JP2005276597A - Lithium transition metal composite oxide powder for positive active material of lithium secondary battery, positive electrode of lithium secondary battery, and lithium secondary battery - Google Patents

Lithium transition metal composite oxide powder for positive active material of lithium secondary battery, positive electrode of lithium secondary battery, and lithium secondary battery Download PDF

Info

Publication number
JP2005276597A
JP2005276597A JP2004087267A JP2004087267A JP2005276597A JP 2005276597 A JP2005276597 A JP 2005276597A JP 2004087267 A JP2004087267 A JP 2004087267A JP 2004087267 A JP2004087267 A JP 2004087267A JP 2005276597 A JP2005276597 A JP 2005276597A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
secondary battery
transition metal
metal composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004087267A
Other languages
Japanese (ja)
Other versions
JP4797332B2 (en
Inventor
Yuko Ishida
優子 石田
Tsutomu Miyazawa
勉 宮澤
Takeshi Kurihara
毅 栗原
Kazuo Niwa
一夫 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2004087267A priority Critical patent/JP4797332B2/en
Publication of JP2005276597A publication Critical patent/JP2005276597A/en
Application granted granted Critical
Publication of JP4797332B2 publication Critical patent/JP4797332B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide lithium transition metal composite oxide powder for a lithium secondary battery, whose maximum particle size is small, excessive atomization is prevented, and having high density and high film forming properties. <P>SOLUTION: The lithium transition metal composite oxide powder for a positive active material of a lithium secondary battery has such characteristics that a ratio of a median diameter A (3-10 μm) of lithium transition metal composite oxide powder dispersed at concentration whose laser beam transmission factor becomes 60-90% in a hexasodiummethaphosphate aqueous solution measured by a laser diffraction method prescribed in JIS Z 8825-1 not applying ultrasonic waves and in a flowing state and a median diameter B (μm) of the powder measured when ultrasonic wave dispersion (output: 30 W and frequency: 22.5 kHz) is applied for 5 minutes is 1≤ median diameter A/median diameter B≤1.50, the maximum particle diameter is ≤40 μm, specific surface area measured by BET process is 0.5-1.5m<SP>2</SP>/g, and tap density is ≥1.55 g/cm<SP>3</SP>. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、リチウム二次電池正極活物質用リチウム遷移金属複合酸化物粉体、リチウム二次電池正極及びリチウム二次電池に関する。詳しくは、良好な塗膜化性能を有し、高密度な薄膜正極活物質層を形成することができるリチウム二次電池正極活物質用リチウム遷移金属複合酸化物粉体と、このリチウム二次電池正極活物質用リチウム遷移金属複合酸化物粉体を用いたリチウム二次電池正極と、このリチウム二次電池正極を備えるリチウム二次電池に関する。   The present invention relates to a lithium transition metal composite oxide powder for a lithium secondary battery positive electrode active material, a lithium secondary battery positive electrode, and a lithium secondary battery. Specifically, a lithium transition metal composite oxide powder for a positive electrode active material of a lithium secondary battery that has a good coating performance and can form a high-density thin film positive electrode active material layer, and the lithium secondary battery The present invention relates to a lithium secondary battery positive electrode using a lithium transition metal composite oxide powder for a positive electrode active material, and a lithium secondary battery including the lithium secondary battery positive electrode.

近年、携帯用電子機器、通信機器の小型化、軽量化に伴い、その電源として、また、自動車用動力源として、高出力、高エネルギー密度であるリチウム二次電池が注目されている。   In recent years, with the reduction in size and weight of portable electronic devices and communication devices, lithium secondary batteries having high output and high energy density have attracted attention as power sources and automobile power sources.

従来、リチウム二次電池の正極活物質としては、標準組成がLiCoO2、LiNiO2、LiMn24等のリチウム遷移金属複合酸化物が用いられている。更に、安全性や原料コストの観点から、LiCoO2やLiNiO2と同じ層状構造を有し、かつ遷移金属の一部をマンガン等で置換したリチウム遷移金属複合酸化物、具体的には、LiNiO2のNiサイトの一部をMnで置換したLiNi1-xMnx2、Niサイトの一部をMnとCoで置換したLiNi1-x−yMnxCo2が注目されている(例えば、特許文献1、非特許文献1〜3)。 Conventionally, as a positive electrode active material of a lithium secondary battery, a lithium transition metal composite oxide whose standard composition is LiCoO 2 , LiNiO 2 , LiMn 2 O 4 or the like has been used. Furthermore, from the viewpoint of safety and raw material cost, a lithium transition metal composite oxide having the same layered structure as LiCoO 2 and LiNiO 2 and in which a part of the transition metal is substituted with manganese or the like, specifically, LiNiO 2 Attention has been drawn to LiNi 1-x Mn x O 2 in which part of the Ni site is replaced with Mn, and LiNi 1-x-y Mn x Co y O 2 in which part of the Ni site is replaced with Mn and Co ( For example, Patent Document 1, Non-Patent Documents 1 to 3).

リチウム二次電池において、負荷特性を改良するための一手段として、正極活物質を微粒子化して、活物質表面と電解液との接触面積を増大させることが考えられる。しかしながら、NiとMnが同量になるように多量のMnでNiサイトを置換したリチウム遷移金属複合酸化物粉体を微粒子化すると、正極活物質層への充填率が制約され、電池容量が制約されてしまうという問題がある。また、微粒子化に伴い、該粉体を塗料化し、これを塗布して形成される正極活物質層が硬く脆くなり、電池組立時の捲回工程で塗膜の剥離が生じやくなるという問題もある。この傾向は、特に、LiNi1-x−yMnxCo2において、Ni:Mn:Coが、1−y−z:y:z(0.05≦y≦0.5,0.05≦z≦0.5)の付近となる組成のリチウム遷移金属複合酸化物粉体において顕著である。 In a lithium secondary battery, as one means for improving load characteristics, it is conceivable to increase the contact area between the active material surface and the electrolytic solution by making the positive electrode active material fine particles. However, if the lithium transition metal composite oxide powder in which the Ni site is substituted with a large amount of Mn so that Ni and Mn are the same amount is made fine, the filling rate into the positive electrode active material layer is restricted and the battery capacity is restricted. There is a problem of being done. In addition, as the fine particles are made, the powder is made into a paint, and the positive electrode active material layer formed by applying the powder becomes hard and brittle. is there. This tendency is particularly noticeable in LiNi 1-xy Mn x Co y O 2 , where Ni: Mn: Co is 1-yz: y: z (0.05 ≦ y ≦ 0.5, 0.05 This is remarkable in the lithium transition metal composite oxide powder having a composition in the vicinity of ≦ z ≦ 0.5).

また、リチウム二次電池の負荷特性の改良のために電極の薄膜化も進んでおり、このために活物質層としての塗膜作成時に筋ひきのない塗料を作成できる最大粒径の小さな正極活物質も望まれている。一方で、粒径の小さなリチウム遷移金属複合酸化物粉体を用いて活物質層を形成する場合、導電性や塗膜強度確保のために導電材や結着剤の割合を増加させる必要があるが、電池容量の高容量化を実現するには、正極活物質層内部に含まれる導電材や結着剤を増加させることは不利であり、この点から、正極活物質を過度に微粒子化することは好ましいことではない。   In addition, thinning of the electrode is also progressing to improve the load characteristics of lithium secondary batteries. For this reason, a positive electrode active material with a small maximum particle size that can produce a non-stretching paint when creating a coating film as an active material layer. Substances are also desired. On the other hand, when forming an active material layer using a lithium transition metal composite oxide powder having a small particle size, it is necessary to increase the proportion of the conductive material and the binder in order to ensure conductivity and coating strength. However, in order to increase the battery capacity, it is disadvantageous to increase the conductive material and the binder contained in the positive electrode active material layer. From this point, the positive electrode active material is excessively finely divided. That is not preferable.

また、微粒子化した粒子を緻密化するには、高温、例えば900℃以上で焼成する必要がある。こうした処理は微粒子化した粒子同士がいびつな形で焼結してしまい、塗布特性改善のため、嵩密度を上げたいにもかかわらず、下げる方向に作用してしまうという難点がある。特に、リチウム遷移金属複合酸化物粉体の製造に当たり、遷移金属化合物の混合粉体を造粒してから、この造粒粉にリチウム化合物を混合する工程では、リチウム化合物がこれらの造粒粉の橋渡しをする結果、粒子同士の焼結が生じやすい。   Moreover, in order to densify the finely divided particles, it is necessary to bake at a high temperature, for example, 900 ° C. or higher. These treatments have the disadvantage that the finely divided particles are sintered in an irregular shape, and the effect is to lower in spite of the desire to increase the bulk density in order to improve the coating properties. In particular, in the production of the lithium transition metal composite oxide powder, in the step of granulating the mixed powder of the transition metal compound and then mixing the lithium compound with this granulated powder, the lithium compound is a mixture of these granulated powders. As a result of bridging, the particles tend to sinter.

