JP4680114B2 - Magnetostrictive torque sensor for vehicles - Google Patents

Magnetostrictive torque sensor for vehicles Download PDF

Info

Publication number
JP4680114B2
JP4680114B2 JP2006096584A JP2006096584A JP4680114B2 JP 4680114 B2 JP4680114 B2 JP 4680114B2 JP 2006096584 A JP2006096584 A JP 2006096584A JP 2006096584 A JP2006096584 A JP 2006096584A JP 4680114 B2 JP4680114 B2 JP 4680114B2
Authority
JP
Japan
Prior art keywords
detection coil
magnetostrictive
detection
torque sensor
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006096584A
Other languages
Japanese (ja)
Other versions
JP2007271417A (en
Inventor
篤彦 米田
康夫 清水
俊一郎 末吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006096584A priority Critical patent/JP4680114B2/en
Priority to US11/818,071 priority patent/US7506554B2/en
Publication of JP2007271417A publication Critical patent/JP2007271417A/en
Application granted granted Critical
Publication of JP4680114B2 publication Critical patent/JP4680114B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Power Steering Mechanism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnetostrictive torque sensor having high trouble detecting accuracy even if temperature gradient arises in a steering shaft. <P>SOLUTION: The magnetostrictive torque sensor 30 for a vehicle has a first magnetostrictive film 31 and second magnetostrictive film 32 disposed in a steering shaft 1 whose upper part is connected with a steering wheel 2 and lower part is connected with a gear mechanism in a steering gear box 20, and detects torque input into the steering shaft 1 based on the variation of the magnetic characteristic of the magnetostrictive films 31 and 32. The torque sensor has first detecting coil 33 and second detecting coil 34 facing the first magnetostrictive film 31, and third detecting coil 35 and fourth detecting coil 36 facing the second magnetostrictive film 32. The first detecting coil 33, second detecting coil 34, third detecting coil 35, and fourth detecting coil 36 are arranged in the closing order to the steering wheel 2, and a sensor abnormality is detected, based on the added value of an intermediate output of the first detecting coil 33 and the third detecting coil 35 to an intermediate output of the second detecting coil 34 and the fourth detecting coil 36. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

この発明は、磁歪に起因する磁気特性の変化に基づいてステアリングシャフトに入力されるトルクを検出する磁歪式トルクセンサに関するものである。   The present invention relates to a magnetostrictive torque sensor that detects torque input to a steering shaft based on a change in magnetic characteristics caused by magnetostriction.

磁歪式トルクセンサには、図3に示すように、磁気異方性を異にする2つの磁歪膜91,92を回転シャフト99に設けるとともに、各磁歪膜91,92に対向してそれぞれ検出コイル93,94を配置して構成されたものがある(特許文献1参照)。この磁歪式トルクセンサ90の原理は、回転シャフト99にトルクが加えられると磁歪膜91,92の透磁率が変化し、これに応じて検出コイル93,94のインダクタンスが変化するので、この変化に基づいてトルクを検出する。   In the magnetostrictive torque sensor, as shown in FIG. 3, two magnetostrictive films 91 and 92 having different magnetic anisotropies are provided on the rotating shaft 99, and the detection coils are respectively opposed to the magnetostrictive films 91 and 92. There is one configured by arranging 93 and 94 (see Patent Document 1). The principle of the magnetostrictive torque sensor 90 is that when the torque is applied to the rotary shaft 99, the magnetic permeability of the magnetostrictive films 91, 92 changes, and the inductance of the detection coils 93, 94 changes accordingly. Torque is detected based on this.

さらに、この磁歪式トルクセンサにおいて検出精度の向上を図った改良型として、図4に示すように、一方の磁歪膜91に対向して1対の検出コイル93a,93bを互いに軸線方向にずらして配置し、他方の磁歪膜92に対向して1対の検出コイル94a,94bを互いに軸線方向にずらして配置し、両外側(最上位と最下位)に配置された2つの検出コイル93a,94bの中間電圧VT1’を検出し、中間に配置された2つの検出コイル93b,94aの中間電圧VT2’を検出し、これら中間電圧VT1’またはVT2’に基づいてトルクを検出するとともに、中間電圧VT1’とVT2’の和により故障検出出力VTF’を算出し、このVTF’に基づいて磁歪式トルクセンサの故障(センサ異常)を検出することが考えられている(特許文献2参照)。
特開昭59−164932号公報 特開2006−64445号公報
Further, as an improved type in which the detection accuracy of the magnetostrictive torque sensor is improved, as shown in FIG. 4, a pair of detection coils 93a and 93b are shifted in the axial direction so as to face one of the magnetostrictive films 91. A pair of detection coils 94a and 94b are arranged so as to be opposed to the other magnetostrictive film 92 and shifted in the axial direction, and two detection coils 93a and 94b are arranged on both outer sides (the highest and the lowest). The intermediate voltage VT1 ′ is detected, the intermediate voltage VT2 ′ of the two detection coils 93b and 94a disposed in the middle is detected, the torque is detected based on the intermediate voltage VT1 ′ or VT2 ′, and the intermediate voltage VT1 is detected. It is considered that a failure detection output VTF 'is calculated from the sum of' and VT2 'and a failure (sensor abnormality) of the magnetostrictive torque sensor is detected based on this VTF' (patent text) See 2).
JP 59-164932 A JP 2006-64445 A

ところで、この磁歪式トルクセンサを車両の操舵トルクを検出する操舵トルクセンサとして用いる場合、操舵トルクセンサはステアリングシャフトに設置され、ステアリングホイールとステアリングギアボックスとの間に配置される。この車両を高速走行後に停止したようなときには、エンジンの熱によりステアリングギアボックスが加熱され、ステアリングシャフトが加熱されるが、ステアリングシャフトの温度分布は一様ではなく、エンジンに近い下側の方がエンジンから遠い上側よりも温度が高くなる。そのため、最下位の検出コイル94bが配置されている部分の温度は高くなり、最上位の検出コイル93aが配置されている部分の温度はそれよりも低くなり、検出コイル93b,94aが配置されている部分の温度はいずれも中間の温度(以下、中温と称す)で略同一になる。   By the way, when this magnetostrictive torque sensor is used as a steering torque sensor for detecting the steering torque of the vehicle, the steering torque sensor is installed on the steering shaft and is arranged between the steering wheel and the steering gear box. When this vehicle is stopped after traveling at a high speed, the steering gear box is heated by the heat of the engine and the steering shaft is heated, but the temperature distribution of the steering shaft is not uniform, and the lower side closer to the engine is lower. The temperature is higher than the upper side far from the engine. Therefore, the temperature of the portion where the lowest detection coil 94b is arranged becomes high, the temperature of the portion where the highest detection coil 93a is arranged becomes lower, and the detection coils 93b and 94a are arranged. The temperatures of the portions are substantially the same at an intermediate temperature (hereinafter referred to as intermediate temperature).

