JP2005283178A - Spectrophotometer - Google Patents

Spectrophotometer Download PDF

Info

Publication number
JP2005283178A
JP2005283178A JP2004093958A JP2004093958A JP2005283178A JP 2005283178 A JP2005283178 A JP 2005283178A JP 2004093958 A JP2004093958 A JP 2004093958A JP 2004093958 A JP2004093958 A JP 2004093958A JP 2005283178 A JP2005283178 A JP 2005283178A
Authority
JP
Japan
Prior art keywords
sample
measurement
mirror
light
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004093958A
Other languages
Japanese (ja)
Other versions
JP4131248B2 (en
Inventor
Toyohiko Tanaka
豊彦 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2004093958A priority Critical patent/JP4131248B2/en
Publication of JP2005283178A publication Critical patent/JP2005283178A/en
Application granted granted Critical
Publication of JP4131248B2 publication Critical patent/JP4131248B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an attachment switchable among diffuse reflection measurement, ATR measurement and fiber measurement which are frequently used, with a simple and inexpensive constitution. <P>SOLUTION: In an incident optical system, since an ellipsoidal mirror 33 has a confocal on a focal position A of light whose direction is changed by a plane mirror 31 and on a sample measuring point B(B'), the light whose direction is changed again by a plane mirror 32 is condensed by the ellipsoidal mirror 33 and the sample measuring point B or B' is irradiated therewith. An outgoing optical system has a bilaterally symmetrical constitution with respect to the incident optical system across the sample measuring point, and light going out from the sample measuring point B or B' is condensed by an ellipsoidal mirror 35 and sent to a photodetector through plane mirrors 37, 38. The diffuse reflection measurement can be performed by placing a sample on the sample measuring point B or B', and the ATR measurement can be performed by placing a prism thereon. The optical fiber measurement can be also performed by separating both sample measuring points (focal points) across the optical fiber. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は分光光度計に関し、更に詳しくは、分光光度計の試料室の内部に設置されて各種の分光測定を行うための付属装置に関する。   The present invention relates to a spectrophotometer, and more particularly, to an accessory device that is installed inside a sample chamber of a spectrophotometer and performs various spectroscopic measurements.

分光測定では、拡散反射測定法、全反射測定法(ATR法)、高感度反射測定法などの各種の測定法が利用されている。そのため、従来の分光光度計では、こうした各種の測定法に対応するように設計された個別の付属装置(アタッチメント)を試料室内にセットして測定を行うようにしていた。このため、ユーザは測定法の種類の数だけ付属装置を用意しなければならず、コスト的な負担が大きかった。こうした問題を解決するための装置として、特許文献1に記載の分光光度計が知られている。   In the spectroscopic measurement, various measurement methods such as a diffuse reflection measurement method, a total reflection measurement method (ATR method), and a highly sensitive reflection measurement method are used. Therefore, in the conventional spectrophotometer, the measurement is performed by setting individual attachment devices (attachments) designed to cope with such various measurement methods in the sample chamber. For this reason, the user has to prepare as many attachment devices as the number of types of measurement methods, and the cost burden is large. A spectrophotometer described in Patent Document 1 is known as an apparatus for solving such a problem.

図6はこの従来の赤外分光光度計における付属装置1の構成図、図7は各種測定を行う場合のパラボラ鏡6、11と試料ホルダ10との位置関係を示す図である。この付属装置1は、赤外光を集光又は平行光化するパラボラ鏡2、4、6、11、15と、赤外光の角度を変える平面鏡3、5、14、16と、平面鏡5とパラボラ鏡6の位置を変更する可動部7と、パラボラ鏡6の角度を変更する回転つまみ8と、平面鏡14とパラボラ鏡11の位置を変更する可動部12と、パラボラ鏡11の角度を変更する回転つまみ13と、を備えており、パラボラ鏡6と11との間に試料ホルダ10が配置され、試料ホルダ10からの透過赤外光又は反射赤外光が最終的に楕円面鏡17により赤外検出器18に集光されるように構成されている。   FIG. 6 is a configuration diagram of the attachment device 1 in this conventional infrared spectrophotometer, and FIG. 7 is a diagram showing a positional relationship between the parabolic mirrors 6 and 11 and the sample holder 10 when various measurements are performed. The accessory device 1 includes parabolic mirrors 2, 4, 6, 11, 15 that condense or collimate infrared light, plane mirrors 3, 5, 14, 16 that change the angle of infrared light, and a plane mirror 5. The movable part 7 for changing the position of the parabolic mirror 6, the rotary knob 8 for changing the angle of the parabolic mirror 6, the movable part 12 for changing the positions of the plane mirror 14 and the parabolic mirror 11, and the angle of the parabolic mirror 11 are changed. A sample holder 10 is arranged between the parabolic mirrors 6 and 11, and the transmitted infrared light or reflected infrared light from the sample holder 10 is finally red by the ellipsoidal mirror 17. The light is condensed on the outer detector 18.