焼成により粒子同士の焼結が生じた場合には、これを解砕することが広く行われている。例えば、特許文献2では、充放電における放電保持率を上げる目的でピンミル解砕を実施しているが、得られる粉体は粒子径が0.5〜2.5μmの粉状体が重量比で50〜90%を占めるものであり、そのような微粉で良好な導電パスを得るには導電材を多く必要とする(特許文献2の実施例ではアセチレンブラックを15%用いている)。また、微粒子は塗布膜の強度を得るためにも多くの結着剤が必要であり、電池の高密度化(高容量化)を実施するには難がある。
特開2003−17052号公報 特開2000−285918号公報 J.Mater.Chem.6(1996)p.1149 J.Electrochem.Soc.145(1998)p.1113 第41回電池討論会予稿集(2000)p.460
When sintering of particles occurs by firing, crushing the particles is widely performed. For example, in Patent Document 2, pin mill crushing is performed for the purpose of increasing the discharge retention rate in charge and discharge, but the obtained powder is a powdery material having a particle size of 0.5 to 2.5 μm in weight ratio. A large amount of conductive material is required to obtain a good conductive path with such fine powder (15% of acetylene black is used in the example of Patent Document 2). In addition, the fine particles require a large amount of binder to obtain the strength of the coating film, and it is difficult to increase the density (capacity) of the battery.
JP 2003-17052 A JP 2000-285918 A J. et al. Mater. Chem. 6 (1996) p. 1149 J. et al. Electrochem. Soc. 145 (1998) p. 1113 41st Battery Symposium Proceedings (2000) p. 460

上述のように、良好な電池特性を得るためのリチウム二次電池正極活物質用リチウム遷移金属複合酸化物粉体としては、薄膜電極に対応した最大粒径の小さな粒子で、かつ微粒子化しすぎず、しかも高密度で塗膜化特性に優れた粒子であることが必要であるが、従来において、これらの特性を満たすリチウム遷移金属複合酸化物粉体は提供されていない。   As described above, the lithium transition metal composite oxide powder for a positive electrode active material for a lithium secondary battery for obtaining good battery characteristics is a particle having a small maximum particle size corresponding to a thin film electrode and is not too fine. In addition, it is necessary that the particles have high density and excellent coating properties, but no lithium transition metal composite oxide powder satisfying these properties has been conventionally provided.

従って、本発明の課題は、薄膜電極に対応した最大粒径の小さな粒子で、かつ微粒子化しすぎず、しかも高密度で塗膜化特性に優れたリチウム二次電池正極活物質用リチウム遷移金属複合酸化物粉体を提供することにある。   Accordingly, an object of the present invention is to provide a lithium transition metal composite for a positive electrode active material of a lithium secondary battery that has a small maximum particle size corresponding to a thin film electrode, is not too fine, and has a high density and excellent coating properties. It is to provide oxide powder.

本発明者等は鋭意検討した結果、リチウム遷移金属複合酸化物粉体の製造工程において、焼成後に最適化された特定条件の解砕工程を入れることにより得られる、特定の最大粒径、比表面積、タップ密度を有するリチウム遷移金属複合酸化物粉体であって、粒度分布測定時に実施する超音波分散前後の変化率がある一定の範囲にあるものが、優れたリチウム二次電池正極活物質となりうること、そして、これを用いて作製されるリチウム二次電池正極が、高密度で塗布膜性能に優れたものであることを見出して本発明を完成した。   As a result of intensive studies, the inventors of the present invention have a specific maximum particle size and specific surface area obtained by adding a crushing process under specific conditions optimized after firing in the production process of lithium transition metal composite oxide powder. A lithium transition metal composite oxide powder having a tap density and having a rate of change before and after ultrasonic dispersion performed at the time of particle size distribution measurement within a certain range is an excellent lithium secondary battery positive electrode active material. Thus, the present invention was completed by finding that the positive electrode of the lithium secondary battery produced using this was high density and excellent in coating film performance.

即ち本発明は、次を要旨とする。
[1] リチウム二次電池正極活物質用リチウム遷移金属複合酸化物粉体であって、JIS Z 8825−1に基づくレーザー回折法により、0.1重量%のヘキサメタリン酸ナトリウム水溶液中に、該リチウム遷移金属複合酸化物粉体をレーザー光の透過率が60〜90%となる濃度で分散させた分散液を循環流動させながら、超音波をかけずに測定したメジアン径(以下「メジアン径A」という)が3μm以上、10μm以下であり、
該メジアン径Aと、該分散液を循環流動させながら超音波分散(出力30W、周波数22.5kHz)を5分間かけたときに測定した該粉体のメジアン径(以下「メジアン径B」という)(μm)との比が、1≦メジアン径A/メジアン径B≦1.50であり、
最大粒径が40μm以下、
BET法による比表面積が0.5m/g以上、1.5m/g以下、
タップ密度が1.55g/cm3以上であることを特徴とするリチウム二次電池正極活物質用リチウム遷移金属複合酸化物粉体。
That is, the gist of the present invention is as follows.
[1] A lithium transition metal composite oxide powder for a positive electrode active material for a lithium secondary battery, wherein the lithium transition metal composite oxide powder is added to a 0.1 wt% sodium hexametaphosphate aqueous solution by a laser diffraction method based on JIS Z 8825-1. The median diameter (hereinafter referred to as “median diameter A”) measured without applying ultrasonic waves while circulating and flowing a dispersion liquid in which the transition metal composite oxide powder was dispersed at a concentration of 60 to 90% of the laser light transmittance. Is 3 μm or more and 10 μm or less,
The median diameter A and the median diameter of the powder measured when ultrasonic dispersion (output 30 W, frequency 22.5 kHz) was applied for 5 minutes while circulating the dispersion liquid (hereinafter referred to as “median diameter B”). (Μm) ratio is 1 ≦ median diameter A / median diameter B ≦ 1.50,
The maximum particle size is 40 μm or less,
Specific surface area by BET method is 0.5 m 2 / g or more, 1.5 m 2 / g or less,
A lithium transition metal composite oxide powder for a positive electrode active material for a lithium secondary battery, wherein the tap density is 1.55 g / cm 3 or more.

[2] 上記[1]において、下記一般式(I)で表されることを特徴とするリチウム二次電池正極活物質用リチウム遷移金属複合酸化物粉体。
LiMO2−δ (I)
(式(I)中、xは、0.5≦x≦1.3の数であり、Mは、遷移金属から選ばれる少なくとも1種の元素を表し、δは、−0.1<δ<0.1の数を表す。)
[2] A lithium transition metal composite oxide powder for a positive electrode active material for a lithium secondary battery according to [1] above, represented by the following general formula (I):
Li x MO 2-δ (I)
(In the formula (I), x is a number satisfying 0.5 ≦ x ≦ 1.3, M represents at least one element selected from transition metals, and δ is −0.1 <δ <. Represents the number 0.1.)

[3] 上記[2]において、下記一般式(II)で表されることを特徴とするリチウム二次電池正極活物質用リチウム遷移金属複合酸化物粉体。
LiNiMnCo2−δ (II)
(式(II)中、xは、0.7≦x≦1.3の数であり、aは、0.2≦a≦0.8の数を表し、bは、0.2≦b≦0.8の数を表し、cは、0.15≦c≦0.4の数を表し、Qは、Fe、Cr、V、Ti、Cu、Ga、Bi、Sn、Zn、Mg、Ge、Nb、Ta、Be、Ca、Sc、Al、B及びZrよりなる群から選択される少なくとも1種の元素を表し、dは、0≦d≦0.4の数を表し、a+b+c+d=1であり、δは、−0.1<δ<0.1の数を表す。)
[3] A lithium transition metal composite oxide powder for a positive electrode active material for a lithium secondary battery according to [2] above, represented by the following general formula (II):
Li x Ni a Mn b Co c Q d O 2-δ (II)
(In Formula (II), x is a number of 0.7 ≦ x ≦ 1.3, a is a number of 0.2 ≦ a ≦ 0.8, and b is 0.2 ≦ b ≦ 1.3. Represents a number of 0.8, c represents a number of 0.15 ≦ c ≦ 0.4, Q represents Fe, Cr, V, Ti, Cu, Ga, Bi, Sn, Zn, Mg, Ge, Represents at least one element selected from the group consisting of Nb, Ta, Be, Ca, Sc, Al, B and Zr, d represents a number 0 ≦ d ≦ 0.4, and a + b + c + d = 1 , Δ represents a number of −0.1 <δ <0.1.)

[4] 上記[3]において、前記一般式(II)のaは、0.2≦a≦0.4の数を表し、bは、0.2≦b≦0.4の数を表し、cは、0.2≦c≦0.4を表すことを特徴とするリチウム二次電池正極活物質用リチウム遷移金属複合酸化物粉体。 [4] In the above [3], a in the general formula (II) represents a number of 0.2 ≦ a ≦ 0.4, b represents a number of 0.2 ≦ b ≦ 0.4, c represents a lithium transition metal composite oxide powder for a lithium secondary battery positive electrode active material, wherein 0.2 ≦ c ≦ 0.4.

[5] 少なくとも正極活物質、結着剤、および導電材を含有するリチウム二次電池正極において、前記活物質が上記[1]〜[4]のいずれかのリチウム二次電池正極活物質用リチウム遷移金属複合酸化物粉体であることを特徴とするリチウム二次電池正極。 [5] A lithium secondary battery positive electrode containing at least a positive electrode active material, a binder, and a conductive material, wherein the active material is lithium for a lithium secondary battery positive electrode active material according to any one of the above [1] to [4]. A lithium secondary battery positive electrode characterized by being a transition metal composite oxide powder.

