JP2009138305A - Conductive nanofiber - Google Patents

Conductive nanofiber Download PDF

Info

Publication number
JP2009138305A
JP2009138305A JP2007317779A JP2007317779A JP2009138305A JP 2009138305 A JP2009138305 A JP 2009138305A JP 2007317779 A JP2007317779 A JP 2007317779A JP 2007317779 A JP2007317779 A JP 2007317779A JP 2009138305 A JP2009138305 A JP 2009138305A
Authority
JP
Japan
Prior art keywords
polymer
nanofiber
nanofibers
conductive
conductive nanofiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007317779A
Other languages
Japanese (ja)
Other versions
JP4868414B2 (en
Inventor
Hiroyoshi Kawakami
浩良 川上
Naoko Seki
直子 関
Yoshiaki Suzuki
嘉昭 鈴木
Hiroshi Toida
浩 戸井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Tokyo Metropolitan Public University Corp
Original Assignee
RIKEN Institute of Physical and Chemical Research
Tokyo Metropolitan Public University Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research, Tokyo Metropolitan Public University Corp filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP2007317779A priority Critical patent/JP4868414B2/en
Publication of JP2009138305A publication Critical patent/JP2009138305A/en
Application granted granted Critical
Publication of JP4868414B2 publication Critical patent/JP4868414B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new nanofiber capable of imparting a unique function to a nanofiber produced by electrospinning process while keeping the characteristics of a polymer and a method for producing the nanofiber, especially a polymer nanofiber having excellent conductivity. <P>SOLUTION: Conductivity is imparted to a polymer nanofiber produced by electrospinning process by bombarding the nanofiber with ions. The characteristics of the starting polymer are maintained even after the ion bombardment. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本願発明は、ナノファイバーに関し、更に詳しくは、イオン注入された優れた導電性を有するナノファイバーに関する。   The present invention relates to a nanofiber, and more particularly to a nanofiber having excellent conductivity that is ion-implanted.

近年、サブミクロンスケールの直径を持つファイバーを簡単に作製できる技術として、エレクトロスピニング法が注目されている。この方法は、高分子溶液に高電圧を印加することによって溶液をスプレーし、ファイバーを形成させるものである。ファイバーの太さは、印加電圧、溶液濃度およびスプレーの飛散距離に依存する。   In recent years, the electrospinning method has attracted attention as a technique for easily producing a fiber having a diameter of a submicron scale. In this method, a high voltage is applied to the polymer solution to spray the solution to form fibers. The thickness of the fiber depends on the applied voltage, the solution concentration and the spray distance.

これまでの研究から、工業用熱可塑性ポリマー、生分解性ポリマー、ポリマーブレンド、そして、無機化合物を混入した複合材のファイバーがエレクトロスピニング法によって紡糸されている。ここ数年では、アルミナ、酸化ジルコニウム、酸化チタン、チタン酸ジルコン酸鉛等のセラミックスナノファイバーの作製例が盛んに報告されてもいる。通常、エレクトロスピニング法においては、溶媒に材料を溶解した溶液を紡糸材料として用いている。   From previous studies, industrial thermoplastic polymers, biodegradable polymers, polymer blends, and composite fibers mixed with inorganic compounds have been spun by electrospinning. In recent years, production examples of ceramic nanofibers such as alumina, zirconium oxide, titanium oxide, and lead zirconate titanate have been actively reported. Usually, in the electrospinning method, a solution in which a material is dissolved in a solvent is used as a spinning material.

このエレクトロスピニング法により、例えば、各種形状の穴を有する電極を回転させてファイバーの配向をそろえるようにすること、糸巻き状のものをコレクタに、もしくは紡糸開始点とコレクタとの間に配置してナノファイバーを巻き取り配向性の不織布を得ること、紡糸開始点を2つ設定し2層構造や混合したファイバーを作製すること等が報告されている。   By this electrospinning method, for example, by rotating an electrode having holes of various shapes so as to align the orientation of the fiber, a bobbin-shaped object is arranged in the collector or between the spinning start point and the collector. It has been reported that a nanofiber is wound up to obtain a non-woven fabric with orientation and that two spinning start points are set to produce a two-layer structure or a mixed fiber.

このような進展が見られるエレクトロスピニング法によれば、基板上に連続的にファイバーを作製することによって、立体的な網目をもつ3次元構造の薄膜が得られることや、機能性薄膜を3次元構造にすることで、新しい特性の発見や機能の向上が期待できる。また、この手法では膜を布のように厚くすることが可能で、サブミクロンの網目をもつ不織布を作製することができる。この不織布は様々な新機能を有する布として、宇宙服や防護服などへの応用のほか、人工皮膚や人工臓器などへの応用が研究されている。   According to the electrospinning method in which such progress is observed, a thin film having a three-dimensional network can be obtained by continuously producing fibers on a substrate, and a functional thin film can be formed in three dimensions. The structure can be expected to discover new properties and improve functions. In addition, in this method, the film can be made thick like a cloth, and a non-woven fabric having a submicron mesh can be produced. This non-woven fabric has various new functions and has been studied for application to space suits and protective clothing as well as artificial skin and organs.

しかしながら、高分子からなるナノファイバーは、エレクトロスピニング法により比較的容易に作製することができるものの、得られたナノファイバー不織布は、材料となった高分子の特性のみを反映するものでそれ以上の機能は望めないのが実情であった(特許文献1参照)。
特開2006−326562号公報
However, although nanofibers made of polymer can be produced relatively easily by the electrospinning method, the obtained nanofiber nonwoven fabric reflects only the characteristics of the polymer used as the material. The actual situation is that the function cannot be expected (see Patent Document 1).
JP 2006-326562 A

本願発明は、以上のような背景から、従来技術の問題点を解消し、材料となった高分子の特性のみを反映するものでなく、エレクトロスピニング法により作製されるナノファイバーにこれまでにない機能性を持たせることのできる新しいナノファイバーとその製造方法を提供することを課題としている。   The present invention eliminates the problems of the prior art from the background as described above, and does not reflect only the characteristics of the polymer used as a material, and has never existed in a nanofiber produced by an electrospinning method. It is an object to provide a new nanofiber that can be provided with functionality and a manufacturing method thereof.

特に、本願発明の課題は、優れた導電性を有する高分子ナノファイバーを提供することにある。   In particular, an object of the present invention is to provide a polymer nanofiber having excellent conductivity.

本願発明は、エレクトロスピニング法により形成された高分子ナノファイバーに導電性を与えるために、該ナノファイバーにイオンを照射することにより、上記課題を解決した。   The present invention has solved the above problems by irradiating the nanofibers with ions in order to impart conductivity to the polymer nanofibers formed by the electrospinning method.

上記高分子としては、ポリイミド(PI)、ポリスチレン(PS)、ポリカーボネイト(PC)、ポリビニルクロライド(PVC)、ポリエチレンテレフタレート(PET)、ポリアミド(PA)、ポリウレタン(PU)、ポリビニルアルコール(PVA)、ポリ乳酸(PLA)、ポリエチレングリコール(PEG)等およびこれらの混合体が挙げられる。   Examples of the polymer include polyimide (PI), polystyrene (PS), polycarbonate (PC), polyvinyl chloride (PVC), polyethylene terephthalate (PET), polyamide (PA), polyurethane (PU), polyvinyl alcohol (PVA), poly Examples thereof include lactic acid (PLA), polyethylene glycol (PEG), and the like, and mixtures thereof.

照射するイオンとしては、ヘリウム、ネオン、アルゴン、酸素、窒素、クリプトン又は金属等が挙げられる。   Examples of ions to be irradiated include helium, neon, argon, oxygen, nitrogen, krypton, and metal.

本願発明は、エレクトロスピニング法により形成された高分子ナノファイバーにイオンを照射することにより、該ナノファイバーに有効な導電性を与えることができた。   The present invention was able to impart effective conductivity to the nanofibers by irradiating the polymer nanofibers formed by the electrospinning method with ions.

以下に、本願発明を実施するための最良の形態を示す。   The best mode for carrying out the present invention will be described below.

図1に示すように、エレクトロスピニング法の装置は、先の尖ったプラス電極(キャピラリー)と、平面状のマイナス(アース)電極で構成されている。両電極間には高電圧が印加されており、キャピラリーを出た電荷を帯びた溶融ポリマーまたはポリマー溶解液は、電界中をマイナス電極に向かって吸い寄せられる。このとき、ポリマーが低分子だとスプレー状になり、高分子だと複数に分かれた繊維がマイナス電極に向かって吸い寄せられ、電極上で薄い繊維の層を形成する。   As shown in FIG. 1, the electrospinning apparatus is composed of a pointed plus electrode (capillary) and a flat minus (ground) electrode. A high voltage is applied between the electrodes, and the charged molten polymer or polymer solution exiting the capillary is sucked toward the negative electrode in the electric field. At this time, when the polymer is a low molecule, the polymer is sprayed, and when the polymer is a polymer, a plurality of divided fibers are sucked toward the minus electrode to form a thin fiber layer on the electrode.

イオン注入による処理深さをシュミレーションソフトであるTrimより算出した。その結果、ヘリウム、ネオン、アルゴンではそれぞれイオンの潜り込み深さは1540nm、625nm、380nmであり、これらの処理深さにナノファイバー直径を制御した。まず、1540nmの直径のナノファイバーを作製するため、ポリイミド溶液の濃度を190mg/mLに調整し、送液速度2.4mL/h、印加電圧15kVと設定した。625nmの直径のナノファイバーを作製するため、ポリイミド溶液の濃度を170mg/mLに調整し、送液速度0.24mL/h、印加電圧10kVと設定した。380nmの直径のナノファイバーを作製するため、ポリイミド溶液の濃度を120mg/mLに調整し、送液速度0.24mL/h、印加電圧15kVと設定した。すべての条件において、紡糸開始点とコレクタ間の距離を10cmと設定した。コレクタには両端をアルミホイルで覆ったガラス板を用いた。このような条件でエレクトロスピニングによるナノファイバーの作製を行い、一晩、真空乾燥した。   The treatment depth by ion implantation was calculated from Trim, which is simulation software. As a result, helium, neon, and argon had ion penetration depths of 1540 nm, 625 nm, and 380 nm, respectively, and the nanofiber diameter was controlled to these treatment depths. First, in order to produce nanofibers having a diameter of 1540 nm, the concentration of the polyimide solution was adjusted to 190 mg / mL, and the liquid feeding speed was set to 2.4 mL / h and the applied voltage was 15 kV. In order to produce a nanofiber having a diameter of 625 nm, the concentration of the polyimide solution was adjusted to 170 mg / mL, and the liquid feeding speed was set to 0.24 mL / h and the applied voltage was set to 10 kV. In order to produce a nanofiber having a diameter of 380 nm, the concentration of the polyimide solution was adjusted to 120 mg / mL, the liquid feeding speed was set to 0.24 mL / h, and the applied voltage was set to 15 kV. In all conditions, the distance between the spinning start point and the collector was set to 10 cm. A glass plate with both ends covered with aluminum foil was used as the collector. Under such conditions, nanofibers were produced by electrospinning, and vacuum-dried overnight.

上記真空乾燥したナノファイバーに対して、ヘリウム、ネオンおよびアルゴンイオンを3とおりの照射量で照射した。その結果を以下の表1に示す。照射前のナノファイバーの面抵抗は、非常に高く測定不可能であったが、イオン照射することにより、導電性が下記の表に示されるように向上した。

Figure 2009138305
The vacuum-dried nanofibers were irradiated with helium, neon and argon ions at three doses. The results are shown in Table 1 below. Although the surface resistance of the nanofiber before irradiation was very high and could not be measured, the conductivity was improved as shown in the following table by ion irradiation.
Figure 2009138305

また、図2に、含フッ素ポリイミド(6FDA−6FAP)のアルゴンを照射した場合と、照射していない場合のラマンスペクトルを示す。   In addition, FIG. 2 shows Raman spectra when the fluorine-containing polyimide (6FDA-6FAP) is irradiated with argon and when it is not irradiated.

図2から、材料が炭素化されたことを示している。まだカーボンナノチューブのような高いグラファイト構造は形成されていないが、今後そのような構造の形成を企画している。
FIG. 2 shows that the material has been carbonized. A high graphite structure such as carbon nanotubes has not yet been formed, but the formation of such a structure is planned in the future.

本願発明に係る導電性ナノファイバーは、導電率が高いので、帯電防止剤、電磁シールド、電池の電極材料、気体拡散電極、スーパーキャパシタ電極又は線材化の技術がさらに進歩すれば半導体の配線等に利用することができる。   Since the conductive nanofiber according to the present invention has high conductivity, if the technology of antistatic agent, electromagnetic shield, battery electrode material, gas diffusion electrode, supercapacitor electrode or wire is further advanced, it can be used for semiconductor wiring, etc. Can be used.

エレクトロスピニング装置の概念図Conceptual diagram of electrospinning equipment ポリイミドのイオン照射前後のラマンスペクトルRaman spectra before and after ion irradiation of polyimide

Claims (8)

導電性ナノファイバーの製造方法であって、
導電性部材をエレクトロスピニング装置の電極基板上に配置する行程、
高電圧の印加された高分子を該装置のキャピラリーから該部材に向けてスプレーする行程、
該部材上にナノファイバーを形成する工程及び
該ナノファイバーにイオンを照射する工程を有することを特徴とする導電性ナノファイバーの製造方法。
A method for producing conductive nanofibers, comprising:
The step of placing the conductive member on the electrode substrate of the electrospinning device;
Spraying a polymer to which a high voltage is applied from the capillary of the apparatus toward the member;
A method for producing conductive nanofibers, comprising: forming nanofibers on the member; and irradiating the nanofibers with ions.
請求項1において、上記高分子は、溶融高分子又は高分子が溶媒に溶解した高分子溶液であることを特徴とする導電性ナノファイバーの製造方法。   2. The method for producing conductive nanofiber according to claim 1, wherein the polymer is a molten polymer or a polymer solution in which the polymer is dissolved in a solvent. 請求項1において、上記高分子は、ポリイミドであることを特徴とする導電性ナノファイバーの製造方法。   2. The method for producing conductive nanofiber according to claim 1, wherein the polymer is polyimide. 請求項1において、上記イオンは、ネオン又はアルゴンであることを特徴とする導電性ナノファイバーの製造方法。   2. The method for producing conductive nanofiber according to claim 1, wherein the ion is neon or argon. 導電性ナノファイバーであって、エレクトロスピニング法により形成されたナノファイバーにイオンを照射することにより製造されることを特徴とする導電性ナノファイバー。   A conductive nanofiber, which is produced by irradiating a nanofiber formed by an electrospinning method with ions. 請求項5において、上記ナノファイバーは、高分子により形成されていることを特徴とする導電性ナノファイバー。   6. The conductive nanofiber according to claim 5, wherein the nanofiber is formed of a polymer. 請求項6において、上記高分子は、ポリイミドであることを特徴とする導電性ナノファイバー。   The conductive nanofiber according to claim 6, wherein the polymer is polyimide. 請求項5において、上記イオンは、ネオン又はアルゴンであることを特徴とする導電性ナノファイバー。
6. The conductive nanofiber according to claim 5, wherein the ion is neon or argon.
JP2007317779A 2007-12-08 2007-12-08 Conductive nanofiber Active JP4868414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007317779A JP4868414B2 (en) 2007-12-08 2007-12-08 Conductive nanofiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007317779A JP4868414B2 (en) 2007-12-08 2007-12-08 Conductive nanofiber

Publications (2)

Publication Number Publication Date
JP2009138305A true JP2009138305A (en) 2009-06-25
JP4868414B2 JP4868414B2 (en) 2012-02-01

Family

ID=40869200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007317779A Active JP4868414B2 (en) 2007-12-08 2007-12-08 Conductive nanofiber

Country Status (1)

Country Link
JP (1) JP4868414B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57138A (en) * 1980-03-13 1982-01-05 Inst Za Yadreni Izsledvaniya Polymer surface dressing method
JPS6350569A (en) * 1986-08-20 1988-03-03 尾池工業株式会社 Conductive cloth like article
JPH04153367A (en) * 1990-10-16 1992-05-26 Kanebo Ltd Electrically conductive fiber
JP2005276642A (en) * 2004-03-25 2005-10-06 Japan Science & Technology Agency Electrolyte membrane electrode assembly produced by ion implantation
WO2005123995A1 (en) * 2004-06-17 2005-12-29 Korea Research Institute Of Chemical Technology Filament bundle type nano fiber and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57138A (en) * 1980-03-13 1982-01-05 Inst Za Yadreni Izsledvaniya Polymer surface dressing method
JPS6350569A (en) * 1986-08-20 1988-03-03 尾池工業株式会社 Conductive cloth like article
JPH04153367A (en) * 1990-10-16 1992-05-26 Kanebo Ltd Electrically conductive fiber
JP2005276642A (en) * 2004-03-25 2005-10-06 Japan Science & Technology Agency Electrolyte membrane electrode assembly produced by ion implantation
WO2005123995A1 (en) * 2004-06-17 2005-12-29 Korea Research Institute Of Chemical Technology Filament bundle type nano fiber and manufacturing method thereof

Also Published As

Publication number Publication date
JP4868414B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
Yoon et al. Recent progress in coaxial electrospinning: New parameters, various structures, and wide applications
Huang et al. Electrospun polymer nanofibres with small diameters
KR101821049B1 (en) Quasi-aligned 1D Polymer Nanofibers Grid structure Cross-Laminated, Pore distribution and Pore size controlled 3D Polymer Nanofibers Membrane and Manufacturing Method thereof
Rebollar et al. Improvement of electrospun polymer fiber meshes pore size by femtosecond laser irradiation
Wang et al. Recent progress of the preparation and application of electrospun porous nanofibers
KR101689740B1 (en) Electro-spinning apparatus using drum collector and method of manufacturing a transparent electrode using the same
CN111636195B (en) Layer-by-layer self-assembly composite conductive fiber bundle and preparation method thereof
JP2006328562A (en) Nano/microfiber nonwoven fabric having micro pattern structure and method for producing the same
KR20130033866A (en) Porous sheet and manufacturing method for porous sheet
KR101260459B1 (en) Electrospinning apparatus, supporting apparatus for supporting electrospinning apparatus, well aligned nanofibers and method for preparing the same
JP2008223186A (en) Method for producing nanofibers and apparatus therefor
JP2012209234A (en) Secondary battery fibrous separation film and manufacturing method for the same
CN104878590A (en) Preparation method of conductive graphene nanofiber membrane
Zaarour et al. Maneuvering the secondary surface morphology of electrospun poly (vinylidene fluoride) nanofibers by controlling the processing parameters
JP5509432B2 (en) Manufacturing method of fiber conductor and fiber conductor obtained by the method
KR101310523B1 (en) Porous sheet and method for manufacturing the same
JP2008223187A (en) Method for producing nanofibers and apparatus therefor
Fang et al. Four self-made free surface electrospinning devices for high-throughput preparation of high-quality nanofibers
EP2094885A1 (en) Device for manufacturing fibrils and method thereof
Mitchell et al. The potential of electrospinning in rapid manufacturing processes: The fundamentals of electrospinning, key process parameters, materials and potential application in rapid manufacturing are presented in this paper
KR101430396B1 (en) Metal Oxide Nanotubes, Fabrication Method for preparing the same, and Gas sensor comprising the same
Amariei et al. Electrospinning polyaniline for sensors
JP2005330624A (en) Method for producing vinyl-based conductive polymer fiber and vinyl-based conductive polymer fiber obtained by the method
JP4868414B2 (en) Conductive nanofiber
Lee et al. Fabrication of nanofibrous mats with uniform thickness and fiber density

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101108

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20101108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101108

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111019

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111109

R150 Certificate of patent or registration of utility model

Ref document number: 4868414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250