JP2005276921A - Additive for nonaqueous electrolyte of electric double-layer capacitor, nonaqueous electrolyte for electric double-layer capacitor, and nonaqueous electrolyte electric double-layer capacitor - Google Patents

Additive for nonaqueous electrolyte of electric double-layer capacitor, nonaqueous electrolyte for electric double-layer capacitor, and nonaqueous electrolyte electric double-layer capacitor Download PDF

Info

Publication number
JP2005276921A
JP2005276921A JP2004084896A JP2004084896A JP2005276921A JP 2005276921 A JP2005276921 A JP 2005276921A JP 2004084896 A JP2004084896 A JP 2004084896A JP 2004084896 A JP2004084896 A JP 2004084896A JP 2005276921 A JP2005276921 A JP 2005276921A
Authority
JP
Japan
Prior art keywords
electric double
layer capacitor
double layer
aqueous electrolyte
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004084896A
Other languages
Japanese (ja)
Inventor
Yuji Sugano
裕士 菅野
Masami Ootsuki
正珠 大月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2004084896A priority Critical patent/JP2005276921A/en
Publication of JP2005276921A publication Critical patent/JP2005276921A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an additive for nonaqueous electrolyte of electric double-layer capacitor having a sufficiently high boiling point, in which vaporizations do not take place during use under high temperature, safety of electrolyte can be ensured sufficiently, even at the time of emergency, e.g. short circuiting, and superior low-temperature characteristics can be imparted. <P>SOLUTION: The additive for nonaqueous electrolyte of electric double-layer capacitor is composed of a phosphagen compound containing at least two kinds of halogen element represented for formula (I): (NPX<SB>2</SB>)<SB>n</SB>(where, X is an independent halogen element, and n is an integer of 3-15). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電気二重層キャパシタの非水電解液用添加剤、該添加剤を含む電気二重層キャパシタ用非水電解液及びそれを備えた非水電解液電気二重層キャパシタに関し、特に安全性及び低温特性に優れた非水電解液電気二重層キャパシタに関するものである。   TECHNICAL FIELD The present invention relates to an additive for a non-aqueous electrolyte of an electric double layer capacitor, a non-aqueous electrolyte for an electric double layer capacitor containing the additive, and a non-aqueous electrolyte electric double layer capacitor including the same. The present invention relates to a non-aqueous electrolyte electric double layer capacitor having excellent low temperature characteristics.

電気二重層キャパシタは、電極と電解質との間に形成される電気二重層を利用したコンデンサであり、電極表面において電解質から電気的にイオンを吸着するサイクルが充放電サイクルである点で、物質移動を伴う酸化還元反応のサイクルが充放電サイクルである電池とは異なる。このため、電気二重層キャパシタは、電池と比較して瞬間充放電特性に優れ、化学反応を伴わないため、充放電を繰り返しても瞬間充放電特性が殆ど劣化しない。また、電気二重層キャパシタにおいては、充放電時に充放電過電圧がないため、簡単で且つ安価な電気回路で足りる。更に、残存容量が分かり易く、-30〜90℃の広範囲の温度条件下に亘って耐久温度特性を有し、無公害性である等、電池に比較して優れた点が多いため、近年地球環境に優しい新エネルギー貯蔵製品として脚光を浴びている。更に、電気二重層キャパシタは、上述のような特徴を有するため、電気自動車、燃料電池車やハイブリッド電気自動車のエネルギー回生やエンジン始動時の電源としても脚光を浴びるようになった。   An electric double layer capacitor is a capacitor that uses an electric double layer formed between an electrode and an electrolyte, and the mass transfer is the cycle in which ions are electrically adsorbed from the electrolyte on the electrode surface. This is different from a battery in which the cycle of the oxidation-reduction reaction involving is a charge / discharge cycle. For this reason, the electric double layer capacitor has superior instantaneous charge / discharge characteristics as compared with the battery, and does not involve a chemical reaction. Therefore, even if charge / discharge is repeated, the instantaneous charge / discharge characteristics hardly deteriorate. Further, in the electric double layer capacitor, since there is no charge / discharge overvoltage at the time of charge / discharge, a simple and inexpensive electric circuit is sufficient. In addition, the remaining capacity is easy to understand, has durability temperature characteristics over a wide range of temperatures from -30 to 90 ° C, and is non-polluting. It is in the limelight as an environmentally friendly new energy storage product. Furthermore, since the electric double layer capacitor has the above-described characteristics, it has been spotlighted as a power source for energy regeneration and engine start of electric vehicles, fuel cell vehicles, and hybrid electric vehicles.

上記電気二重層キャパシタは、正・負の電極と電解質とを有するエネルギー貯蔵デバイスであり、電極と電解質との接触界面においては、極めて短い距離を隔てて正・負の電荷が対向して配列し、電気二重層を形成している。従って、電解質は、電気二重層を形成するためのイオン源としての役割を担うため、電極と同様に、電気二重層キャパシタの基本特性を左右する重要な物質である。該電解質としては、従来、水系電解液、非水電解液及び固体電解質等が知られているが、電気二重層キャパシタのエネルギー密度を向上させる点から、高い作動電圧を設定可能な非水電解液が特に脚光を浴び、実用化が進んでいる。該非水電解液としては、例えば、炭酸カーボネート(炭酸エチレン、炭酸プロピレン等)、γ-ブチロラクトン等の高誘電率の非プロトン性有機溶媒に、(C25)4P・BF4や、(C25)4N・BF4等の溶質(支持塩)を溶解させた混合溶液が実用化されている。 The electric double layer capacitor is an energy storage device having positive and negative electrodes and an electrolyte, and at the contact interface between the electrode and the electrolyte, positive and negative charges are arranged to face each other at a very short distance. Forming an electric double layer. Therefore, since the electrolyte plays a role as an ion source for forming the electric double layer, it is an important substance that influences the basic characteristics of the electric double layer capacitor, like the electrode. Conventionally known aqueous electrolytes include non-aqueous electrolytes, non-aqueous electrolytes, and solid electrolytes. From the viewpoint of improving the energy density of electric double layer capacitors, non-aqueous electrolytes that can set a high operating voltage. However, it is particularly in the spotlight and is being put to practical use. Examples of the non-aqueous electrolyte include high-dielectric constant aprotic organic solvents such as carbonate carbonate (ethylene carbonate, propylene carbonate, etc.), γ-butyrolactone, (C 2 H 5 ) 4 P · BF 4 , ( A mixed solution in which a solute (supporting salt) such as C 2 H 5 ) 4 N · BF 4 is dissolved has been put into practical use.

しかしながら、上記非プロトン性有機溶媒は、引火点が低いため、例えば、電気二重層キャパシタが発熱等により発火した際に、引火する危険性が高い。また、該非プロトン性有機溶媒は、電気二重層キャパシタの発熱につれ、気化・分解してガスを発生したり、発生したガス及び熱により電気二重層キャパシタの破裂・発火を引き起こしたりする危険性も高い。   However, since the aprotic organic solvent has a low flash point, for example, when an electric double layer capacitor ignites due to heat generation or the like, there is a high risk of ignition. In addition, the aprotic organic solvent has a high risk of vaporizing and decomposing to generate gas as the electric double layer capacitor generates heat, or causing explosion and ignition of the electric double layer capacitor by the generated gas and heat. .

これに対して、電気二重層キャパシタ用の非水電解液にホスファゼン化合物を添加して、該非水電解液に不燃性、難燃性又は自己消火性を付与して、非常時に電気二重層キャパシタが発火・引火する危険性を大幅に低減した非水電解液電気二重層キャパシタが開発されている。また、かかるホスファゼン化合物の中でも、環状で且つ分子中の各リン元素に2つのフッ素が結合したホスファゼン化合物は、リン元素に有機基が結合したホスファゼン化合物よりも非常に粘度が低いため、該ホスファゼン化合物を非水電解液に添加することで、非水電解液が低粘度化して、常温における電気二重層キャパシタの内部抵抗の低減でき、更には、低温における電気二重層キャパシタの内部抵抗を低減できることが知られている(特許文献1参照)。   In contrast, a phosphazene compound is added to a non-aqueous electrolyte for an electric double layer capacitor to give the non-aqueous electrolyte non-flammability, flame retardancy, or self-extinguishing properties. Non-aqueous electrolyte electric double layer capacitors have been developed that greatly reduce the risk of ignition and ignition. Among such phosphazene compounds, a phosphazene compound that is cyclic and has two fluorine atoms bonded to each phosphorus element in the molecule has a much lower viscosity than a phosphazene compound in which an organic group is bonded to a phosphorus element. By adding to the non-aqueous electrolyte, the viscosity of the non-aqueous electrolyte can be reduced, the internal resistance of the electric double layer capacitor at room temperature can be reduced, and further, the internal resistance of the electric double layer capacitor at low temperature can be reduced. It is known (see Patent Document 1).

国際公開第02/21631号パンフレットInternational Publication No. 02/21631 Pamphlet

しかしながら、環状で且つ分子中の各リン元素に2つのフッ素が結合したホスファゼン化合物は、沸点が低いため、高温使用時に該ホスファゼン化合物が気化する可能性があった。また、短絡等の非常時に電気二重層キャパシタの温度が上昇する際に、該ホスファゼン化合物は、非プロトン性有機溶媒よりも先に気化するため、残存する非プロトン性有機溶媒が単独で気化・分解してガスを発生したり、発生したガス及び熱により電気二重層キャパシタの破裂・発火が起こったり、短絡時に生じた火花が残存する非プロトン性有機溶媒に引火する等の危険性があった。   However, a phosphazene compound that is cyclic and has two fluorine atoms bonded to each phosphorus element in the molecule has a low boiling point, so that the phosphazene compound may vaporize when used at high temperatures. In addition, when the temperature of the electric double layer capacitor rises during an emergency such as a short circuit, the phosphazene compound is vaporized before the aprotic organic solvent, so that the remaining aprotic organic solvent is vaporized and decomposed alone. Thus, there is a risk of generating gas, rupturing or igniting the electric double layer capacitor due to the generated gas and heat, and igniting the remaining aprotic organic solvent with sparks generated at the time of short circuit.

そこで、本発明の目的は、上記従来技術の問題を解決し、沸点が十分に高く、高温使用時に気化することなく、短絡等の非常時においても電解液の安全性を十分に確保でき、更には、優れた低温特性を付与することが可能な電気二重層キャパシタの非水電解液用添加剤を提供することにある。また、本発明の他の目的は、かかる添加剤を含む電気二重層キャパシタ用非水電解液と、該非水電解液を備え、安全性及び低温特性に優れた非水電解液電気二重層キャパシタを提供することにある。   Therefore, the object of the present invention is to solve the above-mentioned problems of the prior art, the boiling point is sufficiently high, without being vaporized when used at high temperatures, it is possible to sufficiently ensure the safety of the electrolyte even in an emergency such as a short circuit, An object of the present invention is to provide an additive for a non-aqueous electrolyte of an electric double layer capacitor capable of imparting excellent low temperature characteristics. Another object of the present invention is to provide a non-aqueous electrolyte for an electric double layer capacitor containing such an additive, and a non-aqueous electrolyte electric double layer capacitor having the non-aqueous electrolyte and having excellent safety and low-temperature characteristics. It is to provide.

本発明者らは、上記目的を達成するために鋭意検討した結果、特定構造の環状ホスファゼン化合物が、十分に高い沸点と、十分に低い凝固点と、非常に高い酸素指数とを有しており、該ホスファゼン化合物を非水電解液に添加することで、電気二重層キャパシタの高温使用時にホスファゼン化合物が気化することなく、短絡等の非常時においても非水電解液の安全性を十分に確保でき、更には、電気二重層キャパシタの低温特性が向上することを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the present inventors have found that a cyclic phosphazene compound having a specific structure has a sufficiently high boiling point, a sufficiently low freezing point, and a very high oxygen index, By adding the phosphazene compound to the non-aqueous electrolyte, the phosphazene compound does not vaporize when the electric double layer capacitor is used at a high temperature, and the safety of the non-aqueous electrolyte can be sufficiently ensured even in an emergency such as a short circuit, Furthermore, the inventors have found that the low temperature characteristics of the electric double layer capacitor are improved, and have completed the present invention.

即ち、本発明の電気二重層キャパシタの非水電解液用添加剤は、下記式(I):
(NPX2n ・・・ (I)
(式中、Xはそれぞれ独立してハロゲン元素であり、nは3〜15の整数である)で表され、且つ少なくとも2種のハロゲン元素を含むホスファゼン化合物からなることを特徴とする。
That is, the additive for non-aqueous electrolyte of the electric double layer capacitor of the present invention is represented by the following formula (I):
(NPX 2 ) n ... (I)
(Wherein X is independently a halogen element, and n is an integer of 3 to 15), and is characterized by comprising a phosphazene compound containing at least two kinds of halogen elements.

本発明の電気二重層キャパシタの非水電解液用添加剤の好適例においては、前記ホスファゼン化合物がフッ素と塩素とを含む。ここで、該ホスファゼン化合物は、上記式(I)中のXがそれぞれ独立してフッ素又は塩素であるのが更に好ましい。   In a preferred example of the additive for non-aqueous electrolyte of the electric double layer capacitor of the present invention, the phosphazene compound contains fluorine and chlorine. Here, in the phosphazene compound, it is more preferable that each X in the formula (I) is independently fluorine or chlorine.

本発明の電気二重層キャパシタの非水電解液用添加剤の他の好適例においては、前記式(I)中のnが3〜5である。この場合、ホスファゼン化合物の粘度が十分に低いため、非水電解液の粘度を上昇させることが無く、電気二重層キャパシタの内部抵抗を十分に低減することができる。   In another preferred embodiment of the additive for non-aqueous electrolyte of the electric double layer capacitor of the present invention, n in the formula (I) is 3-5. In this case, since the viscosity of the phosphazene compound is sufficiently low, the internal resistance of the electric double layer capacitor can be sufficiently reduced without increasing the viscosity of the non-aqueous electrolyte.

本発明の電気二重層キャパシタの非水電解液用添加剤は、前記式(I)中のnが3で、6つのXのうち1〜3つが塩素で残りがフッ素であるホスファゼン化合物及び/又は前記式(I)中のnが4で、8つのXのうち1〜5つが塩素で残りがフッ素であるホスファゼン化合物からなるのが更に好ましい。また、該ホスファゼン化合物が分子中に2つ以上の塩素原子を含み、各塩素原子がそれぞれ異なるリン原子に結合しているのがより一層好ましい。この場合、ホスファゼン化合物の凝固点が特に低いので、電気二重層キャパシタの低温特性を大幅に改善することができる。   The additive for non-aqueous electrolyte of the electric double layer capacitor of the present invention is a phosphazene compound in which n in the formula (I) is 3, 1-3 of 6 X are chlorine and the rest is fluorine, and / or More preferably, the compound is composed of a phosphazene compound in which n in the formula (I) is 4, 1 to 5 of 8 Xs are chlorine, and the remainder is fluorine. More preferably, the phosphazene compound contains two or more chlorine atoms in the molecule, and each chlorine atom is bonded to a different phosphorus atom. In this case, since the freezing point of the phosphazene compound is particularly low, the low temperature characteristics of the electric double layer capacitor can be greatly improved.

本発明の電気二重層キャパシタの非水電解液用添加剤の他の好適例においては、前記ホスファゼン化合物の凝固点が-5℃以下である。この場合も、ホスファゼン化合物の凝固点が十分に低いので、電気二重層キャパシタの低温特性を大幅に改善することができる。   In another preferred embodiment of the additive for non-aqueous electrolyte of the electric double layer capacitor of the present invention, the freezing point of the phosphazene compound is −5 ° C. or lower. Also in this case, since the freezing point of the phosphazene compound is sufficiently low, the low temperature characteristics of the electric double layer capacitor can be greatly improved.

また、本発明の電気二重層キャパシタ用非水電解液は、上記電気二重層キャパシタの非水電解液用添加剤と、非プロトン性有機溶媒と、支持塩とを含むことを特徴とする。   Moreover, the non-aqueous electrolyte for electric double layer capacitors of the present invention comprises the additive for non-aqueous electrolyte of the electric double layer capacitor, an aprotic organic solvent, and a supporting salt.

本発明の電気二重層キャパシタ用非水電解液の好適例においては、前記非プロトン性有機溶媒と前記電気二重層キャパシタの非水電解液用添加剤との沸点の差が25℃以下である。この場合、非常時にける非水電解液の安全性を十分に改善することができる。   In a preferred example of the non-aqueous electrolyte for electric double layer capacitors of the present invention, the difference in boiling point between the aprotic organic solvent and the additive for non-aqueous electrolyte of the electric double layer capacitor is 25 ° C. or less. In this case, the safety of the nonaqueous electrolytic solution in an emergency can be sufficiently improved.

更に、本発明の非水電解液電気二重層キャパシタは、上記電気二重層キャパシタ用非水電解液と、正極と、負極とを備えることを特徴とし、安全性及び低温特性に特に優れる。   Furthermore, the non-aqueous electrolyte electric double layer capacitor of the present invention comprises the non-aqueous electrolyte for an electric double layer capacitor, a positive electrode, and a negative electrode, and is particularly excellent in safety and low temperature characteristics.

本発明によれば、特定構造の環状ホスファゼン化合物からなり、高温使用時に気化することが無く、短絡等の非常時においても非水電解液の安全性を十分に確保でき、更には、電気二重層キャパシタの低温特性を大幅に改善できる電気二重層キャパシタの非水電解液用添加剤を提供することができる。また、かかる添加剤を含み、安全性が十分に高く、電気二重層キャパシタの低温特性を大幅に改善可能な電気二重層キャパシタ用非水電解液を提供することができる。更に、該電気二重層キャパシタ用非水電解液を備え、安全性及び低温特性に優れた非水電解液電気二重層キャパシタを提供することができる。   According to the present invention, it consists of a cyclic phosphazene compound having a specific structure, does not vaporize when used at high temperatures, can sufficiently ensure the safety of a non-aqueous electrolyte even in an emergency such as a short circuit, and further, an electric double layer It is possible to provide an additive for a non-aqueous electrolyte of an electric double layer capacitor that can greatly improve the low temperature characteristics of the capacitor. In addition, it is possible to provide a non-aqueous electrolyte for an electric double layer capacitor that includes such an additive and has sufficiently high safety and can significantly improve the low temperature characteristics of the electric double layer capacitor. Furthermore, it is possible to provide a non-aqueous electrolyte electric double layer capacitor that is provided with the non-aqueous electrolyte for electric double layer capacitors and is excellent in safety and low-temperature characteristics.

以下に、本発明を詳細に説明する。
<電気二重層キャパシタの非水電解液用添加剤>
本発明の電気二重層キャパシタの非水電解液用添加剤は、上記式(I)で表され、且つ少なくとも2種のハロゲン元素を含む環状ホスファゼン化合物からなることを特徴とする。該ホスファゼン化合物は、十分に高い沸点を有するため、高温使用時において気化することが無く、本発明の添加剤を含む非水電解液を備えた電気二重層キャパシタは、高温使用時にも膨れる等の懸念がない。また、該ホスファゼン化合物は、十分に低い凝固点を有するため、低温においても液体として存在し、該ホスファゼンを電気二重層キャパシタの非水電解液に添加することで、電気二重層キャパシタの低温特性を改善することができる。更に、該ホスファゼン化合物は、非常に高い酸素指数を有し、電気二重層キャパシタの非常時に窒素ガス及び/又はリン酸エステル等を発生して、非水電解液を不燃性、難燃性又は自己消火性にし、電気二重層キャパシタの発火等の危険性を大幅に低減する作用を有する。
The present invention is described in detail below.
<Additive for non-aqueous electrolyte of electric double layer capacitor>
The additive for non-aqueous electrolyte solution of the electric double layer capacitor of the present invention is characterized by comprising a cyclic phosphazene compound represented by the above formula (I) and containing at least two halogen elements. Since the phosphazene compound has a sufficiently high boiling point, it does not vaporize at the time of high temperature use, and the electric double layer capacitor including the non-aqueous electrolyte containing the additive of the present invention swells even at the time of high temperature use. There is no concern. In addition, the phosphazene compound has a sufficiently low freezing point, so it exists as a liquid even at a low temperature. By adding the phosphazene to the non-aqueous electrolyte of the electric double layer capacitor, the low temperature characteristics of the electric double layer capacitor are improved. can do. Further, the phosphazene compound has a very high oxygen index and generates nitrogen gas and / or phosphate ester in the event of an electric double layer capacitor to make the non-aqueous electrolyte non-flammable, flame retardant or self-forming. Extinguishes fire and has the effect of significantly reducing the risk of ignition of the electric double layer capacitor.

本発明の電気二重層キャパシタの非水電解液用添加剤を構成するホスファゼン化合物は、上記式(I)で表され、且つ少なくとも2種のハロゲン元素を含む。式(I)において、Xはそれぞれ独立してハロゲン元素であり、該ハロゲン元素としては、フッ素、塩素、臭素等が挙げられ、これらの中でも、フッ素及び塩素が好ましい。また、上記ホスファゼン化合物は、少なくともフッ素と塩素とを含み、且つ総てのXがフッ素又は塩素であるのが好ましい。なお、ハロゲン元素を含む化合物を用いると、ハロゲンラジカルの発生が問題となることがあるが、上記ホスファゼン化合物は、分子中のリン元素がハロゲンラジカルを捕捉してハロゲン化リンを形成するため、このような問題は発生しない。   The phosphazene compound constituting the additive for the non-aqueous electrolyte of the electric double layer capacitor of the present invention is represented by the above formula (I) and contains at least two halogen elements. In the formula (I), X is independently a halogen element, and examples of the halogen element include fluorine, chlorine, bromine and the like. Among these, fluorine and chlorine are preferable. The phosphazene compound preferably contains at least fluorine and chlorine, and all X are preferably fluorine or chlorine. Note that when a compound containing a halogen element is used, the generation of a halogen radical may be a problem. However, since the phosphorus element in the molecule captures the halogen radical and forms phosphorus halide, Such a problem does not occur.

また、式(I)において、nは3〜15の整数であり、3〜5であるのが好ましい。nが5を超えると、ホスファゼン化合物の粘度が高くなるため、非水電解液の粘度が上昇し、電解液の導電率が低下して、電気二重層キャパシタの内部抵抗が上昇する傾向がある。ここで、上記ホスファゼン化合物の25℃における粘度としては、電気二重層キャパシタの内部抵抗の上昇を抑制する観点から、10mPa・s以下が好ましく、5mPa・s以下が更に好ましい。なお、本発明において、粘度は、粘度測定計[R型粘度計Model RE500-SL、東機産業(株)製]を用い、1rpm、2rpm、3rpm、5rpm、7rpm、10rpm、20rpm及び50rpmの各回転速度で120秒間づつ測定し、指示値が50〜60%となった時の回転速度を分析条件とし、その際に測定した値である。   Moreover, in Formula (I), n is an integer of 3-15, and it is preferable that it is 3-5. When n exceeds 5, the viscosity of the phosphazene compound increases, so the viscosity of the non-aqueous electrolyte increases, the conductivity of the electrolyte decreases, and the internal resistance of the electric double layer capacitor tends to increase. Here, the viscosity of the phosphazene compound at 25 ° C. is preferably 10 mPa · s or less, and more preferably 5 mPa · s or less, from the viewpoint of suppressing an increase in internal resistance of the electric double layer capacitor. In the present invention, the viscosity is 1 rpm, 2 rpm, 3 rpm, 5 rpm, 7 rpm, 10 rpm, 20 rpm, and 50 rpm using a viscometer [R-type viscometer Model RE500-SL, manufactured by Toki Sangyo Co., Ltd.] It is a value measured at that time, measured at the rotational speed for 120 seconds, with the rotational speed when the indicated value is 50 to 60% as the analysis condition.

上記ホスファゼン化合物は、限界酸素指数が30体積%以上であるのが好ましく、40体積%以上であるのが更に好ましい。限界酸素指数が40体積%以上のホスファゼン化合物を非水電解液に添加することで、電解液の発火・引火の危険性を大幅に低減することができる。ここで、限界酸素指数とは、JIS K 7201に規定の所定の試験条件下において、材料が燃焼を持続するのに必要な体積%で表される最低酸素濃度の値をいい、限界酸素指数が高いことは発火・引火の危険性が低いことを意味する。   The phosphazene compound preferably has a limiting oxygen index of 30% by volume or more, and more preferably 40% by volume or more. By adding a phosphazene compound having a limiting oxygen index of 40% by volume or more to the non-aqueous electrolyte, the risk of ignition and ignition of the electrolyte can be greatly reduced. Here, the limiting oxygen index means a value of the minimum oxygen concentration expressed by volume% necessary for the material to continue to burn under a predetermined test condition specified in JIS K 7201. A high value means a low risk of ignition or ignition.

上記ホスファゼン化合物は、凝固点が-5℃以下であるのが好ましく、-20℃以下であるのが更に好ましく、-30℃以下であるのがより一層好ましい。凝固点が-5℃以下のホスファゼン化合物を非水電解液に添加することで、電気二重層キャパシタの低温特性を確実に向上させることができ、また、かかるホスファゼン化合物を非水電解液に添加してなる非水電解液電気二重層キャパシタは、低温特性が優れるため、移動用(HEV用)電気二重層キャパシタとして特に好適である。   The phosphazene compound has a freezing point of preferably −5 ° C. or lower, more preferably −20 ° C. or lower, and even more preferably −30 ° C. or lower. By adding a phosphazene compound having a freezing point of −5 ° C. or lower to the non-aqueous electrolyte, the low temperature characteristics of the electric double layer capacitor can be reliably improved, and such a phosphazene compound can be added to the non-aqueous electrolyte. The non-aqueous electrolyte electric double layer capacitor thus obtained is particularly suitable as a moving (HEV) electric double layer capacitor because of its excellent low-temperature characteristics.

上記ホスファゼン化合物の中でも、凝固点の低さの観点から、式(I)中のnが3で、6つのXのうち1〜3つが塩素で残りがフッ素であるもの、並びに式(I)中のnが4で、8つのXのうち1〜5つが塩素で残りがフッ素であるものが特に好ましい。なお、式(I)中のXがフッ素又は塩素であるホスファゼン化合物の凝固点を、沸点及び酸素指数と共に表1に示す。   Among the above phosphazene compounds, from the viewpoint of a low freezing point, n in the formula (I) is 3, 1 to 3 out of 6 Xs are chlorine and the rest are fluorines, and in the formula (I) It is particularly preferable that n is 4 and 1 to 5 of 8 Xs are chlorine and the rest is fluorine. The freezing points of phosphazene compounds in which X in the formula (I) is fluorine or chlorine are shown in Table 1 together with the boiling point and oxygen index.

Figure 2005276921
Figure 2005276921

表1からも明らかなように、式(I)中のXがフッ素又は塩素であるホスファゼン化合物においては、塩素数の増加(分子量の増加)に従って沸点が上昇するものの、凝固点は特定の塩素数範囲で最小となり、nが3の場合は、塩素数1〜3の範囲が特に好適で、nが4の場合は、塩素数1〜5の範囲が好適で、塩素数2〜4の範囲が特に好適である。   As is clear from Table 1, in the phosphazene compound in which X in the formula (I) is fluorine or chlorine, the boiling point rises as the chlorine number increases (increase in molecular weight), but the freezing point is in the specific chlorine number range. When n is 3, the range of 1 to 3 chlorine atoms is particularly preferable. When n is 4, the range of 1 to 5 chlorine atoms is preferable, and the range of 2 to 4 chlorine atoms is particularly preferable. Is preferred.

上記ホスファゼン化合物は、例えば、式(I)中のXが総て塩素である市販のホスファゼン化合物を出発物質として、総ての塩素をフッ素化剤によりフッ素化した後、目的とする塩素置換部位にアルコキシ基やアミン基等を導入した後、HClやホスゲン等の塩素化剤により再び塩素化を行う方法や、使用する式(I)中のXが総て塩素である市販のホスファゼン化合物に対して導入するフッ素の当量を計算した上で、必要量のフッ素化剤を添加する方法等で合成することができる。なお、上記ホスファゼン化合物は、1種単独で用いても、2種以上の混合物として用いてもよい。   The phosphazene compound is prepared by, for example, using commercially available phosphazene compounds in which X in the formula (I) is all chlorine as a starting material, fluorinating all chlorine with a fluorinating agent, and then at the target chlorine substitution site. After introducing an alkoxy group, an amine group, or the like, chlorinating again with a chlorinating agent such as HCl or phosgene, or a commercially available phosphazene compound in which X in the formula (I) is all chlorine After calculating the equivalent of fluorine to be introduced, it can be synthesized by a method of adding a necessary amount of a fluorinating agent. In addition, the said phosphazene compound may be used individually by 1 type, or may be used as a 2 or more types of mixture.

<電気二重層キャパシタ用非水電解液>
本発明の電気二重層キャパシタ用非水電解液は、上述した電気二重層キャパシタの非水電解液用添加剤と、非プロトン性有機溶媒と、支持塩とを含むことを特徴とする。
<Nonaqueous electrolyte for electric double layer capacitor>
The non-aqueous electrolyte for electric double layer capacitors of the present invention is characterized by containing the above-described additive for non-aqueous electrolyte of electric double layer capacitors, an aprotic organic solvent, and a supporting salt.

本発明の電気二重層キャパシタ用非水電解液に用いる非プロトン性有機溶媒は、電解液の低粘度化が可能であり、容易に電気二重層キャパシタとしての最適なイオン導電性を達成することができる。該非プロトン性有機溶媒として、具体的には、アセトニトリル(AN)、プロピオノニトリル、ブチロニトリル、イソブチロニトリル、ベンゾニトリル等のニトリル化合物;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル化合物;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、エチレンカーボネート、プロピレンカーボネート(PC)、ジフェニルカーボネート、γ-ブチロラクトン(GBL)、γ-バレロラクトン等のエステル化合物が好適に挙げられる。これらの中でも、プロピレンカーボネート、γ-ブチロラクトン及びアセトニトリルが好ましい。なお、環状のエステル化合物は、比誘電率が高く支持塩の溶解能に優れる点で、また、鎖状のエステル化合物及びエーテル化合物は、低粘度であるため電解液の低粘度化の点で好適である。これらは1種単独で使用してもよく、2種以上を併用してもよい。非プロトン性有機溶媒の25℃における粘度としては、特に制限はないが、10mPa・s(10cP)以下が好ましく、5mPa・s(5cP)以下が更に好ましい。   The aprotic organic solvent used in the non-aqueous electrolyte for electric double layer capacitors of the present invention can reduce the viscosity of the electrolyte and can easily achieve optimum ionic conductivity as an electric double layer capacitor. it can. Specific examples of the aprotic organic solvent include nitrile compounds such as acetonitrile (AN), propiononitrile, butyronitrile, isobutyronitrile, and benzonitrile; ether compounds such as 1,2-dimethoxyethane and tetrahydrofuran; dimethyl carbonate Preferred examples include ester compounds such as diethyl carbonate, ethyl methyl carbonate, ethylene carbonate, propylene carbonate (PC), diphenyl carbonate, γ-butyrolactone (GBL), and γ-valerolactone. Among these, propylene carbonate, γ-butyrolactone and acetonitrile are preferable. Note that the cyclic ester compound has a high relative dielectric constant and is excellent in the ability to dissolve the supporting salt, and the chain ester compound and the ether compound are suitable in terms of reducing the viscosity of the electrolyte because of low viscosity. It is. These may be used alone or in combination of two or more. The viscosity of the aprotic organic solvent at 25 ° C. is not particularly limited, but is preferably 10 mPa · s (10 cP) or less, and more preferably 5 mPa · s (5 cP) or less.

本発明の電気二重層キャパシタ用非水電解液においては、上記非プロトン性有機溶媒と上記電気二重層キャパシタの非水電解液用添加剤との沸点の差が25℃以下であるのが好ましい。より具体的には、本発明の電気二重層キャパシタ用非水電解液は、一種以上の非プロトン性有機溶媒と支持塩とを含有し、更に、それぞれの前記非プロトン性有機溶媒に対して、該非プロトン性有機溶媒との沸点の差が25℃以下で且つ上記式(I)で表され少なくとも2種のハロゲン元素を含むホスファゼン化合物をそれぞれ含有するのが好ましい。   In the non-aqueous electrolyte for electric double layer capacitors of the present invention, the difference in boiling point between the aprotic organic solvent and the additive for non-aqueous electrolyte of the electric double layer capacitor is preferably 25 ° C. or less. More specifically, the non-aqueous electrolyte for an electric double layer capacitor of the present invention contains one or more aprotic organic solvents and a supporting salt, and further, for each of the aprotic organic solvents, It is preferable that the difference between the boiling points of the aprotic organic solvent is 25 ° C. or less and each phosphazene compound containing at least two halogen elements represented by the above formula (I) is contained.

上記ホスファゼン化合物は、上述のように、電気二重層キャパシタの発火等の危険性を低減する作用を有するが、非プロトン性有機溶媒を含む非水電解液が、該非プロトン性有機溶媒と沸点が近いホスファゼン化合物を含まない場合、気相及び液相のいずれかにおいて非プロトン性有機溶媒とホスファゼン化合物とが共存しない温度範囲が広いため、電気二重層キャパシタの温度が異常に上昇した際に、気化した非プロトン性有機溶媒又は電気二重層キャパシタ内に残存した非プロトン性有機溶媒の発火・引火の危険性を低減することができない。これに対し、非水電解液が、非プロトン性有機溶媒と共に、該非プロトン性有機溶媒と沸点が近いホスファゼン化合物を含む場合、電気二重層キャパシタの温度が異常に上昇した際に、非プロトン性有機溶媒とホスファゼン化合物が近い温度で気化するため、非プロトン性有機溶媒が液体として存在する場合及び気体として存在する場合のいずれにおいても、非プロトン性有機溶媒とホスファゼン化合物が共存し、その結果、非水電解液の発火・引火の危険性が大幅に低減される。   As described above, the phosphazene compound has a function of reducing the risk of ignition of the electric double layer capacitor, but the non-aqueous electrolyte containing the aprotic organic solvent has a boiling point close to that of the aprotic organic solvent. When the phosphazene compound is not included, the aprotic organic solvent and the phosphazene compound do not coexist in either the gas phase or the liquid phase, and the temperature range of the electric double layer capacitor is abnormally increased. The risk of ignition and ignition of the aprotic organic solvent or the aprotic organic solvent remaining in the electric double layer capacitor cannot be reduced. On the other hand, when the non-aqueous electrolyte contains a phosphazene compound having a boiling point close to that of the aprotic organic solvent together with the aprotic organic solvent, when the temperature of the electric double layer capacitor is abnormally increased, the aprotic organic solvent Since the solvent and the phosphazene compound are vaporized at close temperatures, the aprotic organic solvent and the phosphazene compound coexist both in the case where the aprotic organic solvent exists as a liquid and in the case where it exists as a gas. The risk of ignition and ignition of water electrolyte is greatly reduced.

また、例えば、非水電解液が、低沸点の非プロトン性有機溶媒と高沸点の非プロトン性有機溶媒とを含む場合、低沸点の非プロトン性有機溶媒が気化する温度の近傍で、それに対応するホスファゼン化合物が気化するため、気化した非プロトン性有機溶媒の発火・引火の危険性を低減することができる。また、低沸点の非プロトン性有機溶媒と該低沸点の非プロトン性有機溶媒と沸点が近いホスファゼン化合物が気化した後も、高沸点の非プロトン性有機溶媒と共に該高沸点の非プロトン性有機溶媒と沸点が近いホスファゼン化合物が電解液中に存在するため、残存する非水電解液の発火・引火の危険性を低減することもできる。   In addition, for example, when the non-aqueous electrolyte contains a low-boiling aprotic organic solvent and a high-boiling aprotic organic solvent, it is possible to cope with it near the temperature at which the low-boiling aprotic organic solvent vaporizes. Since the phosphazene compound is vaporized, the risk of ignition and ignition of the vaporized aprotic organic solvent can be reduced. In addition, after the low-boiling aprotic organic solvent and the phosphazene compound having a boiling point close to that of the low-boiling aprotic organic solvent are vaporized, the high-boiling aprotic organic solvent and the high-boiling aprotic organic solvent are used. Since the phosphazene compound having a boiling point close to that of the electrolyte is present in the electrolytic solution, the risk of ignition and ignition of the remaining nonaqueous electrolytic solution can be reduced.

本発明の電気二重層キャパシタ用非水電解液においては、使用する非プロトン性有機溶媒に応じて、該非プロトン性有機溶媒と沸点が近いホスファゼン化合物(添加剤)を適宜選択して用いるのが好ましい。ここで、上記式(I)で表され少なくとも2種のハロゲン元素を含むホスファゼン化合物は、分子中の塩素数や、nの値によって、広範囲の沸点を採り得るため、ホスファゼン化合物の分子構造を適宜選択することで、非水電解液の短絡等の非常時における危険性を大幅に低減することができる。   In the non-aqueous electrolyte for an electric double layer capacitor of the present invention, it is preferable to appropriately select and use a phosphazene compound (additive) having a boiling point close to that of the aprotic organic solvent according to the aprotic organic solvent to be used. . Here, since the phosphazene compound represented by the above formula (I) and containing at least two kinds of halogen elements can take a wide range of boiling points depending on the number of chlorines in the molecule and the value of n, the molecular structure of the phosphazene compound is appropriately determined. By selecting, the danger in the event of an emergency such as a short circuit of the non-aqueous electrolyte can be greatly reduced.

本発明の電気二重層キャパシタ用非水電解液に用いる支持塩としては、従来公知のものから選択できるが、電解液における電気伝導性等が良好な点で、四級アンモニウム塩が好ましい。該四級アンモニウム塩は、非水電解液において、電気二重層を形成するためのイオン源としての役割を担う溶質であり、電解液の電気伝導性等の電気特性を効果的に向上させることが可能な点で、多価イオンを形成し得る四級アンモニウム塩が好ましい。   The supporting salt used in the non-aqueous electrolyte for an electric double layer capacitor of the present invention can be selected from conventionally known salts, but a quaternary ammonium salt is preferred from the viewpoint of good electrical conductivity in the electrolyte. The quaternary ammonium salt is a solute that plays a role as an ion source for forming an electric double layer in a nonaqueous electrolytic solution, and can effectively improve electrical characteristics such as electrical conductivity of the electrolytic solution. In view of the possibility, a quaternary ammonium salt capable of forming a multivalent ion is preferable.

上記四級アンモニウム塩としては、例えば、(CH3)4N・BF4、(CH3)325N・BF4、(CH3)2(C25)2N・BF4、CH3(C25)3N・BF4、(C25)4N・BF4、(C37)4N・BF4、CH3(C49)3N・BF4、(C49)4N・BF4、(C613)4N・BF4、(C25)4N・ClO4、(C25)4N・AsF6、(C25)4N・SbF6、(C25)4N・CF3SO3、(C25)4N・C49SO3、(C25)4N・(CF3SO2)2N、(C25)4N・BCH3(C25)3、(C25)4N・B(C25)4、(C25)4N・B(C49)4、(C25)4N・B(C65)4等が好適に挙げられる。また、これらの四級アンモニウム塩の陰イオン部(例えば、・BF4、・ClO4、・AsF6等)を、・PF6で置き換えたヘキサフルオロリン酸塩も好ましい。これらの中でも、分極率を大きくすることで溶解度を向上させることができる点で、異なるアルキル基がN原子に結合した四級アンモニウム塩が好ましい。更に、上記四級アンモニウム塩としては、例えば、以下の式(a)〜(j)で表わされる化合物等も好ましい。ここで、式(a)〜(j)において、Meはメチル基を、Etはエチル基を表わす。 Examples of the quaternary ammonium salt include (CH 3 ) 4 N · BF 4 , (CH 3 ) 3 C 2 H 5 N · BF 4 , (CH 3 ) 2 (C 2 H 5 ) 2 N · BF 4. CH 3 (C 2 H 5 ) 3 N · BF 4 , (C 2 H 5 ) 4 N · BF 4 , (C 3 H 7 ) 4 N · BF 4 , CH 3 (C 4 H 9 ) 3 N · BF 4 , (C 4 H 9 ) 4 N · BF 4 , (C 6 H 13 ) 4 N · BF 4 , (C 2 H 5 ) 4 N · ClO 4 , (C 2 H 5 ) 4 N · AsF 6 , (C 2 H 5 ) 4 N · SbF 6 , (C 2 H 5 ) 4 N · CF 3 SO 3 , (C 2 H 5 ) 4 N · C 4 F 9 SO 3 , (C 2 H 5 ) 4 N · (CF 3 SO 2 ) 2 N, (C 2 H 5 ) 4 N · BCH 3 (C 2 H 5 ) 3 , (C 2 H 5 ) 4 N · B (C 2 H 5 ) 4 , (C 2 H 5 ) 4 N · B (C 4 H 9 ) 4 , (C 2 H 5 ) 4 N · B (C 6 H 5 ) 4 and the like are preferable. Also preferred are hexafluorophosphates in which the anion portion (for example, • BF 4 , • ClO 4 , • AsF 6, etc.) of these quaternary ammonium salts is replaced with • PF 6 . Among these, quaternary ammonium salts in which different alkyl groups are bonded to N atoms are preferable in that the solubility can be improved by increasing the polarizability. Furthermore, as the quaternary ammonium salt, for example, compounds represented by the following formulas (a) to (j) are also preferable. Here, in the formulas (a) to (j), Me represents a methyl group, and Et represents an ethyl group.

Figure 2005276921
Figure 2005276921

これらの四級アンモニウム塩の中でも、特に、高い電気伝導性を確保する点からは、陽イオンとして(CH3)4+や、(C25)4+等を発生し得る塩が好ましい。また、式量が小さい陰イオンを発生し得る塩が好ましい。これらの四級アンモニウム塩は、1種単独で使用してもよく、2種以上を併用してもよい。 Among these quaternary ammonium salts, salts that can generate (CH 3 ) 4 N + , (C 2 H 5 ) 4 N +, etc. as cations, in particular, from the viewpoint of ensuring high electrical conductivity. preferable. Further, a salt capable of generating an anion having a small formula weight is preferable. These quaternary ammonium salts may be used individually by 1 type, and may use 2 or more types together.

本発明の電気二重層キャパシタ用非水電解液中の支持塩の濃度としては、0.2〜2.5mol/L(M)が好ましく、0.8〜1.5mol/L(M)が更に好ましい。支持塩の濃度が0.2mol/L(M)未満では、電解液の電気伝導性等の電気特性を充分に確保できないことがあり、2.5mol/L(M)を超えると、電解液の粘度が上昇し、電気伝導性等の電気特性が低下することがある。   The concentration of the supporting salt in the non-aqueous electrolyte for an electric double layer capacitor of the present invention is preferably 0.2 to 2.5 mol / L (M), more preferably 0.8 to 1.5 mol / L (M). If the concentration of the supporting salt is less than 0.2 mol / L (M), sufficient electrical properties such as the electrical conductivity of the electrolytic solution may not be ensured, and if it exceeds 2.5 mol / L (M), the viscosity of the electrolytic solution may be insufficient. The electrical characteristics such as electrical conductivity may be lowered.

本発明の電気二重層キャパシタ用非水電解液における上記ホスファゼン化合物の含有量(即ち、添加剤の含有量)は、電解液の安全性を向上させる観点から、1体積%以上が好ましく、5体積%以上が更に好ましく、また、電気二重層キャパシタの低温特性を向上させる観点から、10体積%以上が好ましく、15体積%以上が更に好ましい。   From the viewpoint of improving the safety of the electrolytic solution, the content of the phosphazene compound in the non-aqueous electrolytic solution for an electric double layer capacitor of the present invention (that is, the content of the additive) is preferably 1% by volume or more, and 5% by volume. % Or more is more preferable, and from the viewpoint of improving the low temperature characteristics of the electric double layer capacitor, 10% by volume or more is preferable, and 15% by volume or more is more preferable.

<非水電解液電気二重層キャパシタ>
本発明の非水電解液電気二重層キャパシタは、上述の電気二重層キャパシタ用非水電解液と、正極と、負極とを備え、必要に応じて、セパレーター等の電気二重層キャパシタの技術分野で通常使用されている他の部材を備える。
<Non-aqueous electrolyte electric double layer capacitor>
The non-aqueous electrolyte electric double layer capacitor of the present invention comprises the above-described non-aqueous electrolyte for electric double layer capacitor, a positive electrode, and a negative electrode, and in the technical field of an electric double layer capacitor such as a separator, if necessary. Other members that are normally used are provided.

本発明の非水電解液電気二重層キャパシタの正極及び負極としては、特に制限はないが、通常、多孔質炭素系の分極性電極が好ましい。該電極としては、通常、比表面積及びかさ比重が大きく、電気化学的に不活性で、抵抗が小さい等の特性を有するものが好ましい。ここで、上記多孔質炭素としては、活性炭等が挙げられる。   Although there is no restriction | limiting in particular as a positive electrode and a negative electrode of the nonaqueous electrolyte electric double layer capacitor of this invention, Usually, a porous carbon type polarizable electrode is preferable. The electrode is preferably one having characteristics such as a large specific surface area and bulk specific gravity, electrochemical inactivity, and low resistance. Here, activated carbon etc. are mentioned as said porous carbon.

上記電極は、一般的には、活性炭等の多孔質炭素を含有し、必要に応じて導電剤や結着剤等のその他の成分を含有する。上記電極に好適に用いることができる活性炭の原料としては、特に制限はなく、例えば、フェノール樹脂の他、各種の耐熱性樹脂、ピッチ等が好適に挙げられる。耐熱性樹脂としては、例えば、ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルスルホン、ポリエーテルケトン、ビスマレイミドトリアジン、アラミド、フッ素樹脂、ポリフェニレン、ポリフェニレンスルフィド等が好適に挙げられる。これらは1種単独で使用してもよく、2種以上を併用してもよい。上記活性炭の形態としては、より比表面積を高くして、非水電解液電気二重層キャパシタの充電容量を大きくする点から、粉末状、繊維布状等の形態が好ましい。また、これらの活性炭は、電気二重層キャパシタの充電容量をより高くする目的で、熱処理、延伸成形、真空高温処理、圧延等の処理がなされていてもよい。   The electrode generally contains porous carbon such as activated carbon, and contains other components such as a conductive agent and a binder as necessary. There is no restriction | limiting in particular as a raw material of the activated carbon which can be used suitably for the said electrode, For example, various heat resistant resins, pitch, etc. other than a phenol resin are mentioned suitably. Preferable examples of the heat resistant resin include polyimide, polyamide, polyamideimide, polyetherimide, polyethersulfone, polyetherketone, bismaleimide triazine, aramid, fluororesin, polyphenylene, polyphenylene sulfide and the like. These may be used alone or in combination of two or more. The activated carbon is preferably in the form of powder, fiber cloth or the like from the viewpoint of increasing the specific surface area and increasing the charge capacity of the non-aqueous electrolyte electric double layer capacitor. Further, these activated carbons may be subjected to treatment such as heat treatment, stretch molding, vacuum high temperature treatment, and rolling for the purpose of increasing the charge capacity of the electric double layer capacitor.

上記電極に用いる導電剤としては、特に制限はないが、黒鉛、アセチレンブラック等が挙げられる。また、上記電極に用いる結着剤としては、特に制限はないが、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレン・ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等が挙げられる。   The conductive agent used for the electrode is not particularly limited, and examples thereof include graphite and acetylene black. The binder used for the electrode is not particularly limited, and examples thereof include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), carboxymethyl cellulose (CMC), and the like. .

本発明の非水電解液電気二重層キャパシタは、上述した電極(正極及び負極)、非水電解液の他、セパレーター、集電体、容器等を備えるのが好ましく、更に通常電気二重層キャパシタに使用されている公知の各部材を備えることができる。ここで、セパレーターは、非水電解液電気二重層キャパシタの短絡防止等を目的として、正負電極間に介在される。該セパレーターとしては、特に制限はなく、通常、非水電解液電気二重層キャパシタのセパレーターとして用いられる公知のセパレーターが好適に用いられる。セパレーターの材質としては、例えば、微多孔性フィルム、不織布、紙等が好適に挙げられる。具体的には、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン等の合成樹脂製の不織布、薄層フィルム等が好適に挙げられる。これらの中でも、厚さ20〜50μm程度のポリプロピレン又はポリエチレン製の微孔性フィルムが特に好適である。   The non-aqueous electrolyte electric double layer capacitor of the present invention preferably includes a separator, a current collector, a container and the like in addition to the above-described electrodes (positive electrode and negative electrode) and non-aqueous electrolyte, and moreover, a normal electric double layer capacitor. Each known member used can be provided. Here, the separator is interposed between the positive and negative electrodes for the purpose of preventing a short circuit of the non-aqueous electrolyte electric double layer capacitor. There is no restriction | limiting in particular as this separator, Usually, the well-known separator used as a separator of a nonaqueous electrolyte electric double layer capacitor is used suitably. As a material for the separator, for example, a microporous film, a nonwoven fabric, paper, and the like are preferably exemplified. Specifically, a nonwoven fabric made of a synthetic resin such as polytetrafluoroethylene, polypropylene, and polyethylene, a thin layer film, and the like are preferable. Among these, a microporous film made of polypropylene or polyethylene having a thickness of about 20 to 50 μm is particularly suitable.

上記集電体としては、特に制限はなく、通常非水電解液電気二重層キャパシタの集電体として用いられる公知のものが好適に用いられる。該集電体としては、電気化学的耐食性、化学的耐食性、加工性、機械的強度に優れ、低コストであるものが好ましく、例えば、アルミニウム、ステンレス鋼、導電性樹脂等の集電体層等が好ましい。また、上記容器としては、特に制限はなく、通常非水電解液電気二重層キャパシタの容器として用いられる公知のものが好適に挙げられる。該容器の材質としては、例えば、アルミニウム、ステンレス鋼、導電性樹脂等が好適である。   There is no restriction | limiting in particular as said collector, The well-known thing normally used as a collector of a nonaqueous electrolyte electric double layer capacitor is used suitably. The current collector is preferably one having excellent electrochemical corrosion resistance, chemical corrosion resistance, workability, mechanical strength, and low cost, such as a current collector layer of aluminum, stainless steel, conductive resin, etc. Is preferred. Moreover, there is no restriction | limiting in particular as said container, The well-known thing normally used as a container of a nonaqueous electrolyte electric double layer capacitor is mentioned suitably. As the material of the container, for example, aluminum, stainless steel, conductive resin and the like are suitable.

本発明の非水電解液電気二重層キャパシタの形態としては、特に制限はなく、シリンダ型(円筒型、角型)、フラット型(コイン型)等の公知の形態が、好適に挙げられる。これらの非水電解液電気二重層キャパシタは、例えば、電気自動車や燃料電池自動車の主電源若しくは補助電源や、種々の電子機器、産業用機器、航空用機器等のメモリーバックアップ用や、玩具、コードレス用機器、ガス機器、瞬間湯沸し機器等の電磁ホールド用や、腕時計、柱時計、ソーラ時計、AGS腕時計等の時計用の電源等として好適に用いられる。   There is no restriction | limiting in particular as a form of the non-aqueous-electrolyte electric double layer capacitor of this invention, Well-known forms, such as a cylinder type (cylindrical type and a square type), a flat type (coin type), are mentioned suitably. These non-aqueous electrolyte electric double layer capacitors are, for example, main power supplies or auxiliary power supplies for electric vehicles and fuel cell vehicles, memory backup devices for various electronic devices, industrial devices, aircraft devices, toys, cordless devices, etc. It is suitably used as a power source for electromagnetic holding such as industrial equipment, gas equipment and instantaneous water heater equipment, and for watches such as watches, wall clocks, solar watches, AGS watches and the like.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

<ホスファゼン化合物の合成>
(合成例1)
溶媒としてのニトロベンゼン中で(NPCl2)3 とフッ化ナトリウムとを混合し、減圧下(15kPa)で、室温から徐々に140℃まで約一時間かけて昇温し、揮発してくる留分を生成物として得た。
<Synthesis of phosphazene compounds>
(Synthesis Example 1)
(NPCl 2 ) 3 and sodium fluoride are mixed in nitrobenzene as a solvent and gradually heated from room temperature to 140 ° C. under reduced pressure (15 kPa) over about 1 hour. Obtained as product.

得られた生成物をGC-MSで分析したところ、式(I)中のnが3であって、6つのXの総てがフッ素の環状ホスファゼン化合物(沸点が52℃で、凝固点が28℃で、25℃における粘度が0.8mPa・s)と、式(I)中のnが3であって、6つのXのうち1つが塩素、5つがフッ素の環状ホスファゼン化合物(沸点が82℃で、凝固点が-30℃で、25℃における粘度が1.1mPa・s)と、式(I)中のnが3であって、6つのXのうち2つが塩素、4つがフッ素の環状ホスファゼン化合物(沸点が115℃で、凝固点が-46℃で、25℃における粘度が1.3mPa・s)と、式(I)中のnが3であって、6つのXのうち3つが塩素、3つがフッ素の環状ホスファゼン化合物(沸点が150℃で、凝固点が-35℃で、25℃における粘度が1.8mPa・s)との混合物であることを確認した。また、該混合物をそれぞれ蒸留により分離して、4種の純粋な環状ホスファゼン化合物を得た。   The obtained product was analyzed by GC-MS. As a result, n in the formula (I) was 3, and all six Xs were fluorine. A cyclic phosphazene compound having a boiling point of 52 ° C. and a freezing point of 28 ° C. A cyclic phosphazene compound having a viscosity of 0.8 mPa · s at 25 ° C. and n of 3 in formula (I), one of the six X being chlorine and five of fluorine (boiling point is 82 ° C., Cyclic phosphazene compound (boiling point) having a freezing point of -30 ° C and a viscosity of 1.1 mPa · s at 25 ° C, n in the formula (I) being 3, 2 of 6 X being chlorine and 4 being fluorine Is 115 ° C, freezing point is -46 ° C, viscosity at 25 ° C is 1.3mPa · s), n in formula (I) is 3, 3 out of 6 X are chlorine, 3 are fluorine It was confirmed to be a mixture with a cyclic phosphazene compound (boiling point: 150 ° C., freezing point: −35 ° C., viscosity at 25 ° C .: 1.8 mPa · s). In addition, the mixture was separated by distillation to obtain four kinds of pure cyclic phosphazene compounds.

(合成例2)
溶媒としてのニトロベンゼン中で(NPCl2)4 とフッ化亜硫酸カリウムとを混合し、減圧下(1kPa)で、室温から徐々に180℃まで約一時間かけて昇温し、揮発してくる留分を生成物として得た。
(Synthesis Example 2)
(NPCl 2 ) 4 and potassium fluoride sulfite are mixed in nitrobenzene as a solvent, and the temperature is gradually increased from room temperature to 180 ° C. under reduced pressure (1 kPa) over about 1 hour, and the fraction that volatilizes. Was obtained as the product.

得られた生成物をGC-MSで分析したところ、式(I)中のnが4であって、8つのXの総てがフッ素の環状ホスファゼン化合物(沸点が80℃で、凝固点が30℃で、25℃における粘度が0.8mPa・s)と、式(I)中のnが4であって、8つのXのうち1つが塩素、7つがフッ素の環状ホスファゼン化合物(沸点が117℃で、凝固点が-6℃で、25℃における粘度が1.2mPa・s)と、式(I)中のnが4であって、8つのXのうち2つが塩素、6つがフッ素の環状ホスファゼン化合物(沸点が147℃で、凝固点が-22℃で、25℃における粘度が1.5mPa・s)と、式(I)中のnが4であって、8つのXのうち3つが塩素、5つがフッ素の環状ホスファゼン化合物(沸点が178℃で、凝固点が-29℃で、25℃における粘度が1.9mPa・s)と、式(I)中のnが4であって、8つのXのうち4つが塩素、4つがフッ素の環状ホスファゼン化合物(沸点が205℃で、凝固点が-23℃で、25℃における粘度が2.3mPa・s)と、式(I)中のnが4であって、8つのXのうち5つが塩素、3つがフッ素の環状ホスファゼン化合物(沸点が232℃で、凝固点が-11℃で、25℃における粘度が2.8mPa・s)との混合物であることを確認した。また、該混合物をそれぞれ蒸留により分離して、5種の純粋な環状ホスファゼン化合物を得た。   When the obtained product was analyzed by GC-MS, n in the formula (I) was 4, and all of the eight Xs were fluorine-containing cyclic phosphazene compounds (boiling point was 80 ° C., freezing point was 30 ° C. A cyclic phosphazene compound having a viscosity of 0.8 mPa · s at 25 ° C. and n of 4 in formula (I), one of eight X being chlorine and seven being fluorine (boiling point is 117 ° C., A cyclic phosphazene compound (boiling point) having a freezing point of −6 ° C. and a viscosity of 1.2 mPa · s at 25 ° C., n in the formula (I) being 4, 2 of 8 X being chlorine and 6 being fluorine. Is 147 ° C, freezing point is -22 ° C, viscosity at 25 ° C is 1.5mPa · s), n in formula (I) is 4, 3 out of 8 X are chlorine, 5 are fluorine Cyclic phosphazene compound (boiling point is 178 ° C, freezing point is -29 ° C, viscosity at 25 ° C is 1.9mPa · s), n in formula (I) is 4, 4 out of 8 X are chlorine , Four are cyclic phosphazene compounds of fluorine (boiling point is 205 ° C, freezing point is -23 ° C, viscosity at 25 ° C is 2.3 mPa · s), n in formula (I) is 4, It was confirmed that the mixture was a cyclic phosphazene compound (boiling point is 232 ° C., freezing point is −11 ° C., viscosity at 25 ° C. is 2.8 mPa · s), 5 of which are chlorine and 3 are fluorine. In addition, the mixture was separated by distillation to obtain five pure cyclic phosphazene compounds.

<電気二重層キャパシタ用非水電解液の作製>
次に、表2に示す配合の混合溶液(非プロトン性有機溶媒とホスファゼン化合物とからなる)を作製し、該混合溶液にテトラエチルアンモニウムテトラフルオロボレート[TEATFB, (C25)4N・BF4](支持塩)を1mol/L(M)の濃度で溶解させて非水電解液を調製した。得られた非水電解液の安全性及び限界酸素指数を下記の方法で測定・評価した。結果を表2に示す。
<Preparation of non-aqueous electrolyte for electric double layer capacitor>
Next, a mixed solution (comprising an aprotic organic solvent and a phosphazene compound) having the composition shown in Table 2 was prepared, and tetraethylammonium tetrafluoroborate [TEATFB, (C 2 H 5 ) 4 N · BF was added to the mixed solution. 4 ] (supporting salt) was dissolved at a concentration of 1 mol / L (M) to prepare a non-aqueous electrolyte. The safety and critical oxygen index of the obtained nonaqueous electrolytic solution were measured and evaluated by the following methods. The results are shown in Table 2.

(1)電解液の安全性
UL(アンダーライティングラボラトリー)規格のUL94HB法をアレンジした方法で、大気環境下において着火した炎の燃焼挙動から非水電解液の安全性を評価した。その際、着火性、燃焼性、炭化物の生成、二次着火時の現象についても観察した。具体的には、UL試験基準に基づき、不燃性石英ファイバーに上記電解液1.0mLを染み込ませて、127mm×12.7mmの試験片を作製して行った。ここで、試験炎が試験片に着火しない場合(燃焼長:0mm)を「不燃性」、着火した炎が25mmラインまで到達せず且つ落下物にも着火が認められない場合を「難燃性」、着火した炎が25〜100mmラインで消火し且つ落下物にも着火が認められない場合を「自己消火性」、着火した炎が100mmラインを超えた場合を「燃焼性」と評価した。
(1) Safety of electrolyte solution The safety of the non-aqueous electrolyte solution was evaluated from the combustion behavior of flames ignited in an atmospheric environment by the method of arranging the UL94HB method of UL (Underwriting Laboratory) standard. At that time, ignitability, combustibility, formation of carbides, and secondary ignition phenomena were also observed. Specifically, based on the UL test standard, a non-combustible quartz fiber was impregnated with 1.0 mL of the electrolytic solution, and a test piece of 127 mm × 12.7 mm was produced. Here, when the test flame does not ignite the test piece (combustion length: 0 mm), it is “non-flammable”, and when the ignited flame does not reach the 25 mm line and the fallen object is not ignited, “flame retardant” The case where the ignited flame was extinguished on the 25 to 100 mm line and the fallen object was not ignited was evaluated as “self-extinguishing”, and the case where the ignited flame exceeded the 100 mm line was evaluated as “combustible”.

(2)電解液の限界酸素指数
JIS K 7201に準じて、電解液の限界酸素指数を測定した。具体的には、上記電解液の安全性の試験と同様にして試験片を作製し、該試験片を試験片支持具に垂直に、燃焼円筒(内径75mm、高さ450mm、直径4mmのガラス粒を底部から100±5mmの厚さに均等に満たし金属製の網をその上に置いたもの)の上端部から100mm以上の距離に位置するように取り付け、次に、燃焼円筒に酸素(JIS K 1101又はこれと同等以上のもの)及び窒素(JIS K 1107の2級又はこれと同等以上のもの)を流し、試験片を空気中で点火し(熱源はJIS K 2240の1種1号)、燃焼状態を調べた。但し、燃焼円筒内の総流量は11.4L/minである。この試験を3回行い、その平均値を表2に示す。なお、酸素指数とは、材料が燃焼を持続するのに必要な容量パーセントで表される最低酸素濃度の値をいい、本願では、試験片が3分以上継続して燃焼するか、着炎後の燃焼長さが50mm以上燃えるのに必要な最低の酸素流量とそのときの窒素流量から、下記の式:
限界酸素指数=(酸素流量)/[(酸素流量)+(窒素流量)]×100(体積%)
に従って限界酸素指数を算出した。
(2) Limiting oxygen index of electrolyte The limiting oxygen index of the electrolyte was measured according to JIS K7201. Specifically, a test piece was prepared in the same manner as the safety test of the electrolyte solution, and the test piece was perpendicular to the test piece support, and a combustion cylinder (inner diameter 75 mm, height 450 mm, diameter 4 mm glass particles). Is attached so that the thickness of the metal net is 100 ± 5mm evenly from the bottom and the metal mesh is placed on it at a distance of 100mm or more from the top, and then oxygen (JIS K) is attached to the combustion cylinder. 1101 or higher) and nitrogen (JIS K 1107 grade 2 or higher), and the test piece was ignited in air (the heat source is JIS K 2240 type 1) The combustion state was investigated. However, the total flow rate in the combustion cylinder is 11.4 L / min. This test was performed three times, and the average value is shown in Table 2. The oxygen index refers to the value of the minimum oxygen concentration expressed by the volume percent necessary for the material to continue burning. In this application, the test piece burns continuously for 3 minutes or longer, From the minimum oxygen flow rate required for burning 50 mm or more and the nitrogen flow rate at that time, the following formula:
Critical oxygen index = (oxygen flow rate) / [(oxygen flow rate) + (nitrogen flow rate)] × 100 (volume%)
The limiting oxygen index was calculated according to

<非水電解液電気二重層キャパシタの作製>
次に、活性炭[AC, 商品名:Kuractive-1500、クラレケミカル社製]、アセチレンブラック(導電剤)及びポリフッ化ビニリデン(PVDF)(結着剤)を、それぞれ、質量比(活性炭:アセチレンブラック:PVDF)で8:1:1となるように混合して、混合物を得た。得られた混合物の100mgを採取し、これを20mmφの耐圧カーボン製容器に入れて、圧力150kgf/cm2、常温の条件下で圧粉成形し、正極及び負極(電極)を作製した。得られた電極(正極及び負極)と、アルミニウム金属板(集電体)(厚み:0.5mm)と、ポリプロピレン/ポリエチレン板(セパレーター)(厚み:25μm)とを用いてセルを組み立て、真空乾燥によって十分に乾燥させた。該セルを上記非水電解液で含浸し、非水電解液電気二重層キャパシタを作製した。得られた電気二重層キャパシタのサイクル特性及び低温特性を下記の方法で試験した。結果を表2に示す。
<Preparation of non-aqueous electrolyte electric double layer capacitor>
Next, activated carbon [AC, trade name: Kuractive-1500, manufactured by Kuraray Chemical Co., Ltd.], acetylene black (conductive agent), and polyvinylidene fluoride (PVDF) (binder) are each in a mass ratio (activated carbon: acetylene black: PVDF) was mixed to 8: 1: 1 to obtain a mixture. 100 mg of the obtained mixture was sampled, put into a 20 mmφ pressure-resistant carbon container, and compacted under conditions of a pressure of 150 kgf / cm 2 and a normal temperature to prepare a positive electrode and a negative electrode (electrode). A cell was assembled using the obtained electrodes (positive electrode and negative electrode), an aluminum metal plate (current collector) (thickness: 0.5 mm), and a polypropylene / polyethylene plate (separator) (thickness: 25 μm), and vacuum dried. Dry thoroughly. The cell was impregnated with the above non-aqueous electrolyte to produce a non-aqueous electrolyte electric double layer capacitor. The cycle characteristics and low temperature characteristics of the obtained electric double layer capacitor were tested by the following methods. The results are shown in Table 2.

(3)電気二重層キャパシタのサイクル特性
得られた非水電解液電気二重層キャパシタについて、初期及び1000サイクル充電・放電後の静電容量を測定して、1000サイクル後の容量維持率を算出し、サイクル特性の評価とした。
(3) Cycle characteristics of electric double layer capacitor For the obtained non-aqueous electrolyte electric double layer capacitor, the capacitance after initial and 1000 cycle charge / discharge was measured, and the capacity retention rate after 1000 cycle was calculated. The cycle characteristics were evaluated.

(4)電気二重層キャパシタの低温特性
得られた非水電解液電気二重層キャパシタについて、20℃、-10℃のそれぞれの環境下で内部抵抗を測定し、キャパシタの低温特性を評価した。ここで、内部抵抗(Ω)は、公知の内部抵抗の測定方法、例えば、充放電曲線を測定し、その際、充電停止(Charge Rest)又は放電停止(Discharge Rest)に伴う電位のふれ幅を測定する方法により得た。
(4) Low temperature characteristics of electric double layer capacitor The obtained non-aqueous electrolyte electric double layer capacitor was measured for internal resistance at 20 ° C and -10 ° C, and the low temperature characteristics of the capacitor were evaluated. Here, the internal resistance (Ω) is a well-known internal resistance measurement method, for example, a charge / discharge curve is measured. At that time, the fluctuation width of the potential accompanying charge stop or discharge stop (Discharge Rest) is calculated. Obtained by the measuring method.

なお、表1中、PCはプロピレンカーボネート(沸点242℃)を、GBLはγ-ブチロラクトン(沸点204℃)を、ANはアセトニトリル(沸点82℃)を示す。また、ホスファゼンAは、式(I)において、nが3であって、6つのXのうち1つが塩素、5つがフッ素である環状ホスファゼン化合物(25℃における粘度:0.8mPa・s、沸点82℃)であり、ホスファゼンBは、式(I)において、nが3であって、6つのXのうち2つが塩素、4つがフッ素である環状ホスファゼン化合物(25℃における粘度:1.1mPa・s、沸点115℃)であり、ホスファゼンCは、式(I)において、nが3であって、6つのXのうち3つが塩素、3つがフッ素である環状ホスファゼン化合物(25℃における粘度:1.3mPa・s、沸点150℃)であり、ホスファゼンDは、式(I)において、nが4であって、8つのXのうち1つが塩素、7つがフッ素である環状ホスファゼン化合物(25℃における粘度:1.2mPa・s、沸点117℃)であり、ホスファゼンEは、式(I)において、nが4であって、8つのXのうち2つが塩素、6つがフッ素である環状ホスファゼン化合物(25℃における粘度:1.5mPa・s、沸点147℃)であり、ホスファゼンFは、式(I)において、nが4であって、8つのXのうち3つが塩素、5つがフッ素である環状ホスファゼン化合物(25℃における粘度:1.9mPa・s、沸点178℃)であり、ホスファゼンGは、式(I)において、nが4であって、8つのXのうち4つが塩素、4つがフッ素である環状ホスファゼン化合物(25℃における粘度:2.3mPa・s、沸点205℃)であり、ホスファゼンHは、式(I)において、nが4であって、8つのXのうち5つが塩素、3つがフッ素である環状ホスファゼン化合物(25℃における粘度:2.8mPa・s、沸点232℃)である。   In Table 1, PC represents propylene carbonate (boiling point 242 ° C.), GBL represents γ-butyrolactone (boiling point 204 ° C.), and AN represents acetonitrile (boiling point 82 ° C.). Phosphazene A is a cyclic phosphazene compound (viscosity at 25 ° C .: 0.8 mPa · s, boiling point 82 ° C.) wherein n is 3 and one of the six Xs is chlorine and five are fluorines in formula (I). Phosphazene B is a cyclic phosphazene compound (viscosity at 25 ° C .: 1.1 mPa · s, boiling point) in which n is 3 and 2 out of 6 X are chlorine and 4 are fluorine in formula (I) Phosphazene C is a cyclic phosphazene compound (viscosity at 25 ° C .: 1.3 mPa · s) in which n is 3 and 3 out of 6 Xs are chlorine and 3 are fluorines in formula (I) Phosphazene D is a cyclic phosphazene compound (viscosity at 25 ° C .: 1.2 mPas) in which n is 4 and one of eight Xs is chlorine and seven are fluorines in formula (I) S, boiling point 117 ° C.), and phosphazene E has the formula (I ), A cyclic phosphazene compound (viscosity at 25 ° C .: 1.5 mPa · s, boiling point 147 ° C.) in which n is 4 and 2 out of 8 X are chlorine and 6 are fluorine, and phosphazene F has the formula In (I), a cyclic phosphazene compound (viscosity at 25 ° C .: 1.9 mPa · s, boiling point 178 ° C.) in which n is 4 and 3 out of 8 Xs are chlorine and 5 are fluorines. A cyclic phosphazene compound (viscosity at 25 ° C .: 2.3 mPa · s, boiling point 205 ° C.) in which n is 4 and 4 out of 8 X are chlorine and 4 are fluorine in formula (I), H is a cyclic phosphazene compound (viscosity at 25 ° C .: 2.8 mPa · s, boiling point 232 ° C.) in which n is 4 and 5 out of 8 X are chlorine and 3 are fluorine in the formula (I) .

Figure 2005276921
Figure 2005276921

表2から明らかなように、実施例の非水電解液は、限界酸素指数が高く、安全性に優れ、実施例の非水電解液電気二重層キャパシタは、十分なサイクル特性を有しつつ、優れた低温特性を有することが分る。   As is clear from Table 2, the non-aqueous electrolyte of the example has a high critical oxygen index and excellent safety, and the non-aqueous electrolyte electric double layer capacitor of the example has sufficient cycle characteristics, It can be seen that it has excellent low temperature properties.

Claims (11)

下記式(I):
(NPX2n ・・・ (I)
(式中、Xはそれぞれ独立してハロゲン元素であり、nは3〜15の整数である)で表され、且つ少なくとも2種のハロゲン元素を含むホスファゼン化合物からなる電気二重層キャパシタの非水電解液用添加剤。
Formula (I) below:
(NPX 2 ) n ... (I)
(Wherein X is independently a halogen element and n is an integer of 3 to 15), and non-aqueous electrolysis of an electric double layer capacitor comprising a phosphazene compound containing at least two halogen elements Liquid additive.
前記ホスファゼン化合物がフッ素と塩素とを含むことを特徴とする請求項1に記載の電気二重層キャパシタの非水電解液用添加剤。   The additive for a non-aqueous electrolyte of an electric double layer capacitor according to claim 1, wherein the phosphazene compound contains fluorine and chlorine. 前記式(I)中のXがそれぞれ独立してフッ素又は塩素であることを特徴とする請求項2に記載の電気二重層キャパシタの非水電解液用添加剤。   The additive for a non-aqueous electrolyte for an electric double layer capacitor according to claim 2, wherein X in the formula (I) is independently fluorine or chlorine. 前記式(I)中のnが3〜5であることを特徴とする請求項1に記載の電気二重層キャパシタの非水電解液用添加剤。   N in said Formula (I) is 3-5, The additive for nonaqueous electrolytes of the electric double layer capacitor of Claim 1 characterized by the above-mentioned. 前記式(I)中のnが3で、6つのXのうち1〜3つが塩素で残りがフッ素であることを特徴とする請求項3又は4に記載の電気二重層キャパシタの非水電解液用添加剤。   5. The non-aqueous electrolyte for an electric double layer capacitor according to claim 3, wherein n in the formula (I) is 3, 1 to 3 out of 6 Xs are chlorine, and the rest is fluorine. Additives. 前記式(I)中のnが4で、8つのXのうち1〜5つが塩素で残りがフッ素であることを特徴とする請求項3又は4に記載の電気二重層キャパシタの非水電解液用添加剤。   5. The non-aqueous electrolyte for an electric double layer capacitor according to claim 3, wherein n in the formula (I) is 4, 1 to 5 of 8 Xs are chlorine, and the remainder is fluorine. Additives. 前記ホスファゼン化合物が分子中に2つ以上の塩素原子を含み、各塩素原子がそれぞれ異なるリン原子に結合していることを特徴とする請求項5又は6に記載の電気二重層キャパシタの非水電解液用添加剤。   The non-aqueous electrolysis of an electric double layer capacitor according to claim 5 or 6, wherein the phosphazene compound contains two or more chlorine atoms in the molecule, and each chlorine atom is bonded to a different phosphorus atom. Liquid additive. 前記ホスファゼン化合物の凝固点が-5℃以下であることを特徴とする請求項1に記載の電気二重層キャパシタの非水電解液用添加剤。   The additive for a non-aqueous electrolyte of an electric double layer capacitor according to claim 1, wherein the freezing point of the phosphazene compound is -5 ° C or lower. 請求項1〜8のいずれかに記載の電気二重層キャパシタの非水電解液用添加剤と、非プロトン性有機溶媒と、支持塩とを含むことを特徴とする電気二重層キャパシタ用非水電解液。   The non-aqueous electrolysis for electric double layer capacitor characterized by including the additive for non-aqueous electrolytes of the electric double layer capacitor in any one of Claims 1-8, an aprotic organic solvent, and a supporting salt. liquid. 前記非プロトン性有機溶媒と前記電気二重層キャパシタの非水電解液用添加剤との沸点の差が25℃以下であることを特徴とする請求項9に記載の電気二重層キャパシタ用非水電解液。   The non-aqueous electrolysis for electric double layer capacitor according to claim 9, wherein the difference in boiling point between the aprotic organic solvent and the additive for non-aqueous electrolyte of the electric double layer capacitor is 25 ° C or less. liquid. 請求項9又は10に記載の電気二重層キャパシタ用非水電解液と、正極と、負極とを備えた非水電解液電気二重層キャパシタ。   A non-aqueous electrolyte electric double layer capacitor comprising the non-aqueous electrolyte for an electric double layer capacitor according to claim 9 or 10, a positive electrode, and a negative electrode.
JP2004084896A 2004-03-23 2004-03-23 Additive for nonaqueous electrolyte of electric double-layer capacitor, nonaqueous electrolyte for electric double-layer capacitor, and nonaqueous electrolyte electric double-layer capacitor Pending JP2005276921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004084896A JP2005276921A (en) 2004-03-23 2004-03-23 Additive for nonaqueous electrolyte of electric double-layer capacitor, nonaqueous electrolyte for electric double-layer capacitor, and nonaqueous electrolyte electric double-layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004084896A JP2005276921A (en) 2004-03-23 2004-03-23 Additive for nonaqueous electrolyte of electric double-layer capacitor, nonaqueous electrolyte for electric double-layer capacitor, and nonaqueous electrolyte electric double-layer capacitor

Publications (1)

Publication Number Publication Date
JP2005276921A true JP2005276921A (en) 2005-10-06

Family

ID=35176286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004084896A Pending JP2005276921A (en) 2004-03-23 2004-03-23 Additive for nonaqueous electrolyte of electric double-layer capacitor, nonaqueous electrolyte for electric double-layer capacitor, and nonaqueous electrolyte electric double-layer capacitor

Country Status (1)

Country Link
JP (1) JP2005276921A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3070532A1 (en) * 2017-08-22 2019-03-01 Commissariat A L'energie Atomique Et Aux Energies Alternatives ELECTROLYTIC COMPOSITION COMPRISING A PHOSPHAZEN FAMILY ADDITIVE USEFUL FOR SUPERCONDENSATORS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3070532A1 (en) * 2017-08-22 2019-03-01 Commissariat A L'energie Atomique Et Aux Energies Alternatives ELECTROLYTIC COMPOSITION COMPRISING A PHOSPHAZEN FAMILY ADDITIVE USEFUL FOR SUPERCONDENSATORS

Similar Documents

Publication Publication Date Title
JP5001506B2 (en) Nonaqueous electrolyte additive, nonaqueous electrolyte secondary battery, and nonaqueous electrolyte electric double layer capacitor
CA2422106C (en) Additive for non-aqueous liquid electrolyte, non-aqueous liquid electrolyte secondary cell and non-aqueous liquid electrolyte electric double layer capacitor
JP5001507B2 (en) Nonaqueous electrolyte additive, nonaqueous electrolyte secondary battery, and nonaqueous electrolyte electric double layer capacitor
JPWO2004059671A1 (en) Electric double layer capacitor additive for non-aqueous electrolyte and non-aqueous electrolyte electric double layer capacitor
JP2006080488A (en) Non-aqueous electrolytic solution for electric double layer capacitor and non-aqueous electrolytic solution electric double layer capacitor
JP2006294332A (en) Nonaqueous electrolyte solution, nonaqueous electrolyte solution battery, nonaqueous electrolyte solution electric double-layer capacitor, and safety evaluation method of nonaqueous electrolyte solution
JP2006294334A (en) Nonaqueous electrolyte solution, nonaqueous electrolyte solution battery, nonaqueous electrolyte solution electric double-layer capacitor, and safety evaluation method of nonaqueous electrolyte solution
JP2008091778A (en) Non-aqueous electrolyte for electric double layer capacitor, and non-aqueous electrolyte double layer capacitor with the same
JP2005276921A (en) Additive for nonaqueous electrolyte of electric double-layer capacitor, nonaqueous electrolyte for electric double-layer capacitor, and nonaqueous electrolyte electric double-layer capacitor
JP2008300523A (en) Nonaqueous electrolyte for capacitor, and nonaqueous electrolyte capacitor having the nanoqueous electrolyte
JPWO2005106906A1 (en) Electric double layer capacitor non-aqueous electrolyte additive, electric double layer capacitor non-aqueous electrolyte and non-aqueous electrolyte electric double layer capacitor
JP2001217156A (en) Nonaqueous electrolytic solution electric double-layer capacitor
JP2007012983A (en) Nonaqueous electrolyte type electric double layer capacitor and nonaqueous electrolyte therefor
JP2001217155A (en) Nonaqueous electrolytic solution electric double-layer capacitor
JP4511328B2 (en) Non-aqueous electrolyte for electric double layer capacitor and non-aqueous electrolyte electric double layer capacitor having the same
JP2001217152A (en) Additive for nonaqueous electrolytic solution electric double-layer capacitor
JP2008091786A (en) Non-aqueous electrolyte for electric double layer capacitor, and non-aqueous electrolyte double layer capacitor with the same
JP2008282864A (en) Nonaqueous electrolyte, and nonaqueous electrolyte electric double layer capacitor employing it
JP4731125B2 (en) Non-aqueous electrolyte additive for secondary battery, non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
CN100550240C (en) Addition agent of non-aqueous electrolyte, nonaqueous electrolytic solution and double electric layer capacitor
JP4558362B2 (en) Non-aqueous electrolyte additive for primary battery, non-aqueous electrolyte for primary battery and non-aqueous electrolyte primary battery
JP2005191369A (en) Nonaqueous electrolyte for electric double layer capacitor and nonaqueous electrolyte electric double layer capacitor
JP2004349273A (en) Nonaqueous electrolyte and electric double layer capacitor provided with it
JP2001217157A (en) Nonaqueous electrolytic solution electric double-layer capacitor
JP2008300525A (en) Nonaqueous electrolyte for capacitor, and nonaqueous electrolyte capacitor having the nanoqueous electrolyte