[6] リチウムを吸蔵及び放出することが可能な材料を含む負極および正極と、リチウム塩を含む電解質とを備えたリチウム二次電池において、該正極が上記[5]のリチウム二次電池正極であることを特徴とするリチウム二次電池。 [6] A lithium secondary battery comprising a negative electrode and a positive electrode containing a material capable of inserting and extracting lithium, and an electrolyte containing a lithium salt, wherein the positive electrode is the lithium secondary battery positive electrode of [5] above. A lithium secondary battery characterized by being.

本発明によれば、高密度で塗膜化性能に優れたリチウム二次電池正極活物質用リチウム遷移金属複合酸化物粉体により、高容量で機械的特性にも優れた薄膜正極活物質層を形成することができ、これにより負荷特性に優れたリチウム二次電池正極を実現することができる。   According to the present invention, a thin film cathode active material layer having high capacity and excellent mechanical properties can be obtained by using a lithium transition metal composite oxide powder for a cathode active material of a lithium secondary battery having high density and excellent coating performance. Thus, a lithium secondary battery positive electrode having excellent load characteristics can be realized.

以下、本発明の実施の形態について詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明は何ら以下の内容に限定されるものではない。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail. However, the description of constituent elements described below is an example (representative example) of an embodiment of the present invention, and the present invention is limited to the following contents. It is not a thing.

[リチウム二次電池正極活物質用リチウム遷移金属複合酸化物粉体の物性及び特性]
<メジアン径>
本発明のリチウム遷移金属複合酸化物粉体は、一次結晶粒子としても、一次結晶粒子が凝集して形成した二次粒子としても存在し得るが、本発明においては、一次結晶粒子が凝集して二次粒子を形成しているものが好ましい。
[Physical properties and characteristics of lithium transition metal composite oxide powder for positive electrode active material of lithium secondary battery]
<Median diameter>
The lithium transition metal composite oxide powder of the present invention may exist as primary crystal particles or secondary particles formed by agglomeration of primary crystal particles, but in the present invention, primary crystal particles agglomerate. Those forming secondary particles are preferred.

本発明のリチウム遷移金属複合酸化物粉体は、JIS Z 8825−1に基づくレーザー回折法により、0.1重量%のヘキサメタリン酸ナトリウム水溶液中に、該リチウム遷移金属複合酸化物粉体をレーザー光の透過率が60〜90%となる濃度で分散させた分散液を循環流動させながら、超音波をかけずに測定したメジアン径(以下「メジアン径A」という)が3μm以上、10μm以下であり、該メジアン径Aと、該分散液を循環流動させながら超音波分散(出力30W、周波数22.5kHz)を5分間かけたときに測定した該粉体のメジアン径(以下「メジアン径B」という)(μm)との比が、1≦メジアン径A/メジアン径B≦1.50の値を示すものである。   The lithium transition metal composite oxide powder of the present invention is obtained by applying laser light to the lithium transition metal composite oxide powder in a 0.1% by weight sodium hexametaphosphate aqueous solution by a laser diffraction method based on JIS Z 8825-1. The median diameter measured without applying ultrasonic waves (hereinafter referred to as “median diameter A”) is 3 μm or more and 10 μm or less while circulating and dispersing the dispersion liquid having a concentration of 60 to 90%. The median diameter A and the median diameter of the powder (hereinafter referred to as “median diameter B”) measured when ultrasonic dispersion (output 30 W, frequency 22.5 kHz) is applied for 5 minutes while circulating the dispersion liquid. ) (Μm) indicates a value of 1 ≦ median diameter A / median diameter B ≦ 1.50.

このメジアン径はJIS Z 8825−1に基き公知のレーザー回折/散乱式粒度分布測定装置によって測定される。この場合、超音波分散プローブ内蔵型測定機器では、(株)堀場製作所「LA−920のカタログ」の記載にもあるように、内蔵プローブ型方式(30W)とホモジナイザー分散(600W)はほぼ同等の分散処理速度、分散能力を有していることがわかる。超音波洗浄機(40W)を用いる分散法では、強い凝集粒を完全に分散することはできないことから、分散の指標とするに好ましくない。また、内蔵プローブ型方ではアルミナ微粒子の場合、ほぼ1分で完全に分散が進む。そこで、本発明においては、超音波内蔵プローブ型方式のレーザー回折散乱式粒度分布測定装置を用い、完全に凝集がほぐれたと考えられる超音波分散5分後の値と、凝集したものを含む状態の情報を表す超音波分散を行っていない超音波分散0分の値とを比較する。   This median diameter is measured by a known laser diffraction / scattering type particle size distribution measuring device based on JIS Z 8825-1. In this case, in the ultrasonic dispersion probe built-in type measuring instrument, the built-in probe type (30 W) and the homogenizer dispersion (600 W) are almost the same as described in the catalog “LA-920 catalog” of HORIBA, Ltd. It can be seen that it has a dispersion processing speed and dispersion ability. The dispersion method using an ultrasonic cleaning machine (40 W) is not preferable as an index of dispersion because strong agglomerated particles cannot be completely dispersed. Further, in the case of the built-in probe mold, in the case of alumina fine particles, the dispersion proceeds completely in approximately 1 minute. Therefore, in the present invention, a probe-type laser diffraction / scattering particle size distribution measuring device with a built-in ultrasonic wave is used, and the value after 5 minutes of ultrasonic dispersion, which is considered to be completely loosened, and the state including the aggregated state. The ultrasonic dispersion representing the information is compared with the value of 0 minutes of ultrasonic dispersion which is not performed.

メジアン径Aとメジアン径Bとの比メジアン径A/メジアン径B(以下「A/B」と記す。)は、超音波分散によるメジアン径の変化率を示し、超音波照射により粒子がほぐれる様子を数値で表したものである。   The median diameter A / median diameter B (hereinafter referred to as “A / B”) of the median diameter A and the median diameter B indicates the rate of change of the median diameter due to ultrasonic dispersion, and the state in which particles are loosened by ultrasonic irradiation. Is a numerical value.

超音波分散をかけていないときは、二次粒子のからみあいや点焼結により、軽い凝集塊を作っている姿を反映するもので、従って、メジアン径Aは特に塗布性能に影響を与える事が多い。本発明において、このメジアン径Aは、通常3μm以上、好ましくは4μm以上であり、通常10μm以下、好ましくは9μm以下、より好ましくは8μm以下である。このメジアン粒径Aが小さすぎると導電パスが十分にとれず、電池容量が低下する傾向があり、それを補う目的で導電材を多く入れると、電池エネルギー密度が低下する恐れがあり、好ましくない。逆に、大きすぎると内部抵抗が大きくなって十分な出力が出にくくなる傾向があり、また電極を薄くすることができず、エネルギー密度を上げることができない。そのため、メジアン径Aを上記範囲とすることが好ましい。   When ultrasonic dispersion is not applied, it reflects the appearance of light agglomerates due to entanglement of secondary particles and spot sintering. Therefore, the median diameter A can particularly affect the coating performance. Many. In the present invention, the median diameter A is usually 3 μm or more, preferably 4 μm or more, and usually 10 μm or less, preferably 9 μm or less, more preferably 8 μm or less. If this median particle size A is too small, the conductive path cannot be taken sufficiently and the battery capacity tends to decrease. If a large amount of conductive material is added for the purpose of supplementing it, the battery energy density may decrease, which is not preferable. . On the other hand, if it is too large, the internal resistance tends to increase and it becomes difficult to produce a sufficient output, and the electrode cannot be made thin and the energy density cannot be increased. Therefore, the median diameter A is preferably set in the above range.

リチウム遷移金属複合酸化物粉体が、小粒径で、かつその製造方法において、予め造粒した遷移金属化合物粉体にリチウム化合物を混合する場合には、前述の如く、リチウム化合物が二次粒子間を橋渡しし、二次粒子間の点焼結が増加し好ましくないため、本発明のような粉体物性をもつリチウム遷移金属複合酸化物粉体を得ることは特に重要である。   When the lithium transition metal composite oxide powder has a small particle size and the lithium compound is mixed with the previously granulated transition metal compound powder in the production method, the lithium compound is secondary particles as described above. It is particularly important to obtain a lithium transition metal composite oxide powder having the powder physical properties as in the present invention, because it is not preferable because the point sintering between the secondary particles increases.

メジアン径Aとメジアン径Bとの比A/Bは、通常1以上であり、1.5以下、好ましくは、1.4以下、更に好ましくは1.3以下である。A/Bが1より小さいことは、粒子が超音波の様な振動により凝集を生ずることを示し、好ましくない。A/Bが本発明における上限より大きいことは、粒子の破壊の程度が大きいことを示し、もとの粒子が壊れやすい構造を有していることを示す。複数の破壊のパターンが考えられ、例えば、二次粒子から一次粒子が剥離するパターン、二次粒子同士が部分的に焼結、もしくは物理的にからみあった三次粒子が二次粒子に分かれるパターンなどがある。また、三次粒子から一次粒子への剥離もあり得る。特に三次粒子が多く存在し、超音波を照射することで二次粒子に分離する場合、A/Bは1.5以上の大きな値を示す。このような粒子は電池寿命の悪化、導電パス不良による容量低下など生ずる恐れがある。また、正極活物質層形成時に、活物質スラリー中のリチウム遷移金属複合酸化物粉体粒子が破壊し続けるとスラリーの安定を保つことができず、きれいな正極活物質層を得ることが難しい。   The ratio A / B between the median diameter A and the median diameter B is usually 1 or more, 1.5 or less, preferably 1.4 or less, and more preferably 1.3 or less. An A / B smaller than 1 indicates that the particles are aggregated by vibration such as ultrasonic waves, which is not preferable. When A / B is larger than the upper limit in the present invention, it indicates that the degree of particle breakage is large, and that the original particle has a fragile structure. Multiple patterns of destruction can be considered, for example, a pattern in which primary particles peel from secondary particles, a pattern in which secondary particles are partially sintered, or a tertiary particle that is physically entangled is divided into secondary particles. is there. There may also be delamination from tertiary particles to primary particles. In particular, when there are a lot of tertiary particles and the particles are separated into secondary particles by irradiating with ultrasonic waves, A / B shows a large value of 1.5 or more. Such particles may cause deterioration of battery life, capacity reduction due to poor conductive paths, and the like. Further, if the lithium transition metal composite oxide powder particles in the active material slurry continue to be destroyed during the formation of the positive electrode active material layer, the stability of the slurry cannot be maintained, and it is difficult to obtain a clean positive electrode active material layer.

<最大粒径>
本発明のリチウム遷移金属複合酸化物粉体の最大粒径は40μm以下であり、35μm以下であることがより好ましい。最大粒径が、この上限を上回ると、塗膜作成時に筋ひきが発生しやすい。
<Maximum particle size>
The maximum particle size of the lithium transition metal composite oxide powder of the present invention is 40 μm or less, and more preferably 35 μm or less. If the maximum particle size exceeds this upper limit, striations are likely to occur during coating film creation.

リチウム遷移金属複合酸化物粉体の最大粒径は、メジアン径と同様にレーザー回折/散乱式粒度分布測定装置によって測定され、この場合の超音波分散時間は5分間である。   The maximum particle size of the lithium transition metal composite oxide powder is measured by a laser diffraction / scattering type particle size distribution measuring device in the same manner as the median size. In this case, the ultrasonic dispersion time is 5 minutes.

<比表面積>
本発明のリチウム遷移金属複合酸化物粉体のBET法における比表面積(二次粒子の比表面積)は、組成比や含有する元素によって大きく異なるが、通常0.5m2/g以上、好ましくは0.6m2/g以上、更に好ましくは0.7m2/g以上である。比表面積がこの下限より小さいことは、一次粒径が大きいことを意味し、即ちレート特性や容量が低下する傾向にあるので好ましくない。また、比表面積が大きすぎても塗料化時に、必要な分散媒量が増加すると共に、導電材や結着剤の必要量が増加し、正極板への活物質の充填率が制約され、電池容量が制約されてしまうため、通常は1.5m2/g以下、好ましくは1.4m2/g以下、更に好ましくは1.3m2/g以下である。
<Specific surface area>
The specific surface area (specific surface area of secondary particles) in the BET method of the lithium transition metal composite oxide powder of the present invention varies greatly depending on the composition ratio and contained elements, but is usually 0.5 m 2 / g or more, preferably 0. .6m 2 / g or more, further preferably 0.7 m 2 / g or more. If the specific surface area is smaller than this lower limit, it means that the primary particle size is large, that is, the rate characteristics and the capacity tend to decrease, which is not preferable. In addition, even if the specific surface area is too large, the amount of the required dispersion medium increases at the time of coating, and the necessary amount of conductive material and binder increases, which limits the filling rate of the active material into the positive electrode plate, and the battery Since the capacity is restricted, it is usually 1.5 m 2 / g or less, preferably 1.4 m 2 / g or less, more preferably 1.3 m 2 / g or less.

リチウム遷移金属複合酸化物粉体の比表面積は、公知のBET式粉体比表面積測定装置によって測定される。具体的には、吸着ガスに窒素、キャリアガスにヘリウムを使用し、連続流動法によるBET1点法測定を行う。まず、粉体試料を混合ガスにより450℃以下の温度で加熱脱気し、次いで液体窒素温度まで冷却して混合ガスを吸着させる。これを水により室温まで加温して吸着された窒素ガスを脱着させ、その量を熱伝導度検出器によって検出し、これから試料の比表面積を算出する。   The specific surface area of the lithium transition metal composite oxide powder is measured by a known BET type powder specific surface area measuring device. Specifically, nitrogen is used for the adsorption gas and helium is used for the carrier gas, and BET one-point measurement by the continuous flow method is performed. First, the powder sample is heated and deaerated with a mixed gas at a temperature of 450 ° C. or lower, and then cooled to liquid nitrogen temperature to adsorb the mixed gas. This is heated to room temperature with water and the adsorbed nitrogen gas is desorbed, the amount is detected by a thermal conductivity detector, and the specific surface area of the sample is calculated therefrom.

<タップ密度>
本発明のリチウム遷移金属複合酸化物粉体のタップ密度(嵩密度)は、通常1.55g/cm3以上、好ましくは1.6g/cm3以上、更に好ましくは1.65g/cm3以上、最も好ましくは1.7g/cm3以上であり、組成比や含有する元素に応じて、最適化することができる。
<Tap density>
The tap density of the lithium-transition metal composite oxide powder of the present invention (bulk density) is usually 1.55 g / cm 3 or higher, preferably 1.6 g / cm 3 or more, more preferably 1.65 g / cm 3 or more, Most preferably, it is 1.7 g / cm 3 or more, and can be optimized according to the composition ratio and contained elements.

リチウム遷移金属複合酸化物粉体の二次粒子が多くの点焼結を有し、葡萄の房状もしくは数珠状の三次粒子構造体を形性していると、タップ密度は低下する。リチウム遷移金属複合酸化物粉体のタップ密度が上記下限を下回ると塗料化時に、必要な分散媒量が増加すると共に、導電材や結着剤の必要量が増加し、正極活物質層への活物質の充填率が制約され、電池容量が制約されるおそれがある。   When the secondary particles of the lithium transition metal composite oxide powder have many point sinterings and form a tufted or beaded tertiary particle structure, the tap density decreases. If the tap density of the lithium transition metal composite oxide powder is below the above lower limit, the amount of the required dispersion medium will increase during coating, and the necessary amount of conductive material and binder will increase. The filling rate of the active material is restricted, and the battery capacity may be restricted.

タップ密度が高いリチウム遷移金属複合酸化物粉体としては、例えば一次粒子同士が密に焼結した二次粒子からなり、かつ、二次粒子の表面が比較的平滑な球状のものが挙げられる。正極活物質層は、通常その大部分がリチウム遷移金属複合酸化物粉体からなるため、タップ密度の高いリチウム遷移金属複合酸化物粉体を用いることにより、高密度の正極活物質層を形成することができる。タップ密度は大きければ大きいほど好ましく、特に上限はないが、大きすぎると、正極活物質層内における電解液を媒体としたリチウムイオンの拡散が律速となり、負荷特性が低下しやすくなることがあるため、通常2.4g/cm3以下、好ましくは2.2g/cm3以下である。 Examples of the lithium transition metal composite oxide powder having a high tap density include secondary particles in which the primary particles are densely sintered, and the surface of the secondary particles is relatively smooth. Since the positive electrode active material layer is usually made up of a lithium transition metal composite oxide powder, a high density positive electrode active material layer is formed by using a lithium transition metal composite oxide powder having a high tap density. be able to. The tap density is preferably as large as possible, and there is no particular upper limit. However, if the tap density is too large, diffusion of lithium ions using the electrolytic solution in the positive electrode active material layer as a medium becomes rate-determining, and load characteristics may be easily lowered. Usually, it is 2.4 g / cm 3 or less, preferably 2.2 g / cm 3 or less.

なお、タップ密度は、リチウム遷移金属複合酸化物粉末約8gを10mlのガラス製メスシリンダーに入れて、高さ1〜5cmの位置から木材製のテーブル上に50〜500回/分程度の間隔で、体積が変化しなくなるまで(通常200〜800回)タッピングした後の体積を測定して求める。   The tap density is about 50 to 500 times / minute from a position of 1 to 5 cm on a wood table by putting about 8 g of lithium transition metal composite oxide powder in a 10 ml glass graduated cylinder. The volume after tapping is measured and obtained until the volume does not change (usually 200 to 800 times).

<組成>
本発明のリチウム二次電池正極活物質用リチウム遷移金属複合酸化物粉体は、下記一般式(I)で表されることが好ましく、特に下記一般式(II)で表されることが好ましい。
LiMO2−δ (I)
(式(I)中、xは、0.5≦x≦1.3の数であり、Mは、遷移金属から選ばれる少なくとも1種の元素を表し、δは、−0.1<δ<0.1の数を表す。)
LiNiMnCo2−δ (II)
(式(II)中、xは、0.7≦x≦1.3の数であり、aは、0.2≦a≦0.8の数を表し、bは、0.2≦b≦0.8の数を表し、cは、0.15≦c≦0.4の数を表し、Qは、Fe、Cr、V、Ti、Cu、Ga、Bi、Sn、Zn、Mg、Ge、Nb、Ta、Be、Ca、Sc、Al、B及びZrよりなる群から選択される少なくとも1種の元素を表し、dは、0≦d≦0.4の数を表し、a+b+c+d=1であり、δは、−0.1<δ<0.1の数を表す。)
<Composition>
The lithium transition metal composite oxide powder for a lithium secondary battery positive electrode active material of the present invention is preferably represented by the following general formula (I), and particularly preferably represented by the following general formula (II).
Li x MO 2-δ (I)
(In the formula (I), x is a number satisfying 0.5 ≦ x ≦ 1.3, M represents at least one element selected from transition metals, and δ represents −0.1 <δ <. Represents the number 0.1.)
Li x Ni a Mn b Co c Q d O 2-δ (II)
(In Formula (II), x is a number of 0.7 ≦ x ≦ 1.3, a is a number of 0.2 ≦ a ≦ 0.8, and b is 0.2 ≦ b ≦ 1.3. Represents a number of 0.8, c represents a number of 0.15 ≦ c ≦ 0.4, Q represents Fe, Cr, V, Ti, Cu, Ga, Bi, Sn, Zn, Mg, Ge, Represents at least one element selected from the group consisting of Nb, Ta, Be, Ca, Sc, Al, B and Zr, d represents a number of 0 ≦ d ≦ 0.4, and a + b + c + d = 1 , Δ represents a number of −0.1 <δ <0.1.)

リチウム遷移金属複合酸化物粉体は、一般に、リチウム原料、及び遷移金属元素化合物を含有する原料スラリーを噴霧乾燥し、得られた乾燥粒子を焼成することにより製造されている。遷移金属酸化物としては好ましくはニッケル化合物、コバルト化合物、マンガン化合物等の遷移金属が用いられる。特に、好ましくは層状ニッケルマンガンコバルト複合酸化物粒子である。   Lithium transition metal composite oxide powders are generally produced by spray drying a raw material slurry containing a lithium raw material and a transition metal element compound, and firing the resulting dried particles. As the transition metal oxide, a transition metal such as a nickel compound, a cobalt compound, or a manganese compound is preferably used. Particularly preferred are layered nickel manganese cobalt composite oxide particles.

ニッケル、マンガン、コバルトの原子比は、層状結晶構造が安定に存在し、また電池特性を悪化させない観点で、Ni、Mn、Coの三角図において、Ni/Mn/Co=1/1/1の周辺およびNi/Mn=1/1の線上及びその周辺に存在するものが好ましい。   The atomic ratio of nickel, manganese, and cobalt is such that the layered crystal structure exists stably and the battery characteristics are not deteriorated. In the Ni, Mn, and Co triangular diagrams, Ni / Mn / Co = 1/1/1. Those present on and around the periphery and the Ni / Mn = 1/1 line are preferred.

従って、上記一般式(II)において、aの値とbの値とを概ね同じ値とするのが好ましく、具体的には0.8≦a/b≦1.2、特に0.9≦a/b≦1.1、さらには0.93≦a/b≦1.07、さらには0.95≦a/b≦1.05であることが好ましい。特に好ましくはa,b,cが概ね同じ数とするのが好ましく、0.8≦a/c≦1.2、特に0.9≦a/c≦1.1、さらには0.93≦a/c≦1.07、さらには0.95≦a/c≦1.05が好ましい。a,b,cは、好ましくは0.2≦a≦0.4、0.2≦b≦0.4、0.2≦c≦0.4である。   Therefore, in the above general formula (II), it is preferable that the value of a and the value of b are substantially the same value, specifically 0.8 ≦ a / b ≦ 1.2, particularly 0.9 ≦ a. It is preferable that /b≦1.1, further 0.93 ≦ a / b ≦ 1.07, and further 0.95 ≦ a / b ≦ 1.05. It is particularly preferable that a, b and c are substantially the same number, 0.8 ≦ a / c ≦ 1.2, particularly 0.9 ≦ a / c ≦ 1.1, and further 0.93 ≦ a. /C≦1.07, more preferably 0.95 ≦ a / c ≦ 1.05. a, b, c are preferably 0.2 ≦ a ≦ 0.4, 0.2 ≦ b ≦ 0.4, and 0.2 ≦ c ≦ 0.4.

この範囲を超えて相対的にコバルトの割合が大きくなると単一相のリチウムニッケルマンガンコバルト複合酸化物が合成しにくくなり、レートの低下をまねく傾向があり、逆に相対的にコバルトの割合が大きくなると、全体のコストが上がる。   When the proportion of cobalt is relatively large beyond this range, it becomes difficult to synthesize a single-phase lithium-nickel-manganese-cobalt composite oxide, which tends to decrease the rate. Conversely, the proportion of cobalt is relatively large. This will increase the overall cost.

さらに、リチウム遷移金属複合酸化物粉体の結晶構造の安定化や高容量化、安全性向上、高温での電池特性の改良のためにニッケル、マンガン、コバルトサイトの一部を他の金属元素で置換することも可能である。   Furthermore, in order to stabilize the crystal structure of lithium transition metal composite oxide powder, increase its capacity, improve safety, and improve battery characteristics at high temperatures, some nickel, manganese and cobalt sites may be replaced with other metal elements. Substitution is also possible.

上記一般式(II)において、Qはこのような置換元素もしくは表面処理元素を示し、Fe、Cr、V、Ti、Cu、Ga、Bi、Sn、Zn、Mg、Ge、Nb、Ta、Be、Ca、Sc、Al、B及びZrから選択される少なくとも1種である。Qは結晶構造の安定化や高容量化、安全性向上、高温での電池特性の改良に寄与する。置換元素としては、各種の元素を使用することができるが、好ましくはアルミニウム、マグネシウム、鉄等の金属元素を挙げることができる。中でも、アルミニウム、マグネシウムがさらに好ましい。アルミニウム、マグネシウムは層状リチウムニッケルマンガンコバルト複合酸化物に容易に固溶して単一相を得ることができるという利点があり、さらにアルミニウム及びマグネシウムは、リチウム二次電池の正極活物質として、高性能な電池特性、特に繰り返し充放電を行った際の放電容量維持率について良好な性能を示すという利点がある。表面処理元素として各種の元素を使用することができるが、好ましくは、ホウ素、ビスマス、ジルコニア、珪素などを挙げることができる。これらはリチウム遷移金属複合酸化物と容易に固溶せず、一次粒子の成長を促し、二次粒子内の一次粒子間の焼結強度を上げ、高活性な点を抑えることができるので、電池特性において長寿命化を図ることができる。   In the general formula (II), Q represents such a substitution element or surface treatment element, and Fe, Cr, V, Ti, Cu, Ga, Bi, Sn, Zn, Mg, Ge, Nb, Ta, Be, It is at least one selected from Ca, Sc, Al, B and Zr. Q contributes to stabilizing the crystal structure, increasing the capacity, improving safety, and improving battery characteristics at high temperatures. Although various elements can be used as a substitution element, Preferably metal elements, such as aluminum, magnesium, and iron, can be mentioned. Of these, aluminum and magnesium are more preferable. Aluminum and magnesium have the advantage that they can be easily dissolved in the layered lithium nickel manganese cobalt composite oxide to obtain a single phase, and aluminum and magnesium have high performance as positive electrode active materials for lithium secondary batteries. There is an advantage that good performance is exhibited with respect to good battery characteristics, in particular, a discharge capacity retention rate when repeated charge and discharge is performed. Various elements can be used as the surface treatment element, and boron, bismuth, zirconia, silicon, and the like are preferable. These are not easily dissolved in lithium transition metal composite oxides, promote the growth of primary particles, increase the sintering strength between the primary particles in the secondary particles, and suppress the high activity point. Longer life can be achieved in characteristics.

これらの置換金属元素は複数種使用してもよい。   A plurality of these substituted metal elements may be used.

置換元素、もしくは表面処理元素Qの、ニッケル、マンガン、コバルトの合計に対する原子比dは、通常0.4以下、好ましくは0.3以下、さらに好ましくは0.2以下である。この置換割合が多きすぎると正極活物質として使用した場合の容量の低下や抵抗の上昇をまねく傾向にある。   The atomic ratio d of the substitution element or the surface treatment element Q to the total of nickel, manganese, and cobalt is usually 0.4 or less, preferably 0.3 or less, and more preferably 0.2 or less. If the substitution ratio is too large, the capacity tends to decrease or the resistance increases when used as a positive electrode active material.

上記一般式(II)の組成においては、酸素量に多少の不定比性があってもよい。δは −0.1<δ<0.1であるが、更に好ましくは−0.05<δ<0.05、特に好ましくは−0.025<δ<0.025である。δが少なくても多くても結晶構造の安定化を乱し、電池の容量が低下、電池寿命を悪化させる恐れがあるので好ましくない。   In the composition of the general formula (II), the amount of oxygen may have some non-stoichiometry. δ is −0.1 <δ <0.1, more preferably −0.05 <δ <0.05, and particularly preferably −0.025 <δ <0.025. Even if δ is small or large, the stabilization of the crystal structure is disturbed, and there is a risk that the capacity of the battery is reduced and the battery life is deteriorated.

なお、リチウムの原子比xは、好ましくは0.9≦x≦1.2である。xが大きすぎると、これを使用したリチウム二次電池の電池容量低下を招く恐れがある。   The atomic ratio x of lithium is preferably 0.9 ≦ x ≦ 1.2. If x is too large, the battery capacity of a lithium secondary battery using the x may be reduced.

[リチウム二次電池正極活物質用リチウム遷移金属複合酸化物粉体の製造方法]
以下に、本発明のリチウム遷移金属複合酸化物粉体の製造方法について説明する。本発明のリチウム二次電池正極活物質用リチウム遷移金属複合酸化物粉体は、以下に記述する一般的なリチウム遷移金属複合酸化物粉体の製造方法において、後述のように、その製造方法に改良を加えることにより製造することができる。
[Method for producing lithium transition metal composite oxide powder for positive electrode active material of lithium secondary battery]
Below, the manufacturing method of the lithium transition metal complex oxide powder of this invention is demonstrated. The lithium transition metal composite oxide powder for a lithium secondary battery positive electrode active material of the present invention is a general lithium transition metal composite oxide powder manufacturing method described below. It can be manufactured by adding improvements.

<一般的なリチウム遷移金属複合酸化物粉体の製造方法>
リチウム遷移金属複合酸化物粉体は、目的とするリチウム遷移金属複合酸化物と同じ金属元素組成となるように、これらの金属元素を含有する原料化合物を混合し、この原料混合物を粒子状に成形した後、焼成することによって製造することができる。
<Method for producing general lithium transition metal composite oxide powder>
Lithium transition metal composite oxide powder is mixed with raw material compounds containing these metal elements so as to have the same metal element composition as the target lithium transition metal composite oxide, and this raw material mixture is formed into particles. Then, it can be manufactured by firing.

原料化合物としては、酸化物;炭酸塩、硫酸塩、硝酸塩、リン酸塩等の無機塩;ハロゲン化物;有機塩等の各種のものを用いることができる。   Examples of the raw material compound include oxides; inorganic salts such as carbonates, sulfates, nitrates, and phosphates; halides; organic salts, and the like.

リチウムを含有する化合物としては、Li2CO3、LiNO3などの無機リチウム塩;LiOH、LiOH・H2Oなどのリチウムの水酸化物;LiCl、LiIなどのリチウムハロゲン化物;Li2O等の無機リチウム化合物、アルキルリチウム、脂肪酸リチウム等の有機リチウム化合物等を挙げることができる。中でも好ましいのは、Li2CO3、LiNO3、LiOH、LiOH・H2O、酢酸Liである。また、湿式法により原料を混合する場合には、LiOH、LiOH・H2Oが好ましく用いられる。LiOH、LiOH・H2Oは水溶性であり、分散媒が水の場合には溶解して原料混合物の均一性が向上するだけでなく、窒素び硫黄を含まないので、焼成の際に、NOx及びSOx等の有害物質を発生させない利点をも有する。リチウム化合物は所望ならば2種以上を併用しても良い。 Examples of the compound containing lithium include inorganic lithium salts such as Li 2 CO 3 and LiNO 3 ; lithium hydroxides such as LiOH and LiOH · H 2 O; lithium halides such as LiCl and LiI; Li 2 O and the like Examples thereof include inorganic lithium compounds, organic lithium compounds such as alkyl lithium and fatty acid lithium. Among these, Li 2 CO 3 , LiNO 3 , LiOH, LiOH · H 2 O, and Li acetate are preferable. Further, in the case of mixing raw materials by the wet method, LiOH, LiOH · H 2 O is preferably used. LiOH and LiOH.H 2 O are water-soluble, and when the dispersion medium is water, they not only dissolve and improve the uniformity of the raw material mixture, but also contain no nitrogen and sulfur. In addition, there is an advantage that no harmful substances such as SOx are generated. If desired, two or more lithium compounds may be used in combination.

予め所望の金属比とした遷移金属化合物粉体に後からLi原料を混合、焼成する場合には、LiOH、LiOH・HOを用いることが好ましい。この場合、リチウム原料の粒径としては、噴霧乾燥で得られた乾燥物との混合性を上げるため、且つ電池性能を向上させるために平均粒子径で、通常500μm以下、好ましくは100μm以下、さらに好ましくは50μm以下、最も好ましくは20μm以下である。一方、あまりに小さな粒子径のものは、大気中での安定性が低いために平均粒子径で、通常0.01μm以上、好ましくは0.1μm以上、さらに好ましくは0.2μm以上、最も好ましくは0.5μm以上である。混合手法に特に制限はないが、一般的に工業用として使用されている粉体混合装置を使用するのが好ましい。混合する粉体の混合組成比は、目的とするリチウム遷移金属複合酸化物の組成等に応じて適宜選択される。 In the case where a Li raw material is mixed and fired later in a transition metal compound powder having a desired metal ratio in advance, it is preferable to use LiOH or LiOH.H 2 O. In this case, the particle diameter of the lithium raw material is usually 500 μm or less, preferably 100 μm or less, preferably an average particle diameter in order to increase the mixing property with the dried product obtained by spray drying and to improve battery performance. Preferably it is 50 micrometers or less, Most preferably, it is 20 micrometers or less. On the other hand, those having a too small particle size have an average particle size of usually 0.01 μm or more, preferably 0.1 μm or more, more preferably 0.2 μm or more, and most preferably 0 because the stability in the air is low. .5 μm or more. Although there is no restriction | limiting in particular in the mixing method, It is preferable to use the powder mixing apparatus generally used for industrial use. The mixing composition ratio of the powder to be mixed is appropriately selected according to the composition of the target lithium transition metal composite oxide.

ニッケルを含有する化合物としては、Ni(OH)2、NiO、NiOOH、NiCO3・2Ni(OH)2・4H2O、NiC24・2H2O、Ni(NO32・6H2O、NiSO4、NiSO4・6H2O、脂肪酸ニッケル、ニッケルハロゲン化物等を挙げることができる。なかでも、Ni(OH)2、NiO、NiOOH、NiCO3・2Ni(OH)2・4H2O、NiC24・2H2Oのような窒素及び硫黄を含まない化合物は、焼成工程においてNOx及びSOx等の有害物質を発生させないので好ましい。工業原料として安価に入手でき、かつ焼成を行う際に反応性が高いという観点から、特に好ましいのはNi(OH)2、NiO、NiOOHである。ニッケル化合物も所望ならば2種以上を併用しても良い。 As the compound containing nickel, Ni (OH) 2 , NiO, NiOOH, NiCO 3 .2Ni (OH) 2 .4H 2 O, NiC 2 O 4 .2H 2 O, Ni (NO 3 ) 2 .6H 2 O , NiSO 4 , NiSO 4 .6H 2 O, fatty acid nickel, nickel halide and the like. Among these, compounds containing no nitrogen and sulfur, such as Ni (OH) 2 , NiO, NiOOH, NiCO 3 .2Ni (OH) 2 .4H 2 O, NiC 2 O 4 .2H 2 O, NOx And harmful substances such as SOx are not generated. Ni (OH) 2 , NiO, and NiOOH are particularly preferable from the viewpoint that they can be obtained at low cost as industrial raw materials and have high reactivity when firing. If desired, two or more nickel compounds may be used in combination.

マンガンを含有する化合物としては、Mn34、Mn23、MnO2、MnOOH、MnCO3、Mn(NO32、MnSO4、有機マンガン化合物、マンガン水酸化物、マンガンハロゲン化物等を挙げることができる。これらマンガン化合物の中でも、Mn23、MnO2、Mn34は、最終目的物である複合酸化物のマンガン酸化数に近い価数を有しているため好ましい。マンガン化合物も所望ならば2種以上を併用しても良い。 Examples of the compound containing manganese include Mn 3 O 4 , Mn 2 O 3 , MnO 2 , MnOOH, MnCO 3 , Mn (NO 3 ) 2 , MnSO 4 , an organic manganese compound, manganese hydroxide, manganese halide, and the like. Can be mentioned. Among these manganese compounds, Mn 2 O 3 , MnO 2 , and Mn 3 O 4 are preferable because they have a valence close to the manganese oxidation number of the composite oxide that is the final target product. If desired, two or more manganese compounds may be used in combination.

コバルトを含有する化合物としては、CoO、Co、Co、Co(OH)、CoOOH、Co(NO・6HO、CoSO・7HO、有機コバルト化合物、コバルトハロゲン化物等を挙げることができる。これらコバルト化合物の中でも、CoO、Co、Co、Co(OH)、CoOOHが好ましい。コバルト化合物も所望ならば2種以上を併用しても良い。 Examples of the cobalt-containing compound include CoO, Co 2 O 3 , Co 3 O 4 , Co (OH) 2 , CoOOH, Co (NO 3 ) 2 · 6H 2 O, CoSO 4 · 7H 2 O, an organic cobalt compound, Examples thereof include cobalt halides. Among these cobalt compounds, CoO, Co 2 O 3 , Co 3 O 4 , Co (OH) 2 and CoOOH are preferable. If desired, two or more cobalt compounds may be used in combination.

また、前記一般式(II)においてQで表されているFe、Cr、V、Ti、Cu、Ga、Bi、Sn、Zn、Mg、Ge、Nb、Ta、Be、Ca、Sc、Al、B及びZr等の原料化合物としても通常は無機塩又は有機塩を用いればよい。   Fe, Cr, V, Ti, Cu, Ga, Bi, Sn, Zn, Mg, Ge, Nb, Ta, Be, Ca, Sc, Al, B represented by Q in the general formula (II) In general, an inorganic salt or an organic salt may be used as a raw material compound such as Zr.

これらの原料の配合比は、原則として目的とするリチウム遷移金属複合酸化物の組成となるようにすればよいが、リチウム、ホウ素、ビスマス等は焼成中に揮散することがあるので、この場合には揮散量を考慮して配合する。   In principle, the mixing ratio of these raw materials may be the composition of the target lithium transition metal composite oxide, but lithium, boron, bismuth, etc. may volatilize during firing. Is formulated considering the volatilization amount.

原料の混合方法は特に限定されるものではなく、湿式でも乾式でも良い。例えば、ボールミル、振動ミル、ビーズミル等の装置を使用する方法が挙げられる。水酸化リチウム等の水溶性の原料は水溶液として他の固体の原料と混合しても良い。湿式混合は、より均一な混合が可能であり、かつ焼成工程において混合物の反応性を高めることができるので好ましい。   The method for mixing the raw materials is not particularly limited, and may be wet or dry. For example, a method using an apparatus such as a ball mill, a vibration mill, or a bead mill can be used. A water-soluble raw material such as lithium hydroxide may be mixed with other solid raw materials as an aqueous solution. Wet mixing is preferable because more uniform mixing is possible and the reactivity of the mixture can be increased in the firing step.

混合の時間は、混合方法、スケールにより異なるが、原料が粒子レベルで均一に混合されていれば良く、例えばボールミル(湿式又は乾式)では通常1時間から2日間程度、ビーズミル(湿式連続法)では滞留時間が通常0.1時間から24時間程度である。   The mixing time varies depending on the mixing method and scale, but it is sufficient that the raw materials are uniformly mixed at the particle level. For example, in a ball mill (wet or dry type), usually about 1 hour to 2 days, and in a bead mill (wet continuous method) The residence time is usually about 0.1 to 24 hours.

粉砕の程度としては、粉砕後の原料粒子の粒径が指標となるが、平均粒子径として通常2μm以下、好ましくは1μm以下、更に好ましくは0.5μm以下とする。平均粒子径が大きすぎると、焼成工程における反応性が低下する。また、湿式混合の場合には、後述する噴霧乾燥における乾燥粉体の球状度が低下し、最終的な粉体充填密度が低くなる傾向にある。この傾向は、平均粒子径で50μm以下の造粒粒子を製造しようとした場合に特に顕著になる。なお、必要以上に小粒子化することは、粉砕のコストアップに繋がるので、平均粒子径が通常0.01μm以上、好ましくは0.02μm以上、更に好ましくは0.1μm以上となるように粉砕すればよい。   As the degree of pulverization, the particle diameter of the raw material particles after pulverization is used as an index. When the average particle size is too large, the reactivity in the firing step is lowered. In addition, in the case of wet mixing, the sphericity of the dry powder in spray drying described later tends to decrease, and the final powder filling density tends to decrease. This tendency becomes particularly remarkable when trying to produce granulated particles having an average particle diameter of 50 μm or less. It should be noted that making particles smaller than necessary leads to an increase in pulverization cost, so that the average particle size is usually 0.01 μm or more, preferably 0.02 μm or more, more preferably 0.1 μm or more. That's fine.

湿式混合した場合には、次いで通常乾燥工程に供される。方法は特に限定されないが、生成する粒子状物の均一性や粉体流動性、粉体ハンドリング性能、二次粒子を効率よく形成できる等の観点から噴霧乾燥が好ましい。噴霧乾燥は、公知の方法により行えばよい。例えば、ノズルの先端に気体流とスラリーとを流入させることによってノズルからスラリーを液滴として吐出させ、乾燥ガスと接触させて液滴を迅速に乾燥させる方法を用いることができる。   In the case of wet mixing, it is then usually subjected to a drying process. The method is not particularly limited, but spray drying is preferable from the viewpoints of uniformity of the generated particulate matter, powder flowability, powder handling performance, and formation of secondary particles efficiently. Spray drying may be performed by a known method. For example, it is possible to use a method in which a gas flow and slurry are caused to flow into the tip of the nozzle so that the slurry is ejected as droplets from the nozzle and brought into contact with a drying gas to quickly dry the droplets.

粒子状物の平均粒子径は50μm以下、更に40μm以下となるようにするのが好ましい。ただし、あまりに小さな粒径は得にくい傾向にあるので、通常は4μm以上、好ましくは5μm以上である。噴霧乾燥法で粒子状物を製造する場合、その粒子径は、噴霧形式、加圧気体流供給速度、スラリー供給速度、乾燥温度等を適宜選定することによって制御することができる。   The average particle diameter of the particulate matter is preferably 50 μm or less, more preferably 40 μm or less. However, since it tends to be difficult to obtain a too small particle size, it is usually 4 μm or more, preferably 5 μm or more. In the case of producing a particulate material by the spray drying method, the particle size can be controlled by appropriately selecting the spray format, the pressurized gas flow supply rate, the slurry supply rate, the drying temperature, and the like.

なお、原料を湿式混合するに際しては、リチウムを含有する化合物、ホウ素を含有する化合物及びビスマスを含有する化合物は、他の原料と一緒に湿式混合してもよく、また他の原料を湿式混合−噴霧乾燥したものにこれらを乾式で混合しても良い。例えば、リチウム化合物以外の原料を湿式混合し、次いで噴霧乾燥し粒子状物とした後に、これにリチウム化合物を乾式混合し、焼成に供する事によって目的とするリチウム遷移金属複合酸化物を得る、といったように、湿式混合処理時に加えなかった原料を噴霧乾燥粒子状物と乾式混合して焼成に供することも可能である。即ち、リチウム源、ホウ素源及びビスマス源の一種或いはそれ以上を添加する時機としては、例えば
(1) 原料秤量時、
(2) 湿式混合時のスラリーへ、
(3) 湿式混合後のスラリーへ、
(4) 噴霧乾燥前のスラリーへ、
(5) 噴霧乾燥後の乾燥粉体へ、
(6) 焼成前の乾燥粉体へ、
などが考えられるが、上述のいずれの工程でも良い。
In addition, when the raw materials are wet-mixed, the lithium-containing compound, the boron-containing compound, and the bismuth-containing compound may be wet-mixed together with other raw materials, or other raw materials may be wet-mixed- These may be mixed in a dry manner with a spray-dried product. For example, a raw material other than a lithium compound is wet-mixed and then spray-dried to form a particulate material, and then the lithium compound is dry-mixed and subjected to firing to obtain a target lithium transition metal composite oxide. Thus, it is also possible to subject the raw materials not added during the wet mixing process to dry mixing with the spray-dried particulate matter and subject to firing. That is, as a timing for adding one or more of a lithium source, a boron source and a bismuth source, for example, (1) When weighing raw materials,
(2) To slurry during wet mixing,
(3) To the slurry after wet mixing,
(4) To slurry before spray drying,
(5) To dry powder after spray drying
(6) To dry powder before firing
Any of the above-described steps may be used.

このようにして得られた粒子状物を次いで焼成することによって、一次粒子が焼結して二次粒子を形成するリチウム遷移金属複合酸化物粉体を得ることができる。   The particulate matter thus obtained is then fired to obtain a lithium transition metal composite oxide powder in which primary particles are sintered to form secondary particles.

焼成には、例えば箱形炉、管状炉、トンネル炉、ロータリーキルン等を使用することができる。焼成は、通常、昇温・最高温度保持・降温の三部分に分けられる。また、二番目の最高温度保持部分は必ずしも一回とは限らず、目的に応じて二段階またはそれ以上の段階をふませてもよく、二次粒子を破壊しない程度に凝集を解消することを意味する解砕工程または、一次粒子或いは更に微小粉末まで砕くことを意味する粉砕工程を挟んで、昇温・最高温度保持・降温の工程を二回またはそれ以上繰り返しても良い。   For firing, for example, a box furnace, a tubular furnace, a tunnel furnace, a rotary kiln or the like can be used. Firing is usually divided into three parts: temperature rise, maximum temperature hold, and temperature drop. In addition, the second maximum temperature holding part is not necessarily limited to one time, and two or more stages may be included depending on the purpose, so that aggregation is eliminated to the extent that secondary particles are not destroyed. The temperature raising, maximum temperature holding, and temperature lowering steps may be repeated twice or more with a crushing step meaning or a crushing step meaning crushing to primary particles or even fine powder.

昇温部分では、通常1〜5℃/分の昇温速度で炉内を昇温させる。この昇温速度は過度に遅すぎても時間がかかって工業的に不利であるが、過度に速すぎても炉によっては炉内温度が設定温度に追従しなくなる。   In the temperature raising portion, the temperature in the furnace is usually raised at a temperature raising rate of 1 to 5 ° C./min. Even if this rate of temperature rise is too slow, it takes time and is industrially disadvantageous. However, if it is too fast, the furnace temperature does not follow the set temperature depending on the furnace.

最高温度保持部分では、焼成温度は通常500℃以上、好ましくは600℃以上、より好ましくは800℃以上である。温度が低すぎると、結晶性の良いリチウム遷移金属複合酸化物を得るために長時間の焼成時間を要する傾向にある反面、温度が高すぎるとリチウム遷移金属複合酸化物が激しく焼結して焼成後の粉砕・解砕歩留まりが悪く工業的に不利となったり、あるいは酸素欠損等の欠陥が多いリチウム遷移金属複合酸化物を生成する結果となり、該リチウム遷移金属複合酸化物を正極活物質として使用したリチウム二次電池の電池容量が低下あるいは充放電による結晶構造の崩壊による劣化を招くことがあることから、通常1200℃以下、好ましくは1100℃以下である。   In the maximum temperature holding portion, the firing temperature is usually 500 ° C. or higher, preferably 600 ° C. or higher, more preferably 800 ° C. or higher. If the temperature is too low, it tends to require a long firing time in order to obtain a lithium transition metal composite oxide having good crystallinity. On the other hand, if the temperature is too high, the lithium transition metal composite oxide is vigorously sintered and fired. The resulting pulverization / pulverization yield is poor, resulting in industrial disadvantages, or the production of lithium transition metal composite oxides with many defects such as oxygen vacancies. The lithium transition metal composite oxides are used as positive electrode active materials. Since the battery capacity of the lithium secondary battery may be reduced or deteriorate due to the collapse of the crystal structure due to charge / discharge, it is usually 1200 ° C. or lower, preferably 1100 ° C. or lower.

最高温度保持部分での保持時間は、通常1時間以上100時間以下の広い範囲から選択される。また、焼成時間が短すぎると結晶性の良いリチウム遷移金属複合酸化物粉体が得られにくい。   The holding time at the maximum temperature holding portion is usually selected from a wide range of 1 hour to 100 hours. If the firing time is too short, it is difficult to obtain a lithium transition metal composite oxide powder with good crystallinity.

降温部分では、通常0.1〜5℃/分の降温速度で炉内を降温させる。この降温速度は過度に遅すぎても時間がかかって工業的に不利な方向であり、過度に速すぎても目的物の均一性に欠けたり、容器の劣化を早める傾向にある。   In the temperature lowering portion, the temperature in the furnace is usually decreased at a temperature decreasing rate of 0.1 to 5 ° C./min. Even if this rate of temperature decrease is too slow, it takes time and is industrially disadvantageous. If it is too fast, the uniformity of the target product tends to be lacking or the container tends to deteriorate.

一般式(I)で表されるリチウム遷移金属複合酸化物では、焼成雰囲気によって、得られる粉体のタップ密度などの嵩密度が変化するので、焼成時の雰囲気としては、空気などの酸素濃度が10〜80体積%である雰囲気が好ましく、更に好ましくは酸素濃度が10〜50体積%の雰囲気である。酸素濃度が高すぎると、得られるリチウム遷移金属複合酸化物の嵩密度が低下する恐れがある。酸素濃度が低すぎると、酸素欠損等の欠陥が多いリチウム遷移金属複合酸化物を生成する結果となる。   In the lithium transition metal composite oxide represented by the general formula (I), the bulk density such as the tap density of the obtained powder varies depending on the firing atmosphere, so the atmosphere during firing includes oxygen concentration such as air. An atmosphere of 10 to 80% by volume is preferable, and an atmosphere having an oxygen concentration of 10 to 50% by volume is more preferable. If the oxygen concentration is too high, the bulk density of the resulting lithium transition metal composite oxide may be reduced. If the oxygen concentration is too low, a lithium transition metal composite oxide having many defects such as oxygen vacancies is generated.

リチウム遷移金属複合酸化物粉体は、これをそのままリチウム二次電池正極活物質として用いても良いが、表面処理を施してから用いても良い。表面処理の目的と効果はいろいろあるが、例えば、正極活物質表面の反応活性点が低減し、Mn等の金属元素溶出を抑制することができる。この目的で用いられる手法としては、例えばリチウム遷移金属複合酸化物をシランカップリング剤などの有機ケイ素化合物で表面処理する方法(例えば特開2002−83596号公報参照)等が挙げられる。また、正極として用いた場合の導電性を向上させるため、例えば炭素材を機械的に複合化被覆処理する方法(例えば特開2003−137554号公報参照)等が挙げられる。   The lithium transition metal composite oxide powder may be used as it is as a lithium secondary battery positive electrode active material, or may be used after surface treatment. Although there are various purposes and effects of the surface treatment, for example, the reactive site on the surface of the positive electrode active material is reduced, and elution of metal elements such as Mn can be suppressed. As a method used for this purpose, for example, a method in which a lithium transition metal composite oxide is surface-treated with an organosilicon compound such as a silane coupling agent (see, for example, JP-A-2002-83596) can be mentioned. Moreover, in order to improve the electroconductivity at the time of using as a positive electrode, the method (for example, Unexamined-Japanese-Patent No. 2003-137554) etc. which carry out the composite coating process of a carbon material mechanically etc. are mentioned, for example.

<本発明のリチウム遷移金属複合酸化物粉体を得るための製造方法>
前述の特定の物性を満足する本発明のリチウム二次電池正極活物質用リチウム遷移金属複合酸化物粉体を製造するには、例えば、上記焼成により得られたリチウム遷移金属複合酸化物粉体を、最適化された条件で解砕する方法が挙げられる。
<Production method for obtaining lithium transition metal composite oxide powder of the present invention>
In order to produce the lithium transition metal composite oxide powder for the positive electrode active material of the lithium secondary battery of the present invention that satisfies the specific physical properties described above, for example, the lithium transition metal composite oxide powder obtained by the firing is used. And a method of crushing under optimized conditions.

焼成により得られたリチウム遷移金属複合酸化物粉体の解砕は、ゆるやかな焼結(点焼結)でぶどうの房状、数珠つなぎ構造となった三次粒子を軽く打壊する事を目的とし、二次粒子を多く存在させるものである。従って、強すぎる解砕は二次粒子の破壊まで招き、正極電極を製造する際の塗布性能の悪化をもたらし、また弱すぎる解砕では三次粒子がほぐれずにタップ密度を上げることもできない。また、同じ乳鉢解砕でも解砕時間が短いと三次粒子構造体を二次粒子とすることができない。   The purpose of pulverizing lithium transition metal composite oxide powders obtained by firing is to lightly break the tertiary particles in a bunch of vines and a daisy chain structure by gentle sintering (point sintering). A large amount of secondary particles are present. Therefore, crushing that is too strong leads to the destruction of the secondary particles, resulting in deterioration of the coating performance when manufacturing the positive electrode, and crushing that is too weak cannot increase the tap density because the tertiary particles are not loosened. Moreover, even if the mortar crushing is the same, if the crushing time is short, the tertiary particle structure cannot be made into secondary particles.

本発明における前記特定の物性を有するリチウム遷移金属複合酸化物粉体を得るための解砕方法は、特に限定されないが、例えば、強すぎない最適化した解砕が可能な方法、具体的には、乳鉢解砕、タッピングボール入りの振動篩、ピンミル等を最適な条件下で使用することで達成できる。例えば、粒子の焼結強さに応じて、振動篩、ピンミル等の処理時間、回転数を調整することで、解砕の程度を制御することもできる。   The crushing method for obtaining the lithium transition metal composite oxide powder having the specific physical properties in the present invention is not particularly limited. For example, a method capable of optimized crushing that is not too strong, specifically, It can be achieved by using a mortar crush, a vibrating sieve with a tapping ball, a pin mill, etc. under optimum conditions. For example, the degree of crushing can be controlled by adjusting the processing time and rotational speed of a vibrating sieve, a pin mill, etc. according to the sintering strength of the particles.

本発明のリチウム遷移金属複合酸化物粉体の粉体物性を実現するための解砕条件としては、焼結した粉体の焼結強さにも依存するが、より具体的には次のような条件が例として挙げられる。
(1) 乳鉢解砕に当たり、100gに対して10〜60分程度処理を行う。この乳鉢解砕に当たり全体をまんべんなくすりつぶし、目に見える粗粉がない状態とする。
(2) ピンミル解砕に当たり、1000〜6000rpm程度の回転数で1kgあたり1〜60分程度処理する。処理時間は粉の流動性によるものが大きく、滞留時間を調節しても解砕の程度は変化しない。
(3) 振動篩による解砕に当たり、電磁式ふるい振とう機(例:MRK−RETSCH(三田村理研工業−レッチェ社)シーブシェーカー)を用い、ふるいうけにジルコニアビーズ、アルミナビーズ等のセラミックボールを入れて、振幅2mm連続で1〜3時間程度付与する。
The crushing conditions for realizing the powder physical properties of the lithium transition metal composite oxide powder of the present invention depend on the sintering strength of the sintered powder, but more specifically, as follows. Examples of such conditions are given as examples.
(1) In mortar crushing, 100g is treated for about 10 to 60 minutes. In this mortar crushing, the whole is ground evenly so that there is no visible coarse powder.
(2) For pin mill crushing, it is processed for about 1 to 60 minutes per kg at a rotation speed of about 1000 to 6000 rpm. The treatment time largely depends on the fluidity of the powder, and even if the residence time is adjusted, the degree of crushing does not change.
(3) When crushing with a vibrating sieve, use a magnetic sieve shaker (eg MRK-RETSCH (