JP2005282618A - Hydraulic controller for transmission - Google Patents

Hydraulic controller for transmission Download PDF

Info

Publication number
JP2005282618A
JP2005282618A JP2004093697A JP2004093697A JP2005282618A JP 2005282618 A JP2005282618 A JP 2005282618A JP 2004093697 A JP2004093697 A JP 2004093697A JP 2004093697 A JP2004093697 A JP 2004093697A JP 2005282618 A JP2005282618 A JP 2005282618A
Authority
JP
Japan
Prior art keywords
valve
hydraulic
pressure
orifice
oil passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004093697A
Other languages
Japanese (ja)
Other versions
JP4534551B2 (en
Inventor
Sadai Tsuchiya
査大 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equos Research Co Ltd
Original Assignee
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equos Research Co Ltd filed Critical Equos Research Co Ltd
Priority to JP2004093697A priority Critical patent/JP4534551B2/en
Publication of JP2005282618A publication Critical patent/JP2005282618A/en
Application granted granted Critical
Publication of JP4534551B2 publication Critical patent/JP4534551B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Transmission Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To share a valve requiring large capacity in a hydraulic controller by combining the valve with a valve sufficient to have small capacity, and thereby reduce the size and weight of a hydraulic circuit. <P>SOLUTION: This hydraulic controller for a transmission is provided with a flow rate control valve comprising an orifice 2 and a relief valve 3 and controlling the amount of drain which returns from an upstream side oil passage of the orifice 2 to a suction side oil passage (a) of an oil pump 1 in accordance with pressure difference before and after the orifice 2, between a discharge side oil passage (b) of the oil pump 1 and a hydraulic-activated circuit (c). A signal pressure selector valve 4 for controlling application and release of signal pressure with respect to the flow rate control valve is interposed in a signal pressure oil passage (e) applying hydraulic pressure in the orifice downstream side to the flow rate control valve. Due to this, the flow rate control valve can be operated also as an unloader valve with large capacity for releasing a pump drive load, and compared with the case where the unloader valve is actually mounted, reduction of the size and weight of the circuit is attained. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、変速機用油圧制御装置に関し、特に、オイルポンプを油圧発生源とする変速機用油圧制御装置の基圧回路の吐出流量を制御する技術に関する。   The present invention relates to a transmission hydraulic control device, and more particularly to a technique for controlling a discharge flow rate of a base pressure circuit of a transmission hydraulic control device using an oil pump as a hydraulic pressure generation source.

油圧制御装置が使用される装置の1例として自動変速機がある。自動変速機における油圧制御装置は、変速制御のためのクラッチやブレーキの油圧サーボの作動、機構各部の潤滑及び冷却、更にはトルクコンバータに対する作動油の循環のために油圧の供給を行なうべく装備されており、一般に、機関回転数と同速で回転するトルクコンバータのポンプ側の回転部材により機械的に駆動されるオイルポンプを油圧発生源とする。このように、油圧発生源の油圧エネルギを利用して、特定の変速段の維持(クラッチやブレーキの係合維持)のためにほとんど流量を必要としない長時間の高圧と、変速(クラッチやブレーキの係合操作)のためにそれほど高い油圧を必要せずに短時間の大流量とを必要とする油圧作動回路と、この油圧作動回路に比べて低圧ながら常時概ね一定の流量を必要とする潤滑回路に油を供給するには、これらの状態に十分に対応可能な容量のオイルポンプを用いる必要がある。   One example of a device that uses a hydraulic control device is an automatic transmission. The hydraulic control device in an automatic transmission is equipped to supply hydraulic pressure for the operation of hydraulic servos for clutches and brakes for shift control, lubrication and cooling of each part of the mechanism, and for the circulation of hydraulic oil to the torque converter. In general, an oil pump mechanically driven by a rotary member on the pump side of a torque converter that rotates at the same speed as the engine speed is used as a hydraulic pressure generation source. In this way, using the hydraulic energy of the hydraulic pressure generation source, long-time high pressure that requires little flow rate for maintaining a specific shift stage (maintaining clutch and brake engagement) and shifting (clutch and brake) Hydraulic operation circuit that requires a high flow rate for a short time without requiring a very high hydraulic pressure, and a lubrication that requires a substantially constant flow rate at a lower pressure than this hydraulic operation circuit. In order to supply oil to the circuit, it is necessary to use an oil pump having a capacity that can sufficiently cope with these conditions.

こうした機関駆動のオイルポンプを用いる油圧回路では、油圧作動回路や潤滑回路が必要とする流量に対して機関回転数が高い場合、オイルポンプから吐出させたオイルをドレーンすることで流量過剰による油圧の上昇を抑える必要があり、そのため機関回転数に応じて変化するオイルポンプ吐き出し油量を所定の油量に制御する流量制御を行うことが、無駄な油圧上昇を生じさせない点で合理的である。こうした流量制御を行う技術として、従来、特許文献1及び特許文献2に記載の技術がある。   In such a hydraulic circuit using an engine-driven oil pump, when the engine speed is higher than the flow rate required by the hydraulic operation circuit and the lubrication circuit, the oil discharged from the oil pump is drained to drain the hydraulic pressure due to excessive flow rate. Therefore, it is reasonable to control the flow rate of the oil discharged from the oil pump, which changes according to the engine speed, to a predetermined amount, so that no unnecessary increase in hydraulic pressure occurs. Conventionally, there are techniques described in Patent Document 1 and Patent Document 2 as techniques for performing such flow rate control.

