JP2005276642A - Electrolyte membrane electrode assembly produced by ion implantation - Google Patents

Electrolyte membrane electrode assembly produced by ion implantation Download PDF

Info

Publication number
JP2005276642A
JP2005276642A JP2004088683A JP2004088683A JP2005276642A JP 2005276642 A JP2005276642 A JP 2005276642A JP 2004088683 A JP2004088683 A JP 2004088683A JP 2004088683 A JP2004088683 A JP 2004088683A JP 2005276642 A JP2005276642 A JP 2005276642A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
platinum
electrode assembly
membrane electrode
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004088683A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Kawakami
浩良 川上
Yasusuke Okuyama
庸介 奥山
Takahiko Nakano
隆彦 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2004088683A priority Critical patent/JP2005276642A/en
Publication of JP2005276642A publication Critical patent/JP2005276642A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new electrolyte membrane electrode assembly (MEA) and its manufacturing method wherein the amount of platinum used can be reduced and its using efficiency can be enhanced, as well as provide a solid polymer fuel cell using the electrolyte membrane electrode assembly. <P>SOLUTION: This is the electrolyte membrane electrode assembly in which platinum ion is injected into at least a part of the surface of a solid polymer electrolyte membrane composed of polymer materials. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、イオン注入により作製した電解質膜電極接合体およびその製造方法に関する。   The present invention relates to an electrolyte membrane electrode assembly produced by ion implantation and a method for producing the same.

固体高分子型燃料電池はクリーンで再生可能なエネルギーとして携帯用電源、家庭用電源、自動車用途として期待されている。しかし、固体高分子型燃料電池を実用化するには高価な白金使用量を現在使用されている1mg/cm2の10分の1以下にすることが望まれている。現在は白金、カーボン、高分子固体電解質をホットプレス法により高分子固体電解質膜表面に接着させ電解質膜電極接合体(MEA)を作製しているが(例えば、Journal of Membrane Science, Vol.108, 269-277 (1996), Polymer Preprint, Japan, Vol.51, 2796-2797, Polymer Preprint, Japan, Vol.51, 3155などを参照)、この方法では白金、カーボン、高分子固体電解質が接する三相界面の制御は難しく、性能の高い電極層を作製することはできない。そのため、白金使用量の低減化が困難となっている。また、白金の微粒子サイズが触媒活性に大きな影響を与えるがホットプレス法ではその制御も難しい。さらに電極層の薄膜化も求められているが、現状のMEA作製法では困難である。 Solid polymer fuel cells are expected as clean and renewable energy for portable power sources, household power sources, and automobiles. However, in order to put the polymer electrolyte fuel cell to practical use, it is desired that the amount of expensive platinum used is 1/10 or less of 1 mg / cm 2 currently used. Currently, platinum, carbon, and solid polymer electrolyte are bonded to the surface of the polymer solid electrolyte membrane by hot pressing to produce an electrolyte membrane electrode assembly (MEA) (for example, Journal of Membrane Science, Vol.108, 269-277 (1996), Polymer Preprint, Japan, Vol.51, 2796-2797, Polymer Preprint, Japan, Vol.51, 3155, etc.), in this method platinum, carbon and solid polymer electrolyte are in contact with three phases Control of the interface is difficult, and an electrode layer with high performance cannot be produced. For this reason, it is difficult to reduce the amount of platinum used. In addition, although the platinum fine particle size greatly affects the catalyst activity, it is difficult to control the hot press method. In addition, thinning of the electrode layer is also required, but it is difficult with the current MEA fabrication method.

一方、白金触媒は純水素では高い活性を維持するがCO等が共存すると白金へその吸着が起こり白金触媒活性が低下することも大きな問題となっている。白金にルテニウム等の他の金属を用いることにより触媒劣化を抑制することが求められているが、現状のMEA作製法では触媒の精密なサイズ制御が困難である。   On the other hand, the platinum catalyst maintains high activity with pure hydrogen, but when CO or the like coexists, its adsorption to platinum occurs and the platinum catalyst activity is lowered. Although it is required to suppress catalyst deterioration by using other metals such as ruthenium for platinum, it is difficult to precisely control the size of the catalyst with the current MEA preparation method.

Journal of Membrane Science, Vol.108, 269-277 (1996)Journal of Membrane Science, Vol.108, 269-277 (1996) Polymer Preprint, Japan, Vol.51, 2796-2797Polymer Preprint, Japan, Vol.51, 2796-2797 Polymer Preprint, Japan, Vol.51, 3155Polymer Preprint, Japan, Vol.51, 3155

本発明は、白金使用量を低減しその使用効率の向上を可能とする新規な電解質膜電極接合体(MEA)とその製造方法、並びに上記電解質膜電極接合体を使用した固体高分子型燃料電池を提供することを解決すべき課題とした。   The present invention relates to a novel electrolyte membrane electrode assembly (MEA) capable of reducing the amount of platinum used and improving its usage efficiency, a method for producing the same, and a polymer electrolyte fuel cell using the electrolyte membrane electrode assembly It was set as the problem which should be solved to provide.

本発明者らは上記課題を解決するために鋭意検討した結果、高分子固体電解質膜にイオン注入法を用いて白金を直接注入することにより、白金使用量を低減しその使用効率の向上を可能とする新規な電解質膜電極接合体を製造できることを見出し、本発明を完成するに至った。   As a result of diligent investigations to solve the above problems, the present inventors have made it possible to reduce the amount of platinum used and to improve its efficiency of use by directly injecting platinum into the polymer solid electrolyte membrane using the ion implantation method. The present inventors have found that a novel electrolyte membrane electrode assembly can be produced, and have completed the present invention.

即ち、本発明によれば、高分子材料から構成される高分子固体電解質膜の表面の少なくとも一部に白金イオンが注入されている、電解質膜電極接合体が提供される。   That is, according to the present invention, there is provided an electrolyte membrane electrode assembly in which platinum ions are implanted into at least a part of the surface of a polymer solid electrolyte membrane made of a polymer material.

好ましくは、高分子材料は、スルホン化ポリイミド、スルホン化ポリスルホン、スルホン化ポリエーテルスルホン、スルホン化ポリベンズイミダゾール、スルホン化ポリエーテルエーテルケトン、又はスルホン化ポリフェニレンであり、さらに好ましくは、高分子材料は、スルホン化ポリイミドである。   Preferably, the polymeric material is sulfonated polyimide, sulfonated polysulfone, sulfonated polyethersulfone, sulfonated polybenzimidazole, sulfonated polyetheretherketone, or sulfonated polyphenylene, more preferably the polymer material is A sulfonated polyimide.

特に好ましくは、高分子材料は、以下の構造式(1)を構造単位として有するポリイミド樹脂である。
(式中、X及びYは0〜100の整数を示し、x/yは95/5から20/80の範囲内である)
Particularly preferably, the polymer material is a polyimide resin having the following structural formula (1) as a structural unit.
(Wherein X and Y represent integers of 0 to 100, and x / y is in the range of 95/5 to 20/80)

好ましくは、ドース量φが1×1012個/cm2≦φ≦1×1019個/cm2 となる範囲で白金イオンが注入されている。
好ましくは、高分子固体電解質膜の表面の少なくとも一部に、さらに白金以外の気体または希ガスのイオンが注入されている。
好ましくは、注入法は、白金単独によるイオン注入であるか、あるいは白金注入前後にルテニウム、モリブデン、スズ、マンガン、鉄等の金属を追加して注入して白金触媒の劣化を抑制するイオン注入法である。
Preferably, platinum ions are implanted in a range where the dose amount φ is 1 × 10 12 ions / cm 2 ≦ φ ≦ 1 × 10 19 ions / cm 2 .
Preferably, ions of a gas other than platinum or a rare gas are further implanted into at least a part of the surface of the polymer solid electrolyte membrane.
Preferably, the implantation method is ion implantation by platinum alone, or an ion implantation method that suppresses deterioration of the platinum catalyst by adding metal such as ruthenium, molybdenum, tin, manganese, iron, etc. before and after platinum implantation. It is.

本発明の別の側面によれば、高分子材料から構成される高分子固体電解質膜の表面の少なくとも一部に白金イオンを注入する工程を含む、上記の電解質膜電極接合体の製造方法が提供される。上記方法において好ましくは、ドース量φが1×1012個/cm2≦φ≦1×1019個/cm2 となる範囲で白金イオン注入を行う。 According to another aspect of the present invention, there is provided the above method for producing an electrolyte membrane electrode assembly, comprising the step of injecting platinum ions into at least a part of the surface of a polymer solid electrolyte membrane composed of a polymer material Is done. In the above method, the platinum ion implantation is preferably performed in a range where the dose amount φ is 1 × 10 12 pieces / cm 2 ≦ φ ≦ 1 × 10 19 pieces / cm 2 .

本発明のさらに別の側面によれば、上記の電解質膜電極接合体を使用した高分子固体電解質型燃料電池が提供される。   According to still another aspect of the present invention, there is provided a solid polymer electrolyte fuel cell using the above electrolyte membrane electrode assembly.

本発明によれば、白金使用量を低減しその使用効率の向上を可能とする新規な電解質膜電極接合体(MEA)とその製造方法、並びに上記電解質膜電極接合体を使用した固体高分子型燃料電池を提供することが可能になった。   According to the present invention, a novel electrolyte membrane electrode assembly (MEA) capable of reducing the amount of platinum used and improving its usage efficiency, a method for producing the same, and a solid polymer type using the electrolyte membrane electrode assembly It has become possible to provide a fuel cell.

以下、本発明の実施の形態について説明する。
本発明の電解質膜電極接合体は、高分子材料から構成される高分子固体電解質膜の表面の少なくとも一部に白金イオンが注入されているものである。高分子固体電解質膜を構成する高分子材料としては、プロトン伝導性を有する高分子固体材料であれば特に限定されないが、例えばスルホン化ポリイミド、スルホン化ポリスルホン、スルホン化ポリエーテルスルホン、スルホン化ポリベンズイミダゾール、スルホン化ポリエーテルエーテルケトン、スルホン化ポリフェニレンなどを挙げることができ、特にスルホン化ポリイミドが好ましい。
Embodiments of the present invention will be described below.
The electrolyte membrane electrode assembly of the present invention is one in which platinum ions are implanted into at least a part of the surface of a polymer solid electrolyte membrane composed of a polymer material. The polymer material constituting the polymer solid electrolyte membrane is not particularly limited as long as it is a polymer solid material having proton conductivity, and examples thereof include sulfonated polyimide, sulfonated polysulfone, sulfonated polyethersulfone, and sulfonated polybenz. Examples thereof include imidazole, sulfonated polyether ether ketone, and sulfonated polyphenylene, and sulfonated polyimide is particularly preferable.

本発明で用いることができるスルホン化ポリイミドの具体例としては、以下のものが挙げられるが、これらに限定されるものではない。   Specific examples of the sulfonated polyimide that can be used in the present invention include, but are not limited to, the following.

(i)以下の構造式(1)を構造単位として有するポリイミド樹脂。
(式中、X及びYは0〜100の整数を示し、x/yは95/5から20/80の範囲内である)
(I) A polyimide resin having the following structural formula (1) as a structural unit.
(Wherein X and Y represent integers of 0 to 100, and x / y is in the range of 95/5 to 20/80)

(ii) 以下の構造式(2)を構造単位として有するブロック共重合体から成るポリイミド樹脂。
(式中、m及びnは0〜100の整数を示し、m/nは95/5から20/80の範囲内であり、sは1〜150の整数を示す。Arは、少なくとも1個の芳香環を有する炭素数6〜30の基を示す)
(Ii) A polyimide resin comprising a block copolymer having the following structural formula (2) as a structural unit.
(In the formula, m and n represent an integer of 0 to 100, m / n is within a range of 95/5 to 20/80, and s represents an integer of 1 to 150. Ar represents at least one A group having 6 to 30 carbon atoms having an aromatic ring)

上記構造式(2)の具体例としては、下記構造が挙げられる。
Specific examples of the structural formula (2) include the following structures.

上記構造式(2)を構造単位として有するブロック共重合体から成るポリイミド樹脂は、(i)2,2’-ベンジジンジスルホン酸と1,4,5,8−ナフタレンテトラカルボン酸二無水物とを反応させて重合体を合成する工程、(ii)NH2−Ar−NH2(式中、Arは、少なくとも1個の芳香環を有する炭素数6〜30の基を示す)で表される化合物と1,4,5,8−ナフタレンテトラカルボン酸二無水物とを重合させて重合体を合成する工程、及び(iii)上記工程(i)で合成した重合体と上記工程(ii)で合成した重合体とを縮重合させることにより、上記構造式(2)を構造単位として有するブロック共重合体を合成する工程により製造することができる。 A polyimide resin comprising a block copolymer having the structural formula (2) as a structural unit comprises (i) 2,2′-benzidinedisulfonic acid and 1,4,5,8-naphthalenetetracarboxylic dianhydride. A step of synthesizing a polymer by reaction, (ii) a compound represented by NH 2 —Ar—NH 2 (wherein Ar represents a group having 6 to 30 carbon atoms having at least one aromatic ring); And a step of polymerizing 1,4,5,8-naphthalenetetracarboxylic dianhydride to synthesize a polymer, and (iii) a polymer synthesized in step (i) above and a step synthesized in step (ii) above. The block copolymer having the above structural formula (2) as a structural unit can be synthesized by condensation polymerization with the polymer thus prepared.

本発明で用いる電解質膜は、上記した高分子材料から構成される。すなわち、本電解質膜はその高分子材料を適正な方法で製膜したものである。高分子材料の製膜方法は特に限定せず、溶液を平板上にキャストするキャスト法、ダイコータ、コンマコータ等により平板上に溶液を塗布する方法、溶融した高分子材料を延伸等する方法等の一般的な方法が採用できる。   The electrolyte membrane used in the present invention is composed of the above-described polymer material. That is, this electrolyte membrane is obtained by forming the polymer material by an appropriate method. The film forming method of the polymer material is not particularly limited, and a general method such as a casting method in which a solution is cast on a flat plate, a method in which a solution is applied on a flat plate by a die coater or a comma coater, a method in which a molten polymer material is stretched, etc. Can be used.

本発明の電解質膜は、表面から内部まで、無欠陥である緻密構造であることが望ましい。緻密構造とは、膜表面と内部構造、裏面と全て緻密で均一な構造になっている膜を意味し、この概念は当業界では周知である。緻密構造膜の製造方法は、例えば、高分子材料を溶媒へ溶解して得られた溶液を支持体上にキャストし、表面から完全に溶媒を蒸発させることで形成することができる。   The electrolyte membrane of the present invention preferably has a dense structure that is defect-free from the surface to the inside. The dense structure means a film having a dense and uniform structure on the film surface and internal structure and on the back surface, and this concept is well known in the art. The method for producing a dense structure film can be formed, for example, by casting a solution obtained by dissolving a polymer material in a solvent on a support and completely evaporating the solvent from the surface.

製膜液の高分子材料濃度(例えば、ポリイミド溶液濃度など)は好ましくは1〜40重量%であり、より好ましくは25〜35重量%である。製膜液はシャーレ等を利用して流延することができる。溶媒は、高分子材料が溶解さえすれば特に限定されないが、ジメチルスルホキシド、m-クレゾールなどが好適に用いられる。   The polymer material concentration (for example, polyimide solution concentration) of the film-forming solution is preferably 1 to 40% by weight, more preferably 25 to 35% by weight. The film-forming solution can be cast using a petri dish or the like. The solvent is not particularly limited as long as the polymer material is dissolved, but dimethyl sulfoxide, m-cresol, and the like are preferably used.

高分子材料の濃度を10〜40重量%、溶媒は60〜90重量%とし、シャーレ上に高分子材料をキャストし、減圧、加熱により、6〜24時間で溶媒を蒸発させる。加熱温度は特に限定されないが、溶媒の沸点以下であることが好ましい。   The concentration of the polymer material is 10 to 40% by weight, the solvent is 60 to 90% by weight, the polymer material is cast on a petri dish, and the solvent is evaporated in 6 to 24 hours by decompression and heating. Although heating temperature is not specifically limited, It is preferable that it is below the boiling point of a solvent.

作製された膜は、緻密で均一な構造を形成し、高分子材料の濃度、キャスト面積などの作製条件を変えることにより、膜厚は数μm〜数百μmまで容易に制御することができる。 本発明のポリイミド樹脂の膜厚については、膜の用途に応じて適宜選択されるが、高分子固体電解質型燃料電池用の電解質膜として使用する場合には、10〜500μmが好ましく、10μ〜100μmがより好ましい。膜厚が500μmを越えると、膜の抵抗性が増大し、また、10μm未満では、膜の機械強度が不充分であるので何れも好ましくない。   The manufactured film forms a dense and uniform structure, and the film thickness can be easily controlled from several μm to several hundred μm by changing the manufacturing conditions such as the concentration of the polymer material and the cast area. The film thickness of the polyimide resin of the present invention is appropriately selected according to the use of the membrane, but is preferably 10 to 500 μm when used as an electrolyte membrane for a solid polymer electrolyte fuel cell, and 10 to 100 μm. Is more preferable. If the film thickness exceeds 500 μm, the resistance of the film increases, and if it is less than 10 μm, the mechanical strength of the film is insufficient.

このようにして作製された緻密構造膜は、第3級アミンと塩を形成している。強酸溶液に浸漬することで、第3級アミンを除去することができる。ここで用いられる強酸溶液は特に限定されないが、硝酸、硫酸、塩酸などが好適に用いられる。このようにして緻密な構造を有する電解質膜が作製できる。   The dense structure film thus produced forms a salt with a tertiary amine. The tertiary amine can be removed by dipping in a strong acid solution. The strong acid solution used here is not particularly limited, but nitric acid, sulfuric acid, hydrochloric acid and the like are preferably used. In this way, an electrolyte membrane having a dense structure can be produced.

本発明の電解質膜電極接合体は、高分子材料から構成される高分子固体電解質膜の表面の少なくとも一部に白金イオンが注入されていることを特徴とするものである。イオン注入法とは、添加を目的とする粒子を高真空(10-4 Pa)中でイオン化し、数十 kV から数 MV に加速して固体基板に添加する方法であると定義されている。 The electrolyte membrane electrode assembly of the present invention is characterized in that platinum ions are implanted into at least a part of the surface of a polymer solid electrolyte membrane made of a polymer material. The ion implantation method is defined as a method in which particles to be added are ionized in a high vacuum (10 −4 Pa), accelerated from several tens of kV to several MV, and added to a solid substrate.

プロトン伝導性を有する高分子固体電解質膜にイオン注入法を用い白金を直接注入することにより、注入された層は炭素化(グラファイト様構造)され、白金触媒、グラファイト様構造、高分子固体電解質膜からなる新しい三相界面が形成される。本発明においては、イオン注入条件を変えることにより白金量、白金潜り込み深さ、グラファイト様構造を制御できるため、白金使用量の低減とその使用効率の向上が可能となることを見出した。   By directly injecting platinum into the polymer solid electrolyte membrane with proton conductivity using the ion implantation method, the injected layer is carbonized (graphite-like structure), platinum catalyst, graphite-like structure, polymer solid electrolyte membrane A new three-phase interface consisting of In the present invention, it was found that the amount of platinum used, platinum penetration depth, and graphite-like structure can be controlled by changing ion implantation conditions, so that the amount of platinum used can be reduced and the efficiency of use can be improved.

白金を直接高分子電解質膜に注入することにより膜表面の炭素化を同時に引き起こし膜厚ナノあるいはマイクロオーダーの電極層を電解質膜表面に直接形成させる新しいMEAの作製法の提案と、この製膜法も用いることにより従来の白金担持量を100分1程度まで低減することが可能性になる。またイオン注入はマイクロパターン化燃料電池の作製も容易にする。   Proposal of a new MEA fabrication method that directly induces carbonization of the membrane surface by directly injecting platinum into the polymer electrolyte membrane and directly forms a nano- or micro-order electrode layer on the electrolyte membrane surface. Can also reduce the conventional platinum loading to about 1/100. Ion implantation also facilitates the fabrication of micropatterned fuel cells.

イオン注入の利用による長所としては、以下の点が挙げられる。
(1)イオン注入条件(ドース量)により白金量の制御が容易(白金量の低減化)である。
(2)イオン注入条件(加速エネルギー)により白金の存在位置を容易に決められる(電極層の薄膜化)。
(3)イオン注入条件により白金の微粒子サイズを制御できる(白金使用効率の向上)。
(4)白金注入前後にルテニウム等の金属を注入することにより白金の触媒活性の劣化を抑制することができる。
(5)電極触媒層が高分子固体電解質膜と一体化されているため膜の膨潤伸縮による電極触媒層の剥離が抑制される。
(6)電極層の膜厚を超薄膜化できるため電極内の水素や酸素の透過性を高められ、結果として触媒効率が向上する。
Advantages of using ion implantation include the following points.
(1) The amount of platinum can be easily controlled (reduction in the amount of platinum) by ion implantation conditions (dose amount).
(2) The position of platinum can be easily determined by ion implantation conditions (acceleration energy) (thinning of the electrode layer).
(3) The fine particle size of platinum can be controlled by ion implantation conditions (improvement of platinum use efficiency).
(4) The deterioration of the catalytic activity of platinum can be suppressed by injecting a metal such as ruthenium before and after the platinum injection.
(5) Since the electrode catalyst layer is integrated with the polymer solid electrolyte membrane, peeling of the electrode catalyst layer due to swelling expansion and contraction of the membrane is suppressed.
(6) Since the film thickness of the electrode layer can be made ultrathin, the permeability of hydrogen and oxygen in the electrode can be increased, and as a result, the catalyst efficiency is improved.

本発明におけるイオン注入の特徴は、ドース量、加速エネルギーの選択により白金量、白金潜り込み深さを制御でき、膜表面全域にわたり均一に白金を注入できることである。さらにそれら条件により炭素化形成層、特にその膜厚をナノオーダーからミクロオーダーまで容易に制御で電極層の薄膜化が可能である。   The feature of the ion implantation in the present invention is that the platinum amount and the platinum penetration depth can be controlled by selecting the dose amount and the acceleration energy, and platinum can be uniformly implanted over the entire film surface. Furthermore, it is possible to reduce the thickness of the electrode layer by easily controlling the carbonization-forming layer, particularly the film thickness thereof from nano-order to micro-order, under these conditions.

本発明において、白金イオンを注入する場合のドース量は、好ましくは1×1012個/cm2以上1×1019個/cm2以下の範囲であり、さらに好ましくは1×1013個/cm2以上1×1018個/cm2以下の範囲であり、特に好ましくは1×1014個/cm2以上1×1017個/cm2以下の範囲である。
イオン注入の加速エネルギーは、好ましくは数keVから数十MeVの範囲内であり、より好ましくは10keVから10MeVの範囲内であり、特に好ましくは100keVから1MeVの範囲内である。
In the present invention, the dose amount in the case of implanting platinum ions is preferably in the range of 1 × 10 12 ions / cm 2 to 1 × 10 19 ions / cm 2 , more preferably 1 × 10 13 ions / cm 2. in the range of 2 or more 1 × 10 18 / cm 2 or less, particularly preferably 1 × 10 14 / cm 2 or more 1 × 10 17 pieces / cm 2 or less.
The acceleration energy for ion implantation is preferably in the range of several keV to several tens of MeV, more preferably in the range of 10 keV to 10 MeV, and particularly preferably in the range of 100 keV to 1 MeV.

イオン注入法は白金単独、あるいは白金注入前後にルテニウム、モリブデン、スズ、マンガン、鉄等の金属を追加して注入し、白金触媒の劣化を抑制するイオン注入法が望ましい。   As the ion implantation method, platinum alone or an ion implantation method in which a metal such as ruthenium, molybdenum, tin, manganese, or iron is additionally implanted before and after the platinum implantation to suppress the deterioration of the platinum catalyst is desirable.

炭素化(グラファイト様構造)は白金注入量に依存するが、特に白金使用量を抑制し炭素化表面を形成させることを意図する場合には、H+, N2 +, O2 +等の気体、あるいはHe+, Ar+, Ne+, Kr+等の希ガスを白金注入前あるいは注入後に注入することが望ましい。その場合の。ドース量は、好ましくは1×1012個/cm2以上1×1019個/cm2以下の範囲であり、さらに好ましくは1×1013個/cm2以上1×1018個/cm2以下の範囲であり、特に好ましくは1×1014個/cm2以上1×1017個/cm2以下の範囲である。 Carbonization (graphite-like structure) depends on the amount of platinum injected, but especially when the intention is to suppress the amount of platinum used to form a carbonized surface, gases such as H + , N 2 + , O 2 + Alternatively, it is desirable to inject a rare gas such as He + , Ar +, Ne + and Kr + before or after platinum injection. In that case. The dose is preferably in the range of 1 × 10 12 pieces / cm 2 to 1 × 10 19 pieces / cm 2 , more preferably 1 × 10 13 pieces / cm 2 to 1 × 10 18 pieces / cm 2. The range is particularly preferably 1 × 10 14 pieces / cm 2 or more and 1 × 10 17 pieces / cm 2 or less.

また、イオンの直進性を利用してマスクを用いることにより、イオン注入部位とそうでない部位を容易に分離でき、マイクロパタン化マスクを用いることによりマイクロ電解質膜電極接合体を製造することができる。   Further, by using a mask utilizing the straightness of ions, an ion implantation site and a site other than that can be easily separated, and a microelectrolyte membrane electrode assembly can be manufactured by using a micropatterned mask.

上記のようにして作製した本発明の電解質膜電極接合体を使用した高分子固体電解質型燃料電池も本発明の範囲内に含まれる。
本発明の燃料電池は、電解質膜電極接合体と、セパレーターと、セパレーターにより形成される燃料ガスまたは液体、並びに、酸化剤を送り込むための流路とから構成される。
本発明の電解質膜電極接合体を、燃料ガスまたは液体、並びに、酸化剤を送り込むための流路が形成された一対のグラファイト製などのガスセパレーターなどの間に挿入することにより、本発明の高分子固体電解質型燃料電池を製造することができる。この燃料電池に、燃料ガスまたは液体として、水素を主たる成分とするガスや、メタノールを主たる成分とするガスまたは液体を、酸化剤として、酸素を含むガス(酸素あるいは空気)を、それぞれ別個の流路より、電解質膜電極接合体に供給することにより、燃料電池は作動する。
A solid polymer electrolyte fuel cell using the electrolyte membrane electrode assembly of the present invention produced as described above is also included in the scope of the present invention.
The fuel cell of the present invention comprises an electrolyte membrane electrode assembly, a separator, a fuel gas or liquid formed by the separator, and a flow path for feeding an oxidant.
By inserting the electrolyte membrane electrode assembly of the present invention between a pair of gas separators made of graphite or the like in which a flow path for feeding fuel gas or liquid and an oxidant is formed, the high performance of the present invention is improved. A molecular solid oxide fuel cell can be manufactured. A gas containing hydrogen as a main component, a gas or liquid mainly containing methanol as a fuel gas or liquid, and a gas containing oxygen (oxygen or air) as an oxidant are separately supplied to the fuel cell. The fuel cell operates by supplying the electrolyte membrane electrode assembly from the path.

また、本発明の高分子固体電解質型燃料電池は、単独で使用することもよいし、あるいはこれを複数積層して、スタックを形成して使用してもよく、またそれらを組み込んだ燃料電池システムとして使用してもよい。
以下の実施例により本発明をさらに具体的に説明するが、本発明は実施例によって限定されるものではない。
The solid polymer electrolyte fuel cell of the present invention may be used alone, or may be used by stacking a plurality of these to form a stack, or a fuel cell system incorporating them. May be used as
The following examples further illustrate the present invention, but the present invention is not limited to the examples.

実施例1:スルホン酸基含有ポリイミドの合成
重合溶媒にはm-クレゾールを用い、2,2'-ジアミノジフェニルヘキサフルオロプロパン(6FAP) 1.122g (0.003356mol)と2,2'-ベンジジンジスルホン酸(BDSA) 2.697g (0.00783mol)、トリエチルアミンを窒素雰囲気下、80℃で攪拌してm-クレゾール(NTDAの28倍モル)へ溶解させた。4時間で完全に両モノマーを溶解させた後、1,4,5,8-テトラカルボン酸二無水物(NTDA) 3g (0.01187mol)を加え、120℃で24時間攪拌し、ポリアミック酸を得た。安息香酸(NTDAの1.12倍モル)とトリエチルアミン(先に加えた量と合わせて2.4倍モル)を加え、化学イミド化反応を24時間行い、目的とするスルホン酸基含有ポリイミドを合成した(NTDA-BDSA-r-6FAP)。
Example 1: Synthesis of sulfonic acid group-containing polyimide Using m-cresol as a polymerization solvent, 2,122'-diaminodiphenylhexafluoropropane (6FAP) 1.122 g (0.003356 mol) and 2,2'-benzidine disulfonic acid ( (BDSA) 2.697 g (0.00783 mol) and triethylamine were dissolved in m-cresol (28 times mol of NTDA) by stirring at 80 ° C. in a nitrogen atmosphere. After dissolving both monomers completely in 4 hours, add 3 g (0.01187 mol) of 1,4,5,8-tetracarboxylic dianhydride (NTDA) and stir at 120 ° C for 24 hours to obtain polyamic acid. It was. Benzoic acid (1.12 mol of NTDA) and triethylamine (2.4 mol in total with the amount added previously) were added, and the chemical imidization reaction was performed for 24 hours to synthesize the target sulfonic acid group-containing polyimide (NTDA- BDSA-r-6FAP).

日本電子データム株式会社製核磁気共鳴装置を用いて、合成した樹脂(NTDA-BDSA-r-6FAP)について1H NMR分光法による分子構造解析を行った。結果を図1に示す。日本分光株式会社製赤外吸収分光装置を用いて、合成した樹脂(NTDA-BDSA-r-6FAP)について赤外吸収分光法による分子構造解析を行った。結果を図2に示す。 Using a nuclear magnetic resonance apparatus manufactured by JEOL Datum Co., Ltd., the synthesized resin (NTDA-BDSA-r-6FAP) was subjected to molecular structure analysis by 1 H NMR spectroscopy. The results are shown in FIG. Using an infrared absorption spectrometer manufactured by JASCO Corporation, the synthesized resin (NTDA-BDSA-r-6FAP) was subjected to molecular structure analysis by infrared absorption spectroscopy. The results are shown in FIG.

実施例2:スルホン酸基含有ポリイミド電解質膜の作製
実施例1で製造したスルホン酸基含有ポリイミド(10重量%)を、ジメチルスルホキシド(90重量%)に溶解した。得られたスルホン酸基含有ポリイミド溶液をガラスシャーレ(64cm2)上にキャストし、110℃、減圧下で溶媒を蒸発させた。作製された膜は緻密で均一な構造を形成しており、膜厚50μm程度であった。これを1Nの塩酸に浸漬させることで、目的の電解質膜を作製した。
Example 2: Preparation of sulfonic acid group-containing polyimide electrolyte membrane The sulfonic acid group-containing polyimide (10 wt%) produced in Example 1 was dissolved in dimethylsulfoxide (90 wt%). The obtained sulfonic acid group-containing polyimide solution was cast on a glass petri dish (64 cm 2 ), and the solvent was evaporated at 110 ° C. under reduced pressure. The produced film had a dense and uniform structure, and the film thickness was about 50 μm. This was immersed in 1N hydrochloric acid to produce the target electrolyte membrane.

実施例3:スルホン酸基含有ポリイミド電解質膜の示差走査熱量分析
セイコー電子工業社製示差走査熱量分析装置を用いてスルホン酸基含有ポリイミド電解質膜の熱量変化を測定した。測定温度25〜450℃、昇温速度10℃/min、窒素流量40ml/minとした。高分子主鎖のミクロブラウン運動が開始する温度を意味するTgは、450℃までは観察されなかった。
Example 3 Differential Scanning Calorimetric Analysis of Sulfonic Acid Group-Containing Polyimide Electrolyte Membrane The change in calorific value of the sulfonic acid group-containing polyimide electrolyte membrane was measured using a differential scanning calorimetric analyzer manufactured by Seiko Denshi Kogyo. The measurement temperature was 25 to 450 ° C., the heating rate was 10 ° C./min, and the nitrogen flow rate was 40 ml / min. The T g means the temperature at which micro-Brownian motion of the polymer main chain is started, until 450 ° C. was observed.

実施例4:スルホン酸基含有ポリイミド緻密膜のプロトン伝導度測定
プロトン伝導度測定はESPEC社製恒温恒湿器を用いて温度と湿度を保ち、日置社製インピーダンスアナライザーを用いて、電解質抵抗を測定した。具体的にはインピーダンスアナライザーにより50kHz〜5MHzまでの周波数応答性を測定し、プロトン伝導度を算出した。測定湿度は100% (相対湿度)、測定温度は80℃とした。結果を表1に示す。表1において、コントロールとは市販品の電解質膜であるNafionR117膜である。表1に示す結果より、本発明で用いた電解質膜はNafionR117膜と同等以上の高いプロトン伝導性を有していることがわかる。
Example 4: Proton conductivity measurement of sulfonic acid group-containing polyimide dense membrane Proton conductivity measurement is performed by maintaining the temperature and humidity using a constant temperature and humidity chamber manufactured by ESPEC, and measuring the electrolyte resistance using an impedance analyzer manufactured by Hioki. did. Specifically, the frequency response from 50 kHz to 5 MHz was measured with an impedance analyzer, and the proton conductivity was calculated. The measurement humidity was 100% (relative humidity), and the measurement temperature was 80 ° C. The results are shown in Table 1. In Table 1, the control is a Nafion R 117 membrane which is a commercially available electrolyte membrane. From the results shown in Table 1, it can be seen that the electrolyte membrane used in the present invention has high proton conductivity equivalent to or higher than that of the Nafion R 117 membrane.

実施例5:スルホン酸基含有ポリイミド電解質膜への白金イオン注入
400kVイオン注入装置を用いて50mm角のスルホン酸基含有ポリイミド電解質膜に対して白金イオンを加速エネルギー330keV、照射量5E15 ions/cm2で照射した。計算により白金イオンが潜り込む深さを算出し、図3に示す(170nm)。
Example 5: Platinum ion implantation into a sulfonic acid group-containing polyimide electrolyte membrane
Using a 400 kV ion implantation apparatus, 50 mm square sulfonic acid group-containing polyimide electrolyte membrane was irradiated with platinum ions at an acceleration energy of 330 keV and an irradiation amount of 5E15 ions / cm 2 . The depth at which platinum ions enter is calculated by calculation and is shown in FIG. 3 (170 nm).

実施例6
さらにヘリウムイオンを1E16 ions/cm2の照射を追加して行うことで、目的のイオン注入MEAを作製した。白金とヘリウムイオン注入されたスルホン酸基含有ポリイミド電解質膜のラマンスペクトル結果を以下の図4に示す。図4より、グラファイトライクピーク(1590cm-1)及びダイアモンドライクピーク(1360cm-1)が確認され、カーボン化の進行が観察された。
Example 6
Furthermore, the target ion-implanted MEA was fabricated by performing irradiation with helium ions at an additional dose of 1E16 ions / cm 2 . The Raman spectrum result of the sulfonic acid group-containing polyimide electrolyte membrane implanted with platinum and helium ions is shown in FIG. From FIG. 4, a graphite-like peak (1590 cm −1 ) and a diamond-like peak (1360 cm −1 ) were confirmed, and the progress of carbonization was observed.

実施例7:
作製したイオン注入MEAはESPEC社製恒温恒湿器を用いて温度を80℃保ち、自作発電用セルを用いて、加湿純水素(20ml/min)、加湿純酸素(10ml/min)を供給して発電試験を行った。結果、0.32V時に28μA/cm2の発電が確認された。このときの白金担持量は1.58×10-3(mg/cm2)であり、ホットプレス法などで作製される従来の高分子電解質膜に比べ担持量は約千分の1であった。
Example 7:
The produced ion-implanted MEA was maintained at 80 ° C using a constant temperature and humidity chamber made by ESPEC, and humidified pure hydrogen (20 ml / min) and humidified pure oxygen (10 ml / min) were supplied using a self-made power generation cell. A power generation test was conducted. As a result, power generation of 28 μA / cm 2 was confirmed at 0.32V. The amount of platinum supported at this time was 1.58 × 10 −3 (mg / cm 2 ), and the amount supported was about a thousandth that of a conventional polymer electrolyte membrane produced by a hot press method or the like.

図1は、NTDA-BDSA-r-6FAP の1H-NMRスペクトルを示す。FIG. 1 shows the 1H-NMR spectrum of NTDA-BDSA-r-6FAP. 図2は、NTDA-BDSA-r-6FAP のIRスペクトルを示す。FIG. 2 shows the IR spectrum of NTDA-BDSA-r-6FAP. 図3は、NTDA-BDSA/6FAP(70/30)膜へPt注入(加速エネルギー330keV)したときの潜り込み深さを示す。FIG. 3 shows the penetration depth when Pt is implanted (acceleration energy: 330 keV) into the NTDA-BDSA / 6FAP (70/30) film. 図4は、NTDA-BDSA/6FAP(70/30)膜のRamanスペクトルを示す。FIG. 4 shows the Raman spectrum of the NTDA-BDSA / 6FAP (70/30) film.

Claims (10)

高分子材料から構成される高分子固体電解質膜の表面の少なくとも一部に白金イオンが注入されている、電解質膜電極接合体。 An electrolyte membrane electrode assembly in which platinum ions are implanted into at least a part of the surface of a polymer solid electrolyte membrane made of a polymer material. 高分子材料が、スルホン化ポリイミド、スルホン化ポリスルホン、スルホン化ポリエーテルスルホン、スルホン化ポリベンズイミダゾール、スルホン化ポリエーテルエーテルケトン、又はスルホン化ポリフェニレンである、請求項1に記載の電解質膜電極接合体。 The electrolyte membrane electrode assembly according to claim 1, wherein the polymer material is sulfonated polyimide, sulfonated polysulfone, sulfonated polyethersulfone, sulfonated polybenzimidazole, sulfonated polyetheretherketone, or sulfonated polyphenylene. . 高分子材料が、スルホン化ポリイミドである、請求項1又は2に記載の電解質膜電極接合体。 The electrolyte membrane electrode assembly according to claim 1 or 2, wherein the polymer material is sulfonated polyimide. 高分子材料が、以下の構造式(1)を構造単位として有するポリイミド樹脂である、請求項1から3の何れかに記載の電解質膜電極接合体。
(式中、X及びYは0〜100の整数を示し、x/yは95/5から20/80の範囲内である)
The electrolyte membrane electrode assembly according to any one of claims 1 to 3, wherein the polymer material is a polyimide resin having the following structural formula (1) as a structural unit.
(Wherein X and Y represent integers of 0 to 100, and x / y is in the range of 95/5 to 20/80)
ドース量φが1×1012個/cm2≦φ≦1×1019個/cm2 となる範囲で白金イオンが注入されている、請求項1から4の何れかに記載の電解質膜電極接合体。 5. The electrolyte membrane electrode junction according to claim 1, wherein platinum ions are implanted in a range where the dose amount φ is 1 × 10 12 pieces / cm 2 ≦ φ ≦ 1 × 10 19 pieces / cm 2. body. 高分子固体電解質膜の表面の少なくとも一部に、さらに白金以外の気体または希ガスのイオンが注入されている、請求項1から5の何れかに記載の電解質膜電極接合体。 6. The electrolyte membrane electrode assembly according to claim 1, wherein ions of a gas other than platinum or a rare gas are further implanted into at least a part of the surface of the polymer solid electrolyte membrane. 白金単独によるイオン注入を行うか、又は白金注入の前後にルテニウム、モリブデン、スズ、マンガン、鉄等の金属を追加して注入することにより白金触媒の劣化が抑制されている、請求項1から6の何れかに記載の電解質膜電極接合体。 Deterioration of the platinum catalyst is suppressed by performing ion implantation with platinum alone or by implanting additional metal such as ruthenium, molybdenum, tin, manganese, or iron before and after platinum implantation. The electrolyte membrane electrode assembly according to any one of the above. 高分子材料から構成される高分子固体電解質膜の表面の少なくとも一部に白金イオンを注入する工程を含む、請求項1から7の何れかに記載の電解質膜電極接合体の製造方法。 The manufacturing method of the electrolyte membrane electrode assembly in any one of Claim 1 to 7 including the process of inject | pouring platinum ion to at least one part of the surface of the polymer solid electrolyte membrane comprised from a polymeric material. ドース量φが1×1012個/cm2≦φ≦1×1019個/cm2 となる範囲で白金イオン注入を行う、請求項8に記載の製造方法。 The manufacturing method according to claim 8, wherein platinum ion implantation is performed in a range where the dose amount φ is 1 × 10 12 pieces / cm 2 ≦ φ ≦ 1 × 10 19 pieces / cm 2 . 請求項1から7の何れかに記載の電解質膜電極接合体を使用した高分子固体電解質型燃料電池。 A solid polymer electrolyte fuel cell using the electrolyte membrane electrode assembly according to claim 1.
JP2004088683A 2004-03-25 2004-03-25 Electrolyte membrane electrode assembly produced by ion implantation Pending JP2005276642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004088683A JP2005276642A (en) 2004-03-25 2004-03-25 Electrolyte membrane electrode assembly produced by ion implantation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004088683A JP2005276642A (en) 2004-03-25 2004-03-25 Electrolyte membrane electrode assembly produced by ion implantation

Publications (1)

Publication Number Publication Date
JP2005276642A true JP2005276642A (en) 2005-10-06

Family

ID=35176073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004088683A Pending JP2005276642A (en) 2004-03-25 2004-03-25 Electrolyte membrane electrode assembly produced by ion implantation

Country Status (1)

Country Link
JP (1) JP2005276642A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007102235A1 (en) * 2006-03-07 2007-09-13 Sumitomo Chemical Company, Limited Polyarylene and process for producing the same
JP2007302743A (en) * 2006-05-09 2007-11-22 Nippon Steel Chem Co Ltd Sulfonated aromatic polyimide
JP2009138305A (en) * 2007-12-08 2009-06-25 Tokyo Metropolitan Univ Conductive nanofiber
JP2012184474A (en) * 2011-03-05 2012-09-27 Univ Of Fukui Method for manufacturing metal plating material
CN110003412A (en) * 2019-04-15 2019-07-12 西南交通大学 A kind of pair of polyether-ether-ketone carries out modified method, polyetheretherketonematerials materials and its application in surface
CN112526032A (en) * 2020-12-28 2021-03-19 北京金城泰尔制药有限公司 Method for detecting policresulen
CN117254081A (en) * 2023-09-19 2023-12-19 上海大学 Anti-aging proton exchange membrane, preparation method thereof and membrane electrode assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0364867A (en) * 1989-08-01 1991-03-20 Mitsubishi Heavy Ind Ltd Surface reforming method for solid macromolecule electrolyte film
JP2002358978A (en) * 2001-06-01 2002-12-13 Sumitomo Electric Ind Ltd Polymer electrolyte membrane and its manufacturing method
JP2003277501A (en) * 2002-03-22 2003-10-02 Toyota Motor Corp Polyimide resin, process for producing polyimide resin, electrolyte film and electrolyte solution, and fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0364867A (en) * 1989-08-01 1991-03-20 Mitsubishi Heavy Ind Ltd Surface reforming method for solid macromolecule electrolyte film
JP2002358978A (en) * 2001-06-01 2002-12-13 Sumitomo Electric Ind Ltd Polymer electrolyte membrane and its manufacturing method
JP2003277501A (en) * 2002-03-22 2003-10-02 Toyota Motor Corp Polyimide resin, process for producing polyimide resin, electrolyte film and electrolyte solution, and fuel cell

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8236920B2 (en) 2006-03-07 2012-08-07 Sumitomo Chemical Company, Limited Polyarylene and process for producing the same
EP1995265A1 (en) * 2006-03-07 2008-11-26 Sumitomo Chemical Company, Limited Polyarylene and process for producing the same
WO2007102235A1 (en) * 2006-03-07 2007-09-13 Sumitomo Chemical Company, Limited Polyarylene and process for producing the same
EP1995265A4 (en) * 2006-03-07 2010-07-07 Sumitomo Chemical Co Polyarylene and process for producing the same
JP2007302743A (en) * 2006-05-09 2007-11-22 Nippon Steel Chem Co Ltd Sulfonated aromatic polyimide
JP4545708B2 (en) * 2006-05-09 2010-09-15 新日鐵化学株式会社 Sulfonated aromatic polyimide
JP2009138305A (en) * 2007-12-08 2009-06-25 Tokyo Metropolitan Univ Conductive nanofiber
JP2012184474A (en) * 2011-03-05 2012-09-27 Univ Of Fukui Method for manufacturing metal plating material
CN110003412A (en) * 2019-04-15 2019-07-12 西南交通大学 A kind of pair of polyether-ether-ketone carries out modified method, polyetheretherketonematerials materials and its application in surface
CN112526032A (en) * 2020-12-28 2021-03-19 北京金城泰尔制药有限公司 Method for detecting policresulen
CN112526032B (en) * 2020-12-28 2022-05-17 北京金城泰尔制药有限公司 Method for detecting policresulen
CN117254081A (en) * 2023-09-19 2023-12-19 上海大学 Anti-aging proton exchange membrane, preparation method thereof and membrane electrode assembly
CN117254081B (en) * 2023-09-19 2024-05-14 上海大学 Anti-aging proton exchange membrane, preparation method thereof and membrane electrode assembly

Similar Documents

Publication Publication Date Title
US6523699B1 (en) Sulfonic acid group-containing polyvinyl alcohol, solid polymer electrolyte, composite polymer membrane, method for producing the same and electrode
JP4411479B2 (en) Method for producing membrane made of crosslinked polymer and fuel cell
US20100159347A1 (en) Hyper-branched polymer, electrode for fuel cell including the hyper-branched polymer, electrolyte membrane for fuel cell including the hyper-branched polymer, and fuel cell including at least one of the electrode and the electrolyte membrane
JP2004035891A (en) Proton conductive polymer having acid group on side chain, its manufacturing method, polymer membrane using the proton conductive polymer, and fuel cell using it
TW200301583A (en) Method of producing a polymer electrolyte membrane
JP2004146367A (en) Fuel cell unit, production method thereof, and fuel cell employing the fuel cell unit
JP2012519929A (en) Improved membrane electrode assembly
JP2009068011A (en) Phosphorus-containing benzoxazine-based monomer, polymer of phosphorus-containing benzoxazine-based monomer, electrode for fuel cell, electrolyte membrane for fuel cell, and fuel cell
JP5195286B2 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
KR100718108B1 (en) Polymer electrolyte membrane, preparing method thereof, and fuel cell using the same
Lufrano et al. Investigation of sulfonated polysulfone membranes as electrolyte in a passive-mode direct methanol fuel cell mini-stack
Khabibullin et al. The effect of sulfonic acid group content in pore-filled silica colloidal membranes on their proton conductivity and direct methanol fuel cell performance
US8114552B2 (en) Electrode structure for polymer electrolyte fuel cell comprising sulfonated polyarylene-based polymer and method for manufactuing same
JP4588008B2 (en) Dendrimer solid acid, polymer electrolyte membrane, membrane electrode assembly and fuel cell
JP2001158806A (en) Sulfone group-containing polyvinyl alcohol, solid polymer electrolyte, polymer conjugated membrane, production method therefor and electrode
EP3382783B1 (en) Polymer electrolyte membrane, membrane electrode assembly comprising same, and fuel cell comprising membrane electrode assembly
JP2005276642A (en) Electrolyte membrane electrode assembly produced by ion implantation
Wang et al. Surface‐engineered Nafion/CNTs nanocomposite membrane with improved voltage efficiency for vanadium redox flow battery
JP2007503707A (en) Fullerene electrolytes for fuel cells
Li et al. Surface-Densified Non-Fluorinated Proton Exchange Membrane Used for Direct Methanol Fuel Cell
KR20040092024A (en) Method to manufacture polymer electrolyte composite membranes for fuel cells
JP4524579B2 (en) Proton conductive composite and electrochemical device
JP5063642B2 (en) Polymer compound, membrane-electrode assembly for fuel cell including the same, and fuel cell system including the same
US7758986B2 (en) Proton conductor, polymer electrolyte comprising the same and fuel cell employing the polymer electrolyte
Xu et al. A quaternary polybenzimidazole membrane for intermediate temperature polymer electrolyte membrane fuel cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100608