JP2005281020A - 水素ガス製造システムの始動方法 - Google Patents

水素ガス製造システムの始動方法 Download PDF

Info

Publication number
JP2005281020A
JP2005281020A JP2004094361A JP2004094361A JP2005281020A JP 2005281020 A JP2005281020 A JP 2005281020A JP 2004094361 A JP2004094361 A JP 2004094361A JP 2004094361 A JP2004094361 A JP 2004094361A JP 2005281020 A JP2005281020 A JP 2005281020A
Authority
JP
Japan
Prior art keywords
catalyst
temperature
fuel
hydrogen
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004094361A
Other languages
English (en)
Inventor
Hikari Okada
光 岡田
Hideaki Sumi
英明 隅
Hiroshi Machida
博 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004094361A priority Critical patent/JP2005281020A/ja
Publication of JP2005281020A publication Critical patent/JP2005281020A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

【課題】触媒燃焼器を経済的且つ迅速に触媒燃焼可能温度に加熱することができ、低温始動を効率的に遂行するとともに、触媒機能の低下を防止することを可能にする。
【解決手段】水素ガス製造システム10では、温度センサ52を介して燃焼触媒12の触媒温度が検出され、この触媒温度が設定温度以下であると判断された際、始動用燃料供給機構44及びスパークプラグ50が同期して間欠的に駆動制御される。そして、燃焼触媒12の触媒温度が設定温度を超えた後、流量調整弁48及びスパークプラグ50の間欠動作が停止されるとともに、始動用燃料供給機構44を介して燃焼触媒12に始動用燃料が供給されて、前記燃焼触媒12の自己燃焼が行われる。
【選択図】図1

Description

本発明は、含水素燃料を改質して改質ガスを得る水素ガス製造システムの始動方法に関する。
例えば、天然ガス等の炭化水素燃料やメタノール等のアルコールを含む含水素燃料を改質して水素含有ガス(改質ガス)を得た後、この水素含有ガスを精製した高純度水素ガスを燃料ガスとして燃料電池に供給して発電を行う燃料ガス製造発電システムが採用されている。
この種の燃料ガス製造発電システムは、例えば、原料ガス(含水素燃料)を燃料電池の発電に使用される水素に改質する燃料改質器と、始動用触媒バーナと、駆動触媒バーナと、水素供給装置と、メタノールタンクとを備えている。
そこで、始動時には、水素供給装置から始動用触媒バーナに水素が供給されるとともに、前記始動用触媒バーナに空気が供給され、燃焼が開始される。次いで、始動用触媒バーナから駆動触媒バーナに燃焼ガスが供給されることにより、この駆動触媒バーナの入口温度が上昇する。そして、入口温度がメタノール着火温度になった際に、メタノールタンクから駆動触媒バーナにメタノールが供給されるとともに、このメタノールが着火用触媒バーナを経由して供給された空気と混合して燃焼が開始され、燃焼ガスが発生する。
さらに、駆動触媒バーナから、例えば、ターボチャージャに燃焼ガスが供給され、このターボチャージャのタービンからの排気ガスが燃料改質器に連続に供給されて原料ガスの改質に必要な熱源が供給されている。その際、燃料改質器には、原料ガスが供給されており、前記燃料改質器で改質された水素が燃料電池に供給されて、前記燃料電池の始動が開始される。
ところが、上記の構成では、特に、頻繁な始動及び停止を繰り返す場合に、大型の水素タンクを備えた水素供給装置が必要となり、システム全体が相当に大型化するという問題が指摘されている。
そこで、例えば、特許文献1に開示されている燃料電池始動装置が知られている。この特許文献1では、図5に示すように、駆動触媒バーナのメタノール燃焼に使用される空気を供給するための空気通路1の途上には、迂回路2が分岐して設けられている。
この迂回路2には、着火装置3が配置されるとともに、この着火装置3は、周辺に供給されるメタノールの着火を行うセラミック製のグロープラグ4と、図示しないメタノールタンク内のメタノールを前記グロープラグ4の先端部に供給するメタノール供給ライン5と、前記グロープラグ4の下流側に配置され、該グロープラグ4で着火した燃料ガスを完全燃焼させるための着火触媒バーナ6とを備えている。
このような構成において、グロープラグ4に通電を開始して十数秒後に、メタノール供給ライン5から前記グロープラグ4の周辺にメタノールが供給される。このため、加熱されているグロープラグ4の先端部周辺でメタノールの火炎燃焼が発生し、着火用触媒バーナ6が直接加熱されて、未燃焼のメタノールが燃焼を開始する。
着火用触媒バーナ6から空気通路1を経由して駆動触媒バーナに高温燃焼ガスが流入されることにより、この駆動触媒バーナが温められる。そして、駆動触媒バーナがメタノール着火温度に至る際、前記駆動触媒バーナに新たにメタノールを供給し、全供給空気の燃焼が開始される。
このように、特許文献1では、始動時に水素を用いることがないため、水素タンクを含む水素供給装置の小型化が図られ、システム全体を小型に構成することができる、としている。
特開平9−35734号公報(図2)
上記の特許文献1では、着火装置3を構成するグロープラグ4が連続して通電されるとともに、メタノール供給ライン5から前記グロープラグ4の先端付近にメタノールが連続して供給されている。このため、駆動触媒バーナには、高温燃焼ガスが連続的に供給されており、前記駆動触媒バーナが急速に昇温される。
しかしながら、液体燃料であるメタノールを直接且つ連続的に噴射すると、燃焼用空気と液体燃料とを均一に混合させることが困難である。従って、触媒温度にむらが生じるとともに、この温度むらは、触媒の面方向及び深さ方向に発生してしまう。しかも、触媒に対して液体燃料だけが供給される部位が生じ、燃料過多となる部位では、触媒が溶損するという問題がある。
本発明はこの種の問題を解決するものであり、低温時においても触媒燃焼器を経済的且つ迅速に触媒燃焼可能温度に加熱することが可能な水素ガス製造システムの始動方法を提供することを目的とする。
本発明は、含水素燃料が供給されるとともに、少なくとも水分を蒸発させる蒸発器と、少なくとも前記含水素燃料及び蒸発成分を用いて改質ガスを得る改質器と、少なくとも前記蒸発器又は前記改質器の一方を加熱する触媒燃焼器と、前記触媒燃焼器に始動用燃料を供給する始動用燃料供給機構と、前記始動用燃料を着火させる着火機構とを備えた水素ガス製造システムの始動方法である。
先ず、触媒燃焼器の触媒温度が検出されて、この触媒温度が触媒燃焼可能温度以下であると判断された際、始動用燃料供給機構から前記触媒燃焼器に始動用燃料が間欠的に供給されるとともに、着火機構の着火動作が前記始動用燃料の供給動作に同期して間欠的に行われる。次いで、触媒温度が触媒燃焼可能温度を超えた後、始動用燃料の間欠供給及び着火機構の間欠着火が停止され、さらに始動用燃料供給機構から前記触媒燃焼器に前記始動用燃料が供給される。
本発明では、始動用燃料の供給動作と着火動作とが、互いに同期して間欠的に行われるため、触媒燃焼器が連続的に加熱されることはない。従って、触媒燃焼器が触媒燃焼可能温度を大きく超えて加熱されることを確実に阻止することができる。これにより、触媒燃焼器を経済的且つ迅速に触媒燃焼可能温度に加熱することができ、低温始動を効率的に遂行することが可能になる。しかも、触媒燃焼器の保炎を有効に防止することができ、触媒の溶損等を良好に阻止することが可能になる。
図1は、本発明の実施形態に係る始動方法を実施するための水素ガス製造システム10の概略構成図である。
水素ガス製造システム10は、含水素燃料、例えば、メタンやプロパン等の炭化水素燃料(以下、改質用燃料という)、改質用水及び改質用空気が供給されるとともに、燃焼触媒(触媒燃焼器)12を有して少なくとも水分を蒸発させる蒸発器14を備える。蒸発器14の下流には、少なくとも改質用燃料及び蒸発成分を用いて改質ガスを得る改質器16が配設されるとともに、前記蒸発器14と前記改質器16との間には、前記蒸発成分を含む改質用燃料を前記改質ガスと熱交換して加熱する熱交換器18が介装される。改質器16には、暖機用のバーナ20が接続される。
熱交換器18の下流には、熱交換された改質ガスをガス成分と水分とに分離する凝縮器22が、三方弁23を介して配設されるとともに、この凝縮器22の下流には、コンプレッサ24を介して前記改質ガスが圧送されるPSA装置26が接続される。PSA装置26は、水素以外の成分を高圧下で選択的に吸着し、減圧下で脱着する吸着剤を充填した複数塔、例えば、3塔の吸着塔(図示せず)を備えている。
各吸着塔に、吸着、減圧、均圧、脱着及び洗浄工程からなるサイクリック運転を行わせることにより、高純度水素を取り出して燃料ガス経路28に排出するとともに、他の成分(不要物)をオフガスとしてオフガス排出路30に放出するように構成している。
燃料ガス経路28には、コンプレッサ32を介して充填タンク34及び発電用タンク36が接続される。充填タンク34は、ディスペンサ38を介して燃料電池車両(図示せず)に燃料ガスを供給する一方、発電用タンク36は、家庭用電源を供給するための定置型燃料電池40に接続される。定置型燃料電池40には、酸化剤ガスとして、例えば、空気を供給するためのコンプレッサ(図示せず)が接続される。
オフガス排出路30は、燃焼触媒12の入口に連結されており、このオフガス排出路30の途上には、空気コンプレッサ42が接続される。空気コンプレッサ42は、弁41及びオリフィス43を介してバーナ20に接続される。オフガス排出路30の下流側には、暖機中に三方弁23がONされる際、バーナ20の燃焼熱が改質器16及び熱交換器18を介して供給される。この燃焼熱は、さらに燃焼触媒12に送られ、各部を加熱した後に排気される。
オフガス排出路30の下流側には、始動用燃料供給機構44が接続される。始動用燃料供給機構44は、供給管46を介して接続される流量調整弁48を備え、この供給管46は、弁45及びオリフィス47を介してバーナ20に接続される。供給管46の途上には、充填タンク34及び発電用タンク36が接続される。流量調整弁48の近傍には、スパークプラグ(着火機構)50が配設される。蒸発器14には、燃焼触媒12の入口温度を検出するための温度センサ52が設けられる。
水素ガス製造システム10は、各補器類と通信及び制御を行うとともに、特に、本実施形態では、温度センサ52により検出された温度が触媒燃焼可能温度以下である際に、流量調整弁48及びスパークプラグ50を互いに同期して間欠動作させるための制御機構として、例えば、制御ECU(Electronic Control Unit)54を備える。
このように構成される水素ガス製造システム10の動作について、以下に説明する。
通常運転時の水素ガス製造システム10では、制御ECU54を介して、蒸発器14には、改質用水、改質用空気及び改質用燃料が供給されるとともに、燃焼触媒12には、空気コンプレッサ42を介して燃焼用空気が供給され、燃焼が行われている。
このため、蒸発器14では、少なくとも改質用水が蒸発するとともに、蒸発成分を含む改質用燃料は、熱交換器18を通って改質器16に供給される。一方、改質器16から排出される改質ガスは、熱交換器18を通って改質用燃料との間で熱交換を行って昇温される。改質器16では、改質用燃料中の、例えば、メタン、空気中の酸素及び水蒸気によって、酸化反応であるCH4+2O2→CO2+2H2O(発熱反応)と、燃料改質反応であるCH4+2H2O→CO2+4H2(吸熱反応)とが同時に行われる(オートサーマル方式)。
上記のように、改質器16により改質された改質ガスは、凝縮器22によって水分が分離された後、コンプレッサ24で圧縮されてPSA装置26に供給される。PSA装置26では、各吸着塔内で水素以外の成分が吸着されて高濃度の水素(水素リッチ)を含む燃料ガスが精製され、この燃料ガスが燃料ガス経路28に供給される。燃料ガスは、コンプレッサ32の作用下に充填タンク34と発電用タンク36とに選択的に貯蔵される。
充填タンク34に充填されている燃料ガスは、ディスペンサ38を介して図示しない燃料電池車両に供給される。一方、発電用タンク36に充填されている燃料ガスは、定置型燃料電池40のアノード側電極(図示せず)に供給されるとともに、この定置型燃料電池40の図示しないカソード側電極に酸化剤ガスとして空気が供給される。このため、定置型燃料電池40で発電が行われて電力が発生し、この電力は、家庭用電源として使用されるとともに、システム補器電源として利用される。
次いで、本実施形態に係る始動方法について、図2に示すフローチャートに沿って説明する。
先ず、水素ガス製造システム10の起動スイッチがオンされる(ステップS1)とともに、三方弁23がONされると、ステップS2に進んで、バーナ20が着火される。そして、所定時間N1secだけ経過した後(ステップS3)、蒸発器14の入口温度、すなわち、燃焼触媒12の触媒温度Tが温度センサ52により検出される。さらに、ステップS4に進んで、触媒温度Tが設定温度(触媒燃焼可能温度)T1℃を超えるか否かが判断される。
燃焼触媒12の触媒温度Tが、設定温度T1℃以下であると判断されると(ステップS4中、NO)、ステップS5に進んで、始動用燃料供給機構44とスパークプラグ50とが同期して間欠的に駆動される。具体的には、図3に示すように、スパークプラグ50がN2secだけオンされるとともに、流量調整弁48が前記スパークプラグ50に同期してN2secだけオンされる。
このため、充填タンク34内の燃料ガスは、供給管46を介してN2sec分だけスパークプラグ50側に送り出され、このスパークプラグ50によりN2secだけ着火されて蒸発器14に供給され、燃焼触媒12の暖機が行われる。さらに、N3secだけインターバルを設けた後(ステップS6及び図3参照)、ステップS4に戻って、燃焼触媒12の触媒温度Tが設定温度T1℃以上か否かの判断が行われる。
燃焼触媒12の触媒温度Tが設定温度T1℃以下であると判断されると(ステップS4中、NO)、再びステップS5に進んで、スパークプラグ50と流量調整弁48とは、互いに同期してN2secだけ始動用燃料の供給動作と着火動作とが行われる。従って、着火により燃焼した始動用燃料(以下、着火燃料ともいう)は、燃焼触媒12に供給されてこの燃焼触媒12の暖機を行う。
さらに、N3secだけインターバルをおいた後、燃焼触媒12の触媒温度Tが検出される。この触媒温度Tが設定温度T1℃以上であると判断されると(ステップS4中、YES)、ステップS7に進んで、流量調整弁48が開放されて始動用燃料が蒸発器14に供給される。その際、燃焼触媒12は、自己燃焼可能温度(例えば、40℃)に到達しており、この燃焼触媒12による燃焼が開始される。
そして、燃焼触媒12の触媒温度Tが設定温度T2℃を超えることにより(ステップS8中、YES)、前記燃焼触媒12の暖機運転が完了し、始動用燃料の供給が停止されるとともに、三方弁23がOFFされる。これにより、水素ガス製造システム10は、上述した通常運転モードに入ることができる。
この場合、本実施形態では、燃焼触媒12の触媒温度Tが触媒燃焼可能温度よりも低温である場合に、従来のバーナ20の排気予熱を用いた暖機とともに、始動用燃料供給機構44を構成する流量調整弁48とスパークプラグ50とを駆動制御して始動用燃料を間欠着火させ、着火燃料を燃焼触媒12に供給している。
このため、図4に示すように、本実施形態では、バーナ20のみによる暖機運転(比較例)に比べて、燃焼触媒12が自己燃焼可能温度(触媒燃焼可能温度)に到達するまでの時間が一挙に短縮され、迅速な始動が遂行されるという利点がある。
しかも、本実施形態では、流量調整弁48及びスパークプラグ50は、それぞれ互いに同期して所定時間N2secずつ、N3secのインターバルをおいて間欠的に駆動制御されている。すなわち、流量調整弁48をN2secだけ開放して始動用燃料を送り出すとともに、スパークプラグ50をN2secだけオン(着火)してN2sec分の着火燃料を燃焼触媒12に供給した後、N3secのインターバルをおいて、同様にN2secだけ始動用燃料の供給動作とスパークプラグの着火動作とが行われている。
このように、燃焼触媒12に対して着火燃料を間欠的に供給するため、温度センサ52による検出温度の応答に時間のずれが発生しても、着火燃料が供給されないインターバルの間に、温度センサ52により前記燃焼触媒12の触媒温度Tを正確に検出することができる。
これにより、燃焼触媒12の触媒温度Tが、設定温度T1を遥かに超える温度まで、前記燃焼触媒12を暖機することがない。従って、燃焼触媒12を経済的且つ迅速に設定温度T1に正確に加熱することができ、低温始動を効率的に遂行することが可能になるという効果が得られる。
しかも、燃焼触媒12には、着火燃料が連続的に供給されることがなく、前記燃焼触媒12の保炎を有効に阻止することができる。このため、燃焼触媒12の溶損等を良好に阻止することが可能になるという利点がある。
本発明の実施形態に係る始動方法を実施するための水素ガス製造システムの概略構成図である。 前記始動方法を説明するフローチャートである。 スパークプラグ及び流量調整弁の動作説明図である。 前記始動方法と従来の始動方法との昇温性能説明図である。 特許文献1の着火装置の構成説明図である。
符号の説明
10…水素ガス製造システム 12…燃焼触媒
14…蒸発器 16…改質器
18…熱交換器 20…バーナ
22…凝縮器 24…コンプレッサ
26…PSA装置 28…燃料ガス経路
30…オフガス排出路 34…充填タンク
36…発電用タンク 40…定置型燃料電池
44…始動用燃料供給機構 48…流量調整弁
50…スパークプラグ 54…制御ECU

Claims (1)

  1. 含水素燃料が供給されるとともに、少なくとも水分を蒸発させる蒸発器と、少なくとも前記含水素燃料及び蒸発成分を用いて改質ガスを得る改質器と、少なくとも前記蒸発器又は前記改質器の一方を加熱する触媒燃焼器と、前記触媒燃焼器に始動用燃料を供給する始動用燃料供給機構と、前記始動用燃料を着火させる着火機構とを備えた水素ガス製造システムの始動方法であって、
    前記触媒燃焼器の触媒温度を検出する工程と、
    前記触媒燃焼器の触媒温度が触媒燃焼可能温度以下であると判断された際、前記始動用燃料供給機構から前記触媒燃焼器に前記始動用燃料を間欠的に供給するとともに、前記着火機構の着火動作を前記始動用燃料の供給動作に同期して間欠的に行う工程と、
    前記触媒燃焼器の触媒温度が前記触媒燃焼可能温度を超えた後、前記始動用燃料の間欠供給及び前記着火機構の間欠着火を停止する工程と、
    前記始動用燃料供給機構から前記触媒燃焼器に前記始動用燃料を供給する工程と、
    を有することを特徴とする水素ガス製造システムの始動方法。

JP2004094361A 2004-03-29 2004-03-29 水素ガス製造システムの始動方法 Pending JP2005281020A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004094361A JP2005281020A (ja) 2004-03-29 2004-03-29 水素ガス製造システムの始動方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004094361A JP2005281020A (ja) 2004-03-29 2004-03-29 水素ガス製造システムの始動方法

Publications (1)

Publication Number Publication Date
JP2005281020A true JP2005281020A (ja) 2005-10-13

Family

ID=35179809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004094361A Pending JP2005281020A (ja) 2004-03-29 2004-03-29 水素ガス製造システムの始動方法

Country Status (1)

Country Link
JP (1) JP2005281020A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009037888A (ja) * 2007-08-02 2009-02-19 Honda Motor Co Ltd 触媒燃焼装置
CN115355077A (zh) * 2022-09-23 2022-11-18 潍柴动力股份有限公司 驻车再生的控制方法、控制装置、可读存储介质及车辆

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009037888A (ja) * 2007-08-02 2009-02-19 Honda Motor Co Ltd 触媒燃焼装置
CN115355077A (zh) * 2022-09-23 2022-11-18 潍柴动力股份有限公司 驻车再生的控制方法、控制装置、可读存储介质及车辆
CN115355077B (zh) * 2022-09-23 2024-04-16 潍柴动力股份有限公司 驻车再生的控制方法、控制装置、可读存储介质及车辆

Similar Documents

Publication Publication Date Title
JP4887048B2 (ja) 燃料電池の起動方法及び燃料電池システム
JP5334034B2 (ja) 改質装置および燃料電池システム
JP2003300704A (ja) 燃料改質システムおよび燃料電池システム
JP5369370B2 (ja) 燃料電池システム
JP2010238624A5 (ja)
JP2001229953A (ja) 燃料電池システム
JP2008108691A (ja) 改質装置の制御方法及び改質装置並びに燃料電池システム
JP4130681B2 (ja) 燃料電池システム
JP2008108546A (ja) 燃料電池システム
JPWO2016084372A1 (ja) 燃料電池システム
KR20030069168A (ko) 촉매 연소기용 제어 장치 및 촉매 연소기의 동작 제어 방법
JP5213345B2 (ja) 燃料電池装置
JP6510262B2 (ja) 燃料電池モジュール及びその運転方法
JP2003095611A (ja) 水素生成装置の起動方法
JP4640052B2 (ja) 水素発生装置およびこれを備えた発電システム
JP4098332B2 (ja) 改質装置および燃料電池システム
JP3890875B2 (ja) 燃料改質装置
JP2005281020A (ja) 水素ガス製造システムの始動方法
JP4000588B2 (ja) 燃料処理装置とその起動方法
JP5309799B2 (ja) 改質装置および燃料電池システム
JP6970923B2 (ja) 高温動作型燃料電池システム
JP6101653B2 (ja) 燃焼器の点火方法
JP2008105900A (ja) 改質装置
JP3900841B2 (ja) 燃料電池の改質装置
JP2010257823A (ja) 燃料電池システムの燃焼装置