03-14 2007-09-27 Oki Electric Ind Co Ltd Structure of acceleration sensor and its manufacturing method
JP4999356B2 (en) * 2006-05-10 2012-08-15 ラピスセミコンダクタ株式会社 Acceleration sensor and manufacturing method thereof
JP2007322188A (en) * 2006-05-31 2007-12-13 Oki Electric Ind Co Ltd Mems device
ITTO20070033A1 (en) * 2007-01-19 2008-07-20 St Microelectronics Srl Z AXIS MICROELETTROMECHANICAL DEVICE WITH PERFECT ARREST STRUCTURE
KR20120094960A (en) * 2010-01-29 2012-08-27 파나소닉 주식회사 Angular velocity sensor
CN104797943A (en) * 2012-11-19 2015-07-22 株式会社村田制作所 Angular acceleration sensor
TWI497079B (en) * 2013-09-10 2015-08-21 Globalmems Co Ltd Movable device having drop resistive protection
JP2018179575A (en) * 2017-04-05 2018-11-15 セイコーエプソン株式会社 Physical quantity sensor, electronic apparatus, and mobile entity
US11573121B2 (en) * 2017-07-28 2023-02-07 Kyocera Corporation Sensor element
DE102017213802A1 (en) * 2017-08-08 2019-02-14 Robert Bosch Gmbh Rotation rate sensor, method for producing a rotation rate sensor
JP6420442B1 (en) * 2017-10-16 2018-11-07 株式会社ワコー Power generation element

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4600934A (en) * 1984-01-06 1986-07-15 Harry E. Aine Method of undercut anisotropic etching of semiconductor material
US5121180A (en) * 1991-06-21 1992-06-09 Texas Instruments Incorporated Accelerometer with central mass in support
US5507182A (en) * 1993-02-18 1996-04-16 Nippondenso Co., Ltd. Semiconductor accelerometer with damperless structure
JP2940643B2 (en) * 1995-09-01 1999-08-25 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン Cantilever with built-in deflection sensor
CA2251957C (en) * 1997-02-21 2003-07-01 Matsushita Electric Works, Ltd. Acceleration sensor element and method of its manufacture
US6175437B1 (en) * 1998-12-18 2001-01-16 Electric Power Research Institute, Inc. Apparatus and method for high bandwidth laser-based data communication
US6327068B1 (en) * 1998-05-27 2001-12-04 Yeda Research And Development Co. Ltd. Adaptive pulse compressor
JP4216525B2 (en) * 2002-05-13 2009-01-28 株式会社ワコー Acceleration sensor and manufacturing method thereof
EP1491901A1 (en) * 2003-06-25 2004-12-29 Matsushita Electric Works, Ltd. Semiconductor acceleration sensor and method of manufacturing the same
JP4416460B2 (en) * 2003-09-16 2010-02-17 トレックス・セミコンダクター株式会社 Accelerometer
JP2005283393A (en) * 2004-03-30 2005-10-13 Fujitsu Media Device Kk Inertia sensor

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4702942B2 (en) * 2005-10-14 2011-06-15 Necトーキン株式会社 Vibrating gyro element and vibrating gyro
JP2007108044A (en) * 2005-10-14 2007-04-26 Nec Tokin Corp Element for vibrating gyroscope, and vibrating gyroscope
JP5206409B2 (en) * 2006-08-21 2013-06-12 パナソニック株式会社 Angular velocity sensor
JPWO2008023566A1 (en) * 2006-08-21 2010-01-07 パナソニック株式会社 Angular velocity sensor
JP2008046058A (en) * 2006-08-21 2008-02-28 Matsushita Electric Ind Co Ltd Inertial force sensor
JP2009244070A (en) * 2008-03-31 2009-10-22 Alps Electric Co Ltd Physical quantity sensor
JP2009276210A (en) * 2008-05-15 2009-11-26 Yamaha Corp Mems
JP2010210424A (en) * 2009-03-10 2010-09-24 Panasonic Electric Works Co Ltd Acceleration sensor
JP2013532273A (en) * 2010-04-30 2013-08-15 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Micromachined piezoelectric X-axis gyroscope
US9032796B2 (en) 2010-04-30 2015-05-19 Qualcomm Mems Technologies, Inc. Stacked lateral overlap transducer (SLOT) based three-axis accelerometer
JP2013532272A (en) * 2010-04-30 2013-08-15 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Micromachined piezoelectric 3-axis gyroscope and stacked lateral overlap transducer (SLOT) based 3-axis accelerometer
US10209072B2 (en) 2010-04-30 2019-02-19 Snaptrack Inc. Stacked lateral overlap transducer (SLOT) based three-axis accelerometer
US9605965B2 (en) 2010-04-30 2017-03-28 Snaptrack, Inc. Micromachined piezoelectric x-axis gyroscope
US9459099B2 (en) 2010-04-30 2016-10-04 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric x-axis gyroscope
US9021880B2 (en) 2010-04-30 2015-05-05 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric three-axis gyroscope and stacked lateral overlap transducer (slot) based three-axis accelerometer
US9410805B2 (en) 2010-04-30 2016-08-09 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric z-axis gyroscope
JP2011237390A (en) * 2010-05-13 2011-11-24 Gunma Univ Acceleration sensor
JP2013210283A (en) * 2012-03-30 2013-10-10 Denso Corp Rollover gyro sensor
WO2014092040A1 (en) * 2012-12-13 2014-06-19 株式会社村田製作所 Angular acceleration sensor and acceleration sensor
WO2014092039A1 (en) * 2012-12-13 2014-06-19 株式会社村田製作所 Angular acceleration sensor and acceleration sensor
JPWO2014092040A1 (en) * 2012-12-13 2017-01-12 株式会社村田製作所 Angular acceleration sensor and acceleration sensor
JPWO2014092039A1 (en) * 2012-12-13 2017-01-12 株式会社村田製作所 Angular acceleration sensor and acceleration sensor
US9682853B2 (en) 2012-12-13 2017-06-20 Murata Manufacturing Co., Ltd. Angular acceleration sensor and acceleration sensor
US9726690B2 (en) 2012-12-13 2017-08-08 Murata Manufacturing Co., Ltd. Angular acceleration sensor and acceleration sensor
JP2015087126A (en) * 2013-10-28 2015-05-07 セイコーエプソン株式会社 Vibration element, vibrator, electronic apparatus, and mobile body
WO2015075899A1 (en) * 2013-11-22 2015-05-28 パナソニックIpマネジメント株式会社 Angular-velocity sensor element and angular-velocity sensor
JPWO2015141771A1 (en) * 2014-03-20 2017-04-13 京セラ株式会社 Sensor
EP3121561A4 (en) * 2014-03-20 2018-02-21 KYOCERA Corporation Sensor
WO2015141771A1 (en) * 2014-03-20 2015-09-24 京セラ株式会社 Sensor
US10444015B2 (en) 2014-03-20 2019-10-15 Kyocera Corporation Sensor for detecting angular velocity
WO2017204057A1 (en) * 2016-05-26 2017-11-30 ソニー株式会社 Gyro sensor and electronic device

Also Published As

Publication number Publication date
EP1582878A1 (en) 2005-10-05
US20050217378A1 (en) 2005-10-06
KR20060043669A (en) 2006-05-15
CN1677055A (en) 2005-10-05

Similar Documents

Publication Publication Date Title
JP2005283402A (en) Inertia sensor
EP3121605B1 (en) Multi-axis inertial sensor with dual mass and integrated damping structure
JP5965934B2 (en) Tilt mode accelerometer with improved offset and noise performance
JP6273074B2 (en) MEMS accelerometer with Z-axis anchor tracking
EP3564682B1 (en) Inertial sensor with single proof mass and multiple sense axis capability
JP2006029827A (en) Inertial sensor
CN111417594B (en) Asymmetric plane external accelerometer
US8516891B2 (en) Multi-stage stopper system for MEMS devices
JP2006275896A (en) Semiconductor acceleration sensor
JP2008107257A (en) Acceleration sensor
JP2009222475A (en) Compound sensor
US11933809B2 (en) Inertial sensor
JP2007017284A (en) Sensor
KR101454124B1 (en) Acceleration Sensor
JP5370610B1 (en) Sensor
EP3270106B1 (en) Vibration and shock robust gyroscope
US9964561B2 (en) Acceleration sensor
JP2004233080A (en) Semiconductor acceleration sensor
JP2007256046A (en) Acceleration sensor
JP2008232704A (en) Inertia force sensor
JP6205582B2 (en) Sensor
JP2008157706A (en) Sensor
JP2004257832A (en) Semiconductor acceleration sensor
JP2008261771A (en) Inertia force sensor
JP2009222476A (en) Compound sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070601

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080401