図示しない干渉計からの赤外光はパラボラ鏡2で集光され、平面鏡3で方向を変えてパラボラ鏡4に入射し、ここで平行光に変換される。平行光となった赤外光は平面鏡5で方向を変えられ、パラボラ鏡6により試料ホルダ10に集光される。試料ホルダ10に保持される試料を通過した赤外光はパラボラ鏡11に達し、再び平行光に変換されて平面鏡14で方向を変えられる。さらにパラボラ鏡15で集光された赤外光は平面鏡16で方向を変えられて楕円面鏡17に送られ、楕円面鏡17により赤外検出器18に集光される。   Infrared light from an interferometer (not shown) is collected by the parabolic mirror 2, changed in direction by the plane mirror 3, and incident on the parabolic mirror 4, where it is converted into parallel light. The direction of the infrared light that has become parallel light is changed by the plane mirror 5 and is condensed on the sample holder 10 by the parabolic mirror 6. The infrared light that has passed through the sample held by the sample holder 10 reaches the parabolic mirror 11, is converted again into parallel light, and the direction is changed by the plane mirror 14. Further, the infrared light collected by the parabolic mirror 15 is changed in direction by the plane mirror 16, sent to the ellipsoidal mirror 17, and collected by the ellipsoidal mirror 17 on the infrared detector 18.

透過測定の場合には、図7(a)に示すように、パラボラ鏡6、11、試料ホルダ10は直線上に配置される。高感度反射測定を行う場合には、大きな入射角で試料に赤外光を入射する必要がある。このときには、図7(b)に示すように、可動部7、12により、平面鏡5とパラボラ鏡6及び平面鏡14とパラボラ鏡11を、透過測定の場合よりも互いに近づけ、さらに回転つまみ8、13によりパラボラ鏡6、11を斜め下向きに回転させる。これによって、パラボラ鏡6によって集光される赤外光は斜め下向きに反射され、この焦点位置に配置された試料ホルダ10に保持される試料に当たって反射されてパラボラ鏡11に向かう。   In the case of transmission measurement, the parabolic mirrors 6 and 11 and the sample holder 10 are arranged on a straight line as shown in FIG. When performing highly sensitive reflection measurement, it is necessary to make infrared light incident on the sample at a large incident angle. At this time, as shown in FIG. 7 (b), the movable mirrors 7 and 12 bring the plane mirror 5 and the parabolic mirror 6 and the plane mirror 14 and the parabolic mirror 11 closer to each other than in the case of transmission measurement, and the rotary knobs 8 and 13 To rotate the parabolic mirrors 6 and 11 diagonally downward. As a result, the infrared light collected by the parabolic mirror 6 is reflected obliquely downward, is reflected by the sample held by the sample holder 10 disposed at this focal position, and travels toward the parabolic mirror 11.

拡散反射測定の場合には、上記高感度反射測定時よりも試料への赤外光の入射角を小さくする必要がある。そこで、図7(c)に示すように、可動部7、12により平面鏡5とパラボラ鏡6及び平面鏡14とパラボラ鏡11をさらに一層近づけ、パラボラ鏡6、11をさらに斜め下向きに回転させる。また、1回反射全反射吸収測定(ATR法)の場合には、図7(d)に示すように、パラボラ鏡6、11を斜め上向きに回転させ、パラボラ鏡6によって半球形のプリズム19に赤外光を集光する。プリズム19に入った光は内面反射してプリズム19から出てパラボラ鏡11へと向かう。プリズム19の内面反射面に試料を押し当てることで、その試料表面の赤外全反射吸収スペクトルを測定することができる。   In the case of the diffuse reflection measurement, it is necessary to make the incident angle of the infrared light to the sample smaller than in the high sensitivity reflection measurement. Therefore, as shown in FIG. 7 (c), the plane mirror 5, the parabolic mirror 6, the plane mirror 14, and the parabolic mirror 11 are brought closer to each other by the movable parts 7 and 12, and the parabolic mirrors 6 and 11 are further rotated obliquely downward. In the case of the single reflection total reflection absorption measurement (ATR method), the parabolic mirrors 6 and 11 are rotated obliquely upward as shown in FIG. Condenses infrared light. The light that has entered the prism 19 is internally reflected and exits the prism 19 toward the parabolic mirror 11. By pressing the sample against the inner reflection surface of the prism 19, the infrared total reflection absorption spectrum of the sample surface can be measured.