磁歪膜の透磁率μは温度が高くなるほど大きくなる温度特性を有しているため、このようにステアリングシャフトに温度差(温度勾配)が生じていると、中間電圧VT1’は低温部分の検出コイル93aと高温部分の検出コイル94bの中間電圧であり、一方、中間電圧VT2’は中温部分の検出コイル93b,94a同士の中間電圧であるので、無負荷状態においては本来同等であるはずの中間電圧VT1’とVT2’の絶対値が異なってしまう。これにより故障検出出力VTF’がドリフトしてしまい、故障でないにも関わらず、故障と判定される虞があった。このため、故障検出範囲のマージンを大きく取る必要が生じ、故障検出精度の低下を招いていた。
そこで、この発明は、ステアリングシャフトに温度勾配が生じていても故障検出精度が高い磁歪式トルクセンサを提供するものである。
Since the magnetic permeability μ of the magnetostrictive film has a temperature characteristic that increases as the temperature increases, when the temperature difference (temperature gradient) is generated in the steering shaft in this way, the intermediate voltage VT1 ′ is detected by the detection coil in the low temperature portion. Since the intermediate voltage VT2 'is an intermediate voltage between the detection coils 93b and 94a in the intermediate temperature portion, the intermediate voltage that should be essentially equal in the no-load state. The absolute values of VT1 ′ and VT2 ′ are different. As a result, the failure detection output VTF ′ drifts, and there is a possibility that it is determined as a failure although it is not a failure. For this reason, it is necessary to provide a large margin for the failure detection range, leading to a decrease in failure detection accuracy.
Accordingly, the present invention provides a magnetostrictive torque sensor having high failure detection accuracy even when a temperature gradient is generated in a steering shaft.

この発明に係る車両用の磁歪式トルクセンサでは、上記課題を解決するために以下の手段を採用した。
請求項1に係る発明は、上方が操作子(例えば、後述する実施例におけるハンドル2)に連結され下方がエンジンルーム内のステアリングギヤボックス(例えば、後述する実施例におけるステアリングギヤボックス20)に納められたギヤ機構(例えば、後述する実施例におけるピニオン7,ラック歯8a)に連結されるステアリングシャフト(例えば、後述する実施例におけるステアリングシャフト1)に第1磁歪膜(例えば、後述する実施例における第1磁歪膜31)と第2磁歪膜(例えば、後述する実施例における第2磁歪膜32)を設け、これら磁歪膜の磁気特性の変化に基づいて前記ステアリングシャフトに入力されるトルクを検出する車両用の磁歪式トルクセンサ(例えば、後述する実施例における磁歪式トルクセンサ30)であって、前記第1磁歪膜に対向配置された第1検出コイル(例えば、後述する実施例における第1検出コイル33)および第2検出コイル(例えば、後述する実施例における第2検出コイル34)と、前記第2磁歪膜に対向配置された第3検出コイル(例えば、後述する実施例における第3検出コイル35)および第4検出コイル(例えば、後述する実施例における第4検出コイル36)と、を備え、前記操作子から近い順に前記第1検出コイル、第2検出コイル、第3検出コイル、第4検出コイルが配置され、前記第1検出コイルと前記第3検出コイルの中間出力(例えば、後述する実施例における中間電圧VT1)と、前記第2検出コイルと前記第4検出コイルの中間出力(例えば、後述する実施例における中間電圧VT2)との加算値(例えば、後述する実施例における故障検出出力VTF)に基づいてセンサ異常を検出する車両用の磁歪式トルクセンサであって、前記第1検出コイルの一端と前記第3検出コイルの一端が接続されることにより前記第1検出コイルと前記第3検出コイルとが直列に接続され、前記第2検出コイルの一端と前記第4検出コイルの一端が接続されることにより前記第2検出コイルと前記第4検出コイルとが直列に接続され、直列に接続された前記第1検出コイルおよび前記第3検出コイルは、直列に接続された前記第2検出コイルおよび前記第4検出コイルと並列に接続され、前記第1検出コイルの他端と前記第4検出コイルの他端が接続され、前記第2検出コイルの他端と前記第3検出コイルの他端が接続されており、前記第1検出コイル、前記第2検出コイル、前記第3検出コイル、前記第4検出コイルは矩形波電圧により励磁されることを特徴とする車両用の磁歪式トルクセンサである。
The vehicular magnetostrictive torque sensor according to the present invention employs the following means in order to solve the above problems.
According to the first aspect of the present invention, the upper part is connected to an operating element (for example, a handle 2 in an embodiment described later) and the lower part is accommodated in a steering gear box (for example, a steering gear box 20 in an embodiment described later) in the engine room. The first magnetostrictive film (for example, in the embodiments described later) is connected to the steering shaft (for example, the steering shaft 1 in the embodiments described later) connected to the gear mechanism (for example, the pinion 7 and rack teeth 8a in the embodiments described later). A first magnetostrictive film 31) and a second magnetostrictive film (for example, a second magnetostrictive film 32 in an embodiment to be described later) are provided, and torque input to the steering shaft is detected based on a change in magnetic characteristics of these magnetostrictive films. A magnetostrictive torque sensor for a vehicle (for example, a magnetostrictive torque sensor 30 in an embodiment described later). Thus, the first detection coil (for example, the first detection coil 33 in the embodiment described later) and the second detection coil (for example, the second detection coil 34 in the embodiment described later) disposed opposite to the first magnetostrictive film. A third detection coil (for example, a third detection coil 35 in an embodiment described later) and a fourth detection coil (for example, a fourth detection coil 36 in an embodiment described later) opposed to the second magnetostrictive film. , wherein the the order of proximity to the said operator first detection coil, the second detection coil, a third detection coil, the fourth detection coil is arranged, the intermediate output of the previous SL first detection coil and the third detection coil (For example, an intermediate voltage VT1 in an embodiment described later) and an added value of an intermediate output (for example, an intermediate voltage VT2 in an embodiment described later) of the second detection coil and the fourth detection coil For example, a magnetostrictive torque sensor for a vehicle for detecting one end of the one end and the third detection coil of said first detection coil is connected to the sensor abnormality based on failure detection output VTF) in Examples described later Thus, the first detection coil and the third detection coil are connected in series, and one end of the second detection coil and one end of the fourth detection coil are connected, whereby the second detection coil and the fourth detection coil are connected. A detection coil is connected in series, and the first detection coil and the third detection coil connected in series are connected in parallel to the second detection coil and the fourth detection coil connected in series, The other end of the first detection coil and the other end of the fourth detection coil are connected, and the other end of the second detection coil and the other end of the third detection coil are connected. The second detection coil, the third detection coil, and the fourth detection coil are excited by a rectangular wave voltage, and are a magnetostrictive torque sensor for a vehicle.

ステアリングシャフトに温度勾配が生じ、第1磁歪膜および第2磁歪膜においても下方に行くにしたがって温度が高くなる温度勾配が生じたとき、第1検出コイルが配置された部位の温度は低温、第2,第3検出コイルが配置された部位の温度は中温、第4検出コイルが配置された部位の温度は高温になる。この磁歪式トルクセンサでは、低温の第1検出コイルと中温の第3検出コイルの中間出力と、中温の第2検出コイルと高温の第4検出コイルの中間出力との加算値に基づいて磁歪式トルクセンサの異常(故障)を検出するが、この場合、第1検出コイルと第3検出コイルの中間出力と、第2検出コイルと第4検出コイルの中間出力との加算値の出力を規定値(例えば5V)と略等しくすることができ、故障検出信号のドリフトを防止することができる。   When a temperature gradient is generated in the steering shaft, and a temperature gradient is generated in which the temperature increases in the first magnetostrictive film and the second magnetostrictive film in the downward direction, the temperature of the portion where the first detection coil is disposed is low, 2, the temperature of the part where the third detection coil is arranged is medium temperature, and the temperature of the part where the fourth detection coil is arranged is high. In this magnetostrictive torque sensor, the magnetostrictive torque sensor is based on the sum of the intermediate output of the low temperature first detection coil and the intermediate temperature third detection coil and the intermediate output of the intermediate temperature second detection coil and the high temperature fourth detection coil. An abnormality (failure) of the torque sensor is detected. In this case, the output of the added value of the intermediate output of the first detection coil and the third detection coil and the intermediate output of the second detection coil and the fourth detection coil is set to a specified value. (For example, 5 V), and drift of the failure detection signal can be prevented.

請求項1に係る発明によれば、第1検出コイルと第3検出コイルの中間出力と、第2検出コイルと第4検出コイルの中間出力との加算値を略等しくすることができるので、ステアリングシャフトに温度勾配が生じているときであっても、それぞれの中間出力の加算値である故障検出信号のドリフトを防止することができる。その結果、故障検出範囲を従来より狭く設定することができ、従来よりも故障検出の誤検出を低減して故障検出精度を高めることができる。   According to the first aspect of the present invention, the added value of the intermediate output of the first detection coil and the third detection coil and the intermediate output of the second detection coil and the fourth detection coil can be made substantially equal. Even when a temperature gradient is generated on the shaft, it is possible to prevent a drift of a failure detection signal that is an added value of each intermediate output. As a result, the failure detection range can be set narrower than in the prior art, and erroneous detection of failure detection can be reduced as compared with the prior art, and failure detection accuracy can be increased.

以下、この発明に係る車両用の磁歪式トルクセンサの実施例を図1および図2の図面を参照して説明する。
図1に示すように、車両用電動パワーステアリング装置100はハンドル(操作子)2に連結されたステアリングシャフト1を備えている。ステアリングシャフト1は、ハンドル2に一体結合されたメインステアリングシャフト3と、ラック&ピニオン機構のピニオン7が設けられたピニオン軸5とが、ユニバーサルジョイント4によって連結されて構成されている。
Embodiments of a magnetostrictive torque sensor for a vehicle according to the present invention will be described below with reference to the drawings of FIGS.
As shown in FIG. 1, the electric power steering device 100 for a vehicle includes a steering shaft 1 connected to a handle (operator) 2. The steering shaft 1 is constituted by connecting a main steering shaft 3 integrally coupled to a handle 2 and a pinion shaft 5 provided with a pinion 7 of a rack and pinion mechanism by a universal joint 4.

ピニオン軸5はその下部、中間部、上部を軸受6a,6b,6cによって支持されており、ピニオン7はピニオン軸5の下端部に設けられている。ピニオン7は、車幅方向に往復動し得るラック軸8のラック歯8aに噛合し、ラック軸8の両端には、タイロッド9,9を介して転舵輪としての左右の前輪10,10が連結されている。この構成により、ハンドル2の操舵時に通常のラック&ピニオン式の転舵操作が可能であり、前輪10,10を転舵させて車両の向きを変えることができる。ここで、ラック軸8、ラック8a、タイロッド9,9は転舵機構を構成し、ピニオン7とラック歯8aはギヤ機構を構成する。   The lower part, the middle part, and the upper part of the pinion shaft 5 are supported by bearings 6 a, 6 b and 6 c, and the pinion 7 is provided at the lower end part of the pinion shaft 5. The pinion 7 meshes with the rack teeth 8a of the rack shaft 8 that can reciprocate in the vehicle width direction, and left and right front wheels 10, 10 as steered wheels are connected to both ends of the rack shaft 8 via tie rods 9, 9. Has been. With this configuration, a normal rack and pinion type steering operation can be performed when the steering wheel 2 is steered, and the front wheels 10 and 10 can be steered to change the direction of the vehicle. Here, the rack shaft 8, the rack 8a, and the tie rods 9 and 9 constitute a turning mechanism, and the pinion 7 and the rack teeth 8a constitute a gear mechanism.

また、電動パワーステアリング装置100は、ハンドル2による操舵力を軽減するための補助操舵力を供給する電動機11を備えており、この電動機11の出力軸に設けられたウォームギヤ12が、ピニオン軸5において中間部の軸受6bの下側に設けられたウォームホイールギヤ13に噛合している。
また、ピニオン軸5において中間部の軸受6bと上部の軸受6cとの間には、磁歪に起因する磁気特性の変化に基づいてトルクを検出する磁歪式トルクセンサ30が配置されている。
ピニオン軸5、ラック8、ウォームギヤ12、ウォームホイールギヤ13、磁歪式トルクセンサ30は、エンジンルーム内のステアリングギヤボックス20に収容されている。
The electric power steering apparatus 100 includes an electric motor 11 that supplies an auxiliary steering force for reducing the steering force by the handle 2, and a worm gear 12 provided on the output shaft of the electric motor 11 is connected to the pinion shaft 5. It meshes with a worm wheel gear 13 provided below the intermediate bearing 6b.
In the pinion shaft 5, a magnetostrictive torque sensor 30 that detects torque based on a change in magnetic characteristics caused by magnetostriction is disposed between the intermediate bearing 6b and the upper bearing 6c.
The pinion shaft 5, the rack 8, the worm gear 12, the worm wheel gear 13, and the magnetostrictive torque sensor 30 are accommodated in a steering gear box 20 in the engine room.

磁歪式トルクセンサ30は、ピニオン軸5の外周面に周方向全周に亘って環状に設けられた第1磁歪膜31および第2磁歪膜32と、第1磁歪膜31に対向配置された第1検出コイル33および第2検出コイル34と、第2磁歪膜32に対向配置された第3検出コイル35および第4検出コイル36と、第1、第2、第3、第4検出コイル33,34,35,36にそれぞれ接続された検出回路37,38,39,40を主要構成としている。
第1、第2磁歪膜31,32は、歪みに対して透磁率の変化が大きい素材からなる金属膜であり、例えば、ピニオン軸5の外周にメッキ法で形成したNi−Fe系の合金膜からなる。第1磁歪膜31は第2磁歪膜32よりもハンドル2に近い側(すなわち、図1において上側)に配置されている。
The magnetostrictive torque sensor 30 includes a first magnetostrictive film 31 and a second magnetostrictive film 32 that are annularly provided on the outer peripheral surface of the pinion shaft 5 over the entire circumferential direction, and a first magnetostrictive film 31 that is disposed opposite to the first magnetostrictive film 31. 1 detection coil 33 and 2nd detection coil 34, 3rd detection coil 35 and 4th detection coil 36 which are arranged opposite to the 2nd magnetostriction film 32, 1st, 2nd, 3rd, 4th detection coil 33, Detection circuits 37, 38, 39, and 40 connected to 34, 35, and 36, respectively, are the main components.
The first and second magnetostrictive films 31 and 32 are metal films made of a material having a large change in magnetic permeability with respect to strain. For example, a Ni—Fe alloy film formed by plating on the outer periphery of the pinion shaft 5. Consists of. The first magnetostrictive film 31 is disposed closer to the handle 2 than the second magnetostrictive film 32 (that is, the upper side in FIG. 1).

第1磁歪膜31は、ピニオン軸5の軸線に対して約45度傾斜した方向に磁気異方性を備えるように構成されており、第2磁歪膜32は、第1磁歪膜31の磁気異方性の方向に対して約90度傾斜した方向に磁気異方性を備えるように構成されている。すなわち、2つの磁歪膜31,32の磁気異方性は互いに約90度位相を異にしている。
第1検出コイル33および第2検出コイル34は、第1磁歪膜31の周囲にこれと所定の隙間を有した状態で同軸状に配置されており、第1検出コイル33は第2検出コイル34よりもハンドル2に近い側(すなわち、図1において上側)に配置されている。
第3検出コイル35および第4検出コイル36は、第2磁歪膜32の周囲にこれと所定の隙間を有した状態で同軸状に配置されており、第3検出コイル35は第4検出コイル36よりもハンドル2に近い側(すなわち、図1において上側)に配置されている。
したがって、ハンドル2に近い方から順に、第1検出コイル33、第2検出コイル34、第3検出コイル35、第4検出コイル36が配置されている。
The first magnetostrictive film 31 is configured to have magnetic anisotropy in a direction inclined by about 45 degrees with respect to the axis of the pinion shaft 5, and the second magnetostrictive film 32 is magnetically different from the first magnetostrictive film 31. The magnetic anisotropy is provided in a direction inclined by about 90 degrees with respect to the direction of the isotropic property. That is, the magnetic anisotropy of the two magnetostrictive films 31 and 32 are approximately 90 degrees out of phase with each other.
The first detection coil 33 and the second detection coil 34 are arranged coaxially around the first magnetostrictive film 31 with a predetermined gap therebetween, and the first detection coil 33 is the second detection coil 34. It is arranged on the side closer to the handle 2 (that is, the upper side in FIG. 1).
The third detection coil 35 and the fourth detection coil 36 are arranged coaxially around the second magnetostrictive film 32 with a predetermined gap therebetween, and the third detection coil 35 is the fourth detection coil 36. It is arranged on the side closer to the handle 2 (that is, the upper side in FIG. 1).
Therefore, the first detection coil 33, the second detection coil 34, the third detection coil 35, and the fourth detection coil 36 are arranged in order from the side closer to the handle 2.

第1、第2磁歪膜31,32の磁気異方性を前述のように設定したことにより、ピニオン軸5にトルクが作用した状態では、磁歪膜31,32の一方に圧縮力が作用し、他方に引っ張り力が作用するようになり、その結果、一方の磁歪膜の透磁率が増加し、他方の磁歪膜の透磁率が減少する。そして、これに応じて一方の磁歪膜の周囲に配置された2つの検出コイルのインダクタンスが増加し、他方の磁歪膜の周囲に配置された2つの検出コイルのインダクタンスが減少する。
第1、第2、第3、第4検出コイル33,34,35,36は、それぞれ変換回路を備えた検出回路37,38,39,40に接続されており、これら検出回路37〜40において各検出コイル33〜36のインダクタンス変化は電圧変化に変換されて電子制御装置(ECU)50に出力される。
By setting the magnetic anisotropy of the first and second magnetostrictive films 31 and 32 as described above, a compressive force acts on one of the magnetostrictive films 31 and 32 in a state where torque acts on the pinion shaft 5, A tensile force acts on the other, and as a result, the magnetic permeability of one magnetostrictive film increases and the magnetic permeability of the other magnetostrictive film decreases. Accordingly, the inductances of the two detection coils arranged around one magnetostrictive film are increased, and the inductances of the two detection coils arranged around the other magnetostrictive film are reduced.
The first, second, third, and fourth detection coils 33, 34, 35, and 36 are connected to detection circuits 37, 38, 39, and 40 each having a conversion circuit, and in these detection circuits 37 to 40, respectively. An inductance change of each of the detection coils 33 to 36 is converted into a voltage change and output to an electronic control unit (ECU) 50.

ECU50は、検出回路37〜40からの出力電圧に基づいてトルク検出電圧を算出し、該トルク検出電圧に基づいてピニオン軸5に作用する操舵トルクを検出する。そして、ECU50は、トルク検出電圧に応じて電動機11の目標電流を設定し、該目標電流によって電動機11を駆動して補助操舵力を発生させ、車両を転舵させる。トルク検出電圧の算出方法については従来と同様であり、またこの発明の要旨ではないので説明を省略する。   The ECU 50 calculates a torque detection voltage based on output voltages from the detection circuits 37 to 40, and detects a steering torque acting on the pinion shaft 5 based on the torque detection voltage. Then, the ECU 50 sets a target current of the electric motor 11 according to the torque detection voltage, drives the electric motor 11 with the target current to generate an auxiliary steering force, and steers the vehicle. The method for calculating the torque detection voltage is the same as that of the prior art and is not the gist of the present invention, so that the description thereof is omitted.

次に、この発明の特徴部であるセンサ異常の検出(故障検出)について説明する。
いま、検出回路37の出力電圧をVT11、検出回路38の出力電圧をVT12、検出回路39の出力電圧をVT21、検出回路40の出力電圧をVT22とする。
まず、次の(1)式および(2)式により中間電圧VT1,VT2を算出する。ここで、k11、k12、k21、k22は比例定数、V0は一定数、Tは操舵トルクである。
VT1=VT11−VT21+V0=k11・T−(−k21・T)=(k11+k21)T ・・・ (1)式
VT2=VT12−VT22+V0=k12・T−(−k22・T)=(k12+k22)T ・・・ (2)式
つまり、中間電圧VT1は、第1磁歪膜31に対向配置され最上位に位置する第1検出コイル33と、第2磁歪膜32に対向配置され上から3番目に位置する第3検出コイル35の中間電圧(中間出力)である。また、中間電圧VT2は、第1磁歪膜31に対向配置され上から2番目に位置する第2検出コイル34と、第2磁歪膜32に対向配置され最下位に位置する第4検出コイル36の中間電圧(中間出力)である。
Next, sensor abnormality detection (failure detection), which is a feature of the present invention, will be described.
Now, the output voltage of the detection circuit 37 is VT11, the output voltage of the detection circuit 38 is VT12, the output voltage of the detection circuit 39 is VT21, and the output voltage of the detection circuit 40 is VT22.
First, intermediate voltages VT1 and VT2 are calculated by the following equations (1) and (2). Here, k11, k12, k21, and k22 are proportional constants, V0 is a fixed number, and T is steering torque.
VT1 = VT11−VT21 + V0 = k11 · T − (− k21 · T) = (k11 + k21) T (1) Expression VT2 = VT12−VT22 + V0 = k12 · T − (− k22 · T) = (k12 + k22) T (2) In other words, the intermediate voltage VT1 is located at the third position from the top, arranged opposite to the first magnetostrictive film 31 and located at the uppermost position of the first detection coil 33 and the second magnetostrictive film 32. This is an intermediate voltage (intermediate output) of the third detection coil 35. Further, the intermediate voltage VT2 is generated between the second detection coil 34 that is disposed opposite to the first magnetostrictive film 31 and located second from the top, and the fourth detection coil 36 that is disposed opposite to the second magnetostrictive film 32 and located at the lowest position. Intermediate voltage (intermediate output).

次に、中間電圧VT1と中間電圧VT2の加算値を求め、これを故障検出電圧VTFとする((3)式参照)。
VTF=VT1+VT2 ・・・ (3)式
このように中間電圧VT1,VT2の加算値を故障検出電圧VTFとすることで、ステアリングシャフト1全体が一様に温度変化した場合でも正確な故障検出を行うことができる。
Next, an added value of the intermediate voltage VT1 and the intermediate voltage VT2 is obtained and used as a failure detection voltage VTF (see equation (3)).
VTF = VT1 + VT2 (3) Equation (3) In this way, by adding the intermediate voltage VT1 and VT2 to the failure detection voltage VTF, accurate failure detection is performed even when the temperature of the entire steering shaft 1 changes uniformly. be able to.

ところで、ステアリングギヤボックス20がエンジンルーム内に配置されていることから、車両の運転状態によってはステアリングギヤボックス20がエンジンからの熱を受けて温度上昇する場合がある。例えば、車両を高速走行後に停止したようなときには、エンジンの熱によりステアリングギアボックス20が加熱され、ステアリングシャフト1が加熱されるが、ステアリングシャフト1の温度分布は一様ではなく、エンジンに近い下側の方がエンジンから遠い上側よりも温度が高くなる。そのため、磁歪式トルクセンサ30が設置されている部位についても、最下位の第4検出コイル36が配置されている部分の温度は高くなり、最上位の第1検出コイル33が配置されている部分の温度はそれよりも低くなり、第2,第3検出コイル34,35が配置されている部分の温度はいずれも中間の温度(すなわち、中温)で略同一になる。   By the way, since the steering gear box 20 is disposed in the engine room, the temperature of the steering gear box 20 may increase due to heat from the engine depending on the driving state of the vehicle. For example, when the vehicle is stopped after traveling at a high speed, the steering gear box 20 is heated by the heat of the engine and the steering shaft 1 is heated. However, the temperature distribution of the steering shaft 1 is not uniform and is close to the engine. The temperature on the side is higher than the temperature on the upper side far from the engine. Therefore, also in the part where the magnetostrictive torque sensor 30 is installed, the temperature of the part where the lowermost fourth detection coil 36 is arranged becomes high, and the part where the uppermost first detection coil 33 is arranged. And the temperature of the portion where the second and third detection coils 34 and 35 are arranged is substantially the same at an intermediate temperature (that is, an intermediate temperature).

このようにステアリングシャフト1に温度差(温度勾配)が生じていると、従来は前述したように、温度差(温度勾配)に起因して故障検出信号がドリフトするため、故障検出範囲が狭い場合には誤検出する虞があった。
これに対して、この実施例の磁歪式トルクセンサ30においては、ステアリングシャフト1に温度差(温度勾配)が生じているときであっても、故障検出信号のドリフトを防止することができ、故障検出精度を高めることができる。以下、これについて図2の検出原理図を参照して説明する。
When the temperature difference (temperature gradient) is generated in the steering shaft 1 as described above, the failure detection signal drifts due to the temperature difference (temperature gradient) as described above. There was a risk of false detection.
On the other hand, in the magnetostrictive torque sensor 30 of this embodiment, even when a temperature difference (temperature gradient) occurs in the steering shaft 1, it is possible to prevent a failure detection signal from drifting. Detection accuracy can be increased. This will be described below with reference to the detection principle diagram of FIG.

磁歪膜は温度が高くなるほど透磁率μが大きくなる温度特性を有している。したがって、前述したように最上位の第1検出コイル33が配置されている部分が低温で、中間の第2,第3検出コイル34,35が配置されている部分が中温で、最下位の第4検出コイル36が配置されている部分が高温になっている場合には、第1磁歪膜31において第1検出コイル33に対向する部分の透磁率μ1は小さく、第2磁歪膜32において第4検出コイル36に対向する部分の透磁率μ4は大きく、第1磁歪膜31において第2検出コイル34に対向する部分の透磁率μ2と第2磁歪膜32において第3検出コイル35に対向する部分の透磁率μ3はμ1より大きく且つμ4より小さい中ぐらいとなる(μ1<μ2(μ3)<μ4)。   The magnetostrictive film has a temperature characteristic that the permeability μ increases as the temperature increases. Therefore, as described above, the portion where the uppermost first detection coil 33 is disposed is low temperature, the portion where the intermediate second and third detection coils 34 and 35 are disposed is medium temperature, and the lowermost first detection coil 33 is disposed. When the portion where the four detection coils 36 are disposed is at a high temperature, the permeability μ1 of the portion facing the first detection coil 33 in the first magnetostrictive film 31 is small, and the fourth magnetostrictive film 32 is the fourth in the second magnetostrictive film 32. The portion of the first magnetostrictive film 31 facing the second detection coil 34 and the portion of the first magnetostrictive film 31 facing the second detection coil 34 and the portion of the second magnetostrictive film 32 facing the third detection coil 35 are large. The magnetic permeability μ3 is approximately larger than μ1 and smaller than μ4 (μ1 <μ2 (μ3) <μ4).

また、磁歪膜の透磁率μと検出コイルのインピーダンスZは略比例関係(μ∝Z)にあることが知られている。したがって、前述した温度勾配があるときには、第1検出コイル33のインピーダンスZ1は小さく、第4検出コイル36のインピーダンスZ4は大きく、第2検出コイル34と第3検出コイル35のインピーダンスZ2,Z3はその間の中位になる(Z1<Z2(Z3)<Z4)。   Further, it is known that the magnetic permeability μ of the magnetostrictive film and the impedance Z of the detection coil are in a substantially proportional relationship (μ∝Z). Therefore, when there is a temperature gradient as described above, the impedance Z1 of the first detection coil 33 is small, the impedance Z4 of the fourth detection coil 36 is large, and the impedances Z2 and Z3 of the second detection coil 34 and the third detection coil 35 are between them. (Z1 <Z2 (Z3) <Z4).

検出コイル33〜36に印加する励磁電圧をVccとすると、第1検出コイル33と第3検出コイル35の中点の電圧VS1、および、第2検出コイル34と第4検出コイル36の中点の電圧VS2は、それぞれコイル同士の分圧値となるから、次の(4)式、(5)式で示される。
VS1=Vcc×{(Z3/(Z1+Z3)}=Vcc×〔1/{(Z1/Z3)+1}〕 ・・・ (4)式
VS2=Vcc×{(Z2/(Z2+Z4)}=Vcc×〔1/{(Z4/Z2)+1}〕 ・・・ (5)式
When the excitation voltage applied to the detection coils 33 to 36 is Vcc, the voltage VS1 at the midpoint between the first detection coil 33 and the third detection coil 35, and the midpoint between the second detection coil 34 and the fourth detection coil 36, respectively. The voltage VS2 is a divided voltage value between the coils, and is expressed by the following equations (4) and (5).
VS1 = Vcc × {(Z3 / (Z1 + Z3)} = Vcc × [1 / {(Z1 / Z3) +1}] (4) Formula VS2 = Vcc × {(Z2 / (Z2 + Z4)} = Vcc × [ 1 / {(Z4 / Z2) +1}] (5)

これによって、第1検出コイル33と第3検出コイル35の中点電圧VS1と、第2検出コイル34と第4検出コイル36の中点電圧VS2との加算値をほぼ一定(例えば5V)とすることができるので、前述したように温度勾配による故障検出信号のドリフトをなくすことができる。
その結果、ステアリングシャフト1に温度勾配が生じているときであっても、一定の故障検出信号を得ることができるため、故障検出範囲を従来よりも狭く設定することができ、故障検出精度を向上させることができる。
As a result, the sum of the midpoint voltage VS1 of the first detection coil 33 and the third detection coil 35 and the midpoint voltage VS2 of the second detection coil 34 and the fourth detection coil 36 is made substantially constant (for example, 5 V). Therefore, as described above, the drift of the failure detection signal due to the temperature gradient can be eliminated.
As a result, a constant failure detection signal can be obtained even when a temperature gradient occurs in the steering shaft 1, so that the failure detection range can be set narrower than before, and failure detection accuracy is improved. Can be made.

次に、具体的な数値を挙げて従来技術との差を検証する。
今、検出コイル33〜36を30kHzの矩形波電圧で励磁しているときにステアリングシャフト1に温度勾配が生じ、各検出コイル33〜36のインピーダンスZ1〜Z4が、Z1=900Ω、Z2=950Ω、Z3=1000Ω、Z4=1050Ωになったと想定する。
前述した従来の磁歪式トルクセンサでは、第1検出コイル33と第4検出コイル36の中間電圧VT1’と、第2検出コイル34と第3検出コイル35の中間電圧VT2’との加算値を故障検出信号VTF’とし(VTF’=VT1’+VT2’)、この故障検出信号VTF’に基づいて故障検出を行うので、第1検出コイル33と第4検出コイル36の中点電圧VS1’、第2検出コイル34と第3検出コイル35の中点電圧VS2’が故障検出信号VTF’に影響を与える。
Next, a specific numerical value is given and the difference with a prior art is verified.
Now, when the detection coils 33 to 36 are excited with a rectangular wave voltage of 30 kHz, a temperature gradient is generated in the steering shaft 1, and the impedances Z1 to Z4 of the detection coils 33 to 36 are Z1 = 900Ω, Z2 = 950Ω, Assume that Z3 = 1000Ω and Z4 = 1050Ω.
In the above-described conventional magnetostrictive torque sensor, the sum of the intermediate voltage VT1 ′ between the first detection coil 33 and the fourth detection coil 36 and the intermediate voltage VT2 ′ between the second detection coil 34 and the third detection coil 35 fails. Since the detection signal VTF ′ is used (VTF ′ = VT1 ′ + VT2 ′) and failure detection is performed based on the failure detection signal VTF ′, the midpoint voltage VS1 ′ of the first detection coil 33 and the fourth detection coil 36, second The midpoint voltage VS2 ′ of the detection coil 34 and the third detection coil 35 affects the failure detection signal VTF ′.

ここで、検出コイル33〜36に印加する励磁電圧をVccとすると、VS1’,VS2’は次の(6)式、(7)式になる。
VS1’=Vcc×{(Z4/(Z1+Z4)}=Vcc×〔1/{(Z1/Z4)+1}〕 ・・・ (6)式
VS2’=Vcc×{(Z3/(Z2+Z3)}=Vcc×〔1/{(Z2/Z3)+1}〕 ・・・ (7)式
励磁電圧Vccを5Vとし、各検出コイル33〜36のインピーダンスZ1〜Z4を代入してVS1’,VS2’を算出し、故障検出信号VTF’を算出すると次のようになる。
VS1’=2.692308(V)、
VS2’=2.564102(V)、
VTF’=VS1’+VS2’=5.25641(V)。
Here, when the excitation voltage applied to the detection coils 33 to 36 is Vcc, VS1 ′ and VS2 ′ are expressed by the following equations (6) and (7).
VS1 ′ = Vcc × {(Z4 / (Z1 + Z4)} = Vcc × [1 / {(Z1 / Z4) +1}] (6) Expression VS2 ′ = Vcc × {(Z3 / (Z2 + Z3)} = Vcc × [1 / {(Z2 / Z3) +1}] (7) Equation VS1 ′ and VS2 ′ are calculated by substituting the impedances Z1 to Z4 of the detection coils 33 to 36 with the excitation voltage Vcc being 5 V. The failure detection signal VTF ′ is calculated as follows.
VS1 ′ = 2.692308 (V),
VS2 ′ = 2.564102 (V),
VTF ′ = VS1 ′ + VS2 ′ = 5.225641 (V).

これに対して、この実施例における磁歪式トルクセンサ30では、第1検出コイル33と第3検出コイル35の中間電圧VT1と、第2検出コイル34と第4検出コイル36の中間電圧VT2との加算値を故障検出信号VTFとし(VTF=VT1+VT2)、この故障検出信号VTFに基づいて故障検出を行うので、第1検出コイル33と第3検出コイル35の中点電圧VS1、第2検出コイル34と第4検出コイル36の中点電圧VS2が故障検出信号VTFに影響を与える。   On the other hand, in the magnetostrictive torque sensor 30 in this embodiment, the intermediate voltage VT1 between the first detection coil 33 and the third detection coil 35 and the intermediate voltage VT2 between the second detection coil 34 and the fourth detection coil 36 are obtained. The added value is set as a failure detection signal VTF (VTF = VT1 + VT2), and failure detection is performed based on this failure detection signal VTF. The midpoint voltage VS2 of the fourth detection coil 36 affects the failure detection signal VTF.

前記同じ条件下で(4)式、(5)式から中点電圧VS1,VS2を算出し、故障検出信号VTFを算出すると次のようになる。
VS1=2.631579(V)、
VS2=2.375000(V)、
VTF=VS1+VS2=5.006579(V)。
したがって、故障検出信号の正常検出域を5V±αとすると、実施例の磁歪式トルクセンサ30の故障検出信号VTFの方が、従来の磁歪式トルクセンサの故障検出信号VTF’よりも大幅にαの値を小さくすることができる。これにより故障検出範囲のマージンを小さくしても誤検出の虞がなく、故障検出精度を向上させることができる。
Under the same conditions, the midpoint voltages VS1 and VS2 are calculated from the equations (4) and (5), and the failure detection signal VTF is calculated as follows.
VS1 = 2.631579 (V),
VS2 = 2.375000 (V),
VTF = VS1 + VS2 = 5.5006579 (V).
Therefore, if the normal detection range of the failure detection signal is 5V ± α, the failure detection signal VTF of the magnetostrictive torque sensor 30 of the embodiment is much more α than the failure detection signal VTF ′ of the conventional magnetostrictive torque sensor. The value of can be reduced. Thereby, even if the margin of the failure detection range is reduced, there is no possibility of erroneous detection, and the failure detection accuracy can be improved.

〔他の実施例〕
なお、この発明は前述した実施例に限られるものではない。
例えば、第1磁歪膜31をピニオン軸5の軸線方向に2分割して、その一方を第1検出コイル33に専用の磁歪膜、他方を第2検出コイル34に専用の磁歪膜とし、第2磁歪膜32をピニオン軸5の軸線方向に2分割して、その一方を第3検出コイル35に専用の磁歪膜、他方を第2検出コイル36に専用の磁歪膜として、4つの磁歪膜で構成することも可能である。
[Other Examples]
The present invention is not limited to the embodiment described above.
For example, the first magnetostrictive film 31 is divided into two in the axial direction of the pinion shaft 5, one of which is a magnetostrictive film dedicated to the first detection coil 33 and the other is a magnetostrictive film dedicated to the second detection coil 34. The magnetostrictive film 32 is divided into two in the axial direction of the pinion shaft 5, one of which is a magnetostrictive film dedicated to the third detection coil 35 and the other is a magnetostrictive film dedicated to the second detection coil 36. It is also possible to do.

この発明に係る磁歪式トルクセンサを備えた車両用電動パワーステアリング装置の概略構成図である。1 is a schematic configuration diagram of a vehicular electric power steering apparatus including a magnetostrictive torque sensor according to the present invention. 前記磁歪式トルクセンサの検出回路の概略図である。It is the schematic of the detection circuit of the said magnetostrictive torque sensor. 従来の磁歪式トルクセンサの検出原理を説明する図である。It is a figure explaining the detection principle of the conventional magnetostrictive torque sensor. 従来の磁歪式トルクセンサの検出回路の概略図である。It is the schematic of the detection circuit of the conventional magnetostrictive torque sensor.

符号の説明Explanation of symbols

1 ステアリングシャフト
2 ハンドル(操作子)
7 ピニオン(ギヤ機構)
8a ラック歯(ギヤ機構)
20 ステアリングギヤボックス
30 磁歪式トルクセンサ
31 第1磁歪膜
32 第2磁歪膜
33 第1検出コイル
34 第2検出コイル
35 第3検出コイル
36 第4検出コイル
1 Steering shaft 2 Handle (operator)
7 Pinion (gear mechanism)
8a Rack teeth (gear mechanism)
20 steering gear box 30 magnetostrictive torque sensor 31 first magnetostrictive film 32 second magnetostrictive film 33 first detection coil 34 second detection coil 35 third detection coil 36 fourth detection coil

Claims (1)

上方が操作子に連結され下方がエンジンルーム内のステアリングギヤボックスに納められたギヤ機構に連結されるステアリングシャフトに第1磁歪膜と第2磁歪膜を設け、これら磁歪膜の磁気特性の変化に基づいて前記ステアリングシャフトに入力されるトルクを検出する車両用の磁歪式トルクセンサであって、
前記第1磁歪膜に対向配置された第1検出コイルおよび第2検出コイルと、前記第2磁歪膜に対向配置された第3検出コイルおよび第4検出コイルと、を備え、
前記操作子から近い順に前記第1検出コイル、第2検出コイル、第3検出コイル、第4検出コイルが配置され、
前記第1検出コイルと前記第3検出コイルの中間出力と、前記第2検出コイルと前記第4検出コイルの中間出力との加算値に基づいてセンサ異常を検出する車両用の磁歪式トルクセンサであって、
前記第1検出コイルの一端と前記第3検出コイルの一端が接続されることにより前記第1検出コイルと前記第3検出コイルとが直列に接続され、
前記第2検出コイルの一端と前記第4検出コイルの一端が接続されることにより前記第2検出コイルと前記第4検出コイルとが直列に接続され、
直列に接続された前記第1検出コイルおよび前記第3検出コイルは、直列に接続された前記第2検出コイルおよび前記第4検出コイルと並列に接続され、
前記第1検出コイルの他端と前記第4検出コイルの他端が接続され、
前記第2検出コイルの他端と前記第3検出コイルの他端が接続されており、
前記第1検出コイル、前記第2検出コイル、前記第3検出コイル、前記第4検出コイルは矩形波電圧により励磁されることを特徴とする車両用の磁歪式トルクセンサ
A first magnetostrictive film and a second magnetostrictive film are provided on a steering shaft connected to a gear mechanism housed in a steering gear box in an engine room and connected to an operating element on the upper side, to change the magnetic characteristics of these magnetostrictive films. A magnetostrictive torque sensor for a vehicle that detects torque input to the steering shaft based on the torque,
A first detection coil and a second detection coil disposed opposite to the first magnetostrictive film, and a third detection coil and a fourth detection coil disposed opposite to the second magnetostrictive film,
The first detection coil, the second detection coil, the third detection coil, and the fourth detection coil are arranged in order from the operator .
A magnetostrictive torque sensor for a vehicle that detects a sensor abnormality based on an added value of an intermediate output between the first detection coil and the third detection coil and an intermediate output between the second detection coil and the fourth detection coil. There,
By connecting one end of the first detection coil and one end of the third detection coil, the first detection coil and the third detection coil are connected in series,
By connecting one end of the second detection coil and one end of the fourth detection coil, the second detection coil and the fourth detection coil are connected in series,
The first detection coil and the third detection coil connected in series are connected in parallel with the second detection coil and the fourth detection coil connected in series,
The other end of the first detection coil and the other end of the fourth detection coil are connected;
The other end of the second detection coil and the other end of the third detection coil are connected,
A magnetostrictive torque sensor for a vehicle , wherein the first detection coil, the second detection coil, the third detection coil, and the fourth detection coil are excited by a rectangular wave voltage.
JP2006096584A 2004-08-25 2006-03-31 Magnetostrictive torque sensor for vehicles Active JP4680114B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006096584A JP4680114B2 (en) 2006-03-31 2006-03-31 Magnetostrictive torque sensor for vehicles
US11/818,071 US7506554B2 (en) 2004-08-25 2007-06-13 Magnetostrictive torque sensor system and electric steering system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006096584A JP4680114B2 (en) 2006-03-31 2006-03-31 Magnetostrictive torque sensor for vehicles

Publications (2)

Publication Number Publication Date
JP2007271417A JP2007271417A (en) 2007-10-18
JP4680114B2 true JP4680114B2 (en) 2011-05-11

Family

ID=38674374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006096584A Active JP4680114B2 (en) 2004-08-25 2006-03-31 Magnetostrictive torque sensor for vehicles

Country Status (1)

Country Link
JP (1) JP4680114B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016176745A (en) * 2015-03-19 2016-10-06 本田技研工業株式会社 Magnetostrictive torque sensor and electrically driven power steering device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016114381A (en) * 2014-12-11 2016-06-23 本田技研工業株式会社 Magnetostrictive torque sensor and electric power steering device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01170823A (en) * 1987-12-26 1989-07-05 Daido Steel Co Ltd Torque sensor
JPH0968470A (en) * 1995-08-31 1997-03-11 Mitsubishi Electric Corp Sensor circuit
JPH10281898A (en) * 1997-04-03 1998-10-23 Kubota Corp Torque sensor
JPH1194658A (en) * 1997-09-17 1999-04-09 Aisin Seiki Co Ltd Torque sensor
JP2002139390A (en) * 2000-11-06 2002-05-17 Matsushita Electric Ind Co Ltd Torque detector, electric assist motor using it, and power assisted bicycle therewith
JP2005331453A (en) * 2004-05-21 2005-12-02 Honda Motor Co Ltd Torque sensor, and motor-driven power steering device using torque sensor
JP2006064445A (en) * 2004-08-25 2006-03-09 Honda Motor Co Ltd Magnetostrictive-type torque sensor, and motor-driven steering device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01170823A (en) * 1987-12-26 1989-07-05 Daido Steel Co Ltd Torque sensor
JPH0968470A (en) * 1995-08-31 1997-03-11 Mitsubishi Electric Corp Sensor circuit
JPH10281898A (en) * 1997-04-03 1998-10-23 Kubota Corp Torque sensor
JPH1194658A (en) * 1997-09-17 1999-04-09 Aisin Seiki Co Ltd Torque sensor
JP2002139390A (en) * 2000-11-06 2002-05-17 Matsushita Electric Ind Co Ltd Torque detector, electric assist motor using it, and power assisted bicycle therewith
JP2005331453A (en) * 2004-05-21 2005-12-02 Honda Motor Co Ltd Torque sensor, and motor-driven power steering device using torque sensor
JP2006064445A (en) * 2004-08-25 2006-03-09 Honda Motor Co Ltd Magnetostrictive-type torque sensor, and motor-driven steering device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016176745A (en) * 2015-03-19 2016-10-06 本田技研工業株式会社 Magnetostrictive torque sensor and electrically driven power steering device

Also Published As

Publication number Publication date
JP2007271417A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
US20060042404A1 (en) Magnetostrictive torque sensor and electric steering system
JP4886264B2 (en) Magnetostrictive torque sensor and electric power steering device using the same
JP4335227B2 (en) Magnetostrictive torque sensor and electric power steering device
US7506554B2 (en) Magnetostrictive torque sensor system and electric steering system
US20070227268A1 (en) Magnetostrictive torque sensor
EP2065691B1 (en) Magnetostrictive torque sensor and electric steering system
JP2002257648A (en) Torque detecting device and electric power steering device using the same
JP2001133337A (en) Magnetostrictive torque sensor and electric power steering device loaded with magnetostrictive torque sensor
JP3898610B2 (en) Torque sensor
JP2008114641A (en) Electric power steering device
JP4680114B2 (en) Magnetostrictive torque sensor for vehicles
JP2013053953A (en) Magnetostrictive torque sensor
JP2012122728A (en) Magnetostrictive torque sensor and electrically-driven power steering device
JP4732473B2 (en) Magnetostrictive torque sensor and vehicle steering apparatus
JP5128914B2 (en) Magnetostrictive torque sensor device and method for compensating for misalignment between measured values
JP4897657B2 (en) Magnetostrictive torque sensor device, magnetostrictive torque sensor device for electric steering, and initialization method of magnetostrictive torque sensor device
JP4932206B2 (en) Manufacturing method of magnetostrictive torque sensor
JP2002071476A (en) Torque detecting device and manufacturing method thereof
JP4865685B2 (en) Magnetostrictive torque sensor and electric steering device
JP5452957B2 (en) Magnetostrictive torque sensor and electric power steering device
JP4073901B2 (en) Electric steering device
JP4101790B2 (en) Electric steering device
JP2006064446A (en) Magnetostrictive type torque sensor, and motor-driven steering device
JP2009115761A (en) Magnetostrictive torque sensor and electric power steering system
JP2008170450A (en) Torque sensor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101116

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110202

R150 Certificate of patent or registration of utility model

Ref document number: 4680114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3