JP2005281796A - 表面処理方法及び表面処理装置 - Google Patents

表面処理方法及び表面処理装置 Download PDF

Info

Publication number
JP2005281796A
JP2005281796A JP2004099075A JP2004099075A JP2005281796A JP 2005281796 A JP2005281796 A JP 2005281796A JP 2004099075 A JP2004099075 A JP 2004099075A JP 2004099075 A JP2004099075 A JP 2004099075A JP 2005281796 A JP2005281796 A JP 2005281796A
Authority
JP
Japan
Prior art keywords
processed
surface treatment
treated
counter electrodes
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004099075A
Other languages
English (en)
Inventor
Naoto Kagami
直人 各務
Naozumi Hiraki
直純 平木
Hirotsugu Takizawa
洋次 瀧澤
Nobuaki Utsunomiya
信明 宇都宮
Shigeru Akutsu
繁 圷
Noboru Kuriyama
昇 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Mechatronics Corp
Toyota Motor Corp
Original Assignee
Shibaura Mechatronics Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shibaura Mechatronics Corp, Toyota Motor Corp filed Critical Shibaura Mechatronics Corp
Priority to JP2004099075A priority Critical patent/JP2005281796A/ja
Publication of JP2005281796A publication Critical patent/JP2005281796A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】 被処理基板の各面のプラズマ処理を均一に行うことのできる表面処理方法及び表面処理装置を提供する。
【解決手段】 複数面を有する被処理部材をプラズマ放電処理にて加工する表面処理方法において、チャンバ内の複数の対向電極間に被処理部材150を配置する過程(S10)と、被処理部材と複数の対向電極間でプラズマ放電を行ってチャンバの電気定数を測定する過程と(S20〜S40)、測定結果に基づいて被処理部材の被処理面とこれに対向する上記複数の対向電極との相対位置関係を調整する調整過程(S50)と、被処理部材と複数の対向電極間のプラズマによって被処理面を表面処理する過程(S60)と、を含む。かかる構成によれば、被処理部材の処理すべき各面と対応する電極間の各電気定数が略同等になるように調整して表面処理を行うので、1のプロセスで各被処理面に対して均一な表面処理を施すことが可能となる。
【選択図】 図6

Description

本発明は、基板の表面にプラズマガスによって薄膜の成膜や基板表面のエッチングを行うプラズマ処理方法及びこの方法を用いたプラズマ処理装置に関する。
例えば、特開2001−259556号公報記載のドライエッチング装置は、枚葉式処理において、両面エッチング処理が必要な基板の処理時間の短縮を図るべく、当該被処理基板の両面にプラズマエッチング処理を同時に施すことによってスループットを向上させることを提案している。
特開2001−259556号公報
しかしながら、被処理基板が大きいとプラズマエッチング量が不均一となり易い。また、被処理基板の表面と裏面とでもプラズマエッチング量が異なり、被処理基板全体を均一にエッチングすることが難しい。例えば、被処理部材としての燃料電池部品の金属セパレータ(基板)に薄膜を被覆する工程において薄膜と基板との密着性を確保するために前処理(エッチング)が施される。その際、加工時間の短縮を図るために、1回の加工時に複数枚の同時加工及び両面(複数面)同時加工が望ましい。複数枚を同時に加工するためには、大面積(例えば、700×300mm)の基板を処理できる表面処理装置が必要となるが、このような規模のものは提供されておらず、大面積になると均一な処理が困難となる。
よって、本発明は、被処理基板の各面のプラズマ処理を均一に行うことのできる表面処理方法及び表面処理装置を提供することを目的とする。
上記目的を達成するため本発明の表面処理方法は、複数面を有する被処理部材をプラズマ放電処理にて加工する表面処理方法において、チャンバ内に配置された複数の対向電極間に被処理部材を配置する過程と、上記被処理部材と上記複数の対向電極との間でプラズマ放電を行ってチャンバの電気定数を測定する過程と、上記測定の結果に基づいて上記被処理部材とこれに対向する上記複数の対向電極との相対位置関係を調整する調整過程と、上記被処理部材及び複数の対向電極相互間のプラズマによって前記被処部材を表面処理する過程と、を含む。
かかる構成によれば、被処理部材の処理すべき各面と対応する対向電極間の各電気定数が同様となるように調整した後に表面処理を行うので、各被処理面に対して同時に均一な表面処理を施すことが可能となる。また、各被処理面毎に適当(個別的)な電気定数となるように調整した後に表面処理を行うことにより、各被処理面に対して個別的な表面処理を施すことが可能となる。ここで、相対位置関係とは、被処理部材と対向電極の3次元空間における相対位置関係を意味し、具体的には両者のうち少なくとも一方を移動させて両者の距離を調整することを含む。相対位置関係は両者のうち少なくとも一方の3次元的な移動により、位置関係の中性、2次元的な移動による又は1次元的な位置関係の好ましくは、被処理部材の位置を固定して電極側を移動させることで相対位置関係を調整する。また、表面処理には、エッチング、成膜等が含まれる。
好ましくは、上記調整過程は、上記被処理部材及びこれに対向する上記対向電極相互間の電気定数が各被処理面について略等しくなるように上記相対位置関係を設定するものである。それにより、各被処理面にエッチング量や膜厚などの表面状態が均一である表面処理を施すことが可能となる。
また、本発明の表面処理方法は、複数面を有する被処理部材をプラズマ放電処理にて加工する表面処理方法において、チャンバ内に配置された複数の対向電極間に被処理部材を配置する過程と、上記被処理部材と上記複数の対向電極との間でプラズマ放電を行ってチャンバの電気定数を測定する過程と、上記測定結果に基づいて上記被処理部材と上記複数の各対向電極との間に配置された可変インピーダンスを調整する過程と、上記被処理部材及び上記複数の対向電極相互間のプラズマによって上記複数の被処理面を同時に処理する過程と、を含む。
かかる構成によれば、被処理部材の処理すべき各面と対応する対向電極間の電気定数を調整した後に表面処理を行うので、各被処理面に対して同時に均一な表面処理を施すことが可能となる。
好ましくは、上記調整過程は、上記被処理部材の被処理面と上記対向電極相互間との相対位置関係及び上記可変インピーダンスのうち少なくともいずれかを調整して上記電気定数を各被処理面について設定する。
それにより、被処理面と対向電極間の電気定数を被処理面と上記対向電極相互間との相対位置関係及び上記可変インピーダンスによって調整することが出来るので調整可能な範囲がより広くなる。
好ましくは、上記被処理部材は、その辺縁がホルダにより保持されて上記チャンバ内に配置される。それにより、被処理部材の移動・交換(取り扱い)が容易になり、撓みが生じるような薄板の取り扱いも容易となる。
好ましくは、上記被処理部材は、その辺縁がホルダを介して高周波電源と電気的に接続される。それにより、被処理部材上の電位を均等にして、電気定数(分布定数)を均一化することが可能となる。
好ましくは、上記被処理部材は、その全ての辺縁がホルダを介して高周波電源と電気的に接続される。それにより、被処理部材上の電位をより均等にして、電気定数(分布定数)を均一化することが可能となる。
好ましくは、上記被処理部材は複数存在し、各被処理部材の辺縁が1つの導電性のホルダによって保持されて該ホルダを介して高周波電源と接続される、それにより、複数の被処理部材を同時に処理することが可能となる。また、被処理部材の容易な取り扱いと被処理部材上の電位の均一化を図ることが可能となる。
好ましくは、上記調整過程は、予め、上記被処理部材の複数の被処理面について、当該被処理面とこの面に対応する対向電極による電気定数を測定して、各被処理面の電気定数が略同等になるような各被処理面とこれ等の面に対応する複数の対向電極との位置関係を求めておき、上記チャンバ内に導入された被処理部材に対応して上記複数の対向電極の位置関係を設定するものである。
それにより、被処理部材の各種類毎に設定すべき対向電極の位置関係を予め決めておき、導入された被処理部材の種類に応じて各対向電極の位置を設定することによって処理時間(調整時間)の短縮を図ることが可能となる。
好ましくは、上記複数の対向電極の位置関係の設定が上記被処理部材に対応した上記チャンバ内のプラズマ発生空間の形状設定である。それにより、形状が異なる被処理部材に対しても表面処理を施すことが可能となる。
好ましくは、上記被処理部材が表裏面を有する平板である。表裏面が同時に表面処理され、あるいは片面が選択的に表面処理される。
好ましくは、上記平板が燃料電池用セパレータである。
好ましくは、上記調整過程は、上記被処理部材の被処理面とこの面に対応する上記対向電極との相対位置関係を調整することによって各面の表面処理の状態を異ならせるものである。
好ましくは、上記調整過程は、上記被処理部材の一の被処理面とこの面に対向する対向電極間の距離を所定値以下とすることによって当該被処理面における表面処理を不活性化させるものである。一の面の電極間距離(ギャップ)を所定値以下にすることによって当該面の表面処理を禁止することが出来るので、1つのプロセスで表面処理を行う面と行わない面を設定することができる。従って、1面の処理から多面の処理までを1プロセス(同一チャンバ内)で行うことが可能となる。
また、本発明の表面処理装置は、複数面を有する被処理部材をプラズマ放電処理にて加工する表面処理装置において、上記被処理部材の複数の被処理面にそれぞれ対向して配置される複数の対向電極と、上記被処理部材と上記複数の対向電極とをプロセスガスの雰囲気下に保つチャンバと、上記被処理部材と上記複数の対向電極との各相対位置関係を各被処理面についてそれぞれ調整する調整手段と、上記被処理部材と上記複数の対向電極間に高周波電力を供給して上記複数の被処理面と上記複数の対向電極間にプラズマを発生させる高周波電源と、を備える。
かかる構成によれば、被処理部材の処理すべき各面と対応する対向電極間の電気定数が一致するように調整した後に表面処理を行うので、各被処理面に対して同時に均一な表面処理を施すことが可能となる。また、各被処理面毎に適当(個別的)な電気定数となるように調整した場合には、各被処理面に対して個別的な表面処理を1のプロセスで施すことが可能となる。
好ましくは、上記調整手段は、上記被処理部材及び上記対向電極相互間の電気定数が各被処理面について略等しくなるように前記相対位置関係を設定するものである。
それにより、被処理面と対向電極間の電気定数を被処理面と上記対向電極相互間との相対位置関係及び上記可変インピーダンスによって調整することが出来るので調整可能な範囲がより広くなる。
また、本発明の表面処理装置は、複数面を有する被処理部材をプラズマ放電処理にて加工する表面処理装置において、上記被処理部材の複数の被処理面に対向してそれぞれ配置される複数の対向電極と、上記被処理部材と前記複数の対向電極とをプロセスガスの雰囲気下に保つチャンバと、上記被処理部材と上記複数の各対向電極との間に電気的に接続される可変インピーダンスと、上記被処理部材と上記対向電極間の電気定数を各被処理面についてそれぞれ調整する調整手段と、上記被処理部材と上記複数の対向電極間に高周波電力を供給して上記複数の被処理面と上記複数の対向電極間にプラズマを発生させる高周波電源と、を備える。
かかる構成によれば、被処理部材の処理すべき各面と対応する対向電極間の電気定数を調整した後に表面処理を行うので、各被処理面に対して同時に均一な表面処理を施すことが可能となる。
好ましくは、上記調整手段は、上記被処理部材の被処理面と上記対向電極相互間との相対位置関係及び上記可変インピーダンスのうち少なくともいずれかを調整して前記電気定数を各被処理面について設定する。
それにより、被処理面と対向電極間の電気定数を被処理面と上記対向電極相互間との相対位置関係及び上記可変インピーダンスによって調整することが出来るので調整可能な範囲がより広くなる。
好ましくは、上記調整手段は、予め、上記被処理部材の複数の被処理面について、当該被処理面とこの面に対応する対向電極による電気定数を測定して、各被処理面の電気定数が略同等になるような各被処理面とこれ等の面に対応する複数の対向電極との位置関係を求めておき、上記チャンバ内に導入された被処理部材に対応して上記複数の対向電極の位置関係を設定するものである。
被処理部材の各種類毎に設定すべき対向電極の位置関係を予め決めておき、導入された被処理部材の種類に応じて各対向電極の位置を設定することによって処理時間(調整時間)の短縮を図ることが可能となる。
好ましくは、上記複数の対向電極の位置関係の設定が上記被処理部材に対応した上記チャンバ内のプラズマ発生空間の形状設定である。