このように、上記従来の付属装置1を用いれば、可動部7、12による移動と、回転つまみ8、13の回転、及び試料ホルダの設置位置に応じて、様々な測定法による測定を達成することができる。   As described above, when the conventional accessory device 1 is used, measurement by various measurement methods is achieved according to the movement by the movable parts 7 and 12, the rotation of the rotary knobs 8 and 13, and the installation position of the sample holder. be able to.

特開2002−372456号公報JP 2002-372456 A

上記従来の付属装置の構成は非常にフレキシビリティが高く殆どの測定法を網羅しているものの、その反面、構造が複雑になるためコスト的に高くなる。また、光が鏡で反射される回数が多いので、光の損失が大きく感度を上げるのに不利である。実用的には、ここまで高いフレキシビリティが要求されない場合も多く、或る程度、測定法が限定されても、より低いコストで付属装置を入手したいという要望も強い。   The configuration of the conventional accessory device is very flexible and covers most measurement methods, but on the other hand, the structure becomes complicated and the cost becomes high. In addition, since the number of times the light is reflected by the mirror is large, the loss of light is large, which is disadvantageous for increasing the sensitivity. Practically, there are many cases where high flexibility is not required so far, and there is a strong desire to obtain an accessory device at a lower cost even if the measurement method is limited to some extent.

本発明はこのような点に鑑みて成されたものであり、その目的とするところは、一般的に使用頻度の高い特定の測定法、具体的には拡散反射法、ATR法、及びファイバ測定法に特化して、比較的簡単な構造とすることで低廉なコストであるような付属装置を備える分光光度計を提供することにある。   The present invention has been made in view of the above points, and the object of the present invention is to provide a specific measurement method that is generally used frequently, specifically, a diffuse reflection method, an ATR method, and fiber measurement. Specializing in the law is to provide a spectrophotometer equipped with an attached device which has a relatively simple structure and is inexpensive.

上記課題を解決するために成された本発明は、試料に測定光を照射し、該測定光に対する試料での透過光や反射光を検出する分光光度計において、
a)光照射部から所定位置に集光するように入射された測定光を反射する平面鏡、該平面鏡で方向を変えられた光の焦点位置と試料測定点とに共焦点を持ち、前記平面鏡で反射された測定光を該試料測定点に集光して照射する楕円面鏡、及び、該楕円面鏡をその入射光軸を中心として回転させる回転手段、を含む入射光学系と、
b)前記試料測定点を含む面に対し前記入射光学系と略鏡面対称に配置された、平面鏡、楕円面鏡、回転手段を含む出射光学系と、
を備え、前記入射光学系及び出射光学系の回転手段によりそれぞれ楕円面鏡を回転させることで、試料測定点の位置を変化させて異なる測定手法に対応させたことを特徴としている。
The present invention made to solve the above problems is a spectrophotometer that irradiates a sample with measurement light and detects transmitted light and reflected light from the sample with respect to the measurement light.
a) a plane mirror that reflects the measurement light incident so as to be condensed at a predetermined position from the light irradiation unit, and has a confocal point at the focal position of the light whose direction has been changed by the plane mirror and the sample measurement point; An incident optical system including an ellipsoidal mirror for condensing and irradiating the reflected measurement light on the sample measurement point, and a rotating means for rotating the ellipsoidal mirror about its incident optical axis;
b) an exit optical system including a plane mirror, an ellipsoidal mirror, and a rotating means, which is disposed substantially mirror-symmetrically with the incident optical system with respect to the surface including the sample measurement point;
, And the rotating means of the incident optical system and the outgoing optical system respectively rotate the ellipsoidal mirror, thereby changing the position of the sample measurement point to correspond to different measurement methods.

具体的な一実施態様として、前記入射光学系及び出射光学系を1つの付属装置として構成し、分光光度計において試料をセットするための試料室に必要に応じて前記付属装置を設置し、回転手段により入射側と出射側の楕円面鏡をそれぞれ回転させることで、複数の測定手法に対応させる構成とすると都合がよい。   As a specific embodiment, the incident optical system and the output optical system are configured as one accessory device, and the accessory device is installed in a sample chamber for setting a sample in a spectrophotometer as necessary, and rotated. It is convenient to adopt a configuration corresponding to a plurality of measurement methods by rotating the incident-side and emission-side ellipsoidal mirrors by means.

本発明に係る分光光度計では、回転手段により両楕円面鏡を対称性を維持して回転してゆくと、楕円面鏡から共焦点までの距離は一定であるため、入射光学系にとっての試料測定点と出射光学系にとっての試料測定点とが一致する点が2つ存在する。この2つの状態では、その試料測定点に配置された試料に対して楕円面鏡で集光された測定光が所定角度で入射し、その入射角と同一の出射角で試料から出た反射光が出射光学系の楕円面鏡で集光されて後段の光路へと送られる。したがって、この状態において拡散反射測定を行うことができる。また、同様の光路で試料測定点に例えばプリズムを配置することでATR測定も可能となる。さらにまた、楕円面鏡を回転させて、入射光学系にとっての試料測定点と出射光学系にとっての試料測定点とを離した位置とし、入射光学系から出た測定光を光ファイバに導入し、一方、光ファイバで案内されてきた反射光や透過光を出射光学系に入射することによって、光ファイバ測定が可能となる。   In the spectrophotometer according to the present invention, when both ellipsoidal mirrors are rotated while maintaining symmetry by the rotating means, the distance from the ellipsoidal mirror to the confocal is constant, so that the sample for the incident optical system There are two points where the measurement point and the sample measurement point for the exit optical system coincide. In these two states, the measurement light collected by the ellipsoidal mirror is incident on the sample arranged at the sample measurement point at a predetermined angle, and the reflected light is emitted from the sample at the same emission angle as the incident angle. Is condensed by the ellipsoidal mirror of the output optical system and sent to the optical path in the subsequent stage. Therefore, diffuse reflection measurement can be performed in this state. Also, ATR measurement is possible by arranging, for example, a prism at the sample measurement point in the same optical path. Furthermore, the ellipsoidal mirror is rotated so that the sample measurement point for the incident optical system is separated from the sample measurement point for the output optical system, and the measurement light emitted from the incident optical system is introduced into the optical fiber, On the other hand, when the reflected light or transmitted light guided by the optical fiber is incident on the outgoing optical system, the optical fiber can be measured.

本発明に係る分光光度計では、光照射部から所定位置に集光するように入射された測定光を全く平行光化することなく、平面鏡、及び楕円面鏡を用いて試料測定点に集光しているので、光学系の構成を非常に簡素化でき、しかも、こうした簡単な構成でありながら、特に近赤外分光測定に利用価値の高い、拡散反射測定法、ATR測定法、及びファイバ測定法の三種について測定を行うことができる。したがって、多くのユーザにとって利用価値の高い分光光度計や分光光度計用の付属装置を安価で提供することができる。また、本発明に係る分光光度計では、光路上に設けられた鏡の数が少ないので、光量の損失が少なく、従来に比べて高感度な測定を行うのに有利である。   In the spectrophotometer according to the present invention, the measurement light incident so as to be condensed at a predetermined position from the light irradiator is not collimated at all, and is condensed at the sample measurement point using a plane mirror and an ellipsoidal mirror. Therefore, the configuration of the optical system can be greatly simplified, and the diffuse reflection measurement method, the ATR measurement method, and the fiber measurement, which have such a simple configuration, but are particularly useful for near infrared spectroscopy. Three types of methods can be measured. Therefore, it is possible to provide a spectrophotometer and an accessory device for the spectrophotometer that have high utility value for many users at a low cost. Further, in the spectrophotometer according to the present invention, since the number of mirrors provided on the optical path is small, the loss of light amount is small, and it is advantageous for performing measurement with higher sensitivity than in the past.

以下、本発明に係る分光光度計の一実施例について図面を参照して説明する。図5は本実施例である赤外分光光度計の概略構成図である。   Hereinafter, an embodiment of a spectrophotometer according to the present invention will be described with reference to the drawings. FIG. 5 is a schematic configuration diagram of an infrared spectrophotometer according to the present embodiment.

光源20から発した赤外光は例えばマイケルソン干渉計などの干渉計21に導入され、ここで赤外干渉光が生成されて試料室22に照射される。通常、試料室22内の所定位置に配置された試料25に赤外光は集光され、例えば試料25を透過した光は楕円面鏡23により赤外検出器24に集光される。この試料室22内に後述する付属装置30が設置され、その付属装置30により光路構成を変えることで拡散反射測定やATR測定などが行えるようになっている。   Infrared light emitted from the light source 20 is introduced into an interferometer 21 such as a Michelson interferometer, where infrared interference light is generated and applied to the sample chamber 22. Usually, infrared light is collected on a sample 25 arranged at a predetermined position in the sample chamber 22. For example, light transmitted through the sample 25 is collected on an infrared detector 24 by an ellipsoidal mirror 23. An attachment device 30 described later is installed in the sample chamber 22, and diffuse reflection measurement, ATR measurement, and the like can be performed by changing the optical path configuration with the attachment device 30.

図1はこの付属装置30の一実施例を示す構成図であり、(a)は正面図、(b)は左側面図、(c)は上面図である。図2はこの付属装置30で拡散反射測定を行う場合の光路図、図3はこの付属装置30でATR測定を行う場合の光路図、図4はこの付属装置30で光ファイバ測定を行う場合の光路図である。但し、図面上で構成要素が重なって見にくくなる部分については適宜記載を省略している。   FIG. 1 is a configuration diagram showing an embodiment of the attachment device 30, (a) is a front view, (b) is a left side view, and (c) is a top view. FIG. 2 is an optical path diagram in the case where diffuse reflection measurement is performed by the accessory device 30, FIG. 3 is an optical path diagram in the case where ATR measurement is performed by the accessory device 30, and FIG. 4 is a case where optical fiber measurement is performed by the accessory device 30. It is an optical path diagram. However, the description of the portions that are difficult to see due to overlapping of components in the drawings is omitted as appropriate.

図1に示すように、この付属装置30は、入射光学系として、赤外光の角度を変えるための平面鏡31、32と、赤外光を集束するための楕円面鏡33と、該楕円面鏡33を入射光軸Sを中心に回転させるための回転つまみ34とを備える。また、出射光学系として、赤外光の角度を変えるための平面鏡37、38と、赤外光を集束するための楕円面鏡35と、該楕円面鏡35を上記入射光軸Sに相当する出射光軸S’を中心に回転させるための回転つまみ36とを備える。   As shown in FIG. 1, the attachment device 30 includes, as an incident optical system, plane mirrors 31 and 32 for changing the angle of infrared light, an elliptical mirror 33 for focusing infrared light, and the elliptical surface. And a rotation knob 34 for rotating the mirror 33 about the incident optical axis S. Further, as the output optical system, plane mirrors 37 and 38 for changing the angle of infrared light, an elliptical mirror 35 for focusing infrared light, and the elliptical mirror 35 correspond to the incident optical axis S. And a rotary knob 36 for rotating around the outgoing optical axis S ′.

本発明における光照射部に相当する図示しない干渉計から到来する赤外光は、まず平面鏡31で真上方向に向きを変えられる。平面鏡31が存在しない場合、入射してきた赤外光の焦点はPであるが、平面鏡31で反射されたときの焦点はAの位置となる。この赤外光はさらに平面鏡31の直上に配置された平面鏡32により前方へ向かうように反射される。この平面鏡32の前方には、平面鏡31で反射された光の光軸上の焦点位置Aと試料位置B又はB’とを共焦点に持つ楕円面鏡33が配置されており、光は楕円面鏡33で反射されて試料位置に集光される。出射光学系はこの試料位置を中心に入射光学系と左右対称に配置されており、後述するように試料で反射された光は楕円面鏡35及び平面鏡37を経て、楕円面鏡35の共焦点位置Cで一旦結像した後に、平面鏡38で反射されて赤外検出器へ向かう光路に導かれる。   Infrared light arriving from an interferometer (not shown) corresponding to the light irradiator in the present invention is first redirected by the plane mirror 31 in the upward direction. When the plane mirror 31 does not exist, the focal point of the incident infrared light is P, but the focal point when reflected by the plane mirror 31 is the position A. The infrared light is further reflected forward by a plane mirror 32 disposed immediately above the plane mirror 31. In front of the plane mirror 32, an ellipsoidal mirror 33 having the focal position A on the optical axis of the light reflected by the plane mirror 31 and the sample position B or B ′ as a confocal point is disposed. It is reflected by the mirror 33 and collected at the sample position. The exit optical system is arranged symmetrically with the incident optical system around the sample position, and the light reflected by the sample passes through an ellipsoidal mirror 35 and a plane mirror 37 as will be described later, and is confocal with the ellipsoidal mirror 35. After forming an image once at the position C, the light is reflected by the plane mirror 38 and guided to the optical path toward the infrared detector.

回転つまみ34、36により、入射側の楕円面鏡33は入射光軸Sを中心に、出射側の楕円面鏡35は出射光軸S’を中心に回転可能であって、この例では50°の入射角で上向きでも下向きでも反射光学系が形成される。2つの楕円面鏡33、35を左右対称が維持された状態で回転すると、楕円面鏡33、35の一方の焦点位置A、Cは固定されるが、他方の焦点位置は移動し、図1(a)に示す試料位置B又はB’の位置では2つの楕円面鏡33、35の焦点は一致する。上記説明から明らかなように、この付属装置30では、赤外光はいずれの位置でも平行化されることはなく、試料位置B又はB’に焦点を結ぶように光路が形成されている。   By means of the rotary knobs 34, 36, the incident-side ellipsoidal mirror 33 can be rotated about the incident optical axis S, and the output-side ellipsoidal mirror 35 can be rotated about the outgoing optical axis S ′. A reflection optical system is formed regardless of whether the incident angle is upward or downward. When the two ellipsoidal mirrors 33 and 35 are rotated in a state in which left-right symmetry is maintained, one of the focal positions A and C of the ellipsoidal mirrors 33 and 35 is fixed, but the other focal position moves, and FIG. The focal points of the two ellipsoidal mirrors 33 and 35 coincide at the position of the sample position B or B ′ shown in FIG. As is clear from the above description, in this attachment device 30, infrared light is not collimated at any position, and an optical path is formed so as to focus on the sample position B or B '.

次に、この付属装置30を用いた測定法について説明する。まず、粉体の測定や特に少量の試料に対する拡散反射測定を行う場合には、図2に示すように、楕円面鏡33、35を斜め下向きに回転させ、上述した試料位置B’に焦点が来るようにする。そして、この試料位置B’に、容器に収容した試料40を配置する。このとき、楕円面鏡33で集光された赤外光は試料40に所定の入射角で当たり、試料40による反射光は楕円面鏡35で集光されて後段へと送られる。   Next, a measurement method using the accessory device 30 will be described. First, when performing powder measurement or particularly diffuse reflection measurement on a small amount of sample, as shown in FIG. 2, the ellipsoidal mirrors 33 and 35 are rotated obliquely downward so that the above-mentioned sample position B ′ is focused. To come. Then, the sample 40 accommodated in the container is disposed at the sample position B ′. At this time, the infrared light collected by the ellipsoidal mirror 33 strikes the sample 40 at a predetermined incident angle, and the reflected light from the sample 40 is collected by the ellipsoidal mirror 35 and sent to the subsequent stage.

ATR測定を行う場合には、図3に示すように、楕円面鏡33、35を斜め上向きに回転させ、上述した試料位置Bに焦点が来るようにする。そして、この試料位置Bに全反射条件を満たす例えば半球状のプリズム19を配置する。このとき、楕円面鏡33で集光された赤外光はプリズム19に入射し、プリズム19に入った光は内面反射してプリズム19から出て楕円面鏡35へと向かう。このプリズム19の内面反射面に試料を押し当てることで、その試料表面の赤外全反射吸収スペクトルを測定することができる。   When performing ATR measurement, as shown in FIG. 3, the ellipsoidal mirrors 33 and 35 are rotated obliquely upward so that the sample position B is in focus. Then, for example, a hemispherical prism 19 that satisfies the total reflection condition is disposed at the sample position B. At this time, the infrared light collected by the ellipsoidal mirror 33 is incident on the prism 19, and the light entering the prism 19 is internally reflected and exits the prism 19 toward the ellipsoidal mirror 35. By pressing the sample against the inner reflection surface of the prism 19, the infrared total reflection absorption spectrum of the sample surface can be measured.

もちろん、図3に示す光路構成で拡散反射測定を行うことも可能である。実用的には、大きな試料の一部や瓶、袋などにに収容された状態の試料を測定するには、このように試料位置Bに試料を配置したほうが都合がよいことが多い。また、同様に、図2に示す光路構成でATR測定を行うことも可能である。   Of course, it is also possible to perform diffuse reflection measurement with the optical path configuration shown in FIG. Practically, in order to measure a part of a large sample or a sample stored in a bottle or bag, it is often convenient to place the sample at the sample position B in this way. Similarly, it is possible to perform ATR measurement with the optical path configuration shown in FIG.

光ファイバ測定を行う場合には、図4に示すように、例えば楕円面鏡33、35を真上向きに回転させ、両楕円面鏡33、35の焦点位置を離す。そして、楕円面鏡33側の焦点位置に光ファイバ50の光導入口を設け、楕円面鏡35側の焦点位置に光ファイバ50の光導出口を設ける。光導入口から光ファイバ50に入った赤外光はファイバプローブ51を経由して再び光ファイバ50によって導かれて光導出口から楕円面鏡35に戻される。ファイバプローブ51で試料の反射光や透過光を取得することで、この反射光や透過光の赤外スペクトルを測定することができる。なお、この場合、楕円面鏡33、35の焦点位置に光ファイバ50の光導入口及び光導出口を設けさえすれば、楕円面鏡33、35の回転角度は任意である。   When optical fiber measurement is performed, as shown in FIG. 4, for example, the ellipsoidal mirrors 33 and 35 are rotated directly upward, and the focal positions of the ellipsoidal mirrors 33 and 35 are separated. A light entrance of the optical fiber 50 is provided at the focal position on the elliptical mirror 33 side, and a light exit of the optical fiber 50 is provided on the focal position on the elliptical mirror 35 side. Infrared light entering the optical fiber 50 from the light entrance is guided again by the optical fiber 50 via the fiber probe 51 and returned to the elliptical mirror 35 from the light exit. By acquiring the reflected light and transmitted light of the sample with the fiber probe 51, the infrared spectrum of the reflected light and transmitted light can be measured. In this case, as long as the light entrance and the light exit of the optical fiber 50 are provided at the focal positions of the ellipsoidal mirrors 33 and 35, the rotation angles of the ellipsoidal mirrors 33 and 35 are arbitrary.

なお、本実施例では楕円面鏡の回転により試料位置を上下方向に切替え可能としたが、同様の機構を用いて左右方向に切替え可能とした構成とすることもできることは明らかである。   In this embodiment, the sample position can be switched in the vertical direction by rotating the ellipsoidal mirror. However, it is obvious that a configuration in which the sample position can be switched in the horizontal direction using a similar mechanism is obvious.

また、上記実施例は本発明の一実施例であって、本発明の趣旨の範囲で適宜に修正や変更を行えることは明らかである。例えば、上記実施例において付属装置とした光学系を分光光度計の一部に組み込んでもよい。   Further, the above embodiment is an embodiment of the present invention, and it is obvious that modifications and changes can be made as appropriate within the scope of the gist of the present invention. For example, an optical system as an accessory device in the above embodiment may be incorporated in a part of the spectrophotometer.

本発明の一実施例である分光光度計の付属装置の構成を示す正面図(a)、左側面図(b)及び上面図(c)。BRIEF DESCRIPTION OF THE DRAWINGS The front view (a), the left view (b), and the top view (c) which show the structure of the attachment apparatus of the spectrophotometer which is one Example of this invention. 本実施例による付属装置で拡散反射測定を行う場合の光路図。The optical path figure in the case of performing a diffuse reflection measurement with the attached apparatus by a present Example. 本実施例による付属装置でATR測定を行う場合の光路図。The optical path figure in the case of performing ATR measurement with the attached apparatus by a present Example. 本実施例による付属装置で光ファイバ測定を行う場合の光路図。The optical path figure in the case of performing an optical fiber measurement with the attached apparatus by a present Example. 本実施例の分光光度計の概略構成図。The schematic block diagram of the spectrophotometer of a present Example. 従来の赤外分光光度計における付属装置の構成図。The block diagram of the attachment apparatus in the conventional infrared spectrophotometer. 従来の付属装置で各種測定を行う場合のパラボラ鏡と試料ホルダとの位置関係を示す側面図。The side view which shows the positional relationship of the parabolic mirror and sample holder when performing various measurements with the conventional accessory apparatus.

符号の説明Explanation of symbols

19…プリズム
20…光源
21…干渉計
22…試料室
23…楕円面鏡
24…赤外検出器
30…付属装置
31、32、37、38…平面鏡
33、35…楕円面鏡
34、36…回転つまみ
40…試料
50…光ファイバ
51…ファイバプローブ
DESCRIPTION OF SYMBOLS 19 ... Prism 20 ... Light source 21 ... Interferometer 22 ... Sample chamber 23 ... Ellipsoidal mirror 24 ... Infrared detector 30 ... Attached apparatus 31, 32, 37, 38 ... Plane mirror 33, 35 ... Ellipsoidal mirror 34, 36 ... Rotation Knob 40 ... Sample 50 ... Optical fiber 51 ... Fiber probe

Claims (2)

試料に測定光を照射し、該測定光に対する試料での透過光や反射光を検出する分光光度計において、
a)光照射部から所定位置に集光するように入射された測定光を反射する平面鏡、該平面鏡で方向を変えられた光の焦点位置と試料測定点とに共焦点を持ち、前記平面鏡で反射された測定光を該試料測定点に集光して照射する楕円面鏡、及び、該楕円面鏡をその入射光軸を中心として回転させる回転手段、を含む入射光学系と、
b)前記試料測定点を含む面に対し前記入射光学系と略鏡面対称に配置された、平面鏡、楕円面鏡、回転手段を含む出射光学系と、
を備え、前記入射光学系及び出射光学系の回転手段によりそれぞれ楕円面鏡を回転させることで、試料測定点の位置を変化させて異なる測定手法に対応させたことを特徴とする分光光度計。
In a spectrophotometer that irradiates a sample with measurement light and detects transmitted light or reflected light in the sample with respect to the measurement light,
a) a plane mirror that reflects the measurement light incident so as to be condensed at a predetermined position from the light irradiation unit, and has a confocal point at the focal position of the light whose direction has been changed by the plane mirror and the sample measurement point; An incident optical system including an ellipsoidal mirror for condensing and irradiating the reflected measurement light on the sample measurement point, and a rotating means for rotating the ellipsoidal mirror about its incident optical axis;
b) an exit optical system including a plane mirror, an ellipsoidal mirror, and a rotating means, which is disposed substantially mirror-symmetrically with the incident optical system with respect to the surface including the sample measurement point;
The spectrophotometer is characterized by changing the position of the sample measurement point by rotating the ellipsoidal mirrors by the rotating means of the incident optical system and the outgoing optical system, respectively.
前記入射光学系及び出射光学系を1つの付属装置として構成し、試料をセットするための試料室に必要に応じて前記付属装置を設置するようにしたことを特徴とする請求項1に記載の分光光度計。   2. The incident optical system and the output optical system are configured as one attached device, and the attached device is installed as necessary in a sample chamber for setting a sample. Spectrophotometer.
JP2004093958A 2004-03-29 2004-03-29 Spectrophotometer Expired - Lifetime JP4131248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004093958A JP4131248B2 (en) 2004-03-29 2004-03-29 Spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004093958A JP4131248B2 (en) 2004-03-29 2004-03-29 Spectrophotometer

Publications (2)

Publication Number Publication Date
JP2005283178A true JP2005283178A (en) 2005-10-13
JP4131248B2 JP4131248B2 (en) 2008-08-13

Family

ID=35181755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004093958A Expired - Lifetime JP4131248B2 (en) 2004-03-29 2004-03-29 Spectrophotometer

Country Status (1)

Country Link
JP (1) JP4131248B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014119448A (en) * 2012-12-17 2014-06-30 Advantest Corp Light beam incident device and reflected light measuring apparatus
CN109358019A (en) * 2018-12-13 2019-02-19 上海翼捷工业安全设备股份有限公司 Gas sensor based on infrared spectrum analysis

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111328373A (en) 2017-11-07 2020-06-23 株式会社岛津制作所 Infrared spectrophotometer accessory

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014119448A (en) * 2012-12-17 2014-06-30 Advantest Corp Light beam incident device and reflected light measuring apparatus
CN109358019A (en) * 2018-12-13 2019-02-19 上海翼捷工业安全设备股份有限公司 Gas sensor based on infrared spectrum analysis
CN109358019B (en) * 2018-12-13 2023-12-22 上海翼捷工业安全设备股份有限公司 Gas sensor based on infrared spectrum analysis

Also Published As

Publication number Publication date
JP4131248B2 (en) 2008-08-13

Similar Documents

Publication Publication Date Title
US11156549B2 (en) Diffuse reflectance infrared fourier transform spectroscopy
US9651478B2 (en) Analyzer
JP6428516B2 (en) Spectral detector
US9995627B2 (en) Raster optic device for optical hyper spectral scanning
JP2022170900A (en) Analyzer
JP4131248B2 (en) Spectrophotometer
KR20190104298A (en) Breast milk analyzer
JP4246599B2 (en) Mapping measuring device
WO2015001649A1 (en) V-block refractometer
JP7486178B2 (en) Spectroscopic equipment
JP3871415B2 (en) Spectral transmittance measuring device
JP7194580B2 (en) spectrometer
JP2002372456A (en) Ir spectrophotometer
JP2005500539A (en) Light beam guidance and correction
JP2004325431A (en) Fluorescence detector
JP2022170901A (en) Analyzer
JP3829663B2 (en) Spectrophotometer
KR20190048617A (en) Breast milk analyzer
JPS626482Y2 (en)
JP2766735B2 (en) Optical system using reflective objective lens
Koudsi et al. Miniature transmissive DLP-based infrared spectrometer
JP2014202565A (en) Method for making infrared light impinge on measurement target object when measuring infrared absorption rate
JP3143458U (en) Infrared microscope with Schwarzschild-type reflective objective and Schwarzschild-type reflective objective
JP2015175667A (en) Automatic analysis apparatus
JPS6067828A (en) Fourier transform infrared spectrophotometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080430

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4131248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140606

Year of fee payment: 6

EXPY Cancellation because of completion of term