JP4511328B2 - Non-aqueous electrolyte for electric double layer capacitor and non-aqueous electrolyte electric double layer capacitor having the same - Google Patents

Non-aqueous electrolyte for electric double layer capacitor and non-aqueous electrolyte electric double layer capacitor having the same Download PDF

Info

Publication number
JP4511328B2
JP4511328B2 JP2004353962A JP2004353962A JP4511328B2 JP 4511328 B2 JP4511328 B2 JP 4511328B2 JP 2004353962 A JP2004353962 A JP 2004353962A JP 2004353962 A JP2004353962 A JP 2004353962A JP 4511328 B2 JP4511328 B2 JP 4511328B2
Authority
JP
Japan
Prior art keywords
double layer
electric double
aqueous electrolyte
layer capacitor
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004353962A
Other languages
Japanese (ja)
Other versions
JP2005333102A (en
Inventor
眞一 江口
泰郎 堀川
正珠 大月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2004353962A priority Critical patent/JP4511328B2/en
Publication of JP2005333102A publication Critical patent/JP2005333102A/en
Application granted granted Critical
Publication of JP4511328B2 publication Critical patent/JP4511328B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

本発明は、電気二重層キャパシタ用非水電解液及びそれを備えた非水電解液電気二重層キャパシタに関し、特に安全性に優れた電気二重層キャパシタ用非水電解液及び非水電解液電気二重層キャパシタに関するものである。   The present invention relates to a non-aqueous electrolyte for an electric double layer capacitor and a non-aqueous electrolyte electric double layer capacitor including the same, and particularly to a non-aqueous electrolyte and a non-aqueous electrolyte for an electric double layer capacitor having excellent safety. The present invention relates to a multilayer capacitor.

電気二重層キャパシタは、電極と電解質との間に形成される電気二重層を利用したコンデンサであり、電極表面において電解質から電気的にイオンを吸着するサイクルが充放電サイクルである点で、物質移動を伴う酸化還元反応のサイクルが充放電サイクルである電池とは異なる。このため、電気二重層キャパシタは、電池と比較して瞬間充放電特性に優れ、化学反応を伴わないため、充放電を繰り返しても瞬間充放電特性が殆ど劣化しない。また、電気二重層キャパシタにおいては、充放電時に充放電過電圧がないため、簡単で且つ安価な電気回路で足りる。更に、残存容量が分かり易く、-30〜90℃の広範囲の温度条件下に渡って耐久温度特性を有し、無公害性である等、電池に比較して優れた点が多いため、近年地球環境に優しい新エネルギー貯蔵製品として脚光を浴びている。更に、電気二重層キャパシタは、上述のような特徴を有するため、電気自動車、燃料電池車やハイブリッド電気自動車のエネルギー回生やエンジン始動時の電源としても脚光を浴びるようになってきた。   An electric double layer capacitor is a capacitor that uses an electric double layer formed between an electrode and an electrolyte, and the mass transfer is the cycle in which ions are electrically adsorbed from the electrolyte on the electrode surface. The battery is different from the battery in which the cycle of the oxidation-reduction reaction involving is a charge / discharge cycle. For this reason, the electric double layer capacitor has superior instantaneous charge / discharge characteristics as compared with the battery, and does not involve a chemical reaction. Therefore, even if charge / discharge is repeated, the instantaneous charge / discharge characteristics hardly deteriorate. Further, in the electric double layer capacitor, since there is no charge / discharge overvoltage at the time of charge / discharge, a simple and inexpensive electric circuit is sufficient. In addition, the remaining capacity is easy to understand, has durability temperature characteristics over a wide range of temperatures from -30 to 90 ° C, and is non-polluting. It is in the spotlight as an environmentally friendly new energy storage product. Furthermore, since the electric double layer capacitor has the above-described characteristics, it has been attracting attention as a power source for energy regeneration and engine start of electric vehicles, fuel cell vehicles and hybrid electric vehicles.

上記電気二重層キャパシタは、正・負の電極と電解質とを有するエネルギー貯蔵デバイスであり、電極と電解質との接触界面においては、極めて短い距離を隔てて正・負の電荷が対向して配列し、電気二重層を形成している。従って、電解質は、電気二重層を形成するためのイオン源としての役割を担うため、電極と同様に、電気二重層キャパシタの基本特性を左右する重要な物質である。該電解質としては、従来、水系電解液、非水電解液及び固体電解質等が知られているが、電気二重層キャパシタのエネルギー密度を向上させる点から、高い作動電圧を設定可能な非水電解液が特に脚光を浴び、実用化が進んでいる。該非水電解液としては、例えば、炭酸カーボネート(炭酸エチレン、炭酸プロピレン等)、γ-ブチロラクトン等の高誘電率の非プロトン性有機溶媒に、(C25)4P・BF4や、(C25)4N・BF4等の溶質(支持塩)を溶解させた混合溶液が実用化されている。 The electric double layer capacitor is an energy storage device having positive and negative electrodes and an electrolyte, and at the contact interface between the electrode and the electrolyte, positive and negative charges are arranged to face each other at a very short distance. Forming an electric double layer. Therefore, since the electrolyte plays a role as an ion source for forming the electric double layer, it is an important substance that influences the basic characteristics of the electric double layer capacitor, like the electrode. Conventionally known aqueous electrolytes include non-aqueous electrolytes, non-aqueous electrolytes, and solid electrolytes. From the viewpoint of improving the energy density of electric double layer capacitors, non-aqueous electrolytes that can set a high operating voltage. However, it is particularly in the spotlight and is being put to practical use. Examples of the non-aqueous electrolyte include high-dielectric constant aprotic organic solvents such as carbonate carbonate (ethylene carbonate, propylene carbonate, etc.), γ-butyrolactone, (C 2 H 5 ) 4 P · BF 4 , ( A mixed solution in which a solute (supporting salt) such as C 2 H 5 ) 4 N · BF 4 is dissolved has been put into practical use.

しかしながら、上記非プロトン性有機溶媒は、引火点が低いため、例えば、電気二重層キャパシタが発熱等により発火した際に、引火する危険性が高い。また、該非プロトン性有機溶媒は、電気二重層キャパシタの発熱につれ、気化・分解してガスを発生したり、発生したガス及び熱により電気二重層キャパシタの破裂・発火を引き起こしたりする危険性も高い。   However, since the aprotic organic solvent has a low flash point, for example, when an electric double layer capacitor ignites due to heat generation or the like, there is a high risk of ignition. In addition, the aprotic organic solvent has a high risk of vaporizing and decomposing to generate gas as the electric double layer capacitor generates heat, or causing explosion and ignition of the electric double layer capacitor by the generated gas and heat. .

これに対して、電気二重層キャパシタ用の非水電解液にホスファゼン化合物を添加して、該非水電解液に不燃性、難燃性又は自己消火性を付与して、非常時に電気二重層キャパシタが発火・引火する危険性を大幅に低減した非水電解液電気二重層キャパシタが開発されている(特許文献1参照)。   In contrast, a phosphazene compound is added to a non-aqueous electrolyte for an electric double layer capacitor to give the non-aqueous electrolyte non-flammability, flame retardancy, or self-extinguishing properties. Non-aqueous electrolyte electric double layer capacitors have been developed that greatly reduce the risk of ignition and ignition (see Patent Document 1).

特開2001−217152号公報JP 2001-217152 A

上記ホスファゼン化合物は、短絡等により非水電解液電気二重層キャパシタが非常に高温になった際に、熱分解して電解液中の非プロトン性有機溶媒の燃焼を抑制する物質を放出し、電気二重層キャパシタの安全性を改善できるものの、使用するホスファゼン化合物の分子構造によっては、燃焼抑制に寄与しない部分があるため、更に改良の余地がある。   When the non-aqueous electrolyte electric double layer capacitor becomes very hot due to a short circuit or the like, the phosphazene compound is thermally decomposed to release a substance that suppresses combustion of the aprotic organic solvent in the electrolyte, Although the safety of the double layer capacitor can be improved, there is a room for improvement because there is a part that does not contribute to combustion suppression depending on the molecular structure of the phosphazene compound used.