好ましくは、上記調整手段は、上記被処理部材の被処理面とこの面に対応する上記対向電極との相対位置関係を調整することによって各面の表面処理の状態を異ならせるものである。
好ましくは、上記調整手段は、上記被処理部材の一の被処理面とこの面に対向する対向電極との間の相対位置関係を所定値以下とすることによって当該被処理面における表面処理を不活性化させるものである。
一の面の対向電極間距離を所定値以下にすることによって当該面の表面処理を禁止することが出来るので、1つのプロセスで表面処理を行う面と行わない面を設定することができる。従って、1面の処理から多面の処理までを1プロセスで行うことが可能となる。
好ましくは、上記被処理部材は、その辺縁をホルダにより保持されて上記チャンバ内に配置される。
好ましくは、上記被処理部材は、その辺縁を導電性のホルダによって保持されて該ホルダを介して高周波電源と電気接続される。
好ましくは、上記被処理部材が表裏面を有する平板である。
好ましくは、上記平板が燃料電池用セパレータである。
好ましくは、上記プラズマ放電処理がエッチング又は成膜である。
また、本発明のプラズマ処理装置は、プラズマ処理の対処となるべき被処理面を有する被処理部材と、上記被処理面を露出した状態で上記被処理部材の外周を保持する導電性のホルダと、上記被処理面に対向して配置される対向電極と、上記ホルダと上記対向電極間の電気定数を調整する可変インピーダンスと、上記対向電極及び上記ホルダ間に高周波電力を供給する高周波電源と、を備える。
かかるホルダと対向電極間に可変インピーダンスを配置する構成とすることによって、被処理部材全体が対向電極で覆われ、処理部材外周部及び対向電極端部の電気定数の乱れる部分が可変インピーダンスによって調整される。それにより、被処理部材と対向電極間の電気定数の分布が全体的に均一化され、表面処理が均一化される。
また、本発明のプラズマ処理装置は、プラズマ処理の対処となるべき被処理面を有する被処理部材と、上記被処理面を露出した状態で上記被処理部材の外周を保持する導電性のホルダと、上記被処理面に対向して配置される対向電極と、上記ホルダと上記対向電極間の電気定数を調整する可変インピーダンスと、上記対向電極及び上記ホルダ間に給電線路を介して高周波電力を供給する高周波電源と、上記給電線路にて上記高周波電力の供給状態を検出する検出手段と、上記検出結果に基づいて上記可変インピーダンスを調整する制御手段と、を備える。
かかる構成とすることによって、更に、プラズマ処理装置における整合状態が判別されて電気定数が調整される。プロセスが自動化されて具合がよい。電気定数の調整は被処理部材と対向電極間の相対位置関係及び可変インピーダンスの少なくともいずれかを調整すればよい。
例えば、上記ホルダは、上記被処理部材を間に挟む2つの枠体と、2つの枠体を狭持するクランプと、によって構成される。この枠体の中間部外側に上記給電線路からの給電端となる突起部が設ける。
また、上記ホルダは、被処理部材の複数の被処理面を露出させ、各被処理面に複数の対向電極がそれぞれ向き合うように配置される。被処理部材と対向電極との相対的な位置を調整可能とするために例えば対向電極が高さ可変の構造に構成される。また、可変インピーダンスも複数の被処理面及び複数の対向電極に対応して複数設けることが出来る。被処理部材と電極間の相対位置関係、可変インピーダンスによって電気定数は調整される。なお、可変インピーダンスはチャンバの内部及び外部に配置することが可能である。
また、本発明の表面処理装置は、凹形状の開口部同士を互いに対向するようにして離間して配置された第1及び第2の電極と、上記第1及び第2の電極間に被処理面を上記開口部に対向させると共に上記被処理面の領域が上記開口部の領域内に収まるように配置される基板と、上記第1及び第2の電極と上記基板とを減圧雰囲気下に保つチャンバと、上記チャンバ内にプロセスガスを供給するガス供給手段と、上記基板と上記第1及び第2の電極との間に高周波電力を供給して上記プロセスガスをプラズマ化させる高周波電源と、を備える。
かかる構成とすることによって、基板とこの両側を覆う凹型の電極(例えば、箱形の電極)によってプラズマの拡散を防止して基板近傍にプラズマを集め、基板両面の均一な表面処理を可能とする。
好ましくは、上記第1及び第2の電極の凹形状の開口部を同様の形状に形成する。それにより、基板表裏のプラズマ空間の電気定数が略等しくなって基板両面の均一な表面処理が行われる。
好ましくは、上記第1及び第2の電極の各々は上記凹形状の開口部の底部に配置されて上記基板の方向に進退する可動電極を備える。それにより、プラズマ空間の形状(あるいは基板と対向電極間の相対位置関係)を変えて電気定数を調整することが可能となる。
好ましくは、上記第1及び第2の電極と上記基板との間の各電気定数が等しく設定される。それにより、基板の表裏で同じプラズマ状態が発生し、同じ表面処理が行われることが期待できる。
好ましくは、上記第1及び第2の電極が箱形の形状である。一般的に処理対象となる基板は角形板状部材であり、箱形の形状が具合よい。
本発明によれば、複数の被処理面を有する被処理部材の各被処理面に対して均一な表面処理を施すことが可能となる。また、各被処理面に対して程度が異なる表面処理を各被処理面毎に施すことが可能となる。
まず、本発明の表面処理方法及びこの方法を使用する表面処理装置における要素技術について説明する。
(広い基板面積の処理)
本発明の実施例では、適正な放電空間の形状が得られるように被処理部材近傍のプラズマ放電空間を空間制約部品によって画定する。例えば、被処理基板の両面側で同じプラズマ放電空間の形状となるようにする。また、被処理部材の両面(複数面)を同時に処理するために、被処理部材を一部が開口した容器を構成する2つの空間制約部品の間に挟むようにして容器内にプラズマを閉じ込めてプラズマの拡散を防止する。空間制約部品には、例えば、後述のボックスリフレクタ、インピーダンスシールド、金属ブロック、絶縁ブロック、トレイ、等が含まれる。
ボックスリフレクタは被処理部材との対向面が開口した箱形の部材であり、該開口内に仕切を設けて被処理部材に対応する領域とその他の領域とを分け、被処理部材に対応する領域で被処理部材を覆うようにする。2つのボックスリフレクタによって被処理部材の両面を覆う。それにより、被処理部材の両側のプラズマの拡散を防止し、均一なエッチングを図る。
(サス板調整)
このボックスリフレクタの開口部底部の底板を高さ可変とすることによって被処理部材とボックスリフレクタとのなす空間(プラズマ空間)形状が調整可能になされる。これは電気的に見ればチャンバの電気定数を調整可能としたことに相当する。ボックスリフレクタ及びその開口底部の底板がプラズマを発生させるための一方の電極(対向電極)となり、被処理部材が他方の電極となる(直接放電方式)。被処理部材にはバイアス電圧(直流(DC)電圧の給電あるいは自己バイアス電圧)が印加されてプラズマで生じたイオンやラジカルが被処理部材に衝突し、エッチングが行われる。
(インピーダンスシールド)
被処理基板の外周囲はインピーダンスシールド又は金属ブロックで囲まれ、被処理基板の外周部及び対向電極の外周部相互間に生じる電界の乱れとプラズマの外方への拡散が防止される。インピーダンスシールドは、例えば、金属の板状体を一定の間隔で対向するように配置したものであり、いわゆるバリコン(可変コンデンサ)状に構成することによって(チャンバ内に設けられた)可変インピーダンスとしても機能させることができる。インピーダンスシールド及び金属ブロックは所定電位(例えば、接地電位)に接続されてチャンバ内の電界(電位)を安定させる。
(ホルダ)
被処理部材は、例えば、薄板の金属基板であり、その外周(辺縁)が枠状体のホルダで基板の表裏面を露出するようにして保持され、2つのボックスリフレクタの対向電極間に保持される。それにより、基板の両面の同時プラズマ処理が可能となる。ホルダは複数の基板を保持することが出来、それによって、同時に複数の基板の処理を可能とする。このホルダの枠体に給電点が設定される。基板上ではなく、このホルダに給電点を設けてホルダから基板の外周に高周波電力を供給することによって、撓みやすい基板を一様に保持し、可及的に基板全体に均一な電位を付与する。また、ホルダを介して基板に給電することによって基板表面に給電点の痕跡が生ずることを回避する。例えば、ホルダによって保持される基板に熱膨張によって撓みや反りが生じないようにするために、ホルダは基板と同種の(導電)材料で構成される。ホルダは絶縁材を介して搬送用の中空のトレイの中央部に取り付けられる。ホルダとトレイ間は絶縁され、トレイからの放電が防止される。また、トレイ形状の影響が排除される。被処理部材及びホルダは搬送用のトレイに載置された状態で複数のプロセス装置のチャンバを移動する。
(多面体処理)
被処理部材は典型的には平板基板であり、本発明を適用することにより、その両面に同時に同様の処理(例えば、エッチング処理やスパッタ処理)を均一に施すことが可能となる。これを多角柱や円筒などの多面体に適用することが可能である。多面体の各被処理面に対して可動対向電極を設ける構造とすることによって個別の被処理面に対して電気定数を調整することを可能とし、均一なプラズマ表面処理を図るものである。
また、可動対向電極を個別的にプラズマが発生する状態(条件)と発生しない状態とにおくことによって複数の面を有する被処理部材の該当面を選択的に処理するようにすることが可能である。例えば、基板の両面をプラズマ処理する装置をそのままの構成で基板の片面をプラズマ処理する装置として機能させることが可能である。
(整合)
本発明のプラズマ処理装置では、電極間にプラズマを発生させる高周波エネルギは高周波電源から伝送線路を介して供給される。伝送線路は導波管あるいは高周波ケーブルによって構成される。伝送線路の途中に測定部が設けられ、進行波電力、反射波電力、供給電圧と供給電流の位相差、定在波などが測定される。制御部はその結果に基づいて上述した対向電極と基板間の相対位置関係、可変インピーダンスなどを調整する。可変インピーダンスには外部インピーダンス回路(整合回路)や内部インピーダンス回路が用意される。例えば、外部インピーダンス回路はチャンバに隣接したマッチングボックス内に設けられる。適当な電気定数の設定によって給電系とチャンバとの整合を図り、給電ロスを最小にして安定したプラズマを形成する。また、内部インピーダンス回路はチャンバ内のインピーダンスシールド部に設けることが可能である。例えば、インピーダンスシールド部のバリコン構造によって構成される。内部インピーダンス回路を更に加えることによってより広い範囲で整合を図ることが可能となる。プラズマ中のイオンやラジカルが被処理基板への直流バイアス電圧の印加あるいはいわゆる自己バイアス電圧によって該基板に衝突し、均一な表面処理がなされる。
以下、本発明の実施例について図面を参照しつつ説明する。
図1は、本発明のプラズマ処理装置であるエッチング装置のチャンバ部を水平に切断してこれを上方から見た状態(後述の図10参照)を概略的に示す説明図(断面図)である。
同図において、第1のベースフレーム301及び第2のベースフレーム351が互いに対向するように所定間隔を置いて平行に配置されてチャンバ空間を形成している。このチャンバ空間の略中央にベースフレーム301及び351と平行になるようにエッチング処理されるべき基板(被処理基板)150を載置したトレイ100が配置される。
ベースフレーム301のベースフレーム351(あるいはトレイ100)と対向する面側(内側)には第1のボックスリフレクタ302が配置されている。ボックスリフレクタ302は金属製(導電性)で箱形の形状をしており、その底部をベースフレーム301側にその開口部をトレイ100側に向けている。ボックスリフレクタ302の底板は第1の対向電極303となっている。対向電極303はこれを移動させる駆動力を発生するアクチュエータ304及び移動を案内する複数のガイド305によってトレイ100方向に進退可能に構成されている。対向電極303の外形は基板150よりも大きく、トレイ100の外形よりも小さい。
対向電極303の外縁部には、トレイ100と対向するように第1のインピーダンスシールド306が配置される。後述のように、インピーダンスシールド306は対向電極303の外周を囲み、その主面がトレイ100に対向する。インピーダンスシールド306は複数の金属板(導電体)が平行に配置された平行平板電極群を備える(図16参照)。それにより、対向電極303及び基板150によって画定される空間の外縁領域の電場を安定させる。また、プラズマの基板150外への拡散を抑制する。
同様に、ベースフレーム351のベースフレーム301(あるいはトレイ100)と対向する面側(内側)には第2のボックスリフレクタ352が配置されている。ボックスリフレクタ352は金属製(導電性)で箱形の形状をしており、その底部をベースフレーム351側にその開口部をトレイ100側に向けている。ボックスリフレクタ352の底板は第2の対向電極353となっている。対向電極353は、これを移動させる駆動力を発生するアクチュエータ354及び移動を案内する複数のガイド355によってトレイ100方向に進退可能に構成されている。対向電極353の外形は基板150よりも大きく、トレイ100の外形よりも小さい。
対向電極353の外縁部には、トレイ100と対向するように第2のインピーダンスシールド356が配置される。後述のように、インピーダンスシールド356は対向電極353の外周を囲み、その主面がトレイ100に対向する。インピーダンスシールド356は複数の金属板(導電体)が平行に配置された平行平板電極群を備える(図17参照)。それにより、対向電極353及び基板150によって画定される空間の外縁領域の電場を安定させる。また、プラズマの拡散を抑制する。
図2は、トレイ100及び基板150の対向電極303(又は353)に対向する面を概略的に示している。なお、具体構成例について後に図18を参照して説明する。
同図に示されるように、エッチング(表面処理)の対象となる複数の基板150がホルダ120によって保持される。後述のように、ホルダ120は、例えば、2つのフレーム間に基板150を挟む構造とすることが出来る。2つのフレーム間はクリップによって固定することが出来る。また、2つのフレーム間に複数の基板150をそれ等相互間離間して保持することが出来る。複数の基板を保持するホルダ120は導電性部材(金属)からなり、絶縁部材110を介してトレイ100に取り付けられる。ホルダ120の左右対象となる軸上にそれぞれ外方向に突起するように2つの給電端子(給電点)121が設けられる。この給電端子121を介して基板150に通電することによって基板150に給電の痕跡が残ることを回避する。トレイ100はその長手方向の両端(図示の左右方向両端部)で移動可能にチャンバ内に保持される。
このような構成において、チャンバ内にプロセスガスが導入され、基板150と第1の対向電極303及び及び第2の対向電極353との間に高周波電力が印加されることによって基板150の両側にプラズマが発生する。また、基板150に直流バイアスを印加することによってプラズマによって発生したラジカルが基板150に衝突して基板の複数面(表裏面)の(異方性)エッチングが行われる。
図3は、上述した対向電極を移動した状態を示している。同図において、図1に記載した部分と対応する部分には同一符号を付し、かかる部分の説明は省略する。
対向電極303及び353をそれぞれのアクチュエータ304及び354で独立に移動させることができる。各対向電極をボックスリフレクタ底部から任意の高さ位置に設定することが出来るので、基板150と対向電極303との相対位置関係(距離)、基板150と対向電極353との相対位置関係をそれぞれ任意の位置(距離)に設定することが出来る。これは、電気的に見れば、プラズマ放電装置における電気回路(放電空間部)の電気定数を調整することができることを意味する。
なお、対向電極303又は353を基板150に接近させて行くと、当該空間でプラズマ放電が消滅する離間距離(プラズマ消滅距離)が存在することが実験によって判った。従って、例えば、対向電極303をプラズマ消滅距離以下に設定し、対向電極353をプラズマ消滅距離以上に設定すると、基板150の第1の面側のエッチング処理を行わず、第2の面側のみのエッチング処理を行う(片面エッチング処理)ことが可能となる。従って、例えば、多角柱の基板(被処理部材)の各面に対応して対向電極を配置したものにおいて、各対向電極の基板との離間距離を適宜に設定することによって各面の同時エッチング処理のみならず、選択した面のエッチングを行うようにすることが可能となる。
図4は、上述したエッチング処理装置30の制御系を説明するブロック図である。
同図に示すように、高周波電源381は高周波ケーブルからなる給電線384及び外部可変インピーダンス回路(マッチングボックス)385を介してチャンバ内の基板(基板電極)150と対向電極303及び353との間に高周波電力を供給する。前述したように、閉空間(チャンバ)を形成する対向電極303及び353、ボックスリフレクタ302及び352、インピーダンスシールド306及び356は所定電位(例えば接地電位)のチャンバケース386に接続される。対向電極303及び353は、空間調整部387によってその位置が調整される。空間調整部387は、個々の対向電極の位置を設定するアクチュエータ304及び354、ガイド305及び355に対応する。
給電線384の途中にはCM型電力計382が接続され、給電線上の進行波電力と反射波電力が測定される。また、給電線384には線路上の電圧と電流との位相差θ(力率)、インピーダンスZを測定するインピーダンス測定器383が接続されている。これらの測定結果は制御部390に送出される。
図5は、外部可変インピーダンス回路385の構成例を示している。同図に示されるように、回路385は高周波ケーブル384の中心導体と基板電極150との間に接続されたインダクタL及び可変キャパシタ(バリコン)Ccと、中心導体と接地間に接続された可変キャパシタCiによって構成されている。これらの可変キャパシタを調整して位相差θの解消、高周波ケーブルとチャンバとのインピーダンス整合が図られる。なお、外部可変インピーダンス回路385の構成は例示であって、同図のもの限定されるものではない。例えば、インダクタLは可変リアクトルによってインダクタンス値変更可能に構成することが出来る。
上記チャンバには吸気ポンプ388によってプロセスガスが導入される。また、チャンバ内のガスは排気ポンプ389によって外部に排出される。
制御部390は、販売されており、入手可能な制御用コンピュータシステムによって構成される。このコンピュータシステムは、図示しないCPU、RAM、ROM、HDD、インタフェースなどを備え、CPUが制御プログラムを実行することによって制御部の機能が実現されている。
制御部390は、図示しないトレイ搬送装置、空間調整部387、ポンプ388及び389、外部可変インピーダンス回路385、高周波電源381等を制御してエッチングプロセスを実行する。
図6は、エッチング装置30における制御部390の制御動作を説明するフローチャートである。
まず、制御部390は、予め実験などによって得られた基板(ワーク)150の品番(種類)毎に定められた基板と対向電極との最適なギャップをテーブルとしてメモリに記憶しておき、搬入される基板150の品番に対応して対向電極303及び353相互間の間隔を初期状態(粗調整位置)に設定する。例えば、制御部390はトレイ100あるいは基板150に表示された符号(例えば、バーコード、ブロックコード、タグ等)をプロセス途中に設けられた図示しないカメラで読取り、パターン認識によって符号を判別する。判別した符号に基づいて上記テーブルを参照することが出来る。また、プロセスを管理するプロセス管理コンピュータ等からプロセス情報として処理対象となる基板150の品番を入手することも出来る。制御部390は、エッチング装置30のチャンバのゲートバルブ(図9参照)を開けて基板150がホルダ120を介して載置されたトレイ100をエッチング処理装置のチャンバ内に搬入する。トレイ100がチャンバ内の所定位置に保持されると、ゲートバルブを閉じてチャンバを閉空間とする(S10)。
なお、トレイ100の搬入後に、更に、空間調整部387を制御して基板150と対向電極303及び353との間の各離間距離(ギャップ)を設定することとしても良い。
制御部390は排気ポンプ389を動作させて密閉されたチャンバ内を減圧させる。チャンバ内が所定気圧に減圧されると、制御部390は図示しないガス供給路の弁を開け、吸気ポンプ387を動作させ、プロセスガスを図示しないマスフローコントローラで流量を調節しつつチャンバ内に導入する。また、制御部390は排気ポンプ389を動作させてエッチングに使用されたガスが排気されるようにしてチャンバ内のプロセスガス濃度を所定の状態に保つ。プロセスガスの種類はエッチング対象となる基板の材質に応じて選択される。例えば、アルゴンガスが使用可能である(S20)。
制御部390は高周波電源381に予め基板に対応して定めた高周波電力を供給させ、チャンバ内にプラズマを発生させる。高周波電源381は直流バイアス電圧を基板150に印加する機能も備えている。直流バイアス電圧によってプラズマのイオンやラジカルが引張られて基板150に衝突し、異方性エッチングが行われる。このバイアス電圧は異方性エッチングの制御パラメータの1つとなっている。なお、導電性の基板150側を陰極とし、いわゆるイオンシース現象によってセルフバイアス電圧(Vdc)を発生させて、異方性エッチングを行っても良い。また、直流バイアスを印加する代わりにイオンが追従可能な400kHz程度の相対的に低い高周波電力を電極間に印加してエッチングを行えるようにしても良い(S30)。
制御部390はCM型電力計382の出力(進行波電力、反射波電力、両者の差としての供給電力)を観察する。例えば、反射波電力のレベル(反射率)は整合調整が必要かどうかの判断指標とすることができる。また、制御部390はインピーダンス測定器383の出力を観察して、力率、チャンバのインピーダンスを知る(S40)。
制御部390は、反射電力レベルや給電線の特性インピーダンスとチャンバのインピーダンスとのずれ等から整合調整の必要があると判断すると、外部可変インピーダンス回路の電気定数を調整してインピーダンスの整合を図る。例えば、可変キャパシタCiを調整して位相差を減少する。可変キャパシタCcを調整してインピーダンス差を調整する。
なお、より正確な整合を図るためにチャンバの電気定数に影響を与える基板150と対向電極303及び353の間の各相対的位置関係(距離調整)を調整項目に加えることが出来る。基板150の両側の対向電極によって画定される閉空間は対称形となるように設定することが基板表裏のエッチング量を等しく設定するために好ましい(S50)。
整合が図られ、プラズマが安定すると、基板表面が所定量除去されるまでエッチングを実行する(S60)。制御部390は所定量の除去が行われると、あるいは所定除去量に対応した時間が経過するとエッチング処理を終了させる。
なお、制御部390は測定器性能などを考慮してインピーダンス測定段階における供給高周波電力を試験用電力(相対的に低い電力)で行い、エッチング実行段階では運転電力(相対的に高い電力)で行うこととしても良い。
また、制御部390は、予め基板の品番(種類)毎に定められた各部のインピーダンス設定値を記憶しておき、上述したインピーダンス測定(S40)を行うことなく、搬入される基板の品番に対応して上述した電極間ギャップ(電気定数)、外部可変インピーダンス回路385、内部可変インピーダンス回路385a等の電気定数を予め定められた適切な値に設定することとしても良い。それにより、同一ロットについての処理時間の短縮化(生産効率向上)を図ることが可能となる。
図7は、エッチング処理装置30の他の制御系を説明するブロック図である。同図において図4と対応する部分には同一符号を付し、かかる部分の説明は省略する。
この実施例では、チャンバケース386内に可変インピーダンス回路385aを設けている。他の構成は図4と同様である。
チャンバ内部に可変インピーダンス回路385aを設け、これを制御部390で制御することによってチャンバの電気定数をより広範囲に調整可能としている。可変インピーダンス回路385aは、例えば、図8に示すように可変キャパシタ(バリコン)によって構成される。この可変キャパシタは、前述したインピーダンスシールド306及び356をバリコン構成として実現されている。各バリコンは制御部390によって調整される。
図9は、上述した表面処理装置であるエッチング装置30を前処理装置として含む薄膜形成装置を上方から見た状態で概略的に示している。薄膜形成装置は、基板の両面にエッチングによって表面処理(前処理)を施した後、スパッタ法によって基板表面に成膜を行っている。
同図において、薄膜形成装置1は、概略、トレイ搬入装置10、ロード装置20、エッチング装置30、第1のスパッタ装置40、第2のスパッタ装置50、アンロード装置60、トレイ搬出装置70及びトレイリターン装置80を備えている。各装置相互間にはゲートバルブG1〜G6が設けられ、装置間の搬送用トレイ100の移動と各装置内チャンバの個別の雰囲気設定を可能としている。
まず、組立者(又は組立装置)によって処理対象となる複数の基板150がホルダ120に保持されて搬送用のトレイ100に固定(載置)される。このトレイ100はトレイ搬入装置10のセット位置に置かれる。トレイ搬入装置10はトレイ100をロード装置20に向けて搬送し、ゲートバルブG1を通過してロード部20内に搬入する。
ロード装置20はトレイ100が搬入されるとチャンバ内を減圧して基板150を所定温度に予熱する。その後、トレイ100はゲートバルブG2を通過してエッチング装置30に搬送される。
前述したように、エッチング装置30は後段のスパッタ装置50及び60と共にプラズマ処理を行う表面処理装置である。エッチング装置30は減圧雰囲気下でプロセスガス(エッチング用ガス)を導入し、基板150と電極間に高周波電力を供給してプロセスガスをプラズマ化して活性化させ、基板150表面のエッチングを行う。この薄膜形成装置1の例でも基板150の表裏面を同時にエッチング処理している。また、片面のみのエッチング処理を行うことも出来る。エッチングの終了後、基板150を載置したトレイ100は次ステージのゲートバルブG3を通過して第1のスパッタ部40に搬送される。
第1のスパッタ装置40は、前処理(エッチング)された基板150に減圧雰囲気下でスパッタ法によって金属などの第1の膜を成膜する。更に、トレイ100は次ステージのゲートバルブG4を通過して第2のスパッタ装置50に搬送される。更に、第2のスパッタ装置40は、第1の成膜が形成された基板150に減圧雰囲気下でスパッタ法によって金属などの第2の膜を積層する。なお、第1のスパッタ装置40で基板150の一面に成膜し、第2のスパッタ部50で基板の他面に成膜することとしても良い。
このようにして表面に薄膜が形成された基板150を載置したトレイ100は次ステージのゲートバルブG5を通過してアンロード装置60に搬入される。
アンロード装置60は、基板150を常温に戻す。また、一連の減圧雰囲気環境から常圧雰囲気に戻す。基板150はゲートバルブG6を経てトレイ搬出装置70に搬送される。トレイ搬出装置70はトレイ100をトレイリターン装置80に搬送する。トレイリターン装置80は処理の終えた基板を載置したトレイ100をトレイ搬入装置10の元のセット位置に戻す。処理の終えた基板は組立者等によってトレイ100から取り外される。トレイ100には新たな被処理基板150を保持したホルダが載置されて再利用される。
上述したエッチング装置30の具体的な構成例について説明する。図10は、エッチング装置30のチャンバ部の上半分をカットして該装置の右上方からチャンバ内を見た状態示す斜視図である。また、図11は図10に示されているエッチング装置の右側面図である。図10及び図11において、図1乃至図5と対応する部分には同一符号を付している。
図10及び図11に示すように、エッチング装置30のチャンバは所定距離を置いて対向するようにして配置されたベースフレーム301及び351間に構成される。ベースフレーム301のベースフレーム351と対向する面側にはボックスリフレクタ302が設けられている。ボックスリフレクタ302の底部はその周囲を四方から囲む仕切板302a〜302dに沿って移動する可動対向電極303となっている。同様に、ベースフレーム351のベースフレーム301と対向する面側にはボックスリフレクタ352が設けられている。ボックスリフレクタ352の底部はその周囲を囲む仕切板352a〜352dに沿って移動する可動対向電極353となっている(図12参照)。可動対向電極303及び353は、それぞれガイド305及び355、アクチュエータ304及び354によって移動可能になされている。
図12及び図13は、上述したボックスリフレクタ352の具体的な構成例を示す斜視図である。図12は、ボックスリフレクタ352の底板である対向電極353が底部側に下がっている状態を、図13は図示しないアクチュエータ354によって対向電極353が底部から上がっている状態を示している。図示しないが、ボックスリフレクタ302も同様に対向電極303が移動可能になされている。
両図に示されるように、ボックスリフレクタ352は金属(導電体)の箱状体によって構成され、対向電極353の周囲を囲む仕切り板352a〜352dを備えている。仕切り板352a〜352dと、対向電極353と、基板150と、ホルダ120等によってプラズマ発生空間が画定される。図示のボックスリフレクタ352の左側面及び右側面の凹部は、ホルダ120の給電端子121に給電を行うためのスペースとなっている。ボックスリフレクタ302についても同様に構成されるが、チャンバへの給電はボックスリフレクタ352側から行われるので、ボックスリフレクタ352のような左側面及び右側面の凹部は設けられていない。
図10に示すように、ボックスリフレクタ302の仕切り板302a〜302d(同図には302a及び302bのみを示す)の外側領域(非プラズマ形成領域)とホルダ120及びトレイ100間にはインピーダンスシールド306が設けられている。同様に、ボックスリフレクタ352とホルダ120及びトレイ100間にはインピーダンスシールド356が設けられている。前述のように、インピーダンスシールド306及び356はチャンバの外周領域の電界(電位)を安定させる。
図14及び図15は、インピーダンスシールド306を構成する単位プレート306aの形状例を示している。図14に示す例ではインピーダンスシールド306の熱変形等を考慮して単位プレート306aを分割した複数の板体によって構成している。分割して板体相互間に隙間を設けることで該板体の熱膨張による撓みなどが生じにくくなる。
図15は、中央が開口した「ロ」状の一枚の板体によって構成される単位インピーダンスシールドの例(一枚型)を示している。熱膨張が特に問題とならない場合や、熱膨張による撓みなどが生じにくい部材を用いる場合に都合がよい。
図16はボックスリフレクタ302に複数の単位プレート306aをエアギャップを介して平行に積み重ねてなる分割型のインピーダンスシールド306を取付けた状態を説明する斜視図である。
図17はボックスリフレクタ352に複数の単位プレート356aをエアギャップを介して平行に積み重ねてなる分割型のインピーダンスシールド356を取付けた状態を説明する斜視図である。ホルダ120の給電端子121への給電スペースを確保するために図示のインピーダンスシールド356の左側及び右側にそれぞれボックスリフレクタ352の左右凹部形状に対応して凹部が形成されている。
図10及び図11に示すように、ベースフレーム351の外側にチャンバに隣接するようにしてチャンバの電気定数(インピーダンス)と給電線384の特性インピーダンスとの整合を図る可変インピーダンス回路を形成したマッチングボックス385が設けられている。マッチングボックス385内には図5に示したインダクタL、キャパシタCc及びCi等が形成されている。マッチングボックス(可変インピーダンス回路)385に供給された高周波電力は端子接続部385a及び385bを介してホルダ120の給電端子121に供給される。端子接続部385a及び385bはホルダ120及びトレイ100をチャンバ内外に移動可能とするために、ネジ機構によって導電軸が軸方向に進退(あるいは伸縮)するようになされる。導電軸が前進(伸張)すると導電軸先端が接続端子としてホルダ120の給電端子121に接触して電気的に接続が行われ、高周波電力が基板150に供給される。導電軸が後退すると、導電軸先端がホルダ120の給電端子121から離間し、電気的接続が遮断される。接続端子の離間によってトレイ100の搬送(移動)が可能となる。
上述したインピーダンスシールド306及び356は空隙を絶縁体とする平行平板電極群によって構成されている。これをいわゆるバリコン(可変容量コンデンサ)として構成することが出来る。それにより、チャンバ内部に内部可変インピーダンス回路を形成することが可能となり、チャンバ内の電気定数の調整範囲をより広範囲として給電系との整合範囲を拡大することが可能となる。また、プラズマ状態の変化(電気定数の変化)に対応して内部可変インピーダンスの電気定数を変化させてプラズマの安定化を図ることが可能となる。更には、対向電極303及び353と基板150との各ギャップ調整の際に内部可変インピーダンスを調整することにより電気定数をより広い範囲で調整することが可能となる(図8参照)。
図18は、ホルダの120の構成例を説明する斜視図である。同図に示すように、ホルダ120は2つの中空の枠体120a及び120bと、クランプ(あるいはクリップ)131及び132とによって構成される。同一面上に並べられた被処理対象となる複数の基板150は2つの枠体120a及び120b間に挟まれて固定される。複数の基板150を挟んだ状態で2つの枠体120a及び120bはその左右両側で断面U字型のクランプ131及び132でそれぞれ挟まれて固定される。枠体120a及び120bの対称軸上に枠体から外方に延在する2つの給電端121が設けられている。前述したようにこの給電端121に高周波電力及び直流バイアスが印加される。枠体120a及び120bは被処理対象の基板150と同じ材質のもの、例えば、金属板で形成される。それにより、同じ膨張率となって撓みなどが防止される。また、導電性の枠体120a及び120bによって基板150の外周が保持されることによって基板150の面上は同電位となる。
このようにして複数の基板150を保持したホルダは図2に示すように絶縁物110を介してトレイ100に載置(固定)される。
上述した実施例ではチャンバ空間の形状を画定する部材としてボックスリフレクタ302及び352と、インピーダンスシールド306及び356を用いているが、これに限定されるものではない。
例えば、図19に示すように、ボックスリフレクタ302及びインピーダンスシールド306に代えて金属ブロックを用いることができる。金属ブロックは金属部材の組み合わせによって構成されている。
また、図20に示すように、ボックスリフレクタ352及びインピーダンスシールド356に代えて給電空間に凹部が形成された金属ブロックを用いることができる。この金属ブロックも金属部材の組み合わせによって構成することができる。
(両側放電の効果)
図21乃至図24を参照して本実施例の効果について説明する。
図21及び図22は上述した空間制約部品及びホルダを用いない参考例のエッチング装置で基板にエッチングを行った場合の基板上におけるエッチング量のバラツキの例を示すグラフである。図21は基板の表側を、図22は基板の裏側の測定結果を示している。エッチング量は単位時間に除去された表面層の厚さを示している。予め基板に成膜された薄膜の除去量を測定している。基板と膜との密着性を得るためのエッチング量として図中の基準線を目標としている。
なお、図21及び図23の横軸は、図25に示すように、縦置された基板150の上下方向の位置を示している。縦軸はエッチング量を示している。グラフは基板150の進行方向における基板上の位置をパラメータとしている。進行方向位置は縦置された基板150の左右方向(チャンバ内の進行方向)における位置であり、基板中央位置を基準として50mm間隔で正逆方向に6箇所を測定位置として選んでいる。
図21及び図22から判るように、表面及び裏面のエッチング量のバラツキが大きい。特に、裏面のエッチング量のバラツキは大きく、エッチング量の最小値と最大値とは数十倍にもなっている。
図23及び図24は、本実施例のエッチング装置でエッチングを行った結果を示している。グラフの表示は比較例と同様である。
本発明の実施例と比較例とを対比すると、エッチング量の平均値としては両者とも満足しているものの、本発明を適用しない場合にはエッチング量のバラツキが数倍大きいことが判る。これは、プラズマ処理する被処理基板の両側のチャンバの空間の対称性及びプラズマ拡散の相違によるものと考えられる。エッチングは、ある一定時間行うことにより、ある範囲の量を除去することを目的としているため、目標の未達やバラツキ、特に、局所的な除去量の多少は品質上問題となる。本実施例によれば、基板の各面と各対向電極間の電気定数を略同等に調整することによって基板の両面間及び同一面内においても均一な表面処理状態が得られている。
(片側放電の効果)
前述したように、移動可能な対向電極を所定距離以下に基板に近づけることによって当該面のエッチングを停止させる効果(片側の放電空間の閉鎖)が得られる。それにより、両面エッチング処理装置において片面エッチング処理を行うことが出来る。
図26は、片面のみのエッチングを連続で行った際のプロセスガス流量と高周波出力の変化に対する放電状態を示すグラフである。同図中、横軸は供給高周波電力(W)、縦軸はプロセスガスの流量(cc/分)を示している。また、図中の○は放電が安定である状態を、×は放電が不安定ある状態を示す。安定・不安定の判断は反射波電力の状態から判断した。
同図より、片面のみのエッチングであっても安定な放電が得られるプロセスガスの流量領域は広範囲であることが判った。プロセスガスの流量領域のエッチング出力への依存性がなく、従来よりも低出力での放電も可能である。また、プロセスガスのみでの安定した連続放電が可能であり、他の添加ガス有無の制約を受けないプロセスである等の利点が挙げられる。従って、流量、供給電力等の変化に対するマージンが大きいプロセスを行える。
本発明は、燃料電池部品であるセパレータをはじめとする真空を用いた金属薄板への薄膜形成装置、エッチング装置等のプラズマ処理装置に適用して好都合である。
図1は、本発明の表面処理装置としてのエッチング装置例を説明する断面図である。 図2は、基板、ホルダ及びトレイの例を説明する平面図である。 図3は、エッチング装置の対向電極を移動可能にした例を説明する断面図である。 図4は、エッチング装置の動作を説明する説明図である。 図5は、外部可変インピーダンス(マッチングボックス)を説明する説明図である。 図6は、エッチング装置の動作手順を説明するフローチャートである。 図7は、内部可変インピーダンスを設けたエッチング装置の例を説明する説明図である。 図8も、内部可変インピーダンスを設けたエッチング装置の例を説明する説明図である。 図9は、上記エッチング装置を含む薄膜形成装置の例を説明する説明図である。 図10は、本発明のエッチング装置の具体例を説明する斜視図である。 図11は、図10に示すエッチング装置の右側面図である。 図12は、実施例で使用されるボックスリフレクタ(対向電極)の例を説明する斜視図である。 図13は、ボックスリフレクタの底板(対向電極)を移動した例を説明する斜視図である。 図14は、インピーダンスシールドの例(3分割例)を説明する斜視図である。 図15は、他のインピーダンスシールドの例(非分割例)を説明する斜視図である。 図16は、一方の側のインピーダンスシールドの取付状態を説明する斜視図である。 図17は、他方の側のインピーダンスシールドを説明する斜視図である。 図18は、トレイに載置された基板及びホルダを説明する斜視図である。 図19は、一方の側の金属ブロック部の構成例を説明する斜視図である。 図20は、他方の側の金属ブロック部の構成例を説明する斜視図である。 図21は、参考例のエッチング装置による基板表面のエッチング状態を示すグラフである。 図22は、参考例のエッチング装置による基板裏面のエッチング状態を示すグラフである。 図23は、実施例のエッチング装置による基板表面のエッチング状態を示すグラフである。 図24は、実施例のエッチング装置による基板裏面のエッチング状態を示すグラフである。 図25は、基板上の測定位置を説明する説明図である。 図26は、実施例のエッチング装置のプロセスガス流量と高周波電力をパラメータとする放電状態の例を説明するグラフである。
符号の説明
1 薄膜形成装置、10 トレイ搬入装置、20 ロード装置、30 エッチング装置、40 第1のスパッタ装置、50 第2のスパッタ装置、60 アンロード装置、70 トレイ搬出装置、80 トレイリターン装置、100 トレイ、120 ホルダ、121 給電端子、131,132 クランプ、150 基板、301,351 ベースフレーム、302,352 ボックスリフレクタ、303,353 対向電極、304,354 アクチュエータ、305,355 ガイド、306,307 インピーダンスシールド

Claims (32)

  1. 複数面を有する被処理部材をプラズマ放電処理にて加工する表面処理方法であって、
    チャンバ内に配置された複数の対向電極間に被処理部材を配置する過程と、
    前記被処理部材と前記複数の対向電極との間でプラズマ放電を行って前記チャンバの電気定数を測定する過程と、
    前記測定の結果に基づいて前記被処理部材とこれに対向する前記複数の対向電極との相対位置関係を調整する調整過程と、
    前記被処理部材及び前記複数の対向電極相互間のプラズマによって前記被処理部材を表面処理する過程と、
    を含む表面処理方法。
  2. 前記調整過程は、前記被処理部材及びこれに対向する前記複数の対向電極相互間の各電気定数が略等しくなるように前記相対位置関係を調整するものである、請求項1に記載の表面処理方法。
  3. 複数面を有する被処理部材をプラズマ放電処理にて加工する表面処理方法であって、
    チャンバ内に配置された複数の対向電極間に被処理部材を配置する過程と、
    前記被処理部材と前記複数の対向電極との間でプラズマ放電を行って前記チャンバの電気定数を測定する過程と、
    前記測定結果に基づいて前記被処理部材と前記複数の各対向電極との間に配置された可変インピーダンスを調整する過程と、
    前記被処理部材及び前記複数の対向電極相互間のプラズマによって前記複数の被処理面を同時に処理する過程と、
    を含む表面処理方法。
  4. 前記調整過程は、前記被処理部材及びこれに対向する前記複数の対向電極相互間の各電気定数が略等しくなるように前記可変インピーダンスを調整するものである、請求項3に記載の表面処理方法。
  5. 前記被処理部材は、その辺縁をホルダにより保持されて前記チャンバ内に配置される、請求項1乃至4のいずれかに記載の表面処理方法。
  6. 前記被処理部材は、その辺縁が導電性のホルダを介して高周波電源と接続される、請求項1乃至5のいずれかに記載の表面処理方法。
  7. 前記被処理部材は複数存在し、各被処理部材の辺縁が1つの導電性のホルダによって保持されて該ホルダを介して高周波電源と接続される、請求項1乃至4に記載の表面処理方法。
  8. 前記調整過程は、予め、前記被処理部材の複数の被処理面について、当該被処理面とこの面に対応する対向電極による電気定数を測定して、各被処理面の電気定数が略同等になるような各被処理面とこれ等の面に対応する複数の対向電極の位置関係を求めておき、前記チャンバ内に導入された被処理部材に対応して前記複数の対向電極の位置関係を設定するものである、請求項1乃至7のいずれかに記載の表面処理方法。
  9. 前記複数の対向電極の位置関係の設定が前記被処理部材に対応した前記チャンバ内のプラズマ発生空間の形状を設定するものである、請求項8記載の表面処理方法。
  10. 前記被処理部材が表裏面を有する平板である、請求項1乃至9のいずれかに記載の表面処理方法。
  11. 前記平板が燃料電池用セパレータである、請求項1乃至10のいずれかに記載の表面処理方法。
  12. 前記プラズマ放電処理がエッチング又は成膜である、請求項1乃至11のいずれかに記載の表面処理方法。
  13. 前記調整過程は、前記被処理部材の被処理面とこの面に対応する前記対向電極との相対位置関係を調整することによって各面の表面処理の状態を異ならせるものである、請求項1乃至12のいずれかに記載の表面処理方法。
  14. 前記調整過程は、前記被処理部材の一の被処理面とこの面に対向する対向電極間の距離を所定値以下とすることによって当該被処理面における表面処理を不活性化させるものである、請求項1乃至13のいずれかに記載の表面処理方法。
  15. 複数面を有する被処理部材をプラズマ放電処理にて加工する表面処理装置であって、
    前記被処理部材の複数の被処理面にそれぞれ対向して配置される複数の対向電極と、
    前記被処理部材と前記複数の対向電極とをプロセスガスの雰囲気下に保つチャンバと、
    前記被処理部材と前記複数の対向電極との各相対位置関係を各被処理面についてそれぞれ調整する調整手段と、
    前記被処理部材と前記複数の対向電極間に高周波電力を供給して前記複数の被処理面と前記複数の対向電極間にプラズマを発生させる高周波電源と、
    を備える表面処理装置。
  16. 前記調整手段は、前記被処理部材及び前記対向電極相互間の電気定数が各被処理面について略等しくなるように前記相対位置関係を設定するものである、請求項15に記載の表面処理装置。
  17. 複数面を有する被処理部材をプラズマ放電処理にて加工する表面処理装置であって、
    前記被処理部材の複数の被処理面に対向してそれぞれ配置される複数の対向電極と、
    前記被処理部材と前記複数の対向電極とをプロセスガスの雰囲気下に保つチャンバと、
    前記被処理部材と前記複数の各対向電極との間に電気的に接続される可変インピーダンスと、
    前記被処理部材と前記対向電極間の電気定数を各被処理面についてそれぞれ調整する調整手段と、
    前記被処理部材と前記複数の対向電極間に高周波電力を供給して前記複数の被処理面と前記複数の対向電極間にプラズマを発生させる高周波電源と、
    を備える表面処理装置。
  18. 前記調整手段は、前記被処理部材の被処理面と前記対向電極相互間との相対位置関係及び前記可変インピーダンスのうち少なくともいずれかを調整して前記電気定数を各被処理面について設定する、請求項17に記載の表面処理装置。
  19. 前記調整手段は、予め、前記被処理部材の複数の被処理面について、当該被処理面とこの面に対応する対向電極による電気定数を測定して、各被処理面の電気定数が略同等になるような各被処理面とこれ等の面に対応する複数の対向電極との位置関係を求めておき、前記チャンバ内に導入された被処理部材に対応して前記複数の対向電極の位置関係を設定するものである、請求項15又は17に記載の表面処理装置。
  20. 前記複数の対向電極の位置関係の設定が前記被処理部材に対応した前記チャンバ内のプラズマ発生空間の形状設定である、請求項19記載の表面処理装置。
  21. 前記調整手段は、前記被処理部材の被処理面とこの面に対応する前記対向電極との相対位置関係を調整することによって各面の表面処理の状態を異ならせるものである、請求項15又は17に記載の表面処理装置。
  22. 前記調整手段は、前記被処理部材の一の被処理面とこの面に対向する対向電極との間の距離を所定値以下とすることによって当該被処理面における表面処理を不活性化させるものである、請求項15又は17に記載の表面処理装置。
  23. 前記被処理部材は、その辺縁がホルダにより保持されて前記チャンバ内に配置される、請求項15乃至22のいずれかに記載の表面処理装置。
  24. 前記被処理部材は、その辺縁が導電性のホルダによって保持されて該ホルダを介して高周波電源と電気接続される、請求項15乃至23のいずれかに記載の表面処理装置。
  25. 前記被処理部材が表裏面を有する平板である、請求項15乃至24のいずれかに記載の表面処理装置。
  26. 前記平板が燃料電池用セパレータである、請求項15乃至25のいずれかに記載の表面処理装置。
  27. 前記プラズマ放電処理がエッチング又は成膜である、請求項15乃至26のいずれかに記載の表面処理装置。
  28. 凹形状の開口部同士を互いに対向するようにして離間して配置された第1及び第2の電極と、
    前記第1及び第2の電極間に被処理面を前記開口部に対向させると共に前記被処理面の領域が前記開口部の領域内に収まるように配置される基板と、
    前記第1及び第2の電極と前記基板とを減圧雰囲気下に保つチャンバと、
    前記チャンバ内にプロセスガスを供給するガス供給手段と、
    前記基板と前記第1及び第2の電極との間に高周波電力を供給して前記プロセスガスをプラズマ化させる高周波電源と、
    を備える表面処理装置。
  29. 前記第1及び第2の電極の凹形状の開口部を同様の形状に形成した請求項28に記載の表面処理装置。
  30. 前記第1及び第2の電極の各々は前記凹形状の開口部の底部に配置されて前記基板方向に進退する可動電極を備える、請求項28又は29に記載の表面処理装置。
  31. 前記第1及び第2の電極と前記基板との間の各電気定数が略等しく設定される、請求項28乃至30のいずれかに記載の表面処理装置。
  32. 前記第1及び第2の電極が箱形の形状である、請求項28乃至31のいずれかに記載の表面処理装置。

JP2004099075A 2004-03-30 2004-03-30 表面処理方法及び表面処理装置 Pending JP2005281796A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004099075A JP2005281796A (ja) 2004-03-30 2004-03-30 表面処理方法及び表面処理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004099075A JP2005281796A (ja) 2004-03-30 2004-03-30 表面処理方法及び表面処理装置

Publications (1)

Publication Number Publication Date
JP2005281796A true JP2005281796A (ja) 2005-10-13

Family

ID=35180513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004099075A Pending JP2005281796A (ja) 2004-03-30 2004-03-30 表面処理方法及び表面処理装置

Country Status (1)

Country Link
JP (1) JP2005281796A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109446A (ja) * 2005-10-11 2007-04-26 Sharp Corp プラズマ生成装置
JP2013216948A (ja) * 2012-04-10 2013-10-24 Kojima Press Industry Co Ltd プラズマcvd装置
JP2014078468A (ja) * 2012-10-12 2014-05-01 Toyota Motor Corp 燃料電池用セパレータの製造装置
EP2921307A1 (en) 2014-03-17 2015-09-23 Ricoh Company, Ltd. Treated object modifying apparatus, printing apparatus, printing system, and method for manufacturing a printout
JP2018098210A (ja) * 2016-12-15 2018-06-21 トヨタ自動車株式会社 プラズマ装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109446A (ja) * 2005-10-11 2007-04-26 Sharp Corp プラズマ生成装置
JP2013216948A (ja) * 2012-04-10 2013-10-24 Kojima Press Industry Co Ltd プラズマcvd装置
JP2014078468A (ja) * 2012-10-12 2014-05-01 Toyota Motor Corp 燃料電池用セパレータの製造装置
EP2921307A1 (en) 2014-03-17 2015-09-23 Ricoh Company, Ltd. Treated object modifying apparatus, printing apparatus, printing system, and method for manufacturing a printout
US9566802B2 (en) 2014-03-17 2017-02-14 Ricoh Company, Ltd. Treated object modifying apparatus, printing apparatus, printing system, and method for manufacturing printout
JP2018098210A (ja) * 2016-12-15 2018-06-21 トヨタ自動車株式会社 プラズマ装置

Similar Documents

Publication Publication Date Title
US9095039B2 (en) Plasma processing apparatus and plasma processing method
US7880392B2 (en) Plasma producing method and apparatus as well as plasma processing apparatus
EP1797578B1 (en) Method and apparatus to improve plasma etch uniformity
US20150228461A1 (en) Plasma treatment apparatus and method
US20070144440A1 (en) Plasma producing method and apparatus as well as plasma processing apparatus
KR20170024922A (ko) 플라즈마 발생 장치
JP4515950B2 (ja) プラズマ処理装置、プラズマ処理方法およびコンピュータ記憶媒体
KR101215691B1 (ko) 플라즈마 처리 장치
KR20140079316A (ko) 더미 게이트 형성 방법
US7723236B2 (en) Gas setting method, gas setting apparatus, etching apparatus and substrate processing system
US10121674B2 (en) Method for etching silicon layer and plasma processing apparatus
TWI679675B (zh) 電容耦合電漿處理裝置與電漿處理方法
US20150053645A1 (en) Plasma processing apparatus and plasma processing method
JP4491363B2 (ja) 成膜装置
KR20180014656A (ko) 기판 처리 장치 및 기판 처리 방법
JP2005281796A (ja) 表面処理方法及び表面処理装置
KR101297711B1 (ko) 플라즈마 처리장치 및 플라즈마 처리방법
JP2006286950A (ja) 表面処理方法及び表面処理装置
KR101781285B1 (ko) 플라즈마 처리 장치
JP6373707B2 (ja) プラズマ処理装置
JP6999410B2 (ja) 基板処理方法
KR100664512B1 (ko) 플라즈마처리방법 및 장치
KR20100089541A (ko) 플라즈마 화학 기상 증착 장치
CN111052320B (zh) 反应性离子蚀刻装置
JP2017028092A (ja) プラズマ処理装置及びプラズマ処理方法