JP2005282723A - Base isolation bearing structure - Google Patents

Base isolation bearing structure Download PDF

Info

Publication number
JP2005282723A
JP2005282723A JP2004097900A JP2004097900A JP2005282723A JP 2005282723 A JP2005282723 A JP 2005282723A JP 2004097900 A JP2004097900 A JP 2004097900A JP 2004097900 A JP2004097900 A JP 2004097900A JP 2005282723 A JP2005282723 A JP 2005282723A
Authority
JP
Japan
Prior art keywords
rubber
rubber layer
parts
weight
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004097900A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tachibana
博之 橘
Takayuki Kishimoto
隆之 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bando Chemical Industries Ltd
Original Assignee
Bando Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bando Chemical Industries Ltd filed Critical Bando Chemical Industries Ltd
Priority to JP2004097900A priority Critical patent/JP2005282723A/en
Publication of JP2005282723A publication Critical patent/JP2005282723A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Springs (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated rubber type base isolation bearing structure having high damping performance and superior weather resistance by integrally adhering a coating rubber layer having superior adhesiveness and ozone resistance onto a laminated part having a nominal shearing modulus level of G2.5 for coping with the high damping performance which is strongly required recently. <P>SOLUTION: The structure comprises the laminated part having internal rubber layers and rigid plates alternately laminated and a coating layer integrally adhered thereto to cover the outer periphery of the laminated part. The internal rubber layer 6 and the coating rubber layer 10 each use a natural rubber (a diene rubber) as a base rubber. The coating rubber layer 10 is formed of a rubber composition containing 1.5-7 pts.wt p-FDA and 0.5-4 pts.wt oil wax in terms of the 100 pts.wt natural rubber. The internal rubber layer 6 is formed of a rubber composition containing 0-2 pts.wt p-FDA in terms of the 100 pts.wt natural rubber. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、建築物等の上部構造物と基礎との間に設けられ、地震に対する前記上部構造物の揺れを抑えるようにした免震支承構造体に関する。   The present invention relates to a seismic isolation bearing structure that is provided between an upper structure such as a building and a foundation and suppresses shaking of the upper structure with respect to an earthquake.

この種の免震支承構造体としては、金属板等の剛性板とゴム等の粘弾性を有する軟質層とを交互に積層した積層体の上下に、上部構造物および基礎に連結される上および下フランジを設けた構成の免震装置に多く使用されている。   As this type of seismic isolation structure, a metal plate or other rigid plate and a soft layer having viscoelasticity such as rubber or the like are alternately stacked above and below the upper structure and the foundation. It is often used in seismic isolation devices with a lower flange.

これらの免震装置は、設置後、常に上部構造物の荷重を受けた状態(外周部が膨らみ、引張られた状態)で外気に曝される。このため、湿度、オゾン等の作用を受けて劣化し、クラック等の局所破壊が生じやすいという問題がある。このため外気に曝される部分の耐候性を向上させる試みが多くなされている。   After installation, these seismic isolation devices are exposed to the outside air in a state in which they are always subjected to the load of the superstructure (the outer peripheral portion is inflated and pulled). For this reason, there exists a problem that it receives the effect | action of humidity, ozone, etc., and it is easy to produce local destruction, such as a crack. For this reason, many attempts have been made to improve the weather resistance of portions exposed to the outside air.

積層部の外周に設ける被覆ゴム層を耐候性に優れたブチルゴム(IIRという)、ポリウレタンゴム、エチレンプロピレンゴム(EPDMなど)、エチレン酢酸ビニルゴムで形成する技術が開示されている(例えば、特許文献1参照)。しかし、この開示技術には、積層部の外周面と被覆ゴムとの接着力が不十分になり、免震性能が悪くなりやすいという問題がある。   A technique is disclosed in which a covering rubber layer provided on the outer periphery of a laminated portion is formed of butyl rubber (referred to as IIR), polyurethane rubber, ethylene propylene rubber (EPDM, etc.), ethylene vinyl acetate rubber having excellent weather resistance (for example, Patent Document 1). reference). However, this disclosed technique has a problem that the adhesion between the outer peripheral surface of the laminated portion and the covering rubber becomes insufficient, and the seismic isolation performance tends to deteriorate.

また、前記積層部の軟質層(内部ゴム層)を天然ゴム及び/又はジェン系合成ゴム100部に、p−フェニレンジアミン系老化防止剤1.5〜5部と融点45〜75℃の石油系ワックスを2重量部より多くし、しかも老化防止剤≦石油系ワックスでかつ3.7部≦(老化防止剤+石油系ワックス)≦12部のゴム組成物で形成する技術が開示されている(例えば、特許文献2参照)。この技術は、天然ゴム系ゴムで耐候性向上を図る試みであるが石油系ワックスの配合量が2重量部より多くかつ老化防止剤の配合量より多くされているため、石油系ワックスの量が多くなり過ぎ、内部ゴム層と剛性層(鉄板)との接着力が十分に得られないという問題がある。特に、低温長時間加硫(105℃で9時間)する場合顕著で、接着力不足により良好な免震効果が得られなくなる。   In addition, the soft layer (inner rubber layer) of the laminated portion is added to 100 parts of natural rubber and / or gen-based synthetic rubber, 1.5 to 5 parts of p-phenylenediamine-based antioxidant and a petroleum system having a melting point of 45 to 75 ° C. A technique is disclosed in which the amount of the wax is more than 2 parts by weight, and the rubber composition is formed of anti-aging agent ≦ petroleum wax and 3.7 parts ≦ (anti-aging agent + petroleum wax) ≦ 12 parts ( For example, see Patent Document 2). This technology is an attempt to improve the weather resistance with natural rubber-based rubber, but the amount of petroleum-based wax is larger than 2 parts by weight and more than the amount of anti-aging agent. There is a problem that the adhesive force between the internal rubber layer and the rigid layer (iron plate) cannot be sufficiently obtained due to excessive increase. In particular, it is remarkable when vulcanizing at low temperature for a long time (at 105 ° C. for 9 hours), and a good seismic isolation effect cannot be obtained due to insufficient adhesion.

また、本出願人は上記免震支承構造体で、ゴム軟質層を、ジェン系基材ゴム100部にp−フェニレンジアミン系老化防止剤1.5〜7部と石油系ワックス0.5〜7部でかつ老化防止剤≧ワックスで、かつ3部≦(老化防止剤+石油系ワックス)<10部の関係を満たすように配合したゴム組成物とすることを提案している(例えば、特許文献3参照)。しかしこの提案においても上記と同様、内部ゴム層と剛性層の接着力が不足気味で良好な免震効果が得られないことがあるという問題があった。
特開平7−29394号公報、請求項1 特開平11−303019号公報、請求項1 特開2002−89079号公報、請求項1
In addition, the applicant of the present invention has the above-mentioned seismic isolation bearing structure, a rubber soft layer, 100 parts of a Gen base rubber, 1.5 to 7 parts of a p-phenylenediamine antioxidant and 0.5 to 7 petroleum wax. It is proposed that the rubber composition is blended so as to satisfy the relationship of 3 parts ≦ anti-aging agent ≧ wax and 3 parts ≦ (anti-aging agent + petroleum wax) <10 parts (for example, patent document) 3). However, this proposal also has a problem that, as described above, the adhesive strength between the inner rubber layer and the rigid layer is insufficient and a good seismic isolation effect may not be obtained.
Japanese Patent Laid-Open No. 7-29394, claim 1 JP-A-11-303019, claim 1 JP 2002-89079 A, Claim 1

本発明は、上記提案を更に推し進め、積層部の外周がオゾンなどにより劣化し、局所破壊するのを抑制しつつ、内部ゴム層と剛性層との加硫接着力を確保し、長期にわたって良好な免震効果が得られるようにすることを目的とする。   The present invention further promotes the above proposal, and while ensuring that the outer periphery of the laminated portion is deteriorated by ozone and local destruction, the vulcanized adhesive force between the internal rubber layer and the rigid layer is ensured, and is good for a long period of time. The purpose is to provide a seismic isolation effect.

請求項1に記載の免震支承構造体は、内部ゴム層と剛性板とを交互に積層した積層部と、前記積層部の外周を覆う被覆ゴム層とを接着一体化してなる免震支承構造体であって、
前記内部ゴム層と前記被覆ゴム層が、共にジェン系ゴムをベースゴムとするゴム組成物であり、前記内部ゴム層がベースゴム100重量部に対して0〜2重量部のp−フェニレンジアミン系老化防止剤を含有するゴム組成物であり、前記被覆ゴム層が、ベースゴム100重量部に対して1.5〜7重量部のp−フェニレンジアミン系老化防止剤および0.5〜4重量部の石油系ワックスを含有するゴム組成物であることを特徴とする。
The seismic isolation bearing structure according to claim 1 is a seismic isolation bearing structure in which a laminated portion in which internal rubber layers and rigid plates are alternately laminated and a covering rubber layer covering the outer periphery of the laminated portion are bonded and integrated. Body,
The inner rubber layer and the covering rubber layer are both rubber compositions having a gen-based rubber as a base rubber, and the inner rubber layer is 0 to 2 parts by weight of p-phenylenediamine based on 100 parts by weight of the base rubber. A rubber composition containing an anti-aging agent, wherein the coating rubber layer comprises 1.5 to 7 parts by weight of a p-phenylenediamine-based anti-aging agent and 0.5 to 4 parts by weight with respect to 100 parts by weight of a base rubber. It is characterized by being a rubber composition containing the following petroleum wax.

この発明は、免震支承機能を果たす内部ゴム層と、湿気、オゾン等に曝される耐候性を要する被覆ゴム層とを区分し、内部ゴム層は、ジェン系ゴムを主体とし、老化防止剤はp−フェニレンジアミン系老化防止剤(p−FDAという)を少量使用して剛性板との接着を改良し、被覆ゴム層は、耐候性および内部ゴムとの接着性を重視してジェン系ゴムを主体とし、p−FDAと石油系ワックスを含有させた。上記ジェン系ゴムとしては、天然ゴム、イソプレンゴム、スチレン・ブタジェンゴム、ブタジェンゴム、ブチルゴム、ハロゲン化ブチルゴム等が用いられる。   The present invention divides an internal rubber layer that performs a seismic isolation support function and a coated rubber layer that requires weather resistance exposed to moisture, ozone, etc., and the internal rubber layer is mainly composed of gen-based rubber and is an anti-aging agent. Uses a small amount of p-phenylenediamine-based anti-aging agent (referred to as p-FDA) to improve adhesion to rigid boards, and the coated rubber layer is a Gen-based rubber that emphasizes weather resistance and adhesion to internal rubber. The main component was p-FDA and petroleum wax. Examples of the gen-based rubber include natural rubber, isoprene rubber, styrene / butadiene rubber, butadiene rubber, butyl rubber, halogenated butyl rubber and the like.

被覆ゴム層は、p−FDA1.5〜7重量部と石油系ワックス0.5〜4重量部とを含有する。これらの含有量が下限量より少なくなると、耐オゾン性(耐候性)に劣る傾向があり、上限量を超えるにつれ内部ゴム層との接着が悪くなる傾向があるので、上記範囲とされる。内部ゴム層はp−FDAを0〜2重量部含有する。2重量部を超えると剛性板との接着が不十分となり、免震性能が得られ難い。   The covering rubber layer contains 1.5 to 7 parts by weight of p-FDA and 0.5 to 4 parts by weight of petroleum wax. When these contents are less than the lower limit, there is a tendency to be inferior in ozone resistance (weather resistance), and as the upper limit is exceeded, the adhesion to the internal rubber layer tends to be deteriorated, so the above range is set. The inner rubber layer contains 0 to 2 parts by weight of p-FDA. If it exceeds 2 parts by weight, the adhesion to the rigid plate becomes insufficient, and it is difficult to obtain seismic isolation performance.

p−FDAとしては、N−イソプロピル−N’−フェニル−p−フェニレンジアミンが用いられ、必要に応じて、N−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミン、N,N’−ジフェニル−p−フェニレンジアミン、N,N’−ジ−2−ナフチル−p−フェニレンジアミン、N−フェニル−N’−(3−メタクロイルオキシ−2−ヒドロキシプロピル)−p−フェニレンジアミン、N,N’−ビス(1−メチルヘプチル)−p−フェニレンジアミン、N,N’−ビス(1,4−ジメチルペンチル)−p−フェニレンジアミン、N,N’−ビス(1−メチル−3−エチルペンチル)−p−フェニレンジアミン、混合ジアリル−p−フェニレンジアミン、フェニル・ヘキシル−p−フェニレンジアミン、フェニル・オクチル−p−フェニレンジアミン等が併用される。特に、ジェン系ゴムへの分散が良好で、老化防止効果が優れる点で、N−イソプロピル−N’−フェニル−p−フェニレンジアミンとN−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミンとの併用が望ましい。   As p-FDA, N-isopropyl-N′-phenyl-p-phenylenediamine is used, and N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine, N , N′-diphenyl-p-phenylenediamine, N, N′-di-2-naphthyl-p-phenylenediamine, N-phenyl-N ′-(3-methacryloyloxy-2-hydroxypropyl) -p-phenylene Diamine, N, N′-bis (1-methylheptyl) -p-phenylenediamine, N, N′-bis (1,4-dimethylpentyl) -p-phenylenediamine, N, N′-bis (1-methyl) -3-ethylpentyl) -p-phenylenediamine, mixed diallyl-p-phenylenediamine, phenyl hexyl-p-phenylenediamine, phenyl o Chill -p- phenylenediamine are used in combination. In particular, N-isopropyl-N′-phenyl-p-phenylenediamine and N- (1,3-dimethylbutyl) -N′-phenyl- are good in that they are well dispersed in gen-based rubber and have an excellent anti-aging effect. The combined use with p-phenylenediamine is desirable.

前記石油系ワックスとしては、ノルマルパラフィンのみで構成されてもよく、ノルマルパラフィンにイソパラフィン等が混入しているものであっても良い。また、ノルマルパラフィンとマイクロクリスタリンワックスを併用しても良い。なお、この石油系ワックスは、融点が45〜75℃の範囲にあるものが表面に滲み出して皮膜を形成しやすく好ましい。   The petroleum wax may be composed only of normal paraffin, or may be one in which isoparaffin or the like is mixed in normal paraffin. Further, normal paraffin and microcrystalline wax may be used in combination. In addition, as for this petroleum-type wax, what has a melting | fusing point is the range of 45-75 degreeC oozes out on the surface, and it is easy to form a membrane | film | coat.

請求項2に記載の免震支承構造体は、前記被覆ゴム層が、ベースゴム100重量部に対して前記p−フェニレンジアミン系老化防止剤および石油系ワックスとの合計含有量が3.0〜10重量部でかつ石油系ワックス含有量が前記老化防止剤の含有量以下であることを特徴とする。   The seismic isolation bearing structure according to claim 2, wherein the covering rubber layer has a total content of 3.0 to 100 parts by weight of the base rubber and the p-phenylenediamine-based antioxidant and petroleum wax. It is characterized by being 10 parts by weight and having a petroleum wax content equal to or less than the content of the anti-aging agent.

被覆ゴム層においてp−FDAおよび石油系ワックスは耐オゾン性を向上するための必須成分であるが、上記の合計含有量が3.0重量部より少なくなるとオゾン等による局所クラックが発生しやすくなり、10重量部より大きくなると、未加硫ゴム表面にワックス層を形成し、内部ゴム層との接着に悪影響を及ぼすので上記の範囲とされる。   In the coated rubber layer, p-FDA and petroleum wax are essential components for improving ozone resistance. However, if the total content is less than 3.0 parts by weight, local cracks due to ozone or the like are likely to occur. If it exceeds 10 parts by weight, a wax layer is formed on the surface of the unvulcanized rubber, which adversely affects the adhesion with the internal rubber layer, and therefore is in the above range.

なお、上記内部ゴム層および被覆ゴム層には、上記p−FDA及び石油系ワックスの他にカーボンブラック等の補強性充填剤、軟化剤、加硫促進剤、ステアリン酸や亜鉛華等の加硫促進剤、加硫剤等ゴム用配合剤が含まれる。   In addition to the p-FDA and petroleum wax, the inner rubber layer and the coated rubber layer include a reinforcing filler such as carbon black, a softening agent, a vulcanization accelerator, and a vulcanization such as stearic acid and zinc white. Includes rubber compounding agents such as accelerators and vulcanizing agents.

なお、上記免震支承構造体は、前記内部ゴム層のせん断弾性率が、0.2〜0.6MPaであることが好ましく、この範囲のせん断弾性率を確保し、しかも同種のベースゴムからなる被覆ゴム層を設けるので免震支承構造体として減衰性の指標であるせん断弾性率が呼称でG2.5(0.24MPa)の高減衰から、呼称でG6(0.58MPa)の減衰性を有し、しかも耐候性に優れたものを得ることができる。   The above-mentioned seismic isolation bearing structure preferably has a shear elastic modulus of the inner rubber layer of 0.2 to 0.6 MPa, ensures a shear elastic modulus in this range, and is made of the same type of base rubber. Since the coating rubber layer is provided, the shear elastic modulus, which is an index of damping property, has a damping property of G6 (0.58 MPa) as a nominal name from a high damping of G2.5 (0.24 MPa) as a seismic isolation bearing structure. And what was excellent in the weather resistance can be obtained.

以上説明したことから明らかなように、請求項1に記載の免震支承構造体では、内部ゴム層と被覆ゴム層が共にジェン系ゴムをベースゴムとするので、両者の接着性がよく、かつ、免震性に優れたものにできる。また、湿気、オゾンに暴露される被覆ゴム層に、より多くのp−FDA、石油系ワックスを配合して、耐オゾン性や湿気による劣化を抑制し、また内部ゴム層はp−FDAの添加を少量として剛性板との接着性を向上する。請求項2に記載の免震支承構造体では、請求項1における被覆ゴム層のp−FDAと石油系ワックスとの合計量、及び石油系ワックス量とp−FDAの量の関係を規定し、接着性、耐オゾン性のバランスを良好にする。上記構成を取ることにより、免震支承構造体のせん断弾性も呼称:G2.5(0.2MPa)から呼称:G6(0.6MPa)まで広げることができる。   As is clear from the above description, in the seismic isolation bearing structure according to claim 1, since both the inner rubber layer and the covering rubber layer are made of gen rubber, the adhesiveness between them is good, and It can be made to have excellent seismic isolation. In addition, more p-FDA and petroleum wax are blended into the rubber layer exposed to moisture and ozone to suppress degradation due to ozone resistance and moisture, and the internal rubber layer is added with p-FDA. A small amount improves the adhesion to the rigid plate. In the seismic isolation bearing structure according to claim 2, the total amount of p-FDA and petroleum wax in the covering rubber layer according to claim 1, and the relationship between the amount of petroleum wax and the amount of p-FDA are defined, A good balance between adhesion and ozone resistance. By taking the said structure, the shear elasticity of a seismic isolation bearing structure can also be expanded from a name: G2.5 (0.2 MPa) to a name: G6 (0.6 MPa).

本発明の免震支承構造体は、内部ゴム層と剛性板とを交互に積層した積層部と、この積層部の外周を覆う被覆ゴム層とのを接着一体化したものであって、前記内部ゴム層、前記被覆ゴム層ともにジェン系ゴムである天然ゴム(NRという)をベースゴムとし、前記被覆ゴム部が、NR100重量部に対して4重量部のp−FDAおよび2.5重量部の石油系ワックスを含有するゴム組成物とし、前記内部ゴム層が、NR100重量部に対して1重量部のp−FDAと0.5重量部の石油系ワックスを含有するゴム組成物で構成する。なお、このゴム組成物には、上記の他にHAFカーボン、ZnO、硫黄などの必要なゴム配合剤を40重量部が配合されている。
(実施例)
実施例1は、表3のベースゴム種類「NR」の列に示すベースゴム組成物を用い、表1に示すp−FDAおよび石油系ワックスを加え、通常のゴム練り装置を用いて混練りし、得られた内部ゴム層用および被覆ゴム層用の未加硫ゴム組成物をそれぞれに厚さ2.5mmにシート出しし、次に記載の3つの試験用試料を作成し、評価を行った。結果を表1の評価の欄に示す。ここでp−FDAとしては、N−イソプロピル−N’−フェニル−p−フェニレンジアミンを用い、石油系ワックスとしては融点51.7℃のノルマルパラフィンを用いた。
The seismic isolation bearing structure of the present invention is formed by bonding and integrating a laminated portion in which internal rubber layers and rigid plates are alternately laminated and a covering rubber layer covering the outer periphery of the laminated portion. Natural rubber (referred to as NR), which is a gen-based rubber, is used as a base rubber for both the rubber layer and the coated rubber layer, and the coated rubber part is composed of 4 parts by weight of p-FDA and 2.5 parts by weight with respect to 100 parts by weight of NR. A rubber composition containing a petroleum wax is used, and the inner rubber layer is composed of a rubber composition containing 1 part by weight of p-FDA and 0.5 parts by weight of a petroleum wax with respect to 100 parts by weight of NR. In addition to the above, 40 parts by weight of necessary rubber compounding agents such as HAF carbon, ZnO, and sulfur are blended in the rubber composition.
(Example)
Example 1 uses the base rubber composition shown in the column of base rubber type “NR” in Table 3, adds p-FDA and petroleum wax shown in Table 1, and kneads them using a normal rubber kneader. The obtained unvulcanized rubber compositions for the internal rubber layer and the coated rubber layer were each sheeted to a thickness of 2.5 mm, and then the following three test samples were prepared and evaluated. . The results are shown in the evaluation column of Table 1. Here, N-isopropyl-N′-phenyl-p-phenylenediamine was used as p-FDA, and normal paraffin having a melting point of 51.7 ° C. was used as petroleum wax.

1)耐オゾン性試験
未加硫の被覆ゴム用シート(厚さ:2.5mm)を、105℃の温度で540分間、加圧加熱した加硫済みの被覆ゴム用シートより、JIS K6251に規定の1号ダンベルで打ち抜き、50%伸張させて、雰囲気がオゾン濃度100ppm 、温度40℃である槽に入れ、96時間経過後、試験片に亀裂が発生しているか否かを目視観察して、結果を表1の評価欄に示す。亀裂が認められないものを○、特に優れたものを◎で、亀裂が認められるものを×で表す。
1) Ozone resistance test Specified in JIS K6251 from a vulcanized coated rubber sheet in which an unvulcanized coated rubber sheet (thickness: 2.5 mm) is pressurized and heated at a temperature of 105 ° C. for 540 minutes. No. 1 dumbbells, 50% extended, put in a bath with an ozone concentration of 100 ppm and a temperature of 40 ° C., and after 96 hours, visually observe whether the test piece is cracked, The results are shown in the evaluation column of Table 1. A case where no crack is observed is indicated by ○, a particularly excellent one is indicated by ◎, and a case where a crack is recognized is indicated by ×.

2)内部ゴムと被覆ゴムとの接着試験
図2に示す斜視図を参考に接着試験およびそれに使用する接着試験片について説明する。未加硫の内部ゴム用シート21(厚さ2.5mm)と未加硫の被覆ゴム用シート(厚さ2.5mm)よりそれぞれ25mm×25mmに切り出し、厚さ3.2mm、幅25mm、長さ100mmの鉄板22,22’の端部にそれぞれに粘着させ、この未加硫のゴムシートを向かい合わせて重ね合わせて、105℃で540分間、加圧加熱し加硫接着して、接着試験片20のを作成した。
2) Adhesion test between internal rubber and covering rubber An adhesion test and an adhesion test piece used therefor will be described with reference to a perspective view shown in FIG. Cut into 25 mm x 25 mm from unvulcanized internal rubber sheet 21 (thickness 2.5 mm) and unvulcanized coated rubber sheet (thickness 2.5 mm), thickness 3.2 mm, width 25 mm, long Adhering to the ends of 100 mm thick steel plates 22 and 22 ', the unvulcanized rubber sheets were stacked face to face, heated at 105 ° C for 540 minutes, vulcanized and bonded, and adhesion test A piece 20 was created.

接着性の評価は、2枚の鉄板22、22’をそれぞれ矢印x、x’の反対方向に引張りせん断破壊させ、破壊面を目視観察および画像処理によりゴムが付着している面積の比率を測定した。破壊が内部ゴム層21と被覆ゴム層21’との界面に生じているものは不合格〔×〕、全体の90%以上が内部ゴム層21または被覆ゴム層21’の中で生じているものを合格〔○〕と判定し、特に100%内部ゴム層21または被覆ゴム層21’の中で生じているものを〔◎〕として、結果を表1の評価欄に示す。   For evaluation of adhesion, the two steel plates 22 and 22 'are pulled and broken in the opposite directions of the arrows x and x', respectively, and the ratio of the area where the rubber is adhered is measured by visual observation and image processing of the fracture surface. did. What is broken at the interface between the inner rubber layer 21 and the coated rubber layer 21 ′ is rejected [×], and 90% or more of the whole is generated in the inner rubber layer 21 or the coated rubber layer 21 ′. The results are shown in the evaluation column of Table 1, where 100% of the internal rubber layer 21 or the covered rubber layer 21 ′ is [◎].

3)内部ゴム層と剛性板との接着試験
鉄板22,22’に貼り付けるゴムシートとして、未加硫の内部ゴム用シートのみを用いた以外は、前記「2)内部ゴムと被覆ゴムとの接着試験」と同様にして接着試験片を作成し、前記「2)」と同様に引張り破壊試験を行い、破壊が鉄板22と内部ゴム層試験片21との界面で生じているものは不合格〔×〕、全体の90%以上が内部ゴム層21の内部で破壊しているものは合格〔○〕と判定し、結果を表1の評価欄に示す。
3) Adhesion test between internal rubber layer and rigid plate Except for using only an unvulcanized internal rubber sheet as the rubber sheet to be affixed to the iron plates 22, 22 ', the "2) Internal rubber and coating rubber An adhesion test piece was prepared in the same manner as in the “adhesion test”, a tensile fracture test was conducted in the same manner as in “2)” above, and any fracture occurring at the interface between the iron plate 22 and the internal rubber layer test piece 21 is rejected. [X], those in which 90% or more of the whole is broken inside the internal rubber layer 21 are judged as acceptable [◯], and the results are shown in the evaluation column of Table 1.

実施例2〜7は、内部ゴムおよび被覆ゴムの組成を表1の組成欄に記載のように変更したものであって、試料作成方法、評価方法は実施例1と同様にした。結果を表1の評価欄に示す。   In Examples 2 to 7, the compositions of the internal rubber and the covering rubber were changed as described in the composition column of Table 1, and the sample preparation method and the evaluation method were the same as in Example 1. The results are shown in the evaluation column of Table 1.

比較例1〜8は、p−FDA、石油系ワックスの量またはベースゴムの種類を表2の組成欄のように変更して実施例1と同様に試料を調製し、実施例1と同様に試験、評価した。結果を表2の評価の欄に示す。   In Comparative Examples 1 to 8, samples were prepared in the same manner as in Example 1 except that the amount of p-FDA, petroleum-based wax, or the type of base rubber was changed as shown in the composition column of Table 2. Tested and evaluated. The results are shown in the evaluation column of Table 2.

上記の実施例1のゴム組成物を用いた免震支承構造体の製造手順(図1参照)は、下フランジ1(材質=SS400,厚さ=36mm、外径=1300mm)の上面に、天然ゴムを主体とした実施例1の内部ゴム組成を有する未加硫の内部ゴム層6(厚さ=5.7mm、外径=約800mm)と、予め接着処理(サンドブラストした後、エポキシ系液状接着剤塗布)された剛性板(鋼板)7(材質=SS400、厚さ=4.3mm、外径=800mm)とを交互に積層した(ゴム層6=28層、剛性板7=27枚、図1では1部省略)積層部を形成した。この外周面に実施例1の被覆ゴム組成を有する未加硫のゴムシートを巻き付けて未加硫の被覆ゴム層10とした。この被覆ゴム層の外周面に沿って図示しない加硫用の割金型を配し、上面に上フランジ1(材質、厚さ、外径は下フランジに同じ)を取り付けて、円柱状に型組みした後、加硫プレスに挿入し、温度=70℃で10時間予熱し、140℃で16時間加熱加硫した後、前記金型を分解して加硫された免震支承構造体を取り出す。なお、加熱加硫時には、貫通孔9に熱伝達率の良い棒状部材を挿入し、積層部の内部まで加熱しやすくする。   The manufacturing procedure (see FIG. 1) of the seismic isolation bearing structure using the rubber composition of Example 1 described above is performed on the upper surface of the lower flange 1 (material = SS400, thickness = 36 mm, outer diameter = 1300 mm). An unvulcanized inner rubber layer 6 (thickness = 5.7 mm, outer diameter = about 800 mm) having the inner rubber composition of Example 1 mainly composed of rubber, and an adhesion treatment (sandblasting, followed by epoxy liquid adhesion) Rigid plates (steel plates) 7 (material = SS400, thickness = 4.3 mm, outer diameter = 800 mm) alternately laminated (rubber layer 6 = 28 layers, rigid plate 7 = 27 sheets, FIG. In FIG. 1, one part was omitted) and a laminated part was formed. An unvulcanized rubber sheet 10 having the coated rubber composition of Example 1 was wound around the outer peripheral surface to form an unvulcanized coated rubber layer 10. A split mold for vulcanization (not shown) is arranged along the outer peripheral surface of the covering rubber layer, and an upper flange 1 (material, thickness, outer diameter is the same as that of the lower flange) is attached to the upper surface, and the mold is formed in a cylindrical shape. After assembling, insert into a vulcanizing press, preheat at temperature = 70 ° C. for 10 hours, heat vulcanize at 140 ° C. for 16 hours, disassemble the mold and take out the vulcanized seismic isolation structure . In addition, at the time of heat vulcanization, a rod-shaped member having a good heat transfer coefficient is inserted into the through hole 9 so that the inside of the laminated portion can be easily heated.

Figure 2005282723
Figure 2005282723

Figure 2005282723
Figure 2005282723

Figure 2005282723
Figure 2005282723

本発明に係る免震支承構造体の断面図である。It is sectional drawing of the seismic isolation bearing structure which concerns on this invention. 本発明に係る内部ゴム層と被覆ゴム層との接着力を測定する接着試験片の斜視図である。It is a perspective view of the adhesion test piece which measures the adhesive force of the internal rubber layer and covering rubber layer which concern on this invention.

符号の説明Explanation of symbols

1:上フランジ
2:下フランジ
5:積層部
6:内部ゴム層
7:剛性板
9:貫通孔
10:被覆ゴム層
20:接着試験片
21:内部ゴム層
21’:被覆ゴム層
22,22’:鉄板
1: Upper flange 2: Lower flange 5: Laminated portion 6: Internal rubber layer 7: Rigid plate 9: Through hole 10: Covered rubber layer 20: Adhesive test piece 21: Internal rubber layer 21 ′: Covered rubber layer 22, 22 ′ : Iron plate

Claims (2)

内部ゴム層と剛性板とを交互に積層した積層部と、前記積層部の外周を覆う被覆ゴム層とを接着一体化してなる免震支承構造体であって、
前記内部ゴム層と前記被覆ゴム層が、共にジェン系ゴムをベースゴムとするゴム組成物であり、前記内部ゴム層がベースゴム100重量部に対して0〜2重量部のp−フェニレンジアミン系老化防止剤を含有するゴム組成物であり、前記被覆ゴム層が、ベースゴム100重量部に対して1.5〜7重量部のp−フェニレンジアミン系老化防止剤および0.5〜4重量部の石油系ワックスを含有するゴム組成物であることを特徴とする免震支承構造体。
A base-isolated bearing structure formed by bonding and integrating a laminated portion in which an internal rubber layer and a rigid plate are alternately laminated and a covering rubber layer covering the outer periphery of the laminated portion,
The inner rubber layer and the covering rubber layer are both rubber compositions having a gen-based rubber as a base rubber, and the inner rubber layer is 0 to 2 parts by weight of p-phenylenediamine based on 100 parts by weight of the base rubber. A rubber composition containing an anti-aging agent, wherein the coating rubber layer comprises 1.5 to 7 parts by weight of a p-phenylenediamine-based anti-aging agent and 0.5 to 4 parts by weight with respect to 100 parts by weight of a base rubber. A seismic isolation bearing structure characterized in that it is a rubber composition containing a petroleum wax.
前記被覆ゴム層が、ベースゴム100重量部に対して前記p−フェニレンジアミン系老化防止剤および石油系ワックスとの合計含有量が3.0〜10重量部でかつ石油系ワックス含有量が前記老化防止剤の含有量以下である請求項1に記載の免震支承構造体。   The coating rubber layer has a total content of 3.0 to 10 parts by weight of the p-phenylenediamine-based antioxidant and petroleum wax with respect to 100 parts by weight of the base rubber, and the petroleum wax content is the aging. The seismic isolation bearing structure according to claim 1, wherein the seismic isolation bearing structure is equal to or less than the content of the inhibitor.
JP2004097900A 2004-03-30 2004-03-30 Base isolation bearing structure Pending JP2005282723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004097900A JP2005282723A (en) 2004-03-30 2004-03-30 Base isolation bearing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004097900A JP2005282723A (en) 2004-03-30 2004-03-30 Base isolation bearing structure

Publications (1)

Publication Number Publication Date
JP2005282723A true JP2005282723A (en) 2005-10-13

Family

ID=35181347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004097900A Pending JP2005282723A (en) 2004-03-30 2004-03-30 Base isolation bearing structure

Country Status (1)

Country Link
JP (1) JP2005282723A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243652A (en) * 2008-03-31 2009-10-22 Yokohama Rubber Co Ltd:The High damping laminated body
JP2011058312A (en) * 2009-09-11 2011-03-24 Yokohama Rubber Co Ltd:The Laminated rubber bearing body
CN113719581A (en) * 2021-09-07 2021-11-30 深圳市注圣硅胶制品有限公司 Wear-resistant damping rubber part for vehicle
JP2022104779A (en) * 2020-12-29 2022-07-11 天津市政工程設計研究総院有限公司 High-performance rubber bearing for ductile earthquake-resistant system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243652A (en) * 2008-03-31 2009-10-22 Yokohama Rubber Co Ltd:The High damping laminated body
JP2011058312A (en) * 2009-09-11 2011-03-24 Yokohama Rubber Co Ltd:The Laminated rubber bearing body
JP2022104779A (en) * 2020-12-29 2022-07-11 天津市政工程設計研究総院有限公司 High-performance rubber bearing for ductile earthquake-resistant system
JP7179915B2 (en) 2020-12-29 2022-11-29 天津市政工程設計研究総院有限公司 High performance rubber bearings for ductile seismic systems
CN113719581A (en) * 2021-09-07 2021-11-30 深圳市注圣硅胶制品有限公司 Wear-resistant damping rubber part for vehicle

Similar Documents

Publication Publication Date Title
JP4847978B2 (en) High damping rubber composition and damping member
CA2892484C (en) Cold-resistant rubber composition
JP2005282723A (en) Base isolation bearing structure
JP2005320376A (en) Rubber composition for seismic isolation laminate and seismic isolation laminate using the same
JP2623584B2 (en) Seismic isolation device
JP2576520B2 (en) Seismic isolation structure
TW201224244A (en) Coated rubber composition and base isolation and damping device using the same
JP4057335B2 (en) High damping rubber and seismic isolation structure using the same
JP2001158824A (en) Method for vulcanizing and bonding unvulcanized rubber, and rubber composition for vulcanization and bonding
JPH1134218A (en) Seismic isolation structure
JPH10219033A (en) Rubber composition for high-attenuation support
JP3791247B2 (en) Rubber laminate
JP2010138241A (en) Vibration-insulating member
JP4172385B2 (en) Seismic isolation rubber bearing
JP2004307594A (en) Highly attenuating rubber composition and quake-free structure using the same
JP2015004005A (en) Rubber composition for vibration-proof rubber
JP6590627B2 (en) Seismic isolator
JP2007126560A (en) Rubber composition
JP2024014272A (en) Coating rubber composition for seismic isolation rubber bearing and seismic isolation rubber bearing
JP2891174B2 (en) Seismic isolation structure
JP3644285B2 (en) Rubber bearing
KR20190091159A (en) Rubber composition for ultra low permeability fuel hose useful automobile and hose used fuel hose
JPH09295371A (en) Laminated rubber support
JP2002089079A (en) Base isolation support structural body
JP2006045325A (en) Highly attenuating rubber composition and quake-free structure using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20061113

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090609