そこで、本発明の目的は、燃焼抑制効果に優れた化合物を添加してなる、優れた安全性を有する電気二重層キャパシタ用非水電解液及び該非水電解液を備えた安全性の高い非水電解液電気二重層キャパシタを提供することにある。   Accordingly, an object of the present invention is to provide a non-aqueous electrolyte for an electric double layer capacitor having excellent safety, which is obtained by adding a compound having an excellent combustion suppression effect, and a highly safe non-aqueous solution comprising the non-aqueous electrolyte. The object is to provide an electrolytic electric double layer capacitor.

本発明者らは、上記目的を達成するために鋭意検討した結果、ホスファゼン化合物を添加した非水電解液の熱分解生成物中に特に優れた燃焼抑制効果を有する化合物が存在し、該化合物を非水電解液に添加することで、非水電解液及び非水電解液電気二重層キャパシタの安全性を大幅に改善できることを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the present inventors have found that a compound having a particularly excellent combustion inhibiting effect is present in the thermal decomposition product of the nonaqueous electrolytic solution to which the phosphazene compound is added. It has been found that the safety of the non-aqueous electrolyte and the non-aqueous electrolyte electric double layer capacitor can be significantly improved by adding to the non-aqueous electrolyte, and the present invention has been completed.

即ち、本発明の電気二重層キャパシタ用非水電解液は、分子中にP−F結合及び/又はP−NH2結合を有するホスフィンオキサイド化合物と、支持塩とを含むことを特徴とする。 That is, the non-aqueous electrolyte for electric double layer capacitors of the present invention is characterized by containing a phosphine oxide compound having a PF bond and / or a P—NH 2 bond in the molecule and a supporting salt.

本発明の電気二重層キャパシタ用非水電解液の好適例においては、前記ホスフィンオキサイド化合物の含有率が3体積%以上であり、5体積%以上であるのが更に好ましい。   In a preferred example of the non-aqueous electrolyte for electric double layer capacitors of the present invention, the content of the phosphine oxide compound is 3% by volume or more, and more preferably 5% by volume or more.

本発明の電気二重層キャパシタ用非水電解液の他の好適例においては、前記ホスフィンオキサイド化合物が下記式(I):
O=PR1 3 ・・・ (I)
(式中、R1は、それぞれ独立して一価の置換基又はハロゲン元素であり、少なくとも一つのR1はフッ素又はアミノ基である)で表される。ここで、式(I)中のR1が、それぞれ独立してフッ素、アミノ基、アルキル基及びアルコキシ基からなる群から選択され、且つ少なくとも一つのR1がフッ素又はアミノ基であるのが更に好ましい。また、式(I)中のR1の少なくとも一つがフッ素で、且つ式(I)中のR1の少なくとも一つがアミノ基であるホスフィンオキサイド化合物、並びに、式(I)中のR1の総てが、フッ素又はアミノ基であるホスフィンオキサイド化合物が特に好ましい。
In another preferred embodiment of the non-aqueous electrolyte for electric double layer capacitors of the present invention, the phosphine oxide compound is represented by the following formula (I):
O = PR 1 3 ... (I)
(Wherein R 1 is each independently a monovalent substituent or a halogen element, and at least one R 1 is fluorine or an amino group). Wherein R 1 in formula (I) is independently selected from the group consisting of fluorine, amino group, alkyl group and alkoxy group, and at least one R 1 is fluorine or amino group. preferable. And a phosphine oxide compound in which at least one R 1 in the formula (I) is fluorine and at least one R 1 in the formula (I) is an amino group, and the total of R 1 in the formula (I) In particular, phosphine oxide compounds which are fluorine or amino groups are particularly preferred.

本発明の電気二重層キャパシタ用非水電解液は、更に非プロトン性有機溶媒を含むのが好ましい。ここで、該非プロトン性有機溶媒としては、ニトリル化合物、環状及び鎖状のエステル化合物並びに鎖状のエーテル化合物が好ましい。   The non-aqueous electrolyte for electric double layer capacitors of the present invention preferably further contains an aprotic organic solvent. Here, as the aprotic organic solvent, nitrile compounds, cyclic and chain ester compounds, and chain ether compounds are preferable.

また、本発明の非水電解液電気二重層キャパシタは、上記電気二重層キャパシタ用非水電解液と、正極と、負極とを備えることを特徴とする。   Moreover, the non-aqueous electrolyte electric double layer capacitor of the present invention comprises the above non-aqueous electrolyte for electric double layer capacitor, a positive electrode, and a negative electrode.

本発明によれば、分子中にP−F結合及び/又はP−NH2結合を有するホスフィンオキサイド化合物を含み、発火・引火の危険性が大幅に抑制された電気二重層キャパシタ用非水電解液を提供することができる。また、該非水電解液を備え、安全性が著しく改善された非水電解液電気二重層キャパシタを提供することができる。 According to the present invention, the non-aqueous electrolyte for an electric double layer capacitor includes a phosphine oxide compound having a PF bond and / or a P—NH 2 bond in the molecule, and the risk of ignition and ignition is greatly suppressed. Can be provided. Moreover, the non-aqueous electrolyte electric double layer capacitor provided with the non-aqueous electrolyte and having significantly improved safety can be provided.

以下に、本発明を詳細に説明する。本発明の電気二重層キャパシタ用非水電解液は、分子中にP−F結合及び/又はP−NH2結合を有するホスフィンオキサイド化合物と、支持塩とを含み、必要に応じて、非プロトン性有機溶媒等を含んでもよい。本発明者らが、フッ素含有ホスファゼン化合物と支持塩と非プロトン性有機溶媒とからなる非水電解液の800℃での熱分解生成物を調査したところ、分子中にP−F結合及び/又はP−NH2結合を有するホスフィンオキサイド化合物が、優れた燃焼抑制効果を有することを見出した。本発明の非水電解液電気二重層キャパシタの非水電解液には、かかるホスフィンオキサイド化合物が含まれるため、非水電解液及び該非水電解液を備えた電気二重層キャパシタの発火・引火の危険性が大幅に抑制されている。 The present invention is described in detail below. The non-aqueous electrolyte for an electric double layer capacitor of the present invention contains a phosphine oxide compound having a PF bond and / or a P-NH 2 bond in the molecule and a supporting salt, and if necessary, is aprotic. An organic solvent or the like may be included. When the present inventors investigated a thermal decomposition product at 800 ° C. of a nonaqueous electrolytic solution comprising a fluorine-containing phosphazene compound, a supporting salt and an aprotic organic solvent, a PF bond and / or It has been found that a phosphine oxide compound having a P—NH 2 bond has an excellent combustion suppressing effect. Since the non-aqueous electrolyte of the non-aqueous electrolyte electric double layer capacitor of the present invention contains such a phosphine oxide compound, there is a risk of ignition and ignition of the non-aqueous electrolyte and the electric double-layer capacitor provided with the non-aqueous electrolyte. Sex is greatly suppressed.