また、油圧作動回路がアキュムレータを備える場合、アキュムレータへの蓄圧を利用して回路作動を行わせることができるため、アキュムレータへの蓄圧完了時に、オイルポンプの出力を必要としない状態を作り出すことができ、このときオイルポンプを無負荷状態で回転させることでエネルギロスを低減することができる。こうしたオイルポンプの負荷を解放する手段として、アンローダ弁が使用される。こうした技術を開示するものとして、特許文献3に記載の技術がある。
実開平2−33965号公報 特開平11−30320号公報 特開平11−280643号公報
In addition, when the hydraulic operation circuit is equipped with an accumulator, the circuit operation can be performed using the accumulated pressure in the accumulator, so it is possible to create a state that does not require the output of the oil pump when the accumulator is accumulated. At this time, the energy loss can be reduced by rotating the oil pump in a no-load state. An unloader valve is used as means for releasing the load of such an oil pump. There exists a technique of patent document 3 as what discloses such a technique.
Japanese Utility Model Publication No. 2-39655 Japanese Patent Laid-Open No. 11-30320 Japanese Patent Laid-Open No. 11-280643

ところで、前記のような流量制御弁やアンローダ弁は、オイルポンプの吐出流量に見合った大流量のドレーン能力を必要とするため、これらの弁を油圧回路に併設した場合、2つの大容量弁の配置に伴い油圧回路が大型化する。こうした回路の大型化は、車載される変速機にとって車両への搭載性を阻害する要因となるため、好ましくない。   By the way, the flow rate control valve and the unloader valve as described above require a drain capacity of a large flow rate corresponding to the discharge flow rate of the oil pump. Therefore, when these valves are provided in the hydraulic circuit, two large capacity valves are used. The hydraulic circuit becomes larger with the arrangement. Such an increase in the size of the circuit is not preferable because it is a factor that hinders mounting on a vehicle for an on-vehicle transmission.

本発明は、上記のような事情に鑑み案出されたものであり、変速機の油圧制御装置における大容量を必要とする弁を小容量で足る弁との組み合わせで共用化し、それにより油圧回路を極力小型軽量化することを主たる目的とする。また、本発明は、オイルポンプの駆動に係るエネルギロスを削減することを更なる目的とする。   The present invention has been devised in view of the circumstances as described above, and a valve that requires a large capacity in a hydraulic control device for a transmission is shared by a combination with a valve that requires a small capacity, thereby a hydraulic circuit. The main purpose is to reduce the size and weight as much as possible. Moreover, this invention makes it the further objective to reduce the energy loss which concerns on the drive of an oil pump.

本発明は、オイルポンプ(1)の吐出側油路(b)と油圧作動回路(c)との間に介挿され、オリフィス(2)と調圧弁(3)とからなり、オリフィス前後の差圧に応じてオリフィスの上流側油路からオイルポンプの吸い込み側油路(a)に戻るドレーン量を制御する流量制御弁を備え、ドレーン量の調節により前記油圧作動回路に流れるオイル流量を制御する変速機用油圧制御装置において、オリフィス下流の油圧を前記流量制御弁に印加する信号圧油路(e)に、流量制御弁に対する信号圧の印加と解放を制御する信号圧切換弁(4)を介挿したことを主要な特徴とする。   The present invention is interposed between a discharge-side oil passage (b) and a hydraulic operation circuit (c) of an oil pump (1), and includes an orifice (2) and a pressure regulating valve (3). A flow rate control valve for controlling the drain amount returning from the upstream oil passage of the orifice to the suction side oil passage (a) according to the pressure is provided, and the flow rate of oil flowing to the hydraulic operation circuit is controlled by adjusting the drain amount. In the transmission hydraulic control device, a signal pressure switching valve (4) for controlling application and release of signal pressure to the flow control valve is provided in a signal pressure oil passage (e) for applying hydraulic pressure downstream of the orifice to the flow control valve. The main feature is the insertion.

また、本発明は、オイルポンプ(1)の吐出側油路(b)と油圧作動回路(c)との間に介挿されたオリフィス(2)と、該オリフィスの上流側油路とオイルポンプの吸い込み側油路(a)を連通する油路(d)中に介挿され、オリフィス上流の油圧とオリフィス下流の油圧を対向印加されてオリフィスの上流側油路からオイルポンプの吸い込み側油路に戻るドレーン量を制御する調圧弁(3)とを備え、ドレーン量の調節により前記油圧作動回路に流れるオイル流量を制御する変速機用油圧制御装置において、オリフィス下流の油圧の前記調圧弁への印加及び解放を制御する信号圧切換弁(4)を備えることを更なる特徴とする。   The present invention also provides an orifice (2) interposed between a discharge side oil passage (b) of the oil pump (1) and a hydraulic operation circuit (c), an oil passage upstream of the orifice, and an oil pump. Is inserted into an oil passage (d) communicating with the suction side oil passage (a), and the oil pressure upstream of the orifice and the oil pressure downstream of the orifice are applied to face each other, and the oil passage on the suction side of the oil pump from the oil passage upstream of the orifice And a pressure regulating valve (3) for controlling the drain amount to return to the hydraulic pressure control apparatus for controlling the amount of oil flowing through the hydraulic operation circuit by adjusting the drain amount. It is further characterized by comprising a signal pressure switching valve (4) for controlling application and release.

前記いずれの構成を採る場合も、前記信号圧切換弁は、ソレノイド作動の電磁弁で構成されるのが有効である。また、前記信号圧切換弁は、常閉形の弁で構成することも、常開形の弁で構成することもできる。また、前記油圧作動回路は、該回路の油圧の上昇により前記信号圧切換弁を信号圧印加作動させる出力手段(5,6)を備えるのが有効である。この場合の前記出力手段は、油圧センサ(5)と、該油圧センサの信号により信号圧切換弁にソレノイド駆動信号を出力する電子制御装置(6)とから構成される。また、前記油圧作動回路は、アキュムレータ(7)を備え、該アキュムレータと前記オリフィスとの間にオイルの逆流を阻止する逆止弁(8)が介挿された構成が望ましい。   In any case, it is effective that the signal pressure switching valve is composed of a solenoid-operated solenoid valve. The signal pressure switching valve may be a normally closed valve or a normally open valve. Further, it is effective that the hydraulic operation circuit includes output means (5, 6) for applying a signal pressure to the signal pressure switching valve by increasing the hydraulic pressure of the circuit. In this case, the output means includes a hydraulic pressure sensor (5) and an electronic control device (6) that outputs a solenoid drive signal to the signal pressure switching valve based on a signal from the hydraulic pressure sensor. The hydraulic operation circuit preferably includes an accumulator (7), and a check valve (8) for preventing back flow of oil is interposed between the accumulator and the orifice.

本発明によれば、流量制御弁と信号圧切換弁を組合わせることで、流量制御弁をアンローダ弁としても作動させることができ、流量制御弁とアンローダ弁を並列的に実装した場合に比べて、アンローダ弁が信号圧制御弁に置き換わるだけ弁の低容量化による小型化が可能となる。そして、このことにより油圧制御装置の小型化と軽量化が達成される。   According to the present invention, by combining the flow control valve and the signal pressure switching valve, the flow control valve can be operated as an unloader valve, as compared with the case where the flow control valve and the unloader valve are mounted in parallel. Therefore, the valve can be reduced in size by replacing the unloader valve with the signal pressure control valve. As a result, the hydraulic control device can be reduced in size and weight.

本発明は、油圧作動回路がアキュムレータを備える油圧制御装置に適用して特に有効なものであり、これによりアキュムレータへの蓄圧完了時に、流量制御弁をアンロード状態に切換えることで、オイルポンプの負荷解放状態を長くして、エネルギロスを少なくすることができる。   The present invention is particularly effective when applied to a hydraulic control apparatus in which a hydraulic operation circuit is provided with an accumulator. By this, when the accumulation of pressure in the accumulator is completed, the flow control valve is switched to an unloaded state, thereby reducing the load on the oil pump. The release state can be lengthened to reduce energy loss.

図1は、本発明の油圧制御装置の1実施例の回路構成を示す。この回路は、オイルポンプ1を油圧エネルギ源として、油圧作動回路cに油圧を供給する基圧回路を構成している。この例における油圧作動回路cは、油の供給により、変速機構各部の潤滑を行なうとともに、必要に応じて変速制御のための各クラッチの油圧サーボ(C)11やブレーキの油圧サーボ(B)12を作動させる回路を構成している。この回路は、更に、供給される油を蓄圧し、必要に応じて油圧サーボ11,12に供給するアキュムレータ7を備える。   FIG. 1 shows a circuit configuration of an embodiment of a hydraulic control apparatus according to the present invention. This circuit constitutes a base pressure circuit that supplies oil pressure to the hydraulic operation circuit c using the oil pump 1 as a hydraulic energy source. The hydraulic operation circuit c in this example lubricates each part of the speed change mechanism by supplying oil, and if necessary, the hydraulic servo (C) 11 for each clutch and the hydraulic servo (B) 12 for the brake for speed change control. The circuit which operates is comprised. This circuit further includes an accumulator 7 that accumulates the supplied oil and supplies it to the hydraulic servos 11 and 12 as necessary.

基圧回路には、オイルポンプ1の吐出側油路bと油圧作動回路cとの間に介挿され、オリフィス2と調圧弁3とからなり、オリフィス2前後の差圧に応じてオリフィス2の上流側油路(オイルポンプ1の吐出側油路b)からオイルポンプ1の吸い込み側油路aに戻るドレーン量を制御する流量制御弁が配置されており、この流量制御弁によるドレーン量の調節により油圧作動回路cに流れるオイル流量を制御する構成とされている。そして、本発明の特徴に従い、オリフィス2下流の油圧を流量制御弁の調圧弁3に印加する信号圧油路eに、調圧弁3に対する信号圧の印加と解放を制御する信号圧切換弁4が介挿されている。この例では、オリフィス2は、オイルポンプ1の吐出側油路bと油圧作動回路cとの間に介挿され、調圧弁3は、オリフィス2の上流側油路とオイルポンプ1の吸い込み側油路aを連通する油路d中に、オリフィス2上流の油圧とオリフィス下流の油圧を対向印加されてオリフィス2の上流側油路からオイルポンプ1の吸い込み側油路aに戻るドレーン量を制御するべく介挿されている。信号圧切換弁4は、オリフィス2下流の油圧の調圧弁3への印加及び解放を制御するものとされている。   The base pressure circuit is interposed between the discharge-side oil passage b of the oil pump 1 and the hydraulic operation circuit c, and includes an orifice 2 and a pressure regulating valve 3. A flow rate control valve for controlling the drain amount returning from the upstream oil passage (discharge side oil passage b of the oil pump 1) to the suction side oil passage a of the oil pump 1 is arranged, and adjustment of the drain amount by this flow control valve Thus, the flow rate of the oil flowing through the hydraulic operation circuit c is controlled. In accordance with the characteristics of the present invention, a signal pressure switching valve 4 for controlling the application and release of the signal pressure to the pressure regulating valve 3 is provided in the signal pressure oil passage e for applying the hydraulic pressure downstream of the orifice 2 to the pressure regulating valve 3 of the flow control valve. It is inserted. In this example, the orifice 2 is inserted between the discharge side oil passage b of the oil pump 1 and the hydraulic operation circuit c, and the pressure regulating valve 3 is connected to the upstream side oil passage of the orifice 2 and the suction side oil of the oil pump 1. In the oil passage d communicating with the passage a, the oil pressure upstream of the orifice 2 and the oil pressure downstream of the orifice are applied oppositely to control the amount of drain returning from the oil passage upstream of the orifice 2 to the suction oil passage a of the oil pump 1. It is inserted as much as possible. The signal pressure switching valve 4 controls application and release of the hydraulic pressure downstream of the orifice 2 to the pressure regulating valve 3.

以下、この基圧回路の詳細と回路を構成する各要素について順次詳述する。この回路は、油溜まり10からオイルポンプ1で油を吸い上げ、各部に供給後の油をドレーンさせて油溜まり10に戻す、通常の自動変速機と同様のオープン回路を構成している。先ず、油溜まり10から油を吸い上げて回路に吐出する油圧発生源としてのオイルポンプ1は、油圧制御装置が車両運転時に常時機関が作動状態とされる通常の自動変速機用のものである場合には、機関による機械駆動のオイルポンプとされるのが望ましく、車両運転時にも機関の停止がなされる電気自動車やハイブリッド車用の電動機内蔵駆動装置のものである場合には、電動オイルポンプとされるのが望ましい。   Hereinafter, details of the basic pressure circuit and each element constituting the circuit will be described in detail. This circuit constitutes an open circuit similar to a normal automatic transmission that draws up oil from the oil reservoir 10 by the oil pump 1 and drains the oil supplied to each part and returns it to the oil reservoir 10. First, the oil pump 1 as a hydraulic pressure generating source that sucks up oil from the oil reservoir 10 and discharges it to a circuit is for a normal automatic transmission in which the engine is always in an operating state during vehicle operation. In this case, it is desirable to use an oil pump that is mechanically driven by an engine, and in the case of a drive device with a built-in motor for an electric vehicle or a hybrid vehicle in which the engine is stopped even when the vehicle is operated, It is desirable to be done.

流量制御弁を構成するオリフィス2は、開口を有するプレート式のもの、又は円筒周面にスロットを設けたチョーク式のもの等、適宜の形式のものとされる。調圧弁3は、スプリング復帰式のスプール形2ポート弁とされ、スプリング荷重負荷側のスプール端にオリフィス2下流の油圧が印加され、他方のスプール端にオリフィス上流(オイルポンプ吐出側油路b)の油圧が印加されるものとされている。また、この調圧弁3の全開時の流量容量は、オイルポンプ最高速回転時の吐出流量の全量を流すことが可能な容量とされている。調圧弁3のインポートは、オリフィス上流側の油路bに接続され、アウトポートは、オイルポンプ1の吸い込み側油路aに接続されている。したがって、調圧弁3は、オリフィス前後の差圧が小さいと、主としてスプリング荷重によりポート閉じ方向に作動してオイルポンプ吸い込み側への戻り油量を減少させ、差圧が大きくなると、オリフィス上流側から印加される信号圧が勝ることでポート開き方向に作動して、戻り油量を増加させる作動を行う。この調圧弁3の作動によりオリフィス2を通るオイルの流量は実質上一定に保たれる。   The orifice 2 constituting the flow control valve is of an appropriate type such as a plate type having an opening or a choke type having a slot on a cylindrical peripheral surface. The pressure regulating valve 3 is a spring-returned spool type two-port valve, and the hydraulic pressure downstream of the orifice 2 is applied to the spool end on the spring load side, and upstream of the other spool end (oil pump discharge side oil passage b). The hydraulic pressure is applied. Further, the flow capacity when the pressure regulating valve 3 is fully opened is a capacity capable of flowing the entire discharge flow rate when the oil pump rotates at the highest speed. The import of the pressure regulating valve 3 is connected to the oil passage b on the upstream side of the orifice, and the outport is connected to the suction side oil passage a of the oil pump 1. Therefore, when the differential pressure across the orifice is small, the pressure regulating valve 3 operates mainly in the port closing direction due to the spring load to reduce the amount of return oil to the oil pump suction side, and when the differential pressure increases, When the applied signal pressure wins, it operates in the port opening direction to increase the amount of return oil. The operation of the pressure regulating valve 3 keeps the oil flow rate through the orifice 2 substantially constant.

信号圧切換弁4は、ソレノイド作動スプリング復帰式の常閉形3ポートスプール弁とされている。信号圧切換弁4のインポートは、オリフィス下流側の油路に接続され、アウトポートは、調圧弁3のスプリング荷重負荷側スプール端に接続されている。したがって、信号圧切換弁4は、ソレノイド信号印加時にはインポートとアウトポートの連通状態に切換わり、オリフィス下流側の油圧を調圧弁3のスプリング荷重負荷側スプール端に印加し、ソレノイド信号無印加時にはスプリング復帰でインポートとアウトポートの連通状態を遮断してアウトポートをドレーン連通に切換える。こうした信号圧制御弁4の作動との関連により、信号圧切換弁4による信号圧印加時には、調圧弁3はオリフィス2と協働して流量制御弁として作動し、信号圧解放時には、調圧弁3はオイルポンプ1の圧縮負荷を解放するアンローダ弁として作動することになる。   The signal pressure switching valve 4 is a solenoid-operated spring return type normally closed three-port spool valve. The import of the signal pressure switching valve 4 is connected to the oil passage on the downstream side of the orifice, and the out port is connected to the spring load load side spool end of the pressure regulating valve 3. Accordingly, the signal pressure switching valve 4 is switched to the communication state between the import and the outport when the solenoid signal is applied, and the hydraulic pressure downstream of the orifice is applied to the spring load load side spool end of the pressure regulating valve 3, and the spring is not applied when the solenoid signal is not applied. The connection between the import and the outport is cut off at the return, and the outport is switched to the drain communication. In connection with the operation of the signal pressure control valve 4, when the signal pressure is applied by the signal pressure switching valve 4, the pressure regulating valve 3 operates as a flow control valve in cooperation with the orifice 2, and when the signal pressure is released, the pressure regulating valve 3 Operates as an unloader valve that releases the compression load of the oil pump 1.

油圧作動回路cに該回路の油圧の上昇により信号圧切換弁4を信号圧解放作動させるべく設けられた出力手段は、油圧センサ5と、油圧センサ5の信号により信号圧切換弁4にソレノイド駆動信号を出力する電子制御装置(ECU)6とから構成されている。この油圧センサ5は、油圧作動回路cの油圧を検出して作動する油圧スイッチとされ、電子制御装置6は、油圧スイッチ5の作動を検出してソレノイド駆動信号を出力すべく、自動変速機や駆動装置を制御するためのコントロールユニットが用いられる。なお、油圧スイッチの代わりにトランスデューサを用いても同様の作用効果を有する構成を実現できる。   An output means provided in the hydraulic operation circuit c to release the signal pressure switching valve 4 by increasing the hydraulic pressure of the circuit is driven by a solenoid to the signal pressure switching valve 4 by a signal from the hydraulic sensor 5 and the hydraulic sensor 5. It consists of an electronic control unit (ECU) 6 that outputs signals. The hydraulic sensor 5 is a hydraulic switch that operates by detecting the hydraulic pressure of the hydraulic operation circuit c, and the electronic control unit 6 detects an operation of the hydraulic switch 5 and outputs a solenoid drive signal, A control unit for controlling the drive device is used. In addition, the structure which has the same effect can be implement | achieved even if it uses a transducer instead of a hydraulic switch.

更に、油圧作動回路cには、該回路に供給される油圧を蓄圧するアキュムレータ7が設けられ、これに伴い、蓄圧された油圧のポンプ吐出側への戻りを防ぐべく、アキュムレータ7とオリフィス2との間に油の逆流を阻止する逆止弁8が介挿されている。   Further, the hydraulic operation circuit c is provided with an accumulator 7 for accumulating the hydraulic pressure supplied to the circuit, and accordingly, in order to prevent the accumulated hydraulic pressure from returning to the pump discharge side, the accumulator 7 and the orifice 2 In the meantime, a check valve 8 for preventing the backflow of oil is inserted.

以上の構成からなる油圧制御装置は、次の図2のタイムチャートに示すように制御される。このタイムチャートは、横軸を時間、縦軸をオリフィス上流側の圧力(ポンプ吐出圧:図に実線で示す)及びオリフィスを通る流量(出力流量:図に●印を点線でつないで示す)で表している。図示するように、信号圧切換弁(図に電磁弁と表記)のオン作動による流量制御状態では、ポンプ吐出流量自体は一定であるとして、オリフィスを通る流量は、流量制御により一定値を保ち、ポンプ吐出圧の上昇につれてアキュムレータの蓄圧(アキュムレータ圧:図に破線で示す)も次第に上昇して行く。このアキュムレータ圧が所定の上限値(P)圧力まで上昇したところで電磁弁をオフとすると、回路はアンロード状態に切換わり、オリフィスを通る流量は0となるため、ポンプ吐出圧は一気に所定圧まで低下し、その後一定値を保つ。一方、アキュムレータ圧は、油圧作動回路側の潤滑のための流量消費や回路からの漏れ等により徐々に低下して行く。こうしてアキュムレータ圧が所定の下限値(P)まで低下したところで、電磁弁をオンとすることで、オリフィスを通る流量が復帰し、ポンプ吐出圧は上昇を開始し、これに伴いアキュムレータ圧も再び上限値(P)に向かって上昇を開始する。なお、このタイムチャートは、油圧作動回路側でアキュムレータ圧を急激に消費するクラッチやブレーキの作動がない場合を示すもので、これらの作動がある場合には、アンロード状態でのアキュムレータ圧の低下はより急速になり、アンロード状態の持続時間が短くなる。 The hydraulic control apparatus having the above configuration is controlled as shown in the time chart of FIG. In this time chart, the horizontal axis is time, the vertical axis is the pressure upstream of the orifice (pump discharge pressure: indicated by a solid line in the figure), and the flow rate through the orifice (output flow rate: indicated by a dotted line in the figure). Represents. As shown in the figure, in the flow control state by the ON operation of the signal pressure switching valve (denoted as a solenoid valve in the figure), the flow rate through the orifice is kept constant by the flow control, assuming that the pump discharge flow rate itself is constant, As the pump discharge pressure increases, the accumulator pressure accumulation (accumulator pressure: indicated by broken lines in the figure) also gradually increases. If the solenoid valve is turned off when the accumulator pressure rises to a predetermined upper limit (P H ) pressure, the circuit is switched to the unloaded state, and the flow rate through the orifice becomes 0. And then keep a constant value. On the other hand, the accumulator pressure gradually decreases due to flow consumption for lubrication on the hydraulic operation circuit side, leakage from the circuit, and the like. When the accumulator pressure is thus reduced to the predetermined lower limit (P L ), when the solenoid valve is turned on, the flow rate through the orifice is restored, the pump discharge pressure starts to rise, and the accumulator pressure is again increased accordingly. The increase starts toward the upper limit value (P H ). This time chart shows the case where there is no operation of the clutch or brake that suddenly consumes accumulator pressure on the hydraulic operation circuit side, and when there is such operation, the accumulator pressure decreases in the unloaded state Becomes more rapid and the duration of unloading is shorter.

以上詳述したように、この実施例によれば、流量制御弁と信号圧制御弁4を組合わせることで、流量制御弁をアンローダ弁としても作動させることができ、流量制御弁とアンローダ弁を並列的に配置した場合に比べて、アンローダ弁が信号圧制御弁に置き換わるだけ弁の低容量化による小型化が可能となる。これを具体的な数値で示すと、例えば排気量1000ccクラスのエンジン用の自動変速機を想定した場合、オイルポンプから吐出され、油圧作動回路側で消費されることなく油溜まりにドレーンされる過剰な流量は、50L/min以上になり、これに対応するような流量制御弁とアンローダ弁を個々に設置すると、それぞれの弁で50L/min以上の流量を流す必要があるが、本実施例によれば、流量制御弁を前記50L/min以上の流量を流すことができる容量ものとするだけで、信号圧切換弁4については信号圧印加ための1L/min程度の流量容量のもので足りる。そして、このことが油圧制御装置の小型軽量化につながる。   As described above in detail, according to this embodiment, the flow control valve and the signal pressure control valve 4 can be combined to operate the flow control valve as an unloader valve. Compared with the case where they are arranged in parallel, the unloader valve can be reduced in size by replacing the signal pressure control valve with a lower volume of the valve. When this is expressed by specific numerical values, for example, assuming an automatic transmission for an engine with a displacement of 1000 cc class, it is excessively discharged from the oil pump and drained into the oil sump without being consumed on the hydraulic operation circuit side. When the flow control valve and unloader valve corresponding to this are individually installed, it is necessary to flow a flow of 50 L / min or more with each valve. Therefore, it is only necessary that the flow rate control valve has a capacity capable of flowing a flow rate of 50 L / min or more, and the signal pressure switching valve 4 may have a flow capacity of about 1 L / min for applying the signal pressure. This leads to a reduction in size and weight of the hydraulic control device.

ところで、前記実施例1では、信号圧切換弁4を常閉(ノーマルクローズ)形の電磁弁で構成したが、この弁を常開(ノーマルオープン)形の電磁弁で構成することもできる。次に、こうした構成を採る実施例2の回路構成を説明する。   In the first embodiment, the signal pressure switching valve 4 is a normally closed solenoid valve. However, the valve may be a normally open solenoid valve. Next, a circuit configuration of the second embodiment having such a configuration will be described.

図3は実施例2の油圧回路構成を示す。この油圧回路は、信号圧切換弁4の構成を除いて、基本的には前記実施例1のものと同様であるので、油圧作動回路と出力手段の部分の回路の図示を省略し、図示部分のうち対応する部分については同様の参照符号を付して説明に代え、以下相違点のみ説明する。この回路では、信号圧切換弁4はソレノイド作動スプリング復帰式の常開形3ポートスプール弁とされている。したがって、信号圧切換弁4は、ソレノイド信号無印加時にはスプリング復帰でインポートとアウトポートの連通状態を維持することで、オリフィス下流側の油圧を調圧弁3のスプリング荷重負荷側スプール端に印加し、ソレノイド信号印加時にはインポートを遮断し、アウトポートをドレーン連通に切換えて調圧弁3へのオリフィス下流側の油圧の印加を解放する。こうした信号圧切換弁4の作動との関連により、信号圧切換弁4による信号圧印加時には、調圧弁3はオリフィス2と協働して流量制御弁として作動し、信号圧解放時には、調圧弁3はオイルポンプ1の圧縮負荷を解放するアンローダ弁として作動することになる。   FIG. 3 shows a hydraulic circuit configuration of the second embodiment. Since this hydraulic circuit is basically the same as that of the first embodiment except for the configuration of the signal pressure switching valve 4, the illustration of the hydraulic operation circuit and the circuit of the output means is omitted. Corresponding portions are denoted by the same reference numerals instead of the description, and only differences will be described below. In this circuit, the signal pressure switching valve 4 is a solenoid-operated spring return-type normally open three-port spool valve. Therefore, the signal pressure switching valve 4 applies the oil pressure downstream of the orifice to the spring load load side spool end of the pressure regulating valve 3 by maintaining the communication state between the import and the out port by the spring return when no solenoid signal is applied, When the solenoid signal is applied, the import is cut off, the out port is switched to drain communication, and the application of the hydraulic pressure downstream of the orifice to the pressure regulating valve 3 is released. In connection with the operation of the signal pressure switching valve 4, when the signal pressure is applied by the signal pressure switching valve 4, the pressure regulating valve 3 operates as a flow control valve in cooperation with the orifice 2, and when the signal pressure is released, the pressure regulating valve 3 Operates as an unloader valve that releases the compression load of the oil pump 1.

この実施例2の構成を採った場合、信号圧切換弁4へのソレノイド信号の印加と無印加に対する流量制御弁の流量制御とアンロード状態の切換の関係は逆転する。そして、この例の場合、ソレノイド信号無印加時に流量制御弁が流量制御機能を達成する状態が維持されるため、不慮のソレノイドの断線、ソレノイド駆動信号の欠落等のフェールが生じた場合でも、油圧作動回路への油圧供給を維持することができる利点が得られる。   In the case of adopting the configuration of the second embodiment, the relationship between the flow control of the flow control valve and the switching of the unload state with respect to the application or non-application of the solenoid signal to the signal pressure switching valve 4 is reversed. In this example, the state in which the flow rate control valve achieves the flow rate control function is maintained when no solenoid signal is applied, so even if a failure such as accidental disconnection of the solenoid or loss of the solenoid drive signal occurs, The advantage is that the hydraulic supply to the operating circuit can be maintained.

以上2つの実施例では、信号圧切換弁4を電磁弁で構成したが、この弁を油圧を信号圧として作動する弁とし、該弁の操作を別の電磁弁で行う構成を採ることもできる。最後に、こうした構成を採る実施例3の回路構成を説明する。   In the above two embodiments, the signal pressure switching valve 4 is constituted by an electromagnetic valve. However, it is also possible to adopt a configuration in which this valve is operated by using hydraulic pressure as a signal pressure, and the operation of the valve is performed by another electromagnetic valve. . Finally, a circuit configuration of the third embodiment having such a configuration will be described.

図4は実施例3の油圧回路構成を示す。この油圧回路は、信号圧切換弁4の構成及び新たに付加される電磁弁9を除いて、基本的には先の実施例1のものと同様であるので、油圧作動回路と出力手段の部分の回路の図示を省略し、図示部分のうち対応する部分については同様の参照符号を付して説明に代え、以下相違点のみ説明する。この回路では、信号圧切換弁4は油圧作動スプリング復帰式の常閉形3ポートスプール弁とされている。また、これを作動させる電磁弁9は、単純なオンオフ作動の開閉弁とされている。この回路構成では、信号圧切換弁4は、信号圧無印加時にはスプリング復帰でインポートを遮断しアウトポートをドレーン連通とし、調圧弁3へのオリフィス下流側の油圧の印加を解放する。また、電磁弁9のインポートは、油圧制御回路におけるモジュレータ圧油路等、アキュムレータ圧より低圧の油路に接続されたものとされ、アウトポートは、信号圧切換弁4のスプリング荷重負荷側とは反対のスプール端に接続されている。この回路では、電磁弁9へのソレノイド信号印加状態で、信号圧切換弁4への信号圧出力がなされ、それにより信号圧切換弁4のインポートとアウトポートの連通状態が生じ、オリフィス下流側の油圧が調圧弁3のスプリング荷重負荷側スプール端に印加される。こうした信号圧切換弁4の作動との関連により、信号圧切換弁4による信号圧印加時には、調圧弁3はオリフィス2と協働して流量制御弁として作動し、信号圧解放時には、調圧弁3はオイルポンプ1の圧縮負荷を解放するアンローダ弁として作動することになる。なお、この実施例における電磁弁9についても、フェール時の流量制御機能を維持する意味で、先の実施例2の場合と同様に常開形のオンオフ電磁弁とすることもできる。   FIG. 4 shows a hydraulic circuit configuration of the third embodiment. This hydraulic circuit is basically the same as that of the first embodiment except for the configuration of the signal pressure switching valve 4 and the newly added electromagnetic valve 9, so that the hydraulic operating circuit and the output means portion are the same. In the figure, the corresponding parts are denoted by the same reference numerals, and only the differences will be described below. In this circuit, the signal pressure switching valve 4 is a normally closed three-port spool valve of a hydraulically operated spring return type. Moreover, the electromagnetic valve 9 which operates this is a simple on / off open / close valve. In this circuit configuration, when the signal pressure is not applied, the signal pressure switching valve 4 shuts off the import by returning the spring, makes the out port drain communication, and releases the application of the hydraulic pressure downstream of the orifice to the pressure regulating valve 3. The import of the solenoid valve 9 is connected to an oil passage having a pressure lower than the accumulator pressure, such as a modulator pressure oil passage in the hydraulic control circuit, and the outport is defined as the spring load load side of the signal pressure switching valve 4. Connected to the opposite spool end. In this circuit, a signal pressure is output to the signal pressure switching valve 4 in a state where a solenoid signal is applied to the electromagnetic valve 9, thereby causing communication between the signal pressure switching valve 4 and the out port. Hydraulic pressure is applied to the spring load side spool end of the pressure regulating valve 3. In connection with the operation of the signal pressure switching valve 4, when the signal pressure is applied by the signal pressure switching valve 4, the pressure regulating valve 3 operates as a flow control valve in cooperation with the orifice 2, and when the signal pressure is released, the pressure regulating valve 3 Operates as an unloader valve that releases the compression load of the oil pump 1. Note that the solenoid valve 9 in this embodiment can also be a normally open on / off solenoid valve in the sense of maintaining the flow rate control function at the time of failure as in the case of the second embodiment.

この実施例3の構成を採った場合、電磁弁9を先の実施例において信号圧切換弁4として使用した電磁弁より低圧作動且つ構成の単純なオンオフ作動の弁とすることができるため、弁数は増加するが、油圧作動の弁に比べてコスト的に高価な電磁弁のコストを低容量化とオンオフ化により低減することができるため、回路全体のコスト及び重量としては低減が可能となる利点が得られる。   When the configuration of the third embodiment is adopted, the solenoid valve 9 can be a low-pressure operation and simple on / off operation valve than the solenoid valve used as the signal pressure switching valve 4 in the previous embodiment. Although the number increases, the cost of the solenoid valve, which is expensive in comparison with the hydraulically operated valve, can be reduced by lowering the capacity and turning on / off, so the cost and weight of the entire circuit can be reduced. Benefits are gained.

本発明の油圧制御装置の実施例1を示す回路図である。It is a circuit diagram which shows Example 1 of the hydraulic control apparatus of this invention. 油圧制御装置の油圧制御作動を示すタイムチャートである。It is a time chart which shows the hydraulic control operation | movement of a hydraulic control apparatus. 実施例2に係る油圧制御装置の回路図である。6 is a circuit diagram of a hydraulic control apparatus according to Embodiment 2. FIG. 実施例3に係る油圧制御装置の回路図である。FIG. 6 is a circuit diagram of a hydraulic control apparatus according to a third embodiment.

符号の説明Explanation of symbols

1 オイルポンプ
2 オリフィス(流量制御弁)
3 調圧弁(流量制御弁)
4 信号圧切換弁
5 油圧センサ(出力手段)
6 電子制御装置(出力手段)
7 アキュムレータ
8 逆止弁
a 吸い込み側油路
b 吐出側油路
c 油圧作動回路
d 戻り油路
e 信号圧油路
1 Oil pump 2 Orifice (flow control valve)
3 Pressure regulating valve (Flow control valve)
4 Signal pressure switching valve 5 Hydraulic pressure sensor (output means)
6 Electronic control unit (output means)
7 Accumulator 8 Check valve a Suction side oil passage b Discharge side oil passage c Hydraulic operation circuit d Return oil passage e Signal pressure oil passage

Claims (8)

オイルポンプ(1)の吐出側油路(b)と油圧作動回路(c)との間に介挿され、オリフィス(2)と調圧弁(3)とからなり、オリフィス前後の差圧に応じてオリフィスの上流側油路からオイルポンプの吸い込み側油路(a)に戻るドレーン量を制御する流量制御弁を備え、ドレーン量の調節により前記油圧作動回路に流れるオイル流量を制御する変速機用油圧制御装置において、
オリフィス下流の油圧を前記流量制御弁に印加する信号圧油路(e)に、流量制御弁に対する信号圧の印加と解放を制御する信号圧切換弁(4)を介挿したことを特徴とする変速機用油圧制御装置。
It is inserted between the discharge side oil passage (b) of the oil pump (1) and the hydraulic operation circuit (c), and consists of an orifice (2) and a pressure regulating valve (3), according to the differential pressure before and after the orifice. A hydraulic pressure for a transmission that includes a flow rate control valve that controls the amount of drain that returns from the upstream oil passage of the orifice to the suction-side oil passage (a) of the oil pump, and that controls the amount of oil flowing through the hydraulic operation circuit by adjusting the drain amount. In the control device,
The signal pressure oil passage (e) for applying the hydraulic pressure downstream of the orifice to the flow control valve is provided with a signal pressure switching valve (4) for controlling the application and release of the signal pressure to the flow control valve. Hydraulic control device for transmission.
オイルポンプ(1)の吐出側油路(b)と油圧作動回路(c)との間に介挿されたオリフィス(2)と、該オリフィスの上流側油路とオイルポンプの吸い込み側油路(a)を連通する油路(d)中に介挿され、オリフィス上流の油圧とオリフィス下流の油圧を対向印加されてオリフィスの上流側油路からオイルポンプの吸い込み側油路に戻るドレーン量を制御する調圧弁(3)とを備え、ドレーン量の調節により前記油圧作動回路に流れるオイル流量を制御する変速機用油圧制御装置において、
オリフィス下流の油圧の前記調圧弁への印加及び解放を制御する信号圧切換弁(4)を備えることを特徴とする変速機用油圧制御装置。
An orifice (2) interposed between the discharge side oil passage (b) of the oil pump (1) and the hydraulic operation circuit (c), an upstream oil passage of the orifice, and a suction side oil passage ( a) is inserted into the oil passage (d) communicating with the oil passage, and the oil pressure upstream of the orifice and the oil pressure downstream of the orifice are applied oppositely to control the amount of drain returning from the oil passage upstream of the orifice to the oil pump suction side oil passage. A hydraulic control device for a transmission that includes a pressure regulating valve (3) that controls the flow rate of oil flowing through the hydraulic operation circuit by adjusting a drain amount;
A transmission hydraulic control device comprising a signal pressure switching valve (4) for controlling application and release of hydraulic pressure downstream of an orifice to the pressure regulating valve.
前記信号圧切換弁は、ソレノイド作動の電磁弁で構成される、請求項1又は2記載の変速機用油圧制御装置。   The transmission hydraulic control device according to claim 1 or 2, wherein the signal pressure switching valve is configured by a solenoid-operated solenoid valve. 前記信号圧切換弁は、常閉形の弁で構成される、請求項1、2又は3記載の変速機用油圧制御装置。   4. The transmission hydraulic control device according to claim 1, wherein the signal pressure switching valve is a normally closed valve. 前記信号圧切換弁は、常開形の弁で構成される、請求項1、2又は3記載の変速機用油圧制御装置。   4. The hydraulic control device for a transmission according to claim 1, wherein the signal pressure switching valve is a normally open valve. 前記油圧作動回路は、該回路の油圧の上昇により前記信号圧切換弁を信号圧印加作動させる出力手段(5,6)を備える、請求項1〜5のいずれか1項記載の変速機用油圧制御装置。   The transmission hydraulic pressure according to any one of claims 1 to 5, wherein the hydraulic pressure operating circuit includes output means (5, 6) for applying a signal pressure to the signal pressure switching valve by increasing the hydraulic pressure of the circuit. Control device. 前記出力手段は、油圧センサ(5)と、該油圧センサの信号により信号圧切換弁にソレノイド駆動信号を出力する電子制御装置(6)とからなる、請求項1〜6のいずれか1項記載の変速機用油圧制御装置。   The said output means consists of a hydraulic pressure sensor (5) and the electronic control apparatus (6) which outputs a solenoid drive signal to a signal pressure switching valve by the signal of this hydraulic pressure sensor. Hydraulic control device for transmission. 前記油圧作動回路は、アキュムレータ(7)を備え、該アキュムレータと前記オリフィスとの間にオイルの逆流を阻止する逆止弁(8)が介挿された、請求項1〜7のいずれか1項記載の変速機用油圧制御装置。   The hydraulic operation circuit includes an accumulator (7), and a check valve (8) for preventing back flow of oil is interposed between the accumulator and the orifice. The hydraulic control apparatus for transmission as described.
JP2004093697A 2004-03-26 2004-03-26 Hydraulic control device for transmission Expired - Fee Related JP4534551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004093697A JP4534551B2 (en) 2004-03-26 2004-03-26 Hydraulic control device for transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004093697A JP4534551B2 (en) 2004-03-26 2004-03-26 Hydraulic control device for transmission

Publications (2)

Publication Number Publication Date
JP2005282618A true JP2005282618A (en) 2005-10-13
JP4534551B2 JP4534551B2 (en) 2010-09-01

Family

ID=35181255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004093697A Expired - Fee Related JP4534551B2 (en) 2004-03-26 2004-03-26 Hydraulic control device for transmission

Country Status (1)

Country Link
JP (1) JP4534551B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163367A (en) * 2010-02-04 2011-08-25 Toyota Motor Corp Hydraulic control device
JP2016079991A (en) * 2014-10-09 2016-05-16 ジヤトコ株式会社 Transmission, control method of transmission and vehicle
WO2018025891A1 (en) * 2016-08-05 2018-02-08 日本電産トーソク株式会社 Clutch control device
JP2019148251A (en) * 2018-02-28 2019-09-05 株式会社Ihi Compression ratio variable mechanism

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123000U (en) * 1983-02-09 1984-08-18 新潟コンバ−タ−株式会社 Clutch hydraulic control system for marine reversing reducer equipped with main engine generator
JPS631841A (en) * 1986-06-20 1988-01-06 Kubota Ltd Hydraulic circuit of power transmission
JPH07190183A (en) * 1993-12-27 1995-07-28 Kawasaki Heavy Ind Ltd Hydraulic device for hydraulic clutch
JPH0814076A (en) * 1994-04-28 1996-01-16 Nippondenso Co Ltd Automatic engine stop/starting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59123000U (en) * 1983-02-09 1984-08-18 新潟コンバ−タ−株式会社 Clutch hydraulic control system for marine reversing reducer equipped with main engine generator
JPS631841A (en) * 1986-06-20 1988-01-06 Kubota Ltd Hydraulic circuit of power transmission
JPH07190183A (en) * 1993-12-27 1995-07-28 Kawasaki Heavy Ind Ltd Hydraulic device for hydraulic clutch
JPH0814076A (en) * 1994-04-28 1996-01-16 Nippondenso Co Ltd Automatic engine stop/starting device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011163367A (en) * 2010-02-04 2011-08-25 Toyota Motor Corp Hydraulic control device
JP2016079991A (en) * 2014-10-09 2016-05-16 ジヤトコ株式会社 Transmission, control method of transmission and vehicle
DE112017003928B4 (en) * 2016-08-05 2021-03-11 Nidec Tosok Corporation Clutch control device
WO2018025891A1 (en) * 2016-08-05 2018-02-08 日本電産トーソク株式会社 Clutch control device
CN109563892A (en) * 2016-08-05 2019-04-02 日本电产东测株式会社 Clutch controller
JPWO2018025891A1 (en) * 2016-08-05 2019-06-06 日本電産トーソク株式会社 Clutch controller
US11060570B1 (en) 2016-08-05 2021-07-13 Nidec Tosok Corporation Clutch control device
CN109563892B (en) * 2016-08-05 2020-10-09 日本电产东测株式会社 Clutch control device
WO2019167810A1 (en) * 2018-02-28 2019-09-06 株式会社Ihi Compression ratio varying mechanism
KR20200121883A (en) * 2018-02-28 2020-10-26 가부시키가이샤 아이에이치아이 Compression ratio variable mechanism
CN111788377A (en) * 2018-02-28 2020-10-16 株式会社 Ihi Variable compression ratio mechanism
JP2019148251A (en) * 2018-02-28 2019-09-05 株式会社Ihi Compression ratio variable mechanism
US11156172B2 (en) 2018-02-28 2021-10-26 Ihi Corporation Compression ratio varying mechanism
JP7027956B2 (en) 2018-02-28 2022-03-02 株式会社Ihi Variable compression ratio mechanism
KR102401934B1 (en) * 2018-02-28 2022-05-24 가부시키가이샤 아이에이치아이 Compression ratio variable mechanism

Also Published As

Publication number Publication date
JP4534551B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
US8572956B2 (en) Hydraulic pressure supply device of automatic transmission
EP1640571B1 (en) Oil supply device for engine
JP4296887B2 (en) Driving force transmission system
US8955316B2 (en) Drive train device
US10018235B2 (en) Hydraulic supply apparatus
JP5445045B2 (en) Hydraulic control device for automatic transmission
EP1881222A1 (en) Method of operating a DCT hydraulic power control system as well as DCT hydraulic power control system
US9266519B2 (en) Hydraulic control device
JP2009541128A (en) Fluid retarder
US20080105307A1 (en) Fluid pressure actuated poppet valve
JP2007177868A (en) Hydraulic device for multi-stage transmission
JP6232898B2 (en) Hydraulic circuit of power transmission device for vehicle
JP2006207742A (en) Hydraulic control device of automatic transmission
JP2009052638A (en) Hydraulic fluid supply device in automatic transmission
JP4534551B2 (en) Hydraulic control device for transmission
JP3662968B2 (en) Lubricating oil passage configuration of transmission
JP4664393B2 (en) Hydraulic control device for automatic transmission
JP4824082B2 (en) Fluid pressure control system for fluid torque converter with controlled converter lock-up clutch
JP4211352B2 (en) Engine oil supply device
JP5233956B2 (en) Oil supply device
JP2018510308A (en) Drain valve
JP2014122664A (en) Hydraulic control device of transmission, and automatic stop/start device of prime mover
JP2004360905A (en) Hydraulic apparatus for vehicle transmission
JP5070175B2 (en) Hydraulic circuit of transmission with hydrodynamic torque converter
JP3603007B2 (en) Variable displacement hydraulic motor displacement control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140625

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees