JP2005282498A - Pump - Google Patents

Pump Download PDF

Info

Publication number
JP2005282498A
JP2005282498A JP2004099234A JP2004099234A JP2005282498A JP 2005282498 A JP2005282498 A JP 2005282498A JP 2004099234 A JP2004099234 A JP 2004099234A JP 2004099234 A JP2004099234 A JP 2004099234A JP 2005282498 A JP2005282498 A JP 2005282498A
Authority
JP
Japan
Prior art keywords
pump chamber
pump
channel
flow path
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004099234A
Other languages
Japanese (ja)
Other versions
JP4479306B2 (en
Inventor
Kunihiko Takagi
邦彦 高城
Takeshi Seto
毅 瀬戸
和弘 ▲吉▼田
Kazuhiro Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004099234A priority Critical patent/JP4479306B2/en
Publication of JP2005282498A publication Critical patent/JP2005282498A/en
Application granted granted Critical
Publication of JP4479306B2 publication Critical patent/JP4479306B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)
  • Reciprocating Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pump in which discharge flow rate is increased in a micro pump in which a pipe line element for generating inertia effect of fluid is provided to the discharge side of a pump chamber. <P>SOLUTION: The pump is equipped with an inlet flow passage 111 making working fluid flow in, an outlet flow passage 115 making working fluid flow out, a pump chamber 114 allowing change of a volume by a diaphragm 121, a connection flow passage 113 for connecting the inlet flow passage 111 and the outlet flow passage 115, an inlet connection flow passage 112 making working fluid flow into a pump chamber 114 from the inlet flow passage 111, a first check valve disposed between the connection flow passage 113 and the outlet flow passage 115, and a second check valve disposed between the pump chamber 114 and the outlet flow passage 115. Inertance of the connection flow passage 113 is made to become relatively smaller than each inertance of the inlet flow passage 111 and the outlet flow passage 115. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ダイアフラムによりポンプ室の容積を変更して動作流体の移動を行うポンプに関し、特に、小型で流量の多いポンプに関する。   The present invention relates to a pump that moves a working fluid by changing the volume of a pump chamber using a diaphragm, and more particularly to a small-sized pump having a large flow rate.

従来、ダイアフラムによりポンプ室の容積を変更して動作流体の移動を行う小型ポンプにおいて、流体の慣性効果を発生する管路要素をポンプ室の吐出側の直後に設けた高出力マイクロポンプが開発されている。(非特許文献1、特許文献1参照)
特開2002−322986号公報 「流体の慣性効果を用いたマイクロポンプの高出力化」 日本機械学会 ロボティクス・メカトロニクス講演会‘03講演論文集 2A1−2F−E4
Conventionally, in a small pump that moves the working fluid by changing the volume of the pump chamber using a diaphragm, a high-power micropump has been developed in which a pipe element that generates the inertia effect of the fluid is provided immediately after the discharge side of the pump chamber. ing. (See Non-Patent Document 1 and Patent Document 1)
JP 2002-322986 A “High output of micropump using inertial effect of fluid” The Japan Society of Mechanical Engineers Robotics Mechatronics Lecture '03 Proceedings 2A1-2F-E4

ダイアフラムによりポンプ室の容積を変更して動作流体の移動を行う小型ポンプにおいて、流体の慣性効果を発生する管路要素をポンプ室の吐出側の直後に設けたマイクロポンプは、非特許文献1に示されているように排除体積以上の容量を吐出でき、吐出流量が大きかった。しかし、冷却用水の循環等の低圧ながら、さらに大きな吐出流量が必要とされる用途もあった。   In a small pump that moves the working fluid by changing the volume of the pump chamber by a diaphragm, a micropump in which a pipe element that generates an inertia effect of fluid is provided immediately after the discharge side of the pump chamber is disclosed in Non-Patent Document 1. As shown in the figure, it was possible to discharge a volume larger than the excluded volume, and the discharge flow rate was large. However, there are applications in which a larger discharge flow rate is required while the pressure is low, such as circulation of cooling water.

本発明の目的は、慣性効果を発生する管路要素をポンプ室の吐出側に設けたマイクロポンプにおいて、吐出流量をさらに増やしたポンプを提供することである。   An object of the present invention is to provide a pump in which a discharge flow rate is further increased in a micropump in which a pipe line element that generates an inertia effect is provided on the discharge side of a pump chamber.

本発明のポンプは、動作流体を流入させる入口流路と、動作流体を流出させる出口流路と、ダイアフラムにより、容積が変更可能なポンプ室と、前記入口流路と前記出口流路とを接続する接続流路と、前記入口流路から前記ポンプ室へ動作流体を流入させる入口接続流路と、前記接続流路と前記出口流路との間に第一の逆止弁と、前記ポンプ室と前記出口流路との間に第二の逆止弁とを備え、接続流路のイナータンスは、入口接続流路、出口流路それぞれのイナータンスと比較して小さいことを特徴とする。   The pump according to the present invention connects an inlet flow path through which a working fluid flows in, an outlet flow path through which the working fluid flows out, a pump chamber whose volume can be changed by a diaphragm, and the inlet flow path and the outlet flow path. A connection flow path, an inlet connection flow path for flowing a working fluid from the inlet flow path to the pump chamber, a first check valve between the connection flow path and the outlet flow path, and the pump chamber And a second check valve between the outlet channel and the outlet channel, and the inertance of the connection channel is smaller than the inertance of each of the inlet connection channel and the outlet channel.

この発明によれば、ポンプ室体積が増加するポンプ室膨張行程で、入口接続流路内にポンプ室方向への流れができ、入口接続流路内の流体に運動エネルギーを保存する。一方、出口流路内の流体に吐出方向の運動エネルギーが存在する間は慣性効果によって、接続流路から出口流路へ流体が流れ続ける。そして、ポンプ室体積が減少するポンプ室圧縮行程では、入口接続流路内の流体はポンプ室方向へ流れる運動エネルギーを保存しており、その慣性効果によってポンプ室への流入が継続する。その結果、その流入流体の流量とポンプ室の容積減少によって排除される流量とを加えた流量を、ポンプ室から出口流路へと流出させることができる。そして更に、その流出流量により出口流路内の流体に保存された、吐出方向への運動エネルギーによる慣性効果を利用することができる。従って、より吐出流量を多くすることが可能である。   According to this invention, in the pump chamber expansion process in which the pump chamber volume increases, a flow in the direction of the pump chamber can be made in the inlet connection flow path, and kinetic energy is stored in the fluid in the inlet connection flow path. On the other hand, while the kinetic energy in the discharge direction is present in the fluid in the outlet channel, the fluid continues to flow from the connection channel to the outlet channel due to the inertia effect. In the pump chamber compression stroke in which the pump chamber volume decreases, the fluid in the inlet connection flow path stores kinetic energy flowing in the direction of the pump chamber, and the inflow into the pump chamber continues due to its inertial effect. As a result, a flow rate obtained by adding the flow rate of the inflowing fluid and the flow rate eliminated by the volume reduction of the pump chamber can flow out from the pump chamber to the outlet channel. Furthermore, the inertia effect by the kinetic energy in the discharge direction stored in the fluid in the outlet channel by the outflow flow rate can be used. Therefore, it is possible to increase the discharge flow rate.

また、上述の構造では、前記入口接続流路のイナータンスは前記出口流路のイナータンスよりも大きいことが好ましい。   Moreover, in the above-mentioned structure, it is preferable that the inertance of the said inlet connection flow path is larger than the inertance of the said outlet flow path.

この構造によれば、ポンプ室体積が減少するポンプ室圧縮行程において、入口接続流路内の流体に保存されたポンプ室方向へ流れる流体の運動エネルギーによる慣性効果を利用して、ポンプ室の容積減少によって排除される流量以上の流量をポンプ室から出口流路に流出させることができる。   According to this structure, in the pump chamber compression stroke in which the pump chamber volume decreases, the volume of the pump chamber is utilized by utilizing the inertia effect due to the kinetic energy of the fluid flowing in the direction of the pump chamber stored in the fluid in the inlet connection flow path. A flow rate higher than the flow rate eliminated by the reduction can be discharged from the pump chamber to the outlet channel.

また、上述の構造では、前記入口接続流路のイナータンスは前記出口流路のイナータンスよりも2倍以上大きいことが好ましい。   Moreover, in the above-mentioned structure, it is preferable that the inertance of the said inlet connection flow path is 2 times or more larger than the inertance of the said outlet flow path.

この構造によれば、ポンプ室体積が減少するポンプ室圧縮行程において、入口接続流路内の流体に保存されるポンプ室方向へ流れる流体の流速の低下を小さくし、出口流路の流体の流速の上昇を大きくすることが可能で、、ポンプ室の容積減少時にポンプ室から出口流路に流体をより多く流出させることができる。   According to this structure, in the pump chamber compression stroke in which the pump chamber volume decreases, the decrease in the flow velocity of the fluid flowing in the direction of the pump chamber stored in the fluid in the inlet connection flow path is reduced, and the flow velocity of the fluid in the outlet flow path Can be increased, and more fluid can flow out from the pump chamber to the outlet channel when the volume of the pump chamber is reduced.

また、上述の構造では、前記第一の逆止弁の流路開閉部材は前記第二の逆止弁の流路開閉部材を兼ねていることが好ましい。   In the above structure, it is preferable that the flow path opening / closing member of the first check valve also serves as the flow path opening / closing member of the second check valve.

この構造によれば、ポンプを構成する部品点数を減らすことができ、コストが削減でき信頼性が向上する。   According to this structure, the number of parts constituting the pump can be reduced, the cost can be reduced, and the reliability can be improved.

また、上述の構造では、前記流路開閉部材がボールであることが好ましい。   In the above structure, it is preferable that the flow path opening / closing member is a ball.

この構造によれば、出口流路へ向かう動作流体の流れを板状の弁体で乱すことが少ないため、逆止弁内を流動する際の流体抵抗を少なくすることができる。また、弁体がボールであることによって、逆止弁が開放され、動作流体が流動される際に、弁体がわずかに移動しても動作流体の流動断面積が大きくなるため、流動量を増加できる効果もある。   According to this structure, the flow of the working fluid toward the outlet channel is hardly disturbed by the plate-like valve body, so that the fluid resistance when flowing in the check valve can be reduced. Further, when the valve body is a ball, when the check valve is opened and the working fluid flows, the flow cross-sectional area of the working fluid increases even if the valve body moves slightly, so the flow amount is reduced. There is also an effect that can be increased.

さらに、ボール弁は回動自在なため、接触部が常に変化し、磨耗等による性能の低下を減少させることができる。   Further, since the ball valve is rotatable, the contact portion is always changed, and the performance degradation due to wear or the like can be reduced.

また、上述の構造では、前記入口流路と、前記出口流路と、前記ポンプ室と、前記入口接続流路と、前記接続流路とを含む部材をロストワックス製造法にて製造することが好ましい。   In the above-described structure, the member including the inlet channel, the outlet channel, the pump chamber, the inlet connection channel, and the connection channel can be manufactured by a lost wax manufacturing method. preferable.

この構造によれば、複雑な流路部分を一部品化でき、組立てが容易になる。   According to this structure, a complicated flow path part can be made into one part, and an assembly becomes easy.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1〜図5は本発明の実施例のポンプが示されている。   1 to 5 show a pump according to an embodiment of the present invention.

図1は実施例1のポンプの縦断面図が示されている。図の右方向がポンプ動作時に動作流体を流す方向である。図1において、このポンプは、アクチュエータ123の伸縮によってポンプ室114の容積を変更するダイアフラム121と、ポンプ室体101と、内部に接続流路113が形成された接続管102と、内部にアクチュエータ123が配置されたアクチュエータ側面筐体103と、アクチュエータ123が密着固定されるアクチュエータ底面筐体104とから構成される。   FIG. 1 is a longitudinal sectional view of the pump of the first embodiment. The right direction in the figure is the direction in which the working fluid flows during pump operation. In FIG. 1, this pump includes a diaphragm 121 that changes the volume of the pump chamber 114 by expansion and contraction of the actuator 123, a pump chamber body 101, a connection pipe 102 in which a connection flow path 113 is formed, and an actuator 123 in the inside. Are arranged, and an actuator bottom surface housing 104 to which the actuator 123 is fixedly fixed.

ポンプ室体101には、ポンプ室114と、ポンプ室114と接続され動作流体を流出する出口流路115と、動作流体が流入する入口流路111と、入口流路111とポンプ室114とを接続する入口接続流路112と、が形成されている。また、出口流路115は下流に向かって緩やかに内径が拡大し、拡大後の内径は入口流路111とほぼ等しくなっている。   The pump chamber body 101 includes a pump chamber 114, an outlet channel 115 that is connected to the pump chamber 114 and flows out the working fluid, an inlet channel 111 into which the working fluid flows, an inlet channel 111, and the pump chamber 114. An inlet connection flow path 112 to be connected is formed. Further, the inner diameter of the outlet channel 115 gradually increases toward the downstream, and the inner diameter after the enlargement is substantially equal to that of the inlet channel 111.

また、ポンプ室114と出口流路115との合流部には、出口流路115からポンプ室114方向への流れを妨げる逆止弁(第二の逆止弁)が圧入固定されている。この逆止弁は、図2に示すように貫通した穴が設けられた弁座201と弁板203とから構成され、弁板203の外周近傍部分は、スポット溶接によって弁座201と接合されている。   In addition, a check valve (second check valve) that prevents the flow from the outlet flow path 115 toward the pump chamber 114 is press-fitted and fixed at the junction between the pump chamber 114 and the outlet flow path 115. As shown in FIG. 2, this check valve is composed of a valve seat 201 provided with a through-hole and a valve plate 203, and the vicinity of the outer periphery of the valve plate 203 is joined to the valve seat 201 by spot welding. Yes.

再び図1を用いて本実施例のポンプ構造の説明を続ける。   The description of the pump structure of this embodiment will be continued using FIG. 1 again.

ポンプ室体101には接続管112を圧入固定するための凹部が設けてあり、そこに接続管112が圧入固定されている。接続流路113と出口流路115との合流部には、出口流路115から接続流路113方向への流れを妨げる逆止弁(第一の逆止弁)が圧入固定されている。この逆止弁の構造は第二の逆止弁と同様であり、弁座202と弁板204とから構成されている。   The pump chamber body 101 is provided with a recess for press-fitting and fixing the connection pipe 112, and the connection pipe 112 is press-fitted and fixed therein. A check valve (first check valve) that prevents the flow from the outlet flow path 115 toward the connection flow path 113 is press-fitted and fixed at the junction of the connection flow path 113 and the outlet flow path 115. The structure of this check valve is the same as that of the second check valve, and is composed of a valve seat 202 and a valve plate 204.

ポンプ室体101のポンプ室114の開口部は、ステンレス鋼等で形成された薄い円盤状のダイアフラム121が、ポンプ室114の周縁に設けられた凹部内に密着固定されている。この凹部に、アクチュエータ側面筐体103が圧入され、ダイアフラム121を押圧しながらポンプ室体101とアクチュエータ側面筐体103とが一体化されている。   In the opening of the pump chamber 114 of the pump chamber body 101, a thin disc-shaped diaphragm 121 made of stainless steel or the like is closely fixed in a recess provided on the periphery of the pump chamber 114. The actuator side case 103 is press-fitted into the recess, and the pump chamber body 101 and the actuator side case 103 are integrated while pressing the diaphragm 121.

アクチュエータ側面筐体103の他の端部に、アクチュエータ底面筐体104が密着固定されて一体化されており、アクチュエータ底面筐体104にアクチュエータ123の一方の端部が固着されている。アクチュエータ123は、圧電素子であり図示しない外部の制御回路から駆動電圧が与えられて伸縮する。アクチュエータ123の他方の端部には、アクチュエータ台座122が固着され、アクチュエータ台座122がダイアフラム121と密着固定されている。   The actuator bottom case 104 is closely fixed to and integrated with the other end of the actuator side case 103, and one end of the actuator 123 is fixed to the actuator bottom case 104. The actuator 123 is a piezoelectric element and expands and contracts when a driving voltage is applied from an external control circuit (not shown). An actuator pedestal 122 is fixed to the other end of the actuator 123, and the actuator pedestal 122 is fixed in close contact with the diaphragm 121.

なお、図示しないが入口流路111の外周はシリコンゴム製の外部接続チューブに接続され、動作流体を導入し、出口流路115の外周も図示しないシリコンゴム製の外部接続チューブに接続され、動作流体を吐出する。   Although not shown, the outer periphery of the inlet flow path 111 is connected to an external connection tube made of silicon rubber to introduce a working fluid, and the outer periphery of the outlet flow path 115 is also connected to an external connection tube made of silicon rubber (not shown) to operate. Discharge fluid.

次に、流路のイナータンスLを定義する。流路の断面積をS、流路の長さをr、作動流体の密度をρとした場合に、L=ρ×r/Sで与えられる。流路の差圧をΔP、流路を流れる作動流体の流量をQとした場合に、イナータンスLを用いて流路内流体の運動方程式を変形することで、ΔP=L×dQ/dtという関係が導き出される。   Next, the inertance L of the flow path is defined. L = ρ × r / S, where S is the cross-sectional area of the flow path, r is the length of the flow path, and ρ is the density of the working fluid. When the differential pressure of the flow path is ΔP and the flow rate of the working fluid flowing through the flow path is Q, the relation of ΔP = L × dQ / dt is obtained by modifying the equation of motion of the fluid in the flow path using the inertance L. Is derived.

つまり、イナータンスLとは、単位圧力が流量の時間変化に与える影響度合を示しており、イナータンスLが大きいほど流量の時間変化が小さく、イナータンスLが小さいほど流量の時間変化が大きくなる。   That is, the inertance L indicates the degree of influence of the unit pressure on the time change of the flow rate. The larger the inertance L, the smaller the time change of the flow rate, and the smaller the inertance L, the greater the time change of the flow rate.

また、複数の流路の並列接続や、複数の形状が異なる流路の直列接続に関する合成イナータンスは、個々の流路のイナータンスを、電気回路におけるインダクタンスの並列接続、直列接続と同様に合成して算出すれば良い。例えば、イナータンスがそれぞれL1、L2である2つの流路を直列接続した場合、合成イナータンスはL1+L2で与えられる。   In addition, the combined inertance related to the parallel connection of a plurality of flow paths and the series connection of a plurality of flow paths having different shapes is performed by combining the inertances of the individual flow paths in the same manner as the parallel connection and series connection of inductances in an electric circuit. What is necessary is just to calculate. For example, when two flow paths having inertances L1 and L2 are connected in series, the combined inertance is given by L1 + L2.

ここで、接続流路113のイナータンスは、入口流路111との合流部から第一の逆止弁を構成する弁座202に設けられた貫通穴部までで算出する。また、脈動吸収効果の高いシリコンゴム製の外部接続チューブが接続されているため、出口流路115のイナータンスは、逆止弁を構成する弁板203、弁板204よりも下流側から外部接続チューブと接続する端面までで算出する。また、入口接続流路112のイナータンスは、入口流路111との合流部からポンプ室との合流部までで算出する。   Here, the inertance of the connection channel 113 is calculated from the junction with the inlet channel 111 to the through hole provided in the valve seat 202 constituting the first check valve. In addition, since an external connection tube made of silicon rubber having a high pulsation absorbing effect is connected, the inertance of the outlet channel 115 causes the external connection tube from the downstream side of the valve plate 203 and the valve plate 204 constituting the check valve. It is calculated up to the end face connected to. Further, the inertance of the inlet connection channel 112 is calculated from the junction with the inlet channel 111 to the junction with the pump chamber.

そして、入口接続流路112または出口流路115のイナータンスのどちらか小さい方と比較して、接続流路113のイナータンスはより小さくになるように直径が太くしてある。この接続流路113のイナータンスは小さいほど望ましいため、接続管102は薄い金属管、ベローズ構造金属管、合成樹脂パイプ等、伸縮性の高い材質で構成することが可能である。   Then, compared to the smaller one of the inertances of the inlet connection channel 112 and the outlet channel 115, the diameter of the connection channel 113 is increased so as to be smaller. Since the inertance of the connection flow path 113 is preferably as small as possible, the connection pipe 102 can be made of a highly stretchable material such as a thin metal pipe, a bellows structure metal pipe, or a synthetic resin pipe.

また、入口接続流路112のイナータンスは、出口流路115のイナータンスよりも小さくなるように、直径を細くそして長くしてある。ここで、入口接続流路112のイナータンスは、出口流路115のイナータンスと比較して2倍以上とすることがより望ましい。   Further, the inertance of the inlet connection channel 112 is made thinner and longer so that the inertance of the outlet channel 115 becomes smaller. Here, it is more desirable that the inertance of the inlet connection flow path 112 is twice or more as compared with the inertance of the outlet flow path 115.

次に本発明のポンプの動作について図3を用いて説明する。   Next, operation | movement of the pump of this invention is demonstrated using FIG.

図3(a)は、ポンプ室容積が増加するポンプ室膨張行程を示している。そして、図中に示した矢印は各流路内の流れを示している。   FIG. 3A shows a pump chamber expansion stroke in which the pump chamber volume increases. And the arrow shown in the figure has shown the flow in each flow path.

まず、ポンプ室114の容積が増加する方向にダイアフラム121が動作すると、動作流体の圧縮率に従ってポンプ室114内の圧力が出口流路115の圧力よりも低下する。すると、圧力差によって第二の逆止弁は閉鎖する。そして、ポンプ室114内の圧力が入口流路111の圧力よりも低下すると、入口接続流路112内にポンプ室114へ向かう流れが生じ、入口接続流路112内の流体に運動エネルギーが保存される。   First, when the diaphragm 121 is operated in a direction in which the volume of the pump chamber 114 increases, the pressure in the pump chamber 114 is lower than the pressure in the outlet channel 115 in accordance with the compressibility of the working fluid. Then, the second check valve is closed due to the pressure difference. When the pressure in the pump chamber 114 falls below the pressure in the inlet channel 111, a flow toward the pump chamber 114 is generated in the inlet connection channel 112, and kinetic energy is stored in the fluid in the inlet connection channel 112. The

一方、直前のポンプ室圧縮行程によって出口流路115内の流体に保存された吐出方向の運動エネルギーが存在する間、その慣性効果によって第一の逆止弁は開放したまま、接続流路113から出口流路115へ流体が流れ続けている。特に、ポンプへの負荷圧力が比較的低い場合、ポンプ運転中は常に慣性効果による接続流路113から出口流路115への流れを継続させることができ、吐出流量が多い。負荷圧力が比較的高い場合、出口流路115の流量が早く減少するため、ポンプ室膨張行程の途中で出口流路115内の流れが止まることもある。そのときには、接続流路113内の流れも停止する。   On the other hand, while there is kinetic energy in the discharge direction stored in the fluid in the outlet channel 115 by the immediately preceding pump chamber compression stroke, the inertial effect causes the first check valve to remain open from the connection channel 113. The fluid continues to flow to the outlet channel 115. In particular, when the load pressure to the pump is relatively low, the flow from the connection flow path 113 to the outlet flow path 115 due to the inertial effect can always be continued during the pump operation, and the discharge flow rate is large. When the load pressure is relatively high, the flow rate in the outlet channel 115 decreases quickly, and the flow in the outlet channel 115 may stop in the middle of the pump chamber expansion stroke. At that time, the flow in the connection channel 113 is also stopped.

次に、図3(b)は、ポンプ室容積が減少するポンプ室圧縮行程を示している。   Next, FIG. 3B shows a pump chamber compression stroke in which the pump chamber volume decreases.

ポンプ室114の容積が減少する方向にダイアフラム121が動作すると、動作流体の圧縮率に従ってポンプ室114内の圧力が上昇する。すると、圧力差によって第二の逆止弁は開放する。入口接続流路112内の流体はポンプ室114方向へ流れる運動エネルギーを保存しており、その慣性効果によってポンプ室114への流入が継続しているため、その流入流量とポンプ室114の容積減少によって排除される流量(以下、排除流量と呼ぶ)とを加えた流量が、ポンプ室114から出口流路115へと流出する。   When the diaphragm 121 operates in a direction in which the volume of the pump chamber 114 decreases, the pressure in the pump chamber 114 increases according to the compressibility of the working fluid. Then, the second check valve is opened due to the pressure difference. The fluid in the inlet connection flow path 112 stores the kinetic energy that flows in the direction of the pump chamber 114, and the inflow into the pump chamber 114 continues due to its inertial effect. The flow rate added by the flow rate (hereinafter referred to as the “excluded flow rate”) is discharged from the pump chamber 114 to the outlet channel 115.

このとき、ポンプ室114の圧力は入口流路111の圧力よりも上昇し、入口接続流路112の流量は減少するが、入口接続流路112のイナータンスを出口流路のイナータンスよりも大きくすることで流量の減少は抑えられ、排除流量以上の流体を出口流路115から効率的に吐出できる。より望ましくは、入口接続流路112のイナータンスを出口流路115のイナータンスの2倍以上とすることで、入口接続流路112の流量減少がより少なくなり、排除流量以上の流量をより効率的に吐出することができる。   At this time, the pressure in the pump chamber 114 rises higher than the pressure in the inlet flow path 111 and the flow rate in the inlet connection flow path 112 decreases, but the inertance in the inlet connection flow path 112 is made larger than the inertance in the outlet flow path. Thus, the decrease in the flow rate can be suppressed, and the fluid exceeding the excluded flow rate can be efficiently discharged from the outlet channel 115. More desirably, by making the inertance of the inlet connection flow path 112 more than twice the inertance of the outlet flow path 115, the flow rate reduction of the inlet connection flow path 112 becomes smaller, and the flow rate higher than the exclusion flow rate is more efficiently obtained. It can be discharged.

一方、第二の逆止弁が開放し出口流路115内の圧力が上昇すると、接続流路113内の圧力との圧力差により第一の逆止弁は閉鎖し、ポンプ室114から出口流路115へ流出した流体の接続流路113への逆流を防止する。そして、出口流路115内の流体に吐出方向へ流れる運動エネルギーが保存され慣性効果が生じると、第一の逆止弁は開放し、接続流路113から出口流路115へ動作流体が流れる。このとき、入口接続流路112または出口流路115のイナータンスのどちらか小さい方と比較して、接続流路113のイナータンスが小さくなるように構成してあるため、接続流路113内の流量の時間変化を大きくでき、接続流路113から出口流路115へ効率よく流体を流すことができる。ここで、入口接続流路112または出口流路115のイナータンスのどちらか小さい方と比較して、接続流路113のイナータンスが1/2以下にように構成すると、接続流路113内の流量の時間変化を2倍以上大きくできより好ましい。   On the other hand, when the second check valve is opened and the pressure in the outlet channel 115 rises, the first check valve is closed due to the pressure difference with the pressure in the connection channel 113, and the outlet flow from the pump chamber 114. The backflow of the fluid that has flowed out to the channel 115 to the connection channel 113 is prevented. When the kinetic energy flowing in the discharge direction is stored in the fluid in the outlet channel 115 and an inertia effect is generated, the first check valve is opened, and the working fluid flows from the connection channel 113 to the outlet channel 115. At this time, since the inertance of the connection flow path 113 is smaller than the smaller one of the inertance of the inlet connection flow path 112 or the outlet flow path 115, the flow rate in the connection flow path 113 is reduced. The time change can be increased, and the fluid can efficiently flow from the connection channel 113 to the outlet channel 115. Here, when the inertance of the connection channel 113 is set to be ½ or less compared to the smaller one of the inertance of the inlet connection channel 112 and the outlet channel 115, the flow rate in the connection channel 113 is reduced. It is more preferable that the time change can be increased twice or more.

以上のポンプ室膨張行程とポンプ室圧縮行程を繰り返すことにより、本発明のポンプは従来より多い流量の吐出が可能となっている。   By repeating the above pump chamber expansion stroke and pump chamber compression stroke, the pump of the present invention can discharge at a higher flow rate than before.

次に、本発明のポンプの実施例2について図4に基づき説明する。   Next, a second embodiment of the pump of the present invention will be described with reference to FIG.

実施例2は、実施例1(図1参照)の構造を基本とし、ポンプ室体101、接続管102、アクチュエータ側面筐体103をロストワックス製造法によって一体成形したものである。また、実施例1における第一の逆止弁と第二の逆止弁とを、一つの流路開閉部材で構成し、その流路開閉部材をボール形状としたことを特徴としている。なお、前述の実施例1と同一機能部分には同番号を割り振ってあり、実施例1との共通部分の説明は以下では省略する。   The second embodiment is based on the structure of the first embodiment (see FIG. 1), and the pump chamber body 101, the connecting pipe 102, and the actuator side housing 103 are integrally formed by the lost wax manufacturing method. In addition, the first check valve and the second check valve in the first embodiment are configured by one flow path opening / closing member, and the flow path opening / closing member has a ball shape. The same functional parts as those in the first embodiment are assigned the same numbers, and the description of the common parts with the first embodiment is omitted below.

図4は実施例2のポンプの縦断面図が示されている。図4において、ポンプ筐体301は実施例1におけるポンプ室体101、接続管102、アクチュエータ側面筐体103をロストワックス製造法によって一体成形したものである。そして、ボール弁座401とボール402とによって構成された逆止弁ユニットが、接続流路113とポンプ室114と出口流路115との合流部に固定されている。ポンプ筐体301のポンプ室114の開口部は、ステンレス鋼等で形成された薄い円盤状のダイアフラム121が、ポンプ室114の周縁に設けられた凹部内に密着固定されている。ここで組立ての順番は、まず、ポンプ筐体301のポンプ室114の開口部側から逆止弁ユニットを圧入し、次にダイアフラム121の固定を行う。   FIG. 4 is a longitudinal sectional view of the pump of the second embodiment. In FIG. 4, a pump casing 301 is obtained by integrally forming the pump chamber body 101, the connecting pipe 102, and the actuator side casing 103 in the first embodiment by a lost wax manufacturing method. A check valve unit constituted by the ball valve seat 401 and the ball 402 is fixed to the junction of the connection channel 113, the pump chamber 114, and the outlet channel 115. In the opening of the pump chamber 114 of the pump housing 301, a thin disc-shaped diaphragm 121 made of stainless steel or the like is closely fixed in a recess provided at the periphery of the pump chamber 114. Here, the assembly order is such that the check valve unit is first press-fitted from the opening side of the pump chamber 114 of the pump housing 301, and then the diaphragm 121 is fixed.

次に、逆止弁ユニットの動作を図5に示す。図に示した矢印は流線を示している。ボール402はボール弁座401の内部を上下方向に動くことが可能であり、一つのボール402で流路の接続状態を切り替えるものである。   Next, the operation of the check valve unit is shown in FIG. The arrows shown in the figure indicate streamlines. The ball 402 can move in the vertical direction inside the ball valve seat 401, and the connection state of the flow path is switched by one ball 402.

このボールを用いた逆止弁構造によれば、動作流体の流れを板状の弁体で乱すことが少ないため、逆止弁の流体抵抗を少なくすることができる。また、弁体がボールであることによって、弁体のわずかな移動で動作流体の流動断面積が大きくなるため、流動量を増加できる効果もある。さらに、ボール弁は回動自在なため、接触部が常に変化し、磨耗等による性能の低下を減少させることができる。   According to the check valve structure using this ball, since the flow of the working fluid is hardly disturbed by the plate-like valve body, the fluid resistance of the check valve can be reduced. In addition, since the valve body is a ball, the flow cross-sectional area of the working fluid is increased by a slight movement of the valve body, so that the flow amount can be increased. Further, since the ball valve is freely rotatable, the contact portion is constantly changed, and a decrease in performance due to wear or the like can be reduced.

本実施例のポンプは、ポンプ室膨張行程において接続流路113から出口流路115に流れが継続し続ける、負荷圧力が比較的低い場合にポンプとして動作し、その動作は実施例1のポンプにおける負荷圧力が比較的低い場合の説明と同様であるため省略する。   The pump of this embodiment operates as a pump when the load pressure is relatively low during the pump chamber expansion stroke, and the flow continues from the connection flow path 113 to the outlet flow path 115, and the operation is the same as that of the pump of the first embodiment. Since it is the same as that when the load pressure is relatively low, it will be omitted.

なお、本発明は前述の実施例1〜実施例2に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。   In addition, this invention is not limited to above-mentioned Example 1-2, The deformation | transformation in the range which can achieve the objective of this invention, improvement, etc. are included in this invention.

例えば、前述の実施例1〜実施例2では、ダイアフラム121によってポンプ室114の容積を変更しているが、ダイアフラムだけではなくピストンを採用することができる。   For example, in the above-described first and second embodiments, the volume of the pump chamber 114 is changed by the diaphragm 121, but not only the diaphragm but also a piston can be employed.

以上、前述の実施例1〜実施例2によれば、従来より多い流量を吐出するポンプを提供できる。   As described above, according to the first and second embodiments, it is possible to provide a pump that discharges a larger flow rate than before.

本発明のポンプは、電子機器の冷却装置、流体アクチュエータ、マイクロ液圧プレスのピストンの動力源等に利用することができる。   The pump of the present invention can be used as a cooling device for electronic equipment, a fluid actuator, a power source for a piston of a micro hydraulic press, and the like.

本発明の実施例1に係るポンプの縦断面図。1 is a longitudinal sectional view of a pump according to Embodiment 1 of the present invention. 本発明の実施例1に係るポンプの逆止弁構造図。1 is a structural diagram of a check valve of a pump according to Embodiment 1 of the present invention. 本発明の実施例1に係るポンプの動作説明図。Explanatory drawing of operation | movement of the pump which concerns on Example 1 of this invention. 本発明の実施例2に係るポンプの縦断面図。The longitudinal cross-sectional view of the pump which concerns on Example 2 of this invention. 本発明の実施例2に係るポンプの逆止弁構造図。The check valve structure figure of the pump concerning Example 2 of the present invention.

符号の説明Explanation of symbols

101…ポンプ室体、111…入口流路、112…入口接続流路、113…接続流路、114…ポンプ室、115…出口流路、121…ダイアフラム、201…第二の逆止弁を構成する弁座、202…第一の逆止弁を構成する弁座、203…第二の逆止弁を構成する弁板、204…第一の逆止弁を構成する弁板、402…ボール
DESCRIPTION OF SYMBOLS 101 ... Pump chamber body, 111 ... Inlet flow path, 112 ... Inlet connection flow path, 113 ... Connection flow path, 114 ... Pump chamber, 115 ... Outlet flow path, 121 ... Diaphragm, 201 ... Constructing a second check valve , 202 ... valve seat constituting the first check valve, 203 ... valve plate constituting the second check valve, 204 ... valve plate constituting the first check valve, 402 ... ball

Claims (6)

動作流体を流入させる入口流路と、
動作流体を流出させる出口流路と、
ダイアフラムにより、容積が変更可能なポンプ室と、
前記入口流路と前記出口流路とを接続する接続流路と、
前記入口流路から前記ポンプ室へ動作流体を流入させる入口接続流路と、
前記接続流路と前記出口流路との間に第一の逆止弁と、
前記ポンプ室と前記出口流路との間に第二の逆止弁とを備え、接続流路のイナータンスは、入口接続流路、出口流路それぞれのイナータンスと比較して小さいことを特徴とするポンプ。
An inlet flow path for flowing working fluid;
An outlet channel through which the working fluid flows out;
A pump chamber whose volume can be changed by a diaphragm,
A connection channel connecting the inlet channel and the outlet channel;
An inlet connection flow channel for flowing a working fluid from the inlet flow channel to the pump chamber;
A first check valve between the connection channel and the outlet channel;
A second check valve is provided between the pump chamber and the outlet channel, and the inertance of the connection channel is smaller than the inertance of each of the inlet connection channel and the outlet channel. pump.
請求項1に記載のポンプにおいて、
前記入口接続流路のイナータンスは前記出口流路のイナータンスよりも大きいことを特徴とするポンプ。
The pump according to claim 1, wherein
A pump characterized in that an inertance of the inlet connection channel is larger than an inertance of the outlet channel.
請求項1に記載のポンプにおいて、
前記入口接続流路のイナータンスは前記出口流路のイナータンスよりも2倍以上大きいことを特徴とするポンプ。
The pump according to claim 1, wherein
The pump characterized in that the inertance of the inlet connection channel is at least twice as large as the inertance of the outlet channel.
請求項1乃至請求項3のいずれかに記載のポンプにおいて、
前記第一の逆止弁の流路開閉部材は前記第二の逆止弁の流路開閉部材を兼ねていることを特徴とするポンプ。
The pump according to any one of claims 1 to 3,
The flow path opening / closing member of the first check valve also serves as the flow path opening / closing member of the second check valve.
請求項4に記載のポンプにおいて、
前記流路開閉部材がボールであることを特徴とするポンプ。
The pump according to claim 4,
The pump characterized in that the flow path opening / closing member is a ball.
請求項1乃至請求項4のいずれかに記載のポンプにおいて、
前記入口流路と、前記出口流路と、前記ポンプ室と、前記入口接続流路と、前記接続流路とを含む部材をロストワックス製造法にて製造することを特徴とするポンプ。
The pump according to any one of claims 1 to 4,
A member comprising a member including the inlet channel, the outlet channel, the pump chamber, the inlet connection channel, and the connection channel is manufactured by a lost wax manufacturing method.
JP2004099234A 2004-03-30 2004-03-30 pump Expired - Lifetime JP4479306B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004099234A JP4479306B2 (en) 2004-03-30 2004-03-30 pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004099234A JP4479306B2 (en) 2004-03-30 2004-03-30 pump

Publications (2)

Publication Number Publication Date
JP2005282498A true JP2005282498A (en) 2005-10-13
JP4479306B2 JP4479306B2 (en) 2010-06-09

Family

ID=35181164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004099234A Expired - Lifetime JP4479306B2 (en) 2004-03-30 2004-03-30 pump

Country Status (1)

Country Link
JP (1) JP4479306B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082202A (en) * 2006-09-26 2008-04-10 Seiko Epson Corp Fluid injection device
JP2009511221A (en) * 2005-10-21 2009-03-19 レスメド・リミテッド Method and apparatus for improving flow rate and pressure estimation of a CPAP system
US8308745B2 (en) 2007-08-10 2012-11-13 Seiko Epson Corporation Fluid jet device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009511221A (en) * 2005-10-21 2009-03-19 レスメド・リミテッド Method and apparatus for improving flow rate and pressure estimation of a CPAP system
JP2012091007A (en) * 2005-10-21 2012-05-17 Resmed Ltd Method and apparatus for improving flow and pressure estimation in cpap systems
US9526852B2 (en) 2005-10-21 2016-12-27 Resmed Limited Method and apparatus for improving flow and pressure estimation in CPAP systems
US10632273B2 (en) 2005-10-21 2020-04-28 ResMed Pty Ltd Method and apparatus for improving flow and pressure estimation in CPAP systems
JP2008082202A (en) * 2006-09-26 2008-04-10 Seiko Epson Corp Fluid injection device
US8337452B2 (en) 2006-09-26 2012-12-25 Seiko Epson Corporation Fluid injection device
US8652091B2 (en) 2006-09-26 2014-02-18 Seiko Epson Corporation Fluid injection device
US9073069B2 (en) 2006-09-26 2015-07-07 Seiko Epson Corporation Fluid injection device
US9555423B2 (en) 2006-09-26 2017-01-31 Seiko Epson Corporation Fluid injection device
US8308745B2 (en) 2007-08-10 2012-11-13 Seiko Epson Corporation Fluid jet device

Also Published As

Publication number Publication date
JP4479306B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
JP4677933B2 (en) Pump and fluid system
US6623256B2 (en) Pump with inertance value of the entrance passage being smaller than an inertance value of the exit passage
US7011507B2 (en) Positive displacement pump with a combined inertance value of the inlet flow path smaller than that of the outlet flow path
JP2011241808A (en) Fluid device
JP4479306B2 (en) pump
JP2002322986A (en) Pump
JP4544114B2 (en) Diaphragm pump liquid discharge control device
JP5141750B2 (en) Pump and fluid system
JP2010209959A (en) Hydraulic valve for hydraulic damper, and hydraulic damper
JP2006233925A (en) Diaphragm pump
JP3870847B2 (en) pump
JP2004162547A (en) Pump
JP4791702B2 (en) pump
JP2010281331A (en) Pump and cooling device
JP2005220810A (en) Pump
KR100561728B1 (en) piezoelectric pump
JP5449941B2 (en) Poppet valve with inclined purge hole and method for reducing pressure inside poppet valve
KR100719625B1 (en) A check valve with floating plate
JP6525356B2 (en) Check valve and refrigeration cycle device
JP3975837B2 (en) pump
JP2004060636A (en) Pump
JP2005113778A (en) Pump
JP2005113777A (en) Pump
KR20160090036A (en) Diaphragm pumps and method for controlling operation.
Jeong et al. Performance characteristics of a membrane driven variable flow rate micro-pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350