本発明の電気二重層キャパシタ用非水電解液に用いられるホスフィンオキサイド化合物は、分子中にP−F結合及び/又はP−NH2結合を有する限り特に制限はない。かかるホスフィンオキサイド化合物の中でも、上記式(I)で表されるホスフィンオキサイド化合物が好ましい。式(I)において、R1は、それぞれ独立して一価の置換基又はハロゲン元素であり、少なくとも一つのR1はフッ素又はアミノ基である。ここで、ハロゲン元素としては、フッ素、塩素、臭素等が好適に挙げられ、これらの中でも、フッ素が特に好ましい。一方、一価の置換基としては、アミノ基、アルコキシ基、アルキル基、カルボキシル基、アシル基、アリール基等が挙げられ、これらの中でも、電解液の発火・引火の危険性を低減する効果に優れる点で、アミノ基及びアルコキシ基が好ましい。また、上記アルコキシ基としては、メトキシ基、エトキシ基、メトキシエトキシ基、プロポキシ基、フェノキシ基等が挙げられ、上記アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基等が挙げられ、上記アシル基としては、ホルミル基、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基等が挙げられ、上記アリール基としては、フェニル基、トリル基、ナフチル基等が挙げられる。これら一価の置換基中の水素元素は、ハロゲン元素で置換されているのが好ましく、ハロゲン元素としては、フッ素、塩素、臭素等が好適に挙げられ、フッ素が最も好ましく、次いで、塩素が好ましい。 The phosphine oxide compound used in the non-aqueous electrolyte for electric double layer capacitors of the present invention is not particularly limited as long as it has a PF bond and / or a P-NH 2 bond in the molecule. Among such phosphine oxide compounds, phosphine oxide compounds represented by the above formula (I) are preferable. In the formula (I), each R 1 is independently a monovalent substituent or a halogen element, and at least one R 1 is fluorine or an amino group. Here, preferred examples of the halogen element include fluorine, chlorine, bromine, etc. Among these, fluorine is particularly preferred. On the other hand, examples of the monovalent substituent include an amino group, an alkoxy group, an alkyl group, a carboxyl group, an acyl group, and an aryl group. Among these, the effect of reducing the risk of ignition and ignition of the electrolyte From the viewpoint of superiority, an amino group and an alkoxy group are preferred. Examples of the alkoxy group include a methoxy group, an ethoxy group, a methoxyethoxy group, a propoxy group, and a phenoxy group. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, and a pentyl group. Examples of the acyl group include a formyl group, an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, and a valeryl group. Examples of the aryl group include a phenyl group, a tolyl group, and a naphthyl group. The hydrogen element in these monovalent substituents is preferably substituted with a halogen element, and preferred examples of the halogen element include fluorine, chlorine, bromine, etc., with fluorine being most preferred, and then chlorine being preferred. .

上記ホスフィンオキサイド化合物は、分子中の10質量%以上がハロゲン元素であるのが好ましく、分子中の15質量%以上がハロゲン元素であるのが更に好ましい。また、該ホスフィンオキサイド化合物は、分子中の7質量%以上がフッ素であるのが好ましく、分子中の10質量%以上がフッ素であるのが更に好ましい。分子中の10質量%以上がハロゲン元素であるホスフィンオキサイド化合物は、非水電解液の燃焼を抑制する効果に優れ、分子中の7質量%以上がフッ素であるホスフィンオキサイド化合物は、非水電解液の燃焼を抑制する効果に特に優れる。   In the phosphine oxide compound, 10% by mass or more in the molecule is preferably a halogen element, and more preferably 15% by mass or more in the molecule is a halogen element. Further, in the phosphine oxide compound, 7% by mass or more in the molecule is preferably fluorine, and more preferably 10% by mass or more in the molecule is fluorine. A phosphine oxide compound in which 10% by mass or more in the molecule is a halogen element is excellent in suppressing the combustion of the non-aqueous electrolyte, and a phosphine oxide compound in which 7% by mass or more in the molecule is fluorine is a non-aqueous electrolyte. It is particularly excellent in the effect of suppressing the combustion.

上記ホスフィンオキサイド化合物としては、式(I)中のR1の少なくとも一つがフッ素で、且つ式(I)中のR1の少なくとも一つがアミノ基であるホスフィンオキサイド化合物、並びに、前記式(I)中のR1の総てがフッ素又はアミノ基であるホスフィンオキサイド化合物が特に好ましい。これらホスフィンオキサイド化合物は、電解液の燃焼抑制に寄与するフッ素及びアミノ基の分子中に占める割合が高いため、優れた燃焼抑制効果を有する。 Examples of the phosphine oxide compound, at least one of fluorine and phosphine oxide compound is at least one amino group of R 1 in formula (I) R 1 in formula (I), as well as the formula (I) Particularly preferred are phosphine oxide compounds in which all of R 1 are fluorine or amino groups. Since these phosphine oxide compounds have a high proportion of fluorine and amino groups in the molecule that contribute to the suppression of combustion of the electrolyte, they have an excellent combustion suppression effect.

上記式(I)のホスフィンオキサイド化合物として、具体的には、トリフルオロホスフィンオキサイド[O=PF3]、トリアミノホスフィンオキサイド[O=P(NH2)3]、アミノジフルオロホスフィンオキサイド[O=PF2NH2]、ジアミノフルオロホスフィンオキサイド[O=PF(NH2)2]、ジメトキシフルオロホスフィンオキサイド[O=PF(OCH3)2]、エトキシジフルオロホスフィンオキサイド[O=PF2(OC25)]、メトキシジフルオロホスフィンオキサイド[O=PF2(OCH3)]、ジエトキシフルオロホスフィンオキサイド[O=PF(OC25)2]等が挙げられる。 Specific examples of the phosphine oxide compound of the above formula (I) include trifluorophosphine oxide [O = PF 3 ], triaminophosphine oxide [O═P (NH 2 ) 3 ], aminodifluorophosphine oxide [O═PF. 2 NH 2 ], diaminofluorophosphine oxide [O═PF (NH 2 ) 2 ], dimethoxyfluorophosphine oxide [O═PF (OCH 3 ) 2 ], ethoxydifluorophosphine oxide [O═PF 2 (OC 2 H 5 ) ], methoxy difluoro phosphine oxide [O = PF 2 (OCH 3 )], diethoxy-fluoro phosphine oxide [O = PF (OC 2 H 5) 2] , and the like.

上記ホスフィンオキサイド化合物の非水電解液中における含有率は、3体積%以上であるのが好ましく、5体積%以上であるのが更に好ましい。上記ホスフィンオキサイド化合物の非水電解液中における含有率が3体積%以上であれば、非水電解液の発火・引火の危険性を充分に抑制することができる。なお、上記ホスフィンオキサイド化合物は、一種単独で用いてもよいし、二種以上を混合して用いてもよい。   The content of the phosphine oxide compound in the non-aqueous electrolyte is preferably 3% by volume or more, and more preferably 5% by volume or more. If the content of the phosphine oxide compound in the non-aqueous electrolyte is 3% by volume or more, the risk of ignition / flammability of the non-aqueous electrolyte can be sufficiently suppressed. In addition, the said phosphine oxide compound may be used individually by 1 type, and may mix and use 2 or more types.

本発明の電気二重層キャパシタ用非水電解液に用いられる支持塩としては、従来公知のものから選択できるが、電解液における電気伝導性等が良好な点で、四級アンモニウム塩が好ましい。該四級アンモニウム塩は、非水電解液において、電気二重層を形成するためのイオン源としての役割を担う溶質であり、電解液の電気伝導性等の電気特性を効果的に向上させることが可能な点で、多価イオンを形成し得る四級アンモニウム塩が好ましい。   The supporting salt used in the non-aqueous electrolyte for electric double layer capacitors of the present invention can be selected from conventionally known salts, but quaternary ammonium salts are preferred from the viewpoint of good electrical conductivity in the electrolyte. The quaternary ammonium salt is a solute that plays a role as an ion source for forming an electric double layer in a nonaqueous electrolytic solution, and can effectively improve electrical characteristics such as electrical conductivity of the electrolytic solution. In view of the possibility, a quaternary ammonium salt capable of forming a multivalent ion is preferable.

上記四級アンモニウム塩としては、例えば、(CH3)4N・BF4、(CH3)325N・BF4、(CH3)2(C25)2N・BF4、CH3(C25)3N・BF4、(C25)4N・BF4、(C37)4N・BF4、CH3(C49)3N・BF4、(C49)4N・BF4、(C613)4N・BF4、(C25)4N・ClO4、(C25)4N・AsF6、(C25)4N・SbF6、(C25)4N・CF3SO3、(C25)4N・C49SO3、(C25)4N・(CF3SO2)2N、(C25)4N・BCH3(C25)3、(C25)4N・B(C25)4、(C25)4N・B(C49)4、(C25)4N・B(C65)4等が好適に挙げられる。また、これらの四級アンモニウム塩の陰イオン部(例えば、・BF4、・ClO4、・AsF6等)を、・PF6で置き換えたヘキサフルオロリン酸塩も好ましい。これらの中でも、分極率を大きくすることで溶解度を向上させることができる点で、異なるアルキル基がN原子に結合した四級アンモニウム塩が好ましい。更に、上記四級アンモニウム塩としては、例えば、以下の式(a)〜(j)で表わされる化合物等も好ましい。ここで、式(a)〜(j)において、Meはメチル基を、Etはエチル基を表わす。 Examples of the quaternary ammonium salt include (CH 3 ) 4 N · BF 4 , (CH 3 ) 3 C 2 H 5 N · BF 4 , (CH 3 ) 2 (C 2 H 5 ) 2 N · BF 4. CH 3 (C 2 H 5 ) 3 N · BF 4 , (C 2 H 5 ) 4 N · BF 4 , (C 3 H 7 ) 4 N · BF 4 , CH 3 (C 4 H 9 ) 3 N · BF 4 , (C 4 H 9 ) 4 N · BF 4 , (C 6 H 13 ) 4 N · BF 4 , (C 2 H 5 ) 4 N · ClO 4 , (C 2 H 5 ) 4 N · AsF 6 , (C 2 H 5 ) 4 N · SbF 6 , (C 2 H 5 ) 4 N · CF 3 SO 3 , (C 2 H 5 ) 4 N · C 4 F 9 SO 3 , (C 2 H 5 ) 4 N · (CF 3 SO 2 ) 2 N, (C 2 H 5 ) 4 N · BCH 3 (C 2 H 5 ) 3 , (C 2 H 5 ) 4 N · B (C 2 H 5 ) 4 , (C 2 H 5 ) 4 N · B (C 4 H 9 ) 4 , (C 2 H 5 ) 4 N · B (C 6 H 5 ) 4 and the like are preferable. Also preferred are hexafluorophosphates in which the anion portion (for example, • BF 4 , • ClO 4 , • AsF 6, etc.) of these quaternary ammonium salts is replaced with • PF 6 . Among these, quaternary ammonium salts in which different alkyl groups are bonded to N atoms are preferable in that the solubility can be improved by increasing the polarizability. Furthermore, as the quaternary ammonium salt, for example, compounds represented by the following formulas (a) to (j) are also preferable. Here, in the formulas (a) to (j), Me represents a methyl group, and Et represents an ethyl group.

Figure 0004511328
Figure 0004511328

これらの四級アンモニウム塩の中でも、特に、高い電気伝導性を確保する点からは、陽イオンとして(CH3)4+や、(C25)4+等を発生し得る塩が好ましい。また、式量が小さい陰イオンを発生し得る塩が好ましい。これらの四級アンモニウム塩は、1種単独で使用してもよく、2種以上を併用してもよい。 Among these quaternary ammonium salts, salts that can generate (CH 3 ) 4 N + , (C 2 H 5 ) 4 N +, etc. as cations, in particular, from the viewpoint of ensuring high electrical conductivity. preferable. Further, a salt capable of generating an anion having a small formula weight is preferable. These quaternary ammonium salts may be used individually by 1 type, and may use 2 or more types together.

本発明の電気二重層キャパシタ用非水電解液中の支持塩の濃度としては、0.2〜2.5mol/L(M)が好ましく、0.8〜1.5mol/L(M)が更に好ましい。支持塩の濃度が0.2mol/L(M)未満では、電解液の電気伝導性等の電気特性を充分に確保できないことがあり、2.5mol/L(M)を超えると、電解液の粘度が上昇し、電気伝導性等の電気特性が低下することがある。   The concentration of the supporting salt in the non-aqueous electrolyte for an electric double layer capacitor of the present invention is preferably 0.2 to 2.5 mol / L (M), more preferably 0.8 to 1.5 mol / L (M). If the concentration of the supporting salt is less than 0.2 mol / L (M), sufficient electrical properties such as the electrical conductivity of the electrolytic solution may not be ensured, and if it exceeds 2.5 mol / L (M), the viscosity of the electrolytic solution may be insufficient. The electrical characteristics such as electrical conductivity may be lowered.

本発明の非水電解液に用いることができる非プロトン性有機溶媒は、電解液の低粘度化が可能であり、容易に電気二重層キャパシタとしての最適なイオン導電性を達成することができる。該非プロトン性有機溶媒として、具体的には、アセトニトリル(AN)、プロピオノニトリル、ブチロニトリル、イソブチロニトリル、ベンゾニトリル等のニトリル化合物;1,2-ジメトキシエタン(DME)、テトラヒドロフラン(THF)等のエーテル化合物;ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジフェニルカーボネート、γ-ブチロラクトン(GBL)、γ-バレロラクトン等のエステル化合物が好適に挙げられる。これらの中でも、プロピレンカーボネート、γ-ブチロラクトン及びアセトニトリルが好ましい。なお、環状のエステル化合物は、比誘電率が高く支持塩の溶解能に優れる点で、また、鎖状のエステル化合物及びエーテル化合物は、低粘度であるため電解液の低粘度化の点で好適である。これらは1種単独で使用してもよく、2種以上を併用してもよい。   The aprotic organic solvent that can be used in the nonaqueous electrolytic solution of the present invention can reduce the viscosity of the electrolytic solution, and can easily achieve optimum ionic conductivity as an electric double layer capacitor. Specific examples of the aprotic organic solvent include nitrile compounds such as acetonitrile (AN), propiononitrile, butyronitrile, isobutyronitrile, and benzonitrile; 1,2-dimethoxyethane (DME), tetrahydrofuran (THF) and the like. Ether compounds: dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate (PC), diphenyl carbonate, γ-butyrolactone (GBL), γ-valerolactone, etc. The ester compound is preferably mentioned. Among these, propylene carbonate, γ-butyrolactone and acetonitrile are preferable. Note that the cyclic ester compound has a high relative dielectric constant and is excellent in the ability to dissolve the supporting salt, and the chain ester compound and the ether compound are suitable in terms of reducing the viscosity of the electrolyte because of low viscosity. It is. These may be used alone or in combination of two or more.

<非水電解液電気二重層キャパシタ>
次に、本発明の非水電解液電気二重層キャパシタを詳細に説明する。本発明の非水電解液電気二重層キャパシタは、上述の電気二重層キャパシタ用非水電解液と、正極と、負極とを備え、必要に応じて、セパレーター等の電気二重層キャパシタの技術分野で通常使用されている他の部材を備える。
<Non-aqueous electrolyte electric double layer capacitor>
Next, the non-aqueous electrolyte electric double layer capacitor of the present invention will be described in detail. The non-aqueous electrolyte electric double layer capacitor of the present invention comprises the above-described non-aqueous electrolyte for electric double layer capacitor, a positive electrode, and a negative electrode, and in the technical field of an electric double layer capacitor such as a separator, if necessary. Other members that are normally used are provided.

本発明の非水電解液電気二重層キャパシタの正極及び負極としては、特に制限はないが、通常、多孔質炭素系の分極性電極が好ましい。該電極としては、通常、比表面積及びかさ比重が大きく、電気化学的に不活性で、抵抗が小さい等の特性を有するものが好ましい。ここで、上記多孔質炭素としては、活性炭等が挙げられる。   Although there is no restriction | limiting in particular as a positive electrode and a negative electrode of the nonaqueous electrolyte electric double layer capacitor of this invention, Usually, a porous carbon type polarizable electrode is preferable. The electrode is preferably one having characteristics such as a large specific surface area and bulk specific gravity, electrochemical inactivity, and low resistance. Here, activated carbon etc. are mentioned as said porous carbon.

上記電極は、一般的には、活性炭等の多孔質炭素を含有し、必要に応じて導電剤や結着剤等のその他の成分を含有する。上記電極に好適に用いることができる活性炭の原料としては、特に制限はなく、例えば、フェノール樹脂の他、各種の耐熱性樹脂、ピッチ等が好適に挙げられる。耐熱性樹脂としては、例えば、ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルスルホン、ポリエーテルケトン、ビスマレイミドトリアジン、アラミド、フッ素樹脂、ポリフェニレン、ポリフェニレンスルフィド等が好適に挙げられる。これらは1種単独で使用してもよく、2種以上を併用してもよい。上記活性炭の形態としては、より比表面積を高くして、非水電解液電気二重層キャパシタの充電容量を大きくする点から、粉末状、繊維布状等の形態が好ましい。また、これらの活性炭は、電気二重層キャパシタの充電容量をより高くする目的で、熱処理、延伸成形、真空高温処理、圧延等の処理がなされていてもよい。   The electrode generally contains porous carbon such as activated carbon, and contains other components such as a conductive agent and a binder as necessary. There is no restriction | limiting in particular as a raw material of the activated carbon which can be used suitably for the said electrode, For example, various heat resistant resins, pitch, etc. other than a phenol resin are mentioned suitably. Preferable examples of the heat resistant resin include polyimide, polyamide, polyamideimide, polyetherimide, polyethersulfone, polyetherketone, bismaleimide triazine, aramid, fluororesin, polyphenylene, polyphenylene sulfide and the like. These may be used alone or in combination of two or more. The activated carbon is preferably in the form of powder, fiber cloth or the like from the viewpoint of increasing the specific surface area and increasing the charge capacity of the non-aqueous electrolyte electric double layer capacitor. Further, these activated carbons may be subjected to treatment such as heat treatment, stretch molding, vacuum high temperature treatment, and rolling for the purpose of increasing the charge capacity of the electric double layer capacitor.

上記電極に用いる導電剤としては、特に制限はないが、黒鉛、アセチレンブラック等が挙げられる。また、上記電極に用いる結着剤としては、特に制限はないが、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレン・ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等が挙げられる。これらの添加剤は、従来と同様の配合割合で用いることができる。   The conductive agent used for the electrode is not particularly limited, and examples thereof include graphite and acetylene black. The binder used for the electrode is not particularly limited, and examples thereof include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), styrene-butadiene rubber (SBR), carboxymethyl cellulose (CMC), and the like. . These additives can be used at a blending ratio similar to the conventional one.

本発明の非水電解液電気二重層キャパシタは、上述した電極(正極及び負極)、非水電解液の他、セパレーター、集電体、容器等を備えるのが好ましく、更に通常電気二重層キャパシタに使用されている公知の各部材を備えることができる。ここで、セパレーターは、非水電解液電気二重層キャパシタの短絡防止等を目的として、正負電極間に介在される。該セパレーターとしては、特に制限はなく、通常、非水電解液電気二重層キャパシタのセパレーターとして用いられる公知のセパレーターが好適に用いられる。セパレーターの材質としては、例えば、微多孔性フィルム、不織布、紙等が好適に挙げられる。具体的には、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン等の合成樹脂製の不織布、薄層フィルム等が好適に挙げられる。これらの中でも、厚さ20〜50μm程度のポリプロピレン又はポリエチレン製の微孔性フィルムが特に好適である。   The non-aqueous electrolyte electric double layer capacitor of the present invention preferably includes a separator, a current collector, a container and the like in addition to the above-described electrodes (positive electrode and negative electrode) and non-aqueous electrolyte, and moreover, a normal electric double layer capacitor. Each known member used can be provided. Here, the separator is interposed between the positive and negative electrodes for the purpose of preventing a short circuit of the non-aqueous electrolyte electric double layer capacitor. There is no restriction | limiting in particular as this separator, Usually, the well-known separator used as a separator of a nonaqueous electrolyte electric double layer capacitor is used suitably. As a material for the separator, for example, a microporous film, a nonwoven fabric, paper, and the like are preferably exemplified. Specifically, a nonwoven fabric made of a synthetic resin such as polytetrafluoroethylene, polypropylene, and polyethylene, a thin layer film, and the like are preferable. Among these, a microporous film made of polypropylene or polyethylene having a thickness of about 20 to 50 μm is particularly suitable.

上記集電体としては、特に制限はなく、通常非水電解液電気二重層キャパシタの集電体として用いられる公知のものが好適に用いられる。該集電体としては、電気化学的耐食性、化学的耐食性、加工性、機械的強度に優れ、低コストであるものが好ましく、例えば、アルミニウム、ステンレス鋼、導電性樹脂等の集電体層等が好ましい。また、上記容器としては、特に制限はなく、通常非水電解液電気二重層キャパシタの容器として用いられる公知のものが好適に挙げられる。該容器の材質としては、例えば、アルミニウム、ステンレス鋼、導電性樹脂等が好適である。   There is no restriction | limiting in particular as said collector, The well-known thing normally used as a collector of a nonaqueous electrolyte electric double layer capacitor is used suitably. The current collector is preferably one having excellent electrochemical corrosion resistance, chemical corrosion resistance, workability, mechanical strength, and low cost, such as a current collector layer of aluminum, stainless steel, conductive resin, etc. Is preferred. Moreover, there is no restriction | limiting in particular as said container, The well-known thing normally used as a container of a nonaqueous electrolyte electric double layer capacitor is mentioned suitably. As the material of the container, for example, aluminum, stainless steel, conductive resin and the like are suitable.

本発明の非水電解液電気二重層キャパシタの形態としては、特に制限はなく、シリンダ型(円筒型、角型)、フラット型(コイン型)等の公知の形態が、好適に挙げられる。これらの非水電解液電気二重層キャパシタは、例えば、電気自動車や燃料電池自動車の主電源若しくは補助電源や、種々の電子機器、産業用機器、航空用機器等のメモリーバックアップ用や、玩具、コードレス用機器、ガス機器、瞬間湯沸し機器等の電磁ホールド用や、腕時計、柱時計、ソーラ時計、AGS腕時計等の時計用の電源等として好適に用いられる。   There is no restriction | limiting in particular as a form of the non-aqueous-electrolyte electric double layer capacitor of this invention, Well-known forms, such as a cylinder type (cylindrical type and a square type), a flat type (coin type), are mentioned suitably. These non-aqueous electrolyte electric double layer capacitors are, for example, main power supplies or auxiliary power supplies for electric vehicles and fuel cell vehicles, memory backup devices for various electronic devices, industrial devices, aircraft devices, toys, cordless devices, etc. It is suitably used as a power source for electromagnetic holding such as industrial equipment, gas equipment and instantaneous water heater equipment, and for watches such as watches, wall clocks, solar watches, AGS watches and the like.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

(非水電解液の熱分解生成物と限界酸素指数との関係)
プロピレンカーボネート(PC)90体積%及び下記式(II):
(NPR2 23 ・・・ (II)
で表され、6つのR2中、1つがエトキシ基で、5つがフッ素の環状ホスファゼン化合物A[25℃における粘度:1.2mPa・s]10体積%からなる混合溶液に、テトラエチルアンモニウムテトラフルオロボレート[Et4N・BF4](支持塩)を1mol/L(M)になるように溶解させ、非水電解液Aを調製した。
(Relation between pyrolysis products of non-aqueous electrolyte and critical oxygen index)
90% by volume of propylene carbonate (PC) and the following formula (II):
(NPR 2 2 ) 3 ... (II)
In 6 R 2 , 1 is an ethoxy group and 5 is a fluorine cyclic phosphazene compound A [viscosity at 25 ° C .: 1.2 mPa · s] 10% by volume of tetraethylammonium tetrafluoroborate [ Et 4 N · BF 4 ] (supporting salt) was dissolved to 1 mol / L (M) to prepare a nonaqueous electrolytic solution A.

また、環状ホスファゼン化合物Aに代えて、環状ホスファゼン化合物B[式(II)において、6つのR2のうち2つがエトキシ基で、4つがフッ素である環状ホスファゼン化合物25℃における粘度:1.2mPa・s]を用いて非水電解液Bを調製し、環状ホスファゼン化合物Aに代えて、環状ホスファゼン化合物C[式(II)において、6つのR2のうち1つがフェノキシ基(PhO−)で、5つがフッ素である環状ホスファゼン化合物、25℃における粘度:1.7mPa・s(1.7cP)]を用いて非水電解液Cを調製した。 Further, instead of cyclic phosphazene compound A, cyclic phosphazene compound B [in the formula (II), a cyclic phosphazene compound in which two of six R 2 are ethoxy groups and four are fluorines at 25 ° C .: 1.2 mPa · s ] To prepare a non-aqueous electrolyte B, and instead of cyclic phosphazene compound A, cyclic phosphazene compound C [in formula (II), one of six R 2 is a phenoxy group (PhO—) and five are Nonaqueous electrolytic solution C was prepared using a cyclic phosphazene compound which is fluorine, and a viscosity at 25 ° C .: 1.7 mPa · s (1.7 cP)].

更に、γ-ブチロラクトン(GBL)に、テトラエチルアンモニウムテトラフルオロボレート[Et4N・BF4](支持塩)を1mol/L(M)になるように溶解させ、非水電解液Dを調製した。 Furthermore, tetraethylammonium tetrafluoroborate [Et 4 N · BF 4 ] (supporting salt) was dissolved in γ-butyrolactone (GBL) so as to be 1 mol / L (M) to prepare a nonaqueous electrolytic solution D.

上記非水電解液A〜Dに対して、下記の方法で限界酸素指数を測定し、更に、800℃で熱分解させ、各熱分解生成物をGC-MSで分析した。なお、各熱分解生成物の発生量は、非水電解液Aを熱分解した際に発生したO=PF3のGCのピーク高さを100として指数化した。結果を表1に示す。 With respect to the non-aqueous electrolytes A to D, the critical oxygen index was measured by the following method, further pyrolyzed at 800 ° C., and each pyrolysis product was analyzed by GC-MS. In addition, the generation amount of each thermal decomposition product was indexed with the peak height of GC of O = PF 3 generated when the nonaqueous electrolytic solution A was pyrolyzed as 100. The results are shown in Table 1.

(1)電解液の限界酸素指数
JIS K 7201に準じて、電解液の限界酸素指数を測定した。限界酸素指数が大きい程、電解液が燃焼し難いことを示す。具体的には、SiO2シート(石英濾紙、不燃性)127mm×12.7mmをU字型のアルミ箔で補強して自立可能とし、該SiO2シートに前記電解液1.0mLを含浸して試験片を作製した。該試験片を試験片支持具に垂直に、燃焼円筒(内径75mm、高さ450mm、直径4mmのガラス粒を底部から100±5mmの厚さに均等に満たし金属製の網をその上に置いたもの)の上端部から100mm以上の距離に位置するように取り付け、次に、燃焼円筒に酸素(JIS K 1101又はこれと同等以上のもの)及び窒素(JIS K 1107の2級又はこれと同等以上のもの)を流し、試験片を所定の条件下で点火し(熱源はJIS K 2240の1種1号)、燃焼状態を調べた。但し、燃焼円筒内の総流量は11.4L/minである。この試験を3回行い、その平均値を表2に示す。なお、酸素指数とは、材料が燃焼を持続するのに必要な容量パーセントで表される最低酸素濃度の値をいい、本願では、試験片が3分以上継続して燃焼するか、着炎後の燃焼長さが50mm以上燃えるのに必要な最低の酸素流量とそのときの窒素流量から、下記の式:
限界酸素指数=(酸素流量)/[(酸素流量)+(窒素流量)]×100(体積%)
に従って限界酸素指数を算出した。
(1) Limiting oxygen index of electrolyte solution The limiting oxygen index of the electrolyte solution was measured according to JIS K7201. The larger the limiting oxygen index, the more difficult the electrolyte is to burn. Specifically, a SiO 2 sheet (quartz filter paper, non-combustible) 127 mm × 12.7 mm can be reinforced with a U-shaped aluminum foil so that it can be self-supporting, and the SiO 2 sheet is impregnated with 1.0 mL of the electrolyte solution, and a test piece Was made. The test piece was perpendicular to the test piece support, and a combustion cylinder (with an inner diameter of 75 mm, a height of 450 mm, and a diameter of 4 mm was uniformly filled with a thickness of 100 ± 5 mm from the bottom, and a metal net was placed thereon. It is attached so that it is located at a distance of 100 mm or more from the upper end of the object), and then oxygen (JIS K 1101 or equivalent) or nitrogen (JIS K 1107 grade 2 or equivalent or more) is attached to the combustion cylinder. The test piece was ignited under predetermined conditions (the heat source was JIS K 2240 Type 1 No. 1), and the combustion state was examined. However, the total flow rate in the combustion cylinder is 11.4 L / min. This test was performed three times, and the average value is shown in Table 2. The oxygen index refers to the value of the minimum oxygen concentration expressed by the volume percent necessary for the material to continue burning. In this application, the test piece burns continuously for 3 minutes or longer, From the minimum oxygen flow rate required for burning 50 mm or more and the nitrogen flow rate at that time, the following formula:
Critical oxygen index = (oxygen flow rate) / [(oxygen flow rate) + (nitrogen flow rate)] × 100 (volume%)
The limiting oxygen index was calculated according to

次に、上記各熱分解生成物の発生量(指数)と各非水電解液の限界酸素指数(体積%)との相関係数を算出し、表1に示す結果を得た。なお、相関係数の値が大きい程、熱分解生成物の発生量と非水電解液の限界酸素指数との正の相関が強く、即ち、燃え難いことを意味する。   Next, the correlation coefficient between the generation amount (index) of each thermal decomposition product and the critical oxygen index (volume%) of each non-aqueous electrolyte was calculated, and the results shown in Table 1 were obtained. In addition, the larger the correlation coefficient value, the stronger the positive correlation between the generation amount of the thermal decomposition product and the critical oxygen index of the non-aqueous electrolyte solution, that is, the harder it is to burn.

Figure 0004511328
Figure 0004511328

表1から、熱分解生成物中のO=PF2(OCH3)、O=PF(OCH3)2、O=PF2NH2の発生量と非水電解液の限界酸素指数との正の相関が強く、これらのホスフィンオキサイド化合物が電解液の燃焼抑制に寄与していることが分る。 From Table 1, it can be seen that the generation amount of O = PF 2 (OCH 3 ), O = PF (OCH 3 ) 2 , and O = PF 2 NH 2 in the pyrolysis product and the critical oxygen index of the non-aqueous electrolyte are positive. The correlation is strong and it can be seen that these phosphine oxide compounds contribute to the suppression of combustion of the electrolyte.

(比較例1及び実施例1〜3)
次に、上記熱分解生成物又は環状ホスファゼン化合物A 10体積%と、プロピレンカーボネート(PC)90体積%とを混合し、更に、テトラエチルアンモニウムテトラフルオロボレート[Et4N・BF4](支持塩)を1mol/Lになるように溶解させて非水電解液を調製した。得られた非水電解液の限界酸素指数を上記の方法で測定し、表2に示す結果を得た。
(Comparative Example 1 and Examples 1-3)
Next, 10% by volume of the thermal decomposition product or cyclic phosphazene compound A and 90% by volume of propylene carbonate (PC) are mixed, and tetraethylammonium tetrafluoroborate [Et 4 N · BF 4 ] (supporting salt). Was dissolved to 1 mol / L to prepare a non-aqueous electrolyte. The critical oxygen index of the obtained non-aqueous electrolyte was measured by the above method, and the results shown in Table 2 were obtained.

次に、活性炭[AC, 商品名:Kuractive-1500、クラレケミカル社製]、アセチレンブラック(導電剤)及びポリフッ化ビニリデン(PVDF)(結着剤)を、それぞれ、質量比(活性炭:アセチレンブラック:PVDF)で8:1:1となるように混合して、混合物を得た。得られた混合物の100mgを採取し、これを20mmφの耐圧カーボン製容器に入れて、圧力150kgf/cm2、常温の条件下で圧粉成形し、正極及び負極(電極)を作製した。得られた電極(正極及び負極)と、アルミニウム金属板(集電体)(厚み:0.5mm)と、ポリプロピレン/ポリエチレン板(セパレーター)(厚み:25μm)とを用いてセルを組み立て、真空乾燥によって十分に乾燥させた。該セルを上記非水電解液で含浸し、非水電解液電気二重層キャパシタを作製した。得られた電気二重層キャパシタのサイクル特性及び低温特性を下記の方法で試験した。結果を表2に示す。 Next, the activated carbon [AC, trade name: Kuractive-1500, manufactured by Kuraray Chemical Co., Ltd.], acetylene black (conductive agent), and polyvinylidene fluoride (PVDF) (binder) are each in a mass ratio (activated carbon: acetylene black: PVDF) was mixed to 8: 1: 1 to obtain a mixture. 100 mg of the obtained mixture was sampled, put into a 20 mmφ pressure-resistant carbon container, and compacted under conditions of a pressure of 150 kgf / cm 2 and a normal temperature to prepare a positive electrode and a negative electrode (electrode). A cell was assembled using the obtained electrodes (positive electrode and negative electrode), an aluminum metal plate (current collector) (thickness: 0.5 mm), and a polypropylene / polyethylene plate (separator) (thickness: 25 μm), and vacuum dried. Dry thoroughly. The cell was impregnated with the above non-aqueous electrolyte to produce a non-aqueous electrolyte electric double layer capacitor. The cycle characteristics and low temperature characteristics of the obtained electric double layer capacitor were tested by the following methods. The results are shown in Table 2.

(2)電気二重層キャパシタのサイクル特性
得られた非水電解液電気二重層キャパシタについて、20℃において初期及び1000サイクル充電・放電後の放電容量を測定して、初期における放電容量と1000サイクル後の放電容量とから、下記の式:
容量維持率S=1000サイクル後の放電容量/初期放電容量×100(%)
に従って容量維持率Sを算出し、キャパシタのサイクル特性の指標とした。
(2) Cycle characteristics of the electric double layer capacitor For the obtained non-aqueous electrolyte electric double layer capacitor, the initial discharge capacity and the discharge capacity after 1000 cycles were measured at 20 ° C. From the discharge capacity of the following formula:
Capacity retention ratio S = discharge capacity after 1000 cycles / initial discharge capacity × 100 (%)
The capacity retention rate S was calculated according to the above and used as an index of the cycle characteristics of the capacitor.

(3)電気二重層キャパシタの低温特性
得られた非水電解液電気二重層キャパシタについて、20℃、-20℃のそれぞれの環境下で1000サイクル充電・放電後の放電容量を測定した。20℃における1000サイクル後の放電容量と、-20℃における1000サイクル後の放電容量とから、下記の式:
容量維持率L=放電容量(-20℃)/放電容量(20℃)×100(%)
に従って容量維持率Lを算出し、キャパシタの低温特性の指標とした。
(3) Low temperature characteristics of electric double layer capacitor The obtained non-aqueous electrolyte electric double layer capacitor was measured for discharge capacity after 1000 cycles of charge / discharge in each environment of 20 ° C and -20 ° C. From the discharge capacity after 1000 cycles at 20 ° C and the discharge capacity after 1000 cycles at -20 ° C, the following formula:
Capacity maintenance ratio L = discharge capacity (-20 ° C.) / Discharge capacity (20 ° C.) × 100 (%)
The capacity retention ratio L was calculated according to the above and used as an index of the low temperature characteristics of the capacitor.

Figure 0004511328
Figure 0004511328

表2に示すように、分子中にP−F結合及び/又はP−NH2結合を有するホスフィンオキサイド化合物を電解液に添加することにより、非水電解液の限界酸素指数を向上させることができ、非水電解液の安全性を改善できることが確認された。 As shown in Table 2, the critical oxygen index of the non-aqueous electrolyte can be improved by adding a phosphine oxide compound having a PF bond and / or a P—NH 2 bond in the molecule to the electrolyte. It was confirmed that the safety of the non-aqueous electrolyte can be improved.

Claims (10)

分子中にP−F結合及び/又はP−NH2結合を有するホスフィンオキサイド化合物と、支持塩とを含むことを特徴とする電気二重層キャパシタ用非水電解液。 A non-aqueous electrolyte for an electric double layer capacitor, comprising a phosphine oxide compound having a PF bond and / or a P-NH 2 bond in a molecule, and a supporting salt. 前記ホスフィンオキサイド化合物の含有率が3体積%以上であることを特徴とする請求項1に記載の電気二重層キャパシタ用非水電解液。   The non-aqueous electrolyte for an electric double layer capacitor according to claim 1, wherein the content of the phosphine oxide compound is 3% by volume or more. 前記ホスフィンオキサイド化合物の含有率が5体積%以上であることを特徴とする請求項2に記載の電気二重層キャパシタ用非水電解液。   The non-aqueous electrolyte for an electric double layer capacitor according to claim 2, wherein the content of the phosphine oxide compound is 5% by volume or more. 前記ホスフィンオキサイド化合物が下記式(I):
O=PR1 3 ・・・ (I)
(式中、R1は、それぞれ独立して一価の置換基又はハロゲン元素であり、少なくとも一つのR1はフッ素又はアミノ基である)で表されることを特徴とする請求項1に記載の電気二重層キャパシタ用非水電解液。
The phosphine oxide compound is represented by the following formula (I):
O = PR 1 3 ... (I)
2. wherein R 1 is independently a monovalent substituent or a halogen element, and at least one R 1 is fluorine or an amino group. Non-aqueous electrolyte for electric double layer capacitors.
前記式(I)中のR1が、それぞれ独立してフッ素、アミノ基、アルキル基及びアルコキシ基からなる群から選択され、且つ少なくとも一つのR1がフッ素又はアミノ基であることを特徴とする請求項4に記載の電気二重層キャパシタ用非水電解液。 R 1 in the formula (I) is independently selected from the group consisting of fluorine, amino group, alkyl group and alkoxy group, and at least one R 1 is fluorine or amino group. The non-aqueous electrolyte for electric double layer capacitors according to claim 4. 前記式(I)中のR1の少なくとも一つがフッ素で、且つ式(I)中のR1の少なくとも一つがアミノ基であることを特徴とする請求項5に記載の電気二重層キャパシタ用非水電解液。 The non-electric double layer capacitor capacitor according to claim 5, wherein at least one R 1 in the formula (I) is fluorine, and at least one R 1 in the formula (I) is an amino group. Water electrolyte. 前記式(I)中のR1が、それぞれ独立してフッ素又はアミノ基であることを特徴とする請求項5に記載の電気二重層キャパシタ用非水電解液。 6. The non-aqueous electrolyte for an electric double layer capacitor according to claim 5, wherein R 1 in the formula (I) is each independently fluorine or an amino group. 更に非プロトン性有機溶媒を含むことを特徴とする請求項1に記載の電気二重層キャパシタ用非水電解液。   The non-aqueous electrolyte for electric double layer capacitors according to claim 1, further comprising an aprotic organic solvent. 前記非プロトン性有機溶媒が、ニトリル化合物、環状若しくは鎖状のエステル化合物又は鎖状のエーテル化合物を含むことを特徴とする請求項8に記載の電気二重層キャパシタ用非水電解液。   The non-aqueous electrolyte for an electric double layer capacitor according to claim 8, wherein the aprotic organic solvent contains a nitrile compound, a cyclic or chain ester compound, or a chain ether compound. 請求項1〜9のいずれかに記載の電気二重層キャパシタ用非水電解液と、正極と、負極とを備えた非水電解液電気二重層キャパシタ。   A non-aqueous electrolyte electric double layer capacitor comprising the non-aqueous electrolyte for an electric double layer capacitor according to claim 1, a positive electrode, and a negative electrode.
JP2004353962A 2004-04-19 2004-12-07 Non-aqueous electrolyte for electric double layer capacitor and non-aqueous electrolyte electric double layer capacitor having the same Expired - Fee Related JP4511328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004353962A JP4511328B2 (en) 2004-04-19 2004-12-07 Non-aqueous electrolyte for electric double layer capacitor and non-aqueous electrolyte electric double layer capacitor having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004122621 2004-04-19
JP2004353962A JP4511328B2 (en) 2004-04-19 2004-12-07 Non-aqueous electrolyte for electric double layer capacitor and non-aqueous electrolyte electric double layer capacitor having the same

Publications (2)

Publication Number Publication Date
JP2005333102A JP2005333102A (en) 2005-12-02
JP4511328B2 true JP4511328B2 (en) 2010-07-28

Family

ID=35487516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004353962A Expired - Fee Related JP4511328B2 (en) 2004-04-19 2004-12-07 Non-aqueous electrolyte for electric double layer capacitor and non-aqueous electrolyte electric double layer capacitor having the same

Country Status (1)

Country Link
JP (1) JP4511328B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613108A (en) * 1992-04-09 1994-01-21 Bridgestone Corp Nonaqueous electrolyte battery
JP2000026717A (en) * 1998-06-04 2000-01-25 Basf Ag Flame-retardant thermoplastic molding composition not containing halogen and its use, molded product obtained therefrom and its production
JP2001217152A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Additive for nonaqueous electrolytic solution electric double-layer capacitor
WO2002082575A1 (en) * 2001-03-30 2002-10-17 Bridgestone Corporation Additive for cell and electric double-layered capacitor
JP2003342354A (en) * 2002-05-24 2003-12-03 Hokko Chem Ind Co Ltd New borate compound and cure accelerator for epoxy resin
JP2004067968A (en) * 2002-08-09 2004-03-04 Sumitomo Bakelite Co Ltd Resin composition, prepreg, and laminated plate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613108A (en) * 1992-04-09 1994-01-21 Bridgestone Corp Nonaqueous electrolyte battery
JP2000026717A (en) * 1998-06-04 2000-01-25 Basf Ag Flame-retardant thermoplastic molding composition not containing halogen and its use, molded product obtained therefrom and its production
JP2001217152A (en) * 1999-11-25 2001-08-10 Bridgestone Corp Additive for nonaqueous electrolytic solution electric double-layer capacitor
WO2002082575A1 (en) * 2001-03-30 2002-10-17 Bridgestone Corporation Additive for cell and electric double-layered capacitor
JP2003342354A (en) * 2002-05-24 2003-12-03 Hokko Chem Ind Co Ltd New borate compound and cure accelerator for epoxy resin
JP2004067968A (en) * 2002-08-09 2004-03-04 Sumitomo Bakelite Co Ltd Resin composition, prepreg, and laminated plate

Also Published As

Publication number Publication date
JP2005333102A (en) 2005-12-02

Similar Documents

Publication Publication Date Title
JP5001506B2 (en) Nonaqueous electrolyte additive, nonaqueous electrolyte secondary battery, and nonaqueous electrolyte electric double layer capacitor
JP5392355B2 (en) Electric double layer capacitor
US6452782B1 (en) Non-aqueous electrolyte electric double-layer capacitor, deterioration inhibitor for non-aqueous electrolyte electric double-layer capacitor and additive for non-aqueous electrolyte electric double-layer capacitor
JP6308217B2 (en) Electrolytic solution and electrochemical device
JPWO2002082575A1 (en) Additives for batteries and electric double layer capacitors
JPWO2004059671A1 (en) Electric double layer capacitor additive for non-aqueous electrolyte and non-aqueous electrolyte electric double layer capacitor
JP2006080488A (en) Non-aqueous electrolytic solution for electric double layer capacitor and non-aqueous electrolytic solution electric double layer capacitor
JP2006294332A (en) Nonaqueous electrolyte solution, nonaqueous electrolyte solution battery, nonaqueous electrolyte solution electric double-layer capacitor, and safety evaluation method of nonaqueous electrolyte solution
JP2006294334A (en) Nonaqueous electrolyte solution, nonaqueous electrolyte solution battery, nonaqueous electrolyte solution electric double-layer capacitor, and safety evaluation method of nonaqueous electrolyte solution
JP2008091778A (en) Non-aqueous electrolyte for electric double layer capacitor, and non-aqueous electrolyte double layer capacitor with the same
JP4511328B2 (en) Non-aqueous electrolyte for electric double layer capacitor and non-aqueous electrolyte electric double layer capacitor having the same
JPWO2005106906A1 (en) Electric double layer capacitor non-aqueous electrolyte additive, electric double layer capacitor non-aqueous electrolyte and non-aqueous electrolyte electric double layer capacitor
JP2008300523A (en) Nonaqueous electrolyte for capacitor, and nonaqueous electrolyte capacitor having the nanoqueous electrolyte
JP2008091786A (en) Non-aqueous electrolyte for electric double layer capacitor, and non-aqueous electrolyte double layer capacitor with the same
JP2008084945A (en) Nonaqueous electrolyte for electric double layer capacitor and nonaqueous electrolyte electric double layer capacitor having the same
JP2007012983A (en) Nonaqueous electrolyte type electric double layer capacitor and nonaqueous electrolyte therefor
JP2001217155A (en) Nonaqueous electrolytic solution electric double-layer capacitor
JP2001217152A (en) Additive for nonaqueous electrolytic solution electric double-layer capacitor
JP2004349273A (en) Nonaqueous electrolyte and electric double layer capacitor provided with it
JP2008282864A (en) Nonaqueous electrolyte, and nonaqueous electrolyte electric double layer capacitor employing it
JP2005276921A (en) Additive for nonaqueous electrolyte of electric double-layer capacitor, nonaqueous electrolyte for electric double-layer capacitor, and nonaqueous electrolyte electric double-layer capacitor
CN100550240C (en) Addition agent of non-aqueous electrolyte, nonaqueous electrolytic solution and double electric layer capacitor
JP2005191369A (en) Nonaqueous electrolyte for electric double layer capacitor and nonaqueous electrolyte electric double layer capacitor
JP2008078289A (en) Nonaqueous electrolyte for electric double layer capacitor, and nonaqueous electrolyte electric double layer capacitor having the same
JP2008300525A (en) Nonaqueous electrolyte for capacitor, and nonaqueous electrolyte capacitor having the nanoqueous electrolyte

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070822

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100506

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees