JP2005283126A - Pressure sensor and its magnetic hysteresis reduction method - Google Patents

Pressure sensor and its magnetic hysteresis reduction method Download PDF

Info

Publication number
JP2005283126A
JP2005283126A JP2004092702A JP2004092702A JP2005283126A JP 2005283126 A JP2005283126 A JP 2005283126A JP 2004092702 A JP2004092702 A JP 2004092702A JP 2004092702 A JP2004092702 A JP 2004092702A JP 2005283126 A JP2005283126 A JP 2005283126A
Authority
JP
Japan
Prior art keywords
magnetostrictive member
change
pressure sensor
sensor
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004092702A
Other languages
Japanese (ja)
Other versions
JP4327640B2 (en
Inventor
Teruo Mori
輝夫 森
Shiro Tomizawa
史郎 富沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2004092702A priority Critical patent/JP4327640B2/en
Publication of JP2005283126A publication Critical patent/JP2005283126A/en
Application granted granted Critical
Publication of JP4327640B2 publication Critical patent/JP4327640B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pressure sensor capable of miniaturizing in size, effectively reducing magnetic hysteresis and of detecting the variation of pressure with high degree of accuracy, and to provide a method for reducing its magnetic hysteresis. <P>SOLUTION: The pressure sensor 10 is constituted of: a first ultra magnetostriction member 28 and the detection coil 30 for detecting the magnetic permeability or the amount of the remanent magnetization of the first ultra magnetostriction member 28; a sensor part 16 capable of detecting the variation of the pressure as the variation of the magnetic permeability or the variation of the amount of the remanent magnetization based on the deformation of the first ultra magnetostriction member 28; and the driving part 14 equipped with a second ultra magnetostriction member 20 and the driving coil 22 capable of driving the second ultra magnetostriction member 20 in longitudinal vibration. The driving part 14 is constituted so that it can impress a prescribed force on the first ultra magnetostriction member 28 of the sensor part 16 by making an impulse current flow through the driving coil 22. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、磁歪部材を用いた圧力センサ及びその磁気ヒステリシス低減方法に関する。   The present invention relates to a pressure sensor using a magnetostrictive member and a magnetic hysteresis reducing method thereof.

従来、磁歪部材の応力磁気効果を用いて圧力の変化を検出可能とした圧力センサが広く知られている。この従来公知の圧力センサは、磁歪部材の変形に基づく透磁率の変化をコイルのインダクタンス値の変化として検出することによって、圧力の変化を検出可能としたものである。   2. Description of the Related Art Conventionally, pressure sensors that can detect a change in pressure using the stress magnetic effect of a magnetostrictive member are widely known. This conventionally known pressure sensor can detect a change in pressure by detecting a change in permeability based on deformation of a magnetostrictive member as a change in inductance value of a coil.

ところで、このような圧力センサにおける圧力とインダクタンス値の関係は、一般に、図6に示されるような磁気ヒステリシス特性を示し、圧力とインダクタンス値との間には変化の方向による差異が生じる。その結果、圧力の増加方向と減少方向とで同一の圧力に対するインダクタンス値が一致しないといった問題点がある。   Incidentally, the relationship between the pressure and the inductance value in such a pressure sensor generally shows a magnetic hysteresis characteristic as shown in FIG. 6, and a difference occurs between the pressure and the inductance value depending on the direction of change. As a result, there is a problem that the inductance values for the same pressure do not match in the increasing direction and decreasing direction of the pressure.

このような問題点を解決する一手段として、図7に示されるような圧力センサ1が提案されている。   As a means for solving such a problem, a pressure sensor 1 as shown in FIG. 7 has been proposed.

この圧力センサ1は、略棒状の超磁歪素子2と、LC発振電流を流すための第1コイル3と、インパルス電流を流すための第2コイル4と、を有して構成され、超磁歪素子2を囲むように第1、第2コイル3、4が2重に巻回されている。圧力センサ1は、所定のタイミングで第2コイル4によってインパルス電流を流すことによって、磁気ヒステリシスを低減しようとするものである。   The pressure sensor 1 includes a substantially rod-shaped giant magnetostrictive element 2, a first coil 3 for flowing an LC oscillation current, and a second coil 4 for flowing an impulse current. First and second coils 3 and 4 are wound twice so as to surround 2. The pressure sensor 1 attempts to reduce magnetic hysteresis by causing an impulse current to flow through the second coil 4 at a predetermined timing.

特開2003−156382号公報JP 2003-156382 A

しかしながら、この圧力センサ1では、大きなインパルス電流を流す必要があるため、超磁歪素子2や第1、第2コイル3、4の温度上昇に伴う検出誤差が大きく、検出精度が低下してしまうといった問題点があった。   However, in this pressure sensor 1, since it is necessary to flow a large impulse current, the detection error accompanying the temperature rise of the giant magnetostrictive element 2 and the first and second coils 3 and 4 is large, and the detection accuracy is reduced. There was a problem.

又、第1、第2コイル3、4を超磁歪素子2の外周に2重に巻回する構造である上に、インパルス電流を流すためには第2コイル3の線径をなるべく大きくする必要があり、装置が大型化(特に、超磁歪素子2の径方向に大型化)してしまうといった問題点もあった。   In addition, the first and second coils 3 and 4 are wound around the outer periphery of the giant magnetostrictive element 2 in addition to a structure in which the wire diameter of the second coil 3 is required to be as large as possible in order to pass an impulse current. There is also a problem that the apparatus is enlarged (in particular, enlarged in the radial direction of the giant magnetostrictive element 2).

本発明は、このような問題点を解決するためになされたものであって、小型化が可能でありながら、同時に、磁気ヒステリシスを効果的に低減し、圧力の変化を高精度で検出することができる圧力センサ及びその磁気ヒステリシス低減方法を提供することを目的とする。   The present invention has been made to solve such problems, and while being able to reduce the size, it is possible to effectively reduce magnetic hysteresis and detect a change in pressure with high accuracy. It is an object of the present invention to provide a pressure sensor capable of performing the above and a method for reducing the magnetic hysteresis thereof.

本発明の発明者は、鋭意研究の結果、小型化が可能でありながら、同時に、磁気ヒステリシスを効果的に低減し、圧力の変化を高精度で検出することができる圧力センサ及びその磁気ヒステリシス低減方法を見出した。   As a result of earnest research, the inventor of the present invention has a pressure sensor capable of effectively reducing magnetic hysteresis and detecting a change in pressure with high accuracy while reducing the size and reducing the magnetic hysteresis. I found a way.

即ち、次のような本発明により、上記目的を達成することができる。   That is, the above-described object can be achieved by the following present invention.

(1)第1磁歪部材及び該第1磁歪部材の透磁率又は残留磁化量の変化を検出するための検出手段を備え、圧力の変化を前記第1磁歪部材の変形に基づく透磁率又は残留磁化量の変化として検出可能なセンサ部と、第2磁歪部材及び該第2磁歪部材を伸縮可能な駆動コイルを備えた駆動部と、を有してなり、該駆動部は、前記駆動コイルにインパルス状の電流を流すことによって、前記センサ部における第1磁歪部材に所定の応力を印加可能に構成されていることを特徴とする圧力センサ。   (1) A first magnetostrictive member and detection means for detecting a change in the magnetic permeability or residual magnetization amount of the first magnetostrictive member are provided, and the change in pressure is determined based on the deformation of the first magnetostrictive member. A sensor unit that can be detected as a change in quantity, and a drive unit that includes a second magnetostrictive member and a drive coil that can extend and contract the second magnetostrictive member, and the drive unit impulses the drive coil. A pressure sensor characterized in that a predetermined stress can be applied to the first magnetostrictive member in the sensor section by flowing a current of a shape.

(2)前記センサ部における第1磁歪部材及び検出手段と、前記駆動部における第2磁歪部材及び駆動コイルとの間には、磁性部材が配設されていることを特徴とする前記(1)記載の圧力センサ。   (2) The magnetic member is disposed between the first magnetostrictive member and the detection means in the sensor unit and the second magnetostrictive member and the drive coil in the drive unit. The pressure sensor described.

(3)前記センサ部における第1磁歪部材及び前記駆動部における第2磁歪部材は、前記磁性部材に固定されていることを特徴とする前記(2)記載の圧力センサ。   (3) The pressure sensor according to (2), wherein the first magnetostrictive member in the sensor unit and the second magnetostrictive member in the drive unit are fixed to the magnetic member.

(4)前記センサ部における第1磁歪部材には、所定の予荷重が印加されていることを特徴とする前記(1)乃至(3)のいずれかに記載の圧力センサ。   (4) The pressure sensor according to any one of (1) to (3), wherein a predetermined preload is applied to the first magnetostrictive member in the sensor section.

(5)前記センサ部における検出手段は、前記第1磁歪部材の外周を囲むように配設された検出コイルを含み、前記第1磁歪部材の透磁率又は残留磁化量の変化を前記検出コイルのインダクタンス値の変化として検出するようにしたことを特徴とする前記(1)乃至(4)のいずれかに記載の圧力センサ。   (5) The detection means in the sensor unit includes a detection coil disposed so as to surround the outer periphery of the first magnetostrictive member, and changes in the permeability or residual magnetization of the first magnetostrictive member are detected in the detection coil. The pressure sensor according to any one of (1) to (4), wherein the pressure sensor is detected as a change in inductance value.

(6)前記センサ部における検出手段はホール素子を含み、前記第1磁歪部材の透磁率又は残留磁化量の変化を前記ホール素子の起電力変化として検出するようにしたことを特徴とする前記(1)乃至(4)のいずれかに記載の圧力センサ。   (6) The detection means in the sensor section includes a Hall element, and a change in the magnetic permeability or residual magnetization amount of the first magnetostrictive member is detected as a change in electromotive force of the Hall element. The pressure sensor according to any one of 1) to (4).

(7)前記センサ部における検出手段は磁気抵抗効果素子を含み、前記第1磁歪部材の透磁率又は残留磁化量の変化を前記磁気抵抗効果素子の起電力変化として検出するようにしたことを特徴とする前記(1)乃至(4)のいずれかに記載の圧力センサ。   (7) The detection means in the sensor unit includes a magnetoresistive effect element, and detects a change in permeability or residual magnetization amount of the first magnetostrictive member as a change in electromotive force of the magnetoresistive effect element. The pressure sensor according to any one of (1) to (4).

(8)前記センサ部における第1磁歪部材及び前記駆動部における第2磁歪部材の少なくとも一方は、超磁歪素子を材料とする超磁歪部材からなることを特徴とする前記(1)乃至(7)のいずれかに記載の圧力センサ。   (8) At least one of the first magnetostrictive member in the sensor unit and the second magnetostrictive member in the drive unit is composed of a giant magnetostrictive member made of a giant magnetostrictive element. The pressure sensor according to any one of the above.

(9)磁歪部材の変形に基づく透磁率又は残留磁化量の変化によって圧力の変化を検出可能な圧力センサの磁気ヒステリシス低減方法であって、前記磁歪部材に所定の応力を印加することによって、前記磁歪部材の残留磁気を除去することを特徴とする圧力センサの磁気ヒステリシス低減方法。   (9) A method for reducing magnetic hysteresis of a pressure sensor capable of detecting a change in pressure by a change in permeability or residual magnetization based on deformation of a magnetostrictive member, wherein a predetermined stress is applied to the magnetostrictive member, A method for reducing magnetic hysteresis of a pressure sensor, comprising removing residual magnetism of a magnetostrictive member.

本発明に係る圧力センサ及びその磁気ヒステリシス低減方法によれば、小型化が可能でありながら、同時に、磁気ヒステリシスを効果的に低減し、圧力の変化を高精度で検出することができるという優れた効果を有する。   According to the pressure sensor and the method for reducing the magnetic hysteresis according to the present invention, it is possible to reduce the size of the sensor while effectively reducing the magnetic hysteresis and detecting a change in pressure with high accuracy. Has an effect.

本発明に係る圧力センサは、第1磁歪部材及び該第1磁歪部材の透磁率又は残留磁化量の変化を検出するための検出手段を備え、圧力の変化を前記第1磁歪部材の変形に基づく透磁率又は残留磁化量の変化として検出可能なセンサ部と、第2磁歪部材及び該第2磁歪部材を伸縮可能な駆動コイルを備えた駆動部と、を有してなり、該駆動部は、前記駆動コイルにインパルス状の電流を流すことによって、前記センサ部における第1磁歪部材に所定の応力を印加可能に構成されていることによって、上記課題を解決したものである。   The pressure sensor according to the present invention includes a first magnetostrictive member and detection means for detecting a change in permeability or residual magnetization of the first magnetostrictive member, and the change in pressure is based on deformation of the first magnetostrictive member. A sensor unit that can be detected as a change in magnetic permeability or residual magnetization amount, and a drive unit that includes a second magnetostrictive member and a drive coil that can expand and contract the second magnetostrictive member. By applying an impulse-like current to the drive coil, a predetermined stress can be applied to the first magnetostrictive member in the sensor unit, thereby solving the above-described problem.

又、本発明に係る圧力センサの磁気ヒステリシス低減方法は、磁歪部材の変形に基づく透磁率又は残留磁化量の変化によって圧力の変化を検出可能な圧力センサの磁気ヒステリシス低減方法であって、前記磁歪部材に所定の応力を印加することによって、前記磁歪部材の残留磁気を除去することによって、上記課題を解決したものである。   The method for reducing magnetic hysteresis of a pressure sensor according to the present invention is a method for reducing magnetic hysteresis of a pressure sensor capable of detecting a change in pressure based on a change in permeability or residual magnetization based on deformation of a magnetostrictive member. By applying a predetermined stress to the member, the residual magnetism of the magnetostrictive member is removed, thereby solving the above problem.

以下、図1及び図2を用いて、本発明の実施例1に係る圧力センサについて詳細に説明する。   Hereinafter, the pressure sensor according to the first embodiment of the present invention will be described in detail with reference to FIGS. 1 and 2.

図に示されるように、本発明の実施例1に係る圧力センサ10は、略筒状のケーシング12を備えており、このケーシング12内には、駆動部14とセンサ部16が収容されている。   As shown in the figure, the pressure sensor 10 according to the first embodiment of the present invention includes a substantially cylindrical casing 12, and a drive unit 14 and a sensor unit 16 are accommodated in the casing 12. .

駆動部14は、ケーシング12の底部に固定された略円板状の磁性部材からなる第1磁気ヨーク18と、この第1磁気ヨーク18上に固定された略棒状の第2超磁歪部材20と、この第2超磁歪部材20の周囲に配設され、第2超磁歪ロッド20を軸方向に伸縮可能な駆動コイル22と、第2超磁歪部材20及び駆動コイル22を上方から覆うように配設された有底円筒形状の磁性部材からなる第2磁気ヨーク24と、を有して構成されている。なお、この例では、第1、第2磁気ヨーク18、24はMnZnフェライト材からなる。   The drive unit 14 includes a first magnetic yoke 18 made of a substantially disk-shaped magnetic member fixed to the bottom of the casing 12, and a substantially rod-shaped second supermagnetostrictive member 20 fixed on the first magnetic yoke 18. A drive coil 22 disposed around the second giant magnetostrictive member 20 and capable of extending and contracting the second giant magnetostrictive rod 20 in the axial direction, and arranged so as to cover the second giant magnetostrictive member 20 and the drive coil 22 from above. And a second magnetic yoke 24 formed of a bottomed cylindrical magnetic member. In this example, the first and second magnetic yokes 18 and 24 are made of MnZn ferrite material.

第2超磁歪部材20は、一端側が第1磁気ヨーク18に固定されていると共に、他端側が第2磁気ヨーク24に固定されている。又、第2超磁歪部材20は、超磁歪素子を材料としている。ここで、「超磁歪素子」とは、希土類元素および/または特定の遷移金属などを主成分(例えば、テルビウム、ジスプロシウム、鉄など)とする粉末焼結合金あるいは単結晶合金から作られた磁歪素子をいう。この磁歪素子は、外部から磁界が印加されると大きな変位を生じ(ジュール効果)、又、外部から応力を受けて変形すると大きな透磁率又は残留磁化量の変化を生じる性質(ビラリ効果)を有している。   The second giant magnetostrictive member 20 has one end fixed to the first magnetic yoke 18 and the other end fixed to the second magnetic yoke 24. The second giant magnetostrictive member 20 is made of a giant magnetostrictive element. Here, the “super magnetostrictive element” is a magnetostrictive element made of a powder sintered alloy or a single crystal alloy containing a rare earth element and / or a specific transition metal as a main component (for example, terbium, dysprosium, iron, etc.). Say. This magnetostrictive element has a property of causing a large displacement when a magnetic field is applied from the outside (Joule effect), and a property of causing a large change in magnetic permeability or residual magnetization when deformed by an external stress. doing.

第2磁気ヨーク24の下端は、ゴム26を介して第1磁気ヨーク18に固定されており、第2磁気ヨーク24は、第2超磁歪部材20の軸方向の伸縮に伴って上下動可能に構成されている。   The lower end of the second magnetic yoke 24 is fixed to the first magnetic yoke 18 via a rubber 26, and the second magnetic yoke 24 can move up and down as the second giant magnetostrictive member 20 expands and contracts in the axial direction. It is configured.

一方、この駆動部14の上方に配置されたセンサ部16は、第2超磁歪部材20と同軸的に配置され、駆動部14の第2磁気ヨーク24上に固定された略棒状の第1超磁歪部材28と、この第1超磁歪部材28の周囲に配設された検出コイル(検出手段)30と、第1超磁歪部材28の上端に固定された略柱状の磁性部材からなる第3磁気ヨーク32と、この第3磁気ヨーク32上に球面軸合わせ具34を介して配設された伝達ロッド36と、を有して構成されている。   On the other hand, the sensor unit 16 disposed above the drive unit 14 is disposed coaxially with the second giant magnetostrictive member 20 and is fixed on the second magnetic yoke 24 of the drive unit 14 in a substantially rod-shaped first superstructure. A third magnetic material comprising a magnetostrictive member 28, a detection coil (detection means) 30 disposed around the first giant magnetostrictive member 28, and a substantially columnar magnetic member fixed to the upper end of the first giant magnetostrictive member 28. The yoke 32 is configured to include a transmission rod 36 disposed on the third magnetic yoke 32 via a spherical axis aligning tool 34.

第1超磁歪部材28は、駆動部14の第2超磁歪部材20と同じ超磁歪素子を材料としている。   The first giant magnetostrictive member 28 is made of the same giant magnetostrictive element as the second giant magnetostrictive member 20 of the drive unit 14.

検出コイル30は、第1超磁歪部材28の変位に基づく第1超磁歪部材28の透磁率又は残留磁化量の変化をインダクタンス値の変化として検出可能である。   The detection coil 30 can detect a change in the magnetic permeability or residual magnetization of the first giant magnetostrictive member 28 based on the displacement of the first giant magnetostrictive member 28 as a change in inductance value.

伝達ロッド36は、第1超磁歪部材28の上端側に位置する略円板状のフランジ部36Aと、このフランジ部36Aを基端として第1超磁歪部材28の軸方向に沿って伸びるロッド部36Bと、によって構成されている。フランジ部36Aとケーシング12との間には、皿ばね38が縮設されており、伝達ロッド36は第1超磁歪部材28側に付勢されていると共に、第1超磁歪部材28には軸方向に所定の予荷重が印加されている。更に、ロッド部36Bの先端部はケーシング12外部に突出されており、このロッド部36Bを介して第1超磁歪部材28に外部からの圧力を印加可能な構造となっている。   The transmission rod 36 includes a substantially disc-shaped flange portion 36A located on the upper end side of the first giant magnetostrictive member 28, and a rod portion extending along the axial direction of the first giant magnetostrictive member 28 with the flange portion 36A as a base end. 36B. A disc spring 38 is contracted between the flange portion 36 </ b> A and the casing 12, the transmission rod 36 is biased toward the first super magnetostrictive member 28, and the first super magnetostrictive member 28 has a shaft. A predetermined preload is applied in the direction. Furthermore, the tip of the rod portion 36B protrudes outside the casing 12, and has a structure in which external pressure can be applied to the first giant magnetostrictive member 28 via the rod portion 36B.

次に、本発明の実施例1に係る圧力センサ10の作用について説明する。   Next, the operation of the pressure sensor 10 according to the first embodiment of the present invention will be described.

伝達ロッド36に外部から圧力が加えられ、球面軸合わせ具34及び第3磁気ヨーク32を介して、第1超磁歪部材28に軸方向の応力が加えられると、第1超磁歪部材28に変形が生じる。そして、この第1超磁歪部材28の変形によって第1超磁歪部材28の透磁率又は残留磁化率が変化することになる。従って、この第1超磁歪部材28の透磁率又は残留磁化率の変化を検出コイル30のインダクタンス値の変化として検出することによって圧力の変化を検出することができる。   When pressure is applied to the transmission rod 36 from the outside and axial stress is applied to the first super magnetostrictive member 28 via the spherical axis aligning tool 34 and the third magnetic yoke 32, the first super magnetostrictive member 28 is deformed. Occurs. Then, the permeability or residual magnetic susceptibility of the first super magnetostrictive member 28 changes due to the deformation of the first super magnetostrictive member 28. Accordingly, a change in pressure can be detected by detecting a change in the magnetic permeability or residual magnetic susceptibility of the first super magnetostrictive member 28 as a change in the inductance value of the detection coil 30.

又、この圧力センサ10では、駆動部14の駆動コイル22にインパルス状の電流を流すことによって、第2磁気ヨーク24を介して、センサ部16の第1超磁歪部材28に所定の応力が印加されるようになっている。   Further, in this pressure sensor 10, a predetermined stress is applied to the first giant magnetostrictive member 28 of the sensor unit 16 via the second magnetic yoke 24 by passing an impulse current through the drive coil 22 of the drive unit 14. It has come to be.

本発明の発明者は、実験により、本実施例1に係る圧力センサ10に印加される圧力と検出コイル30における電圧との関係についてデータを採取した。なお、本実験においては、駆動部14には、軸径7.4mm、軸長8mmの第2超磁歪部材20と、線径0.2mm、線種UEW、巻数600ターン、コイル長7mmの駆動コイル22を適用し、駆動コイル22に最大値0.3Aのインパルス状の電流を流した。又、センサ部16には、軸径7.4mm、軸長6mmの第1超磁歪部材28と、線径0.2mm、線種UEW、巻数300ターン、コイル長3mmの検出コイル30を適用した。   The inventor of the present invention collected data on the relationship between the pressure applied to the pressure sensor 10 according to the first embodiment and the voltage in the detection coil 30 through experiments. In this experiment, the drive unit 14 includes a second giant magnetostrictive member 20 having a shaft diameter of 7.4 mm and a shaft length of 8 mm, a drive having a wire diameter of 0.2 mm, a wire type UEW, a winding number of 600 turns, and a coil length of 7 mm. The coil 22 was applied, and an impulse current having a maximum value of 0.3 A was passed through the drive coil 22. Further, the sensor section 16 is applied with a first giant magnetostrictive member 28 having an axial diameter of 7.4 mm and an axial length of 6 mm, and a detection coil 30 having a wire diameter of 0.2 mm, a wire type UEW, a number of turns of 300 turns, and a coil length of 3 mm. .

又、比較例として、同じ圧力センサ10を用いて、本発明に係る磁気ヒステリシス低減方法を適用しなかった場合(センサ部16の第1超磁歪部材28に応力を印加しなかった場合)についてもデータを採取した。   As a comparative example, the same pressure sensor 10 is used and the magnetic hysteresis reducing method according to the present invention is not applied (when no stress is applied to the first giant magnetostrictive member 28 of the sensor unit 16). Data was collected.

その結果、図3に示されるように、実線で示される本実施例1に係る圧力センサ10では、点線で示される比較例の圧力センサに比べ、実験を行った圧力0(kgf/cm)〜約500(kgf/cm)の全範囲において磁気ヒステリシスが低減されていることが確認された。なお、比較例の圧力センサの磁気ヒステリシスの最大幅は12.308(v)であったのに対して、本実施例1に係る圧力センサ10の磁気ヒステリシスの最大幅は7.143(v)で、磁気ヒステリシスは約41.964%(=(1−7.143/12.308)×100)減少した。このことは、駆動部14によりセンサ部16の第1超磁歪部材28に所定の応力を印加したことによって、第1超磁歪部材28の残留磁気が除去され、磁気ヒステリシスが低減されたことを意味している。 As a result, as shown in FIG. 3, in the pressure sensor 10 according to the first embodiment indicated by the solid line, the pressure of the experiment was 0 (kgf / cm 2 ) compared to the pressure sensor of the comparative example indicated by the dotted line. It was confirmed that the magnetic hysteresis was reduced in the entire range of ˜about 500 (kgf / cm 2 ). The maximum width of the magnetic hysteresis of the pressure sensor of the comparative example was 12.308 (v), whereas the maximum width of the magnetic hysteresis of the pressure sensor 10 according to the first embodiment was 7.143 (v). Thus, the magnetic hysteresis decreased by about 41.964% (= (1−7.143 / 12.308) × 100). This means that by applying a predetermined stress to the first giant magnetostrictive member 28 of the sensor unit 16 by the drive unit 14, the residual magnetism of the first giant magnetostrictive member 28 is removed and the magnetic hysteresis is reduced. doing.

本実施例1に係る圧力センサ10によれば、第1超磁歪部材28及びこの第1超磁歪部材28の透磁率又は残留磁化量の変化を検出するための検出コイル(検出手段)30を備え、圧力の変化を、第1超磁歪部材28の変形に基づく透磁率又は残留磁化量の変化として検出可能なセンサ部16と、第2超磁歪部材20及びこの第2超磁歪部材20を伸縮可能な駆動コイル22を備えた駆動部14と、を有してなり、駆動部14は、駆動コイル22にインパルス状の電流を流すことによって、センサ部16の第1超磁歪部材28に所定の応力を印加可能に構成されているため、第1超磁歪部材28の残留磁気を除去することによって、磁気ヒステリシスを効果的に低減し、圧力の変化を高精度で検出することができる。又、従来の圧力センサのように径方向に装置が大型化することがなく、従来の圧力センサに比べ小型化が可能である。   The pressure sensor 10 according to the first embodiment includes the first giant magnetostrictive member 28 and a detection coil (detection means) 30 for detecting a change in the permeability or residual magnetization amount of the first giant magnetostrictive member 28. The sensor unit 16 capable of detecting a change in pressure as a change in permeability or residual magnetization based on the deformation of the first giant magnetostrictive member 28, the second giant magnetostrictive member 20, and the second giant magnetostrictive member 20 can be expanded and contracted. And a drive unit 14 including a drive coil 22, and the drive unit 14 causes an impulse current to flow through the drive coil 22, thereby applying a predetermined stress to the first giant magnetostrictive member 28 of the sensor unit 16. Therefore, by removing the residual magnetism of the first giant magnetostrictive member 28, the magnetic hysteresis can be effectively reduced, and the change in pressure can be detected with high accuracy. Further, the apparatus does not increase in size in the radial direction as in the conventional pressure sensor, and can be reduced in size as compared with the conventional pressure sensor.

特に、超磁歪素子を材料とする第1超磁歪部材28を用いているため、圧力変化の検出感度をより一層高めることができる。   In particular, since the first giant magnetostrictive member 28 made of a giant magnetostrictive element is used, the pressure change detection sensitivity can be further enhanced.

又、センサ部16における第1超磁歪部材28及び検出コイル30と、駆動部14における第2超磁歪部材20及び駆動コイル22との間には、第2磁気ヨーク(磁性部材)24が配設されているため、駆動部14から発生する磁気ノイズや熱がセンサ部16に及ぶのを阻止することができ、磁気ノイズや熱に起因する検出誤差の発生を防止することができる。   A second magnetic yoke (magnetic member) 24 is disposed between the first giant magnetostrictive member 28 and the detection coil 30 in the sensor unit 16 and the second giant magnetostrictive member 20 and the drive coil 22 in the drive unit 14. Therefore, it is possible to prevent the magnetic noise and heat generated from the drive unit 14 from reaching the sensor unit 16, and to prevent the occurrence of detection errors due to the magnetic noise and heat.

更に、センサ部16における第1超磁歪部材28及び駆動部14における第2超磁歪部材20は、第2磁気ヨーク(磁性部材)24に固定されているため、部材間に発生する繰り返し応力による第1、第2超磁歪部材20、28の破損等を未然に防止することができる。   Furthermore, since the first giant magnetostrictive member 28 in the sensor unit 16 and the second giant magnetostrictive member 20 in the drive unit 14 are fixed to the second magnetic yoke (magnetic member) 24, the first giant magnetostrictive member 28 is fixed by the repetitive stress generated between the members. The breakage of the first and second giant magnetostrictive members 20 and 28 can be prevented in advance.

又、センサ部16における第1超磁歪部材28には、皿ばね38によって所定の予荷重が印加されているため、この点においても圧力変化の検出感度が高められている。   In addition, since a predetermined preload is applied to the first giant magnetostrictive member 28 in the sensor unit 16 by the disc spring 38, the detection sensitivity of the pressure change is enhanced also in this respect.

なお、駆動コイル22の軸方向両側には、第1、第2磁気ヨーク18、24が配設されており、第2超磁歪部材28に対して駆動コイル22の磁界を効率的に印加することができる。又、検出コイル30の軸方向両側には、第2、第3磁気ヨーク24、32が配設されており、第1超磁歪部材28の透磁率又は残留磁化量の変化を検出コイル30で効率的に検出することができる。   Note that first and second magnetic yokes 18 and 24 are disposed on both sides in the axial direction of the drive coil 22, and the magnetic field of the drive coil 22 is efficiently applied to the second giant magnetostrictive member 28. Can do. Further, second and third magnetic yokes 24 and 32 are disposed on both sides in the axial direction of the detection coil 30, and the detection coil 30 efficiently changes the permeability or residual magnetization amount of the first super magnetostrictive member 28. Can be detected automatically.

本発明の発明者は、上記実施例1に係る圧力センサ10の駆動コイル22に代えて、線径1.0mm、線種UEW、巻数20ターン、コイル長7mmの駆動コイル22を適用すると共に、この駆動コイル22に最大値5.0Aのインパルス状の電流を流し、上記実施例1と同様の実験を行った。   The inventor of the present invention applies a drive coil 22 having a wire diameter of 1.0 mm, a wire type UEW, a winding number of 20 turns, and a coil length of 7 mm instead of the drive coil 22 of the pressure sensor 10 according to the first embodiment. An impulse-like current having a maximum value of 5.0 A was passed through the drive coil 22 and the same experiment as in Example 1 was performed.

その結果、図4に示されるように、実線で示される本実施例2に係る圧力センサ40では、点線で示される比較例の圧力センサに比べ、実験を行った圧力0(kgf/cm)〜約500(kgf/cm)の全範囲において磁気ヒステリシスが低減されていることが確認された。なお、比較例の圧力センサの磁気ヒステリシスの最大幅は12.308(v)であったのに対して、本実施例2に係る圧力センサ40の磁気ヒステリシスの最大幅は8.955(v)で、磁気ヒステリシスは約27.239%(=(1−8.955/12.308)×100)減少した。このことは、駆動部14によりセンサ部16の第1超磁歪部材28に所定の応力を印加したことによって、第1超磁歪部材28の残留磁気が除去され、磁気ヒステリシスが低減されたことを意味している。 As a result, as shown in FIG. 4, in the pressure sensor 40 according to the second embodiment indicated by the solid line, the pressure of the experiment was 0 (kgf / cm 2 ) compared to the pressure sensor of the comparative example indicated by the dotted line. It was confirmed that the magnetic hysteresis was reduced in the entire range of ˜about 500 (kgf / cm 2 ). The maximum width of the magnetic hysteresis of the pressure sensor of the comparative example was 12.308 (v), whereas the maximum width of the magnetic hysteresis of the pressure sensor 40 according to the second embodiment was 8.955 (v). Thus, the magnetic hysteresis decreased by about 27.239% (= (1−8.955 / 12.308) × 100). This means that by applying a predetermined stress to the first giant magnetostrictive member 28 of the sensor unit 16 by the drive unit 14, the residual magnetism of the first giant magnetostrictive member 28 is removed and the magnetic hysteresis is reduced. doing.

このように、本実施例2に係る圧力センサ40によっても、上記実施例1の圧力センサ10と同様に、小型化が可能でありながら、同時に、磁気ヒステリシスを効果的に低減し、圧力の変化を高精度で検出することができる。又、駆動コイル22の諸元(線径、巻数等)を変えることによって、磁気ヒステリシスを低減しつつ、圧力センサの特性を変化させることができる。   As described above, the pressure sensor 40 according to the second embodiment can be reduced in size as well as the pressure sensor 10 according to the first embodiment, and at the same time, the magnetic hysteresis is effectively reduced, and the pressure change. Can be detected with high accuracy. Also, by changing the specifications (wire diameter, number of turns, etc.) of the drive coil 22, the characteristics of the pressure sensor can be changed while reducing the magnetic hysteresis.

なお、本発明に係る圧力センサは、上記実施例1及び2に係る圧力センサ10(40)の形状や構造等に限定されるものではない。   The pressure sensor according to the present invention is not limited to the shape and structure of the pressure sensor 10 (40) according to the first and second embodiments.

従って、例えば、上記実施例1及び2においては、圧力の変化を検出するための検出手段として検出コイル30を適用したが、本発明はこれに限定されるものではなく、図5に示される圧力センサ50のように、圧力の変化を検出するための検出手段としてホール素子52(又はMR、GMR等の磁気抵抗効果素子)を適用し、第1超磁歪部材28の透磁率又は残留磁化量の変化をホール素子52(又は磁気抵抗効果素子)の起電力変化として検出するようにしてもよい。   Therefore, for example, in the first and second embodiments, the detection coil 30 is applied as detection means for detecting a change in pressure. However, the present invention is not limited to this, and the pressure shown in FIG. Like the sensor 50, the Hall element 52 (or magnetoresistive effect element such as MR or GMR) is applied as a detecting means for detecting a change in pressure, and the permeability or residual magnetization amount of the first super magnetostrictive member 28 is determined. The change may be detected as a change in electromotive force of the Hall element 52 (or magnetoresistive element).

又、圧力センサの検出感度が十分に得られる場合等には、必ずしも第1超磁歪部材28に予荷重を印加する必要はなく、又、超磁歪部材の代わりに、磁歪素子からなる磁歪部材を適用してもよい。   In addition, when the detection sensitivity of the pressure sensor is sufficiently obtained, it is not always necessary to apply a preload to the first giant magnetostrictive member 28, and instead of the giant magnetostrictive member, a magnetostrictive member made of a magnetostrictive element is used. You may apply.

即ち、本発明に係る圧力センサは、第1磁歪部材及び該第1磁歪部材の透磁率又は残留磁化量の変化を検出するための検出手段を備え、圧力の変化を前記第1磁歪部材の変形に基づく透磁率又は残留磁化量の変化として検出可能なセンサ部と、第2磁歪部材及び該第2磁歪部材を伸縮可能な駆動コイルを備えた駆動部と、を有してなり、該駆動部は、前記駆動コイルにインパルス状の電流を流すことによって、前記センサ部における第1磁歪部材に所定の応力を印加可能に構成されていればよい。   That is, the pressure sensor according to the present invention includes a first magnetostrictive member and detection means for detecting a change in the magnetic permeability or residual magnetization amount of the first magnetostrictive member, and changes in the pressure are deformed by the first magnetostrictive member. A sensor unit that can be detected as a change in magnetic permeability or residual magnetization based on the second magnetostrictive member, and a drive unit that includes a second magnetostrictive member and a drive coil that can extend and contract the second magnetostrictive member. May be configured such that a predetermined stress can be applied to the first magnetostrictive member in the sensor unit by flowing an impulse-like current through the drive coil.

本発明の実施例1に係る圧力センサの略示側断面図1 is a schematic side sectional view of a pressure sensor according to a first embodiment of the present invention. 図1におけるII−II線に沿う略示断面図Schematic sectional view taken along line II-II in FIG. 本発明の実施例1に係る圧力センサに印加された圧力と検出コイルにおける電圧との関係を示したグラフThe graph which showed the relationship between the pressure applied to the pressure sensor which concerns on Example 1 of this invention, and the voltage in a detection coil. 本発明の実施例2に係る圧力センサに印加された圧力と検出コイルにおける電圧との関係を示したグラフThe graph which showed the relationship between the pressure applied to the pressure sensor which concerns on Example 2 of this invention, and the voltage in a detection coil. 本発明の実施例1に係る圧力センサの検出手段としてホール素子を適用した例を示す略示断面図Schematic sectional view showing an example in which a Hall element is applied as detection means of a pressure sensor according to Embodiment 1 of the present invention 一般的な圧力センサにおける圧力とインダクタンス値の関係を示したグラフA graph showing the relationship between pressure and inductance in a typical pressure sensor 従来の圧力センサの略示側断面図Schematic side sectional view of a conventional pressure sensor

符号の説明Explanation of symbols

1、10、40、50…圧力センサ
2…超磁歪素子
3…第1コイル
4…第2コイル
12…ケーシング
14…駆動部
16…センサ部
18…第1磁気ヨーク
20…第2超磁歪部材
22…駆動コイル
24…第2磁気ヨーク
26…ゴム
28…第1超磁歪部材
30…検出コイル
32…第3磁気ヨーク
36…伝達ロッド
38…皿ばね
52…ホール素子
DESCRIPTION OF SYMBOLS 1, 10, 40, 50 ... Pressure sensor 2 ... Giant magnetostrictive element 3 ... 1st coil 4 ... 2nd coil 12 ... Casing 14 ... Drive part 16 ... Sensor part 18 ... 1st magnetic yoke 20 ... 2nd giant magnetostrictive member 22 ... Drive coil 24 ... Second magnetic yoke 26 ... Rubber 28 ... First giant magnetostrictive member 30 ... Detection coil 32 ... Third magnetic yoke 36 ... Transmission rod 38 ... Belleville spring 52 ... Hall element

Claims (9)

第1磁歪部材及び該第1磁歪部材の透磁率又は残留磁化量の変化を検出するための検出手段を備え、圧力の変化を前記第1磁歪部材の変形に基づく透磁率又は残留磁化量の変化として検出可能なセンサ部と、第2磁歪部材及び該第2磁歪部材を伸縮可能な駆動コイルを備えた駆動部と、を有してなり、該駆動部は、前記駆動コイルにインパルス状の電流を流すことによって、前記センサ部における第1磁歪部材に所定の応力を印加可能に構成されていることを特徴とする圧力センサ。   A first magnetostrictive member and detection means for detecting a change in the magnetic permeability or residual magnetization amount of the first magnetostrictive member are provided, and the change in the pressure or the residual magnetization amount based on the deformation of the first magnetostrictive member is provided. And a drive unit having a second magnetostrictive member and a drive coil capable of expanding and contracting the second magnetostrictive member, and the drive unit has an impulse current in the drive coil. The pressure sensor is configured so that a predetermined stress can be applied to the first magnetostrictive member in the sensor unit by flowing a flow of gas. 請求項1において、
前記センサ部における第1磁歪部材及び検出手段と、前記駆動部における第2磁歪部材及び駆動コイルとの間には、磁性部材が配設されていることを特徴とする圧力センサ。
In claim 1,
A pressure sensor, wherein a magnetic member is disposed between a first magnetostrictive member and detection means in the sensor unit and a second magnetostrictive member and drive coil in the drive unit.
請求項2において、
前記センサ部における第1磁歪部材及び前記駆動部における第2磁歪部材は、前記磁性部材に固定されていることを特徴とする圧力センサ。
In claim 2,
The pressure sensor, wherein the first magnetostrictive member in the sensor unit and the second magnetostrictive member in the drive unit are fixed to the magnetic member.
請求項1乃至3のいずれかにおいて、
前記センサ部における第1磁歪部材には、所定の予荷重が印加されていることを特徴とする圧力センサ。
In any one of Claims 1 thru | or 3,
A pressure sensor, wherein a predetermined preload is applied to the first magnetostrictive member in the sensor section.
請求項1乃至4のいずれかにおいて、
前記センサ部における検出手段は、前記第1磁歪部材の外周を囲むように配設された検出コイルを含み、前記第1磁歪部材の透磁率又は残留磁化量の変化を前記検出コイルのインダクタンス値の変化として検出するようにしたことを特徴とする圧力センサ。
In any one of Claims 1 thru | or 4,
The detection means in the sensor unit includes a detection coil disposed so as to surround the outer periphery of the first magnetostrictive member, and a change in the magnetic permeability or residual magnetization of the first magnetostrictive member is calculated as an inductance value of the detection coil. A pressure sensor characterized by being detected as a change.
請求項1乃至4のいずれかにおいて、
前記センサ部における検出手段はホール素子を含み、前記第1磁歪部材の透磁率又は残留磁化量の変化を前記ホール素子の起電力変化として検出するようにしたことを特徴とする圧力センサ。
In any one of Claims 1 thru | or 4,
The detection means in the sensor section includes a Hall element, and a change in the magnetic permeability or residual magnetization amount of the first magnetostrictive member is detected as a change in electromotive force of the Hall element.
請求項1乃至4のいずれかにおいて、
前記センサ部における検出手段は磁気抵抗効果素子を含み、前記第1磁歪部材の透磁率又は残留磁化量の変化を前記磁気抵抗効果素子の起電力変化として検出するようにしたことを特徴とする圧力センサ。
In any one of Claims 1 thru | or 4,
The detecting means in the sensor unit includes a magnetoresistive effect element, and detects a change in permeability or residual magnetization amount of the first magnetostrictive member as a change in electromotive force of the magnetoresistive effect element. Sensor.
請求項1乃至7のいずれかにおいて、
前記センサ部における第1磁歪部材及び前記駆動部における第2磁歪部材の少なくとも一方は、超磁歪素子を材料とする超磁歪部材からなることを特徴とする圧力センサ。
In any one of Claims 1 thru | or 7,
At least one of the first magnetostrictive member in the sensor unit and the second magnetostrictive member in the drive unit is composed of a giant magnetostrictive member made of a giant magnetostrictive element.
磁歪部材の変形に基づく透磁率又は残留磁化量の変化によって圧力の変化を検出可能な圧力センサの磁気ヒステリシス低減方法であって、前記磁歪部材に所定の応力を印加することによって、前記磁歪部材の残留磁気を除去することを特徴とする圧力センサの磁気ヒステリシス低減方法。   A method for reducing magnetic hysteresis of a pressure sensor capable of detecting a change in pressure by a change in permeability or residual magnetization based on deformation of a magnetostrictive member, wherein a predetermined stress is applied to the magnetostrictive member, A method for reducing magnetic hysteresis of a pressure sensor, characterized by removing residual magnetism.
JP2004092702A 2004-03-26 2004-03-26 Pressure sensor and magnetic hysteresis reduction method thereof Expired - Fee Related JP4327640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004092702A JP4327640B2 (en) 2004-03-26 2004-03-26 Pressure sensor and magnetic hysteresis reduction method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004092702A JP4327640B2 (en) 2004-03-26 2004-03-26 Pressure sensor and magnetic hysteresis reduction method thereof

Publications (2)

Publication Number Publication Date
JP2005283126A true JP2005283126A (en) 2005-10-13
JP4327640B2 JP4327640B2 (en) 2009-09-09

Family

ID=35181706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004092702A Expired - Fee Related JP4327640B2 (en) 2004-03-26 2004-03-26 Pressure sensor and magnetic hysteresis reduction method thereof

Country Status (1)

Country Link
JP (1) JP4327640B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102721490A (en) * 2012-07-09 2012-10-10 河北工业大学 Passive pressure sensor based on giant magnetostrictive material Terfenol-D
JP2021139881A (en) * 2020-03-09 2021-09-16 ▲華▼中科技大学Huazhong University Of Science And Technology Flexible piezoelectric sensor based on 4d printing, and manufacturing method for the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102721490A (en) * 2012-07-09 2012-10-10 河北工业大学 Passive pressure sensor based on giant magnetostrictive material Terfenol-D
JP2021139881A (en) * 2020-03-09 2021-09-16 ▲華▼中科技大学Huazhong University Of Science And Technology Flexible piezoelectric sensor based on 4d printing, and manufacturing method for the same
JP7049431B2 (en) 2020-03-09 2022-04-06 ▲華▼中科技大学 Flexible piezoelectric sensor based on 3D printing and its manufacturing method

Also Published As

Publication number Publication date
JP4327640B2 (en) 2009-09-09

Similar Documents

Publication Publication Date Title
JP2007086018A (en) Magnetostrictive torque sensor
US7225686B2 (en) Torque sensing apparatus
JP4327640B2 (en) Pressure sensor and magnetic hysteresis reduction method thereof
KR102234582B1 (en) Method for operating a magnetostrictive sensor
JP2003194639A (en) Force sensor
JP2006513422A (en) Sensor with magnetic field optimization means
JP4080438B2 (en) Giant magnetostriction unit
CN101192464B (en) Method for cancelling hysteresis of magnetoelastic torque sensor
JP2005274160A (en) Torque sensor
JP2005351750A (en) Torsional torque sensor for shaft member and manufacturing method therefor
US7219552B2 (en) Scalable high sensitivity magnetostrictive pressure sensor
JP2006038648A (en) Sensing method of sensor and magnetostrictive sensor
JP2007101427A (en) Magnetic head for magnetostrictive type torque detector
JP2005241567A (en) Pressure sensor
KR20080043006A (en) Method of eliminating hysteresis from a magnetoelastic torque sensor
JP6160769B2 (en) Soft magnetic parts for torque sensors and torque sensors using them
CN109495009B (en) Self-sensing driver based on magnetostrictive material
JP5683001B2 (en) Magnetostrictive torque detector
JP2005530173A5 (en)
JP4680114B2 (en) Magnetostrictive torque sensor for vehicles
JP4897657B2 (en) Magnetostrictive torque sensor device, magnetostrictive torque sensor device for electric steering, and initialization method of magnetostrictive torque sensor device
JP2005241563A (en) Torque sensor
JP2005245103A (en) Supermagnetostrictive unit
JP2011165733A (en) Linear actuator
JP2005274159A (en) Torque sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090609

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090611

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120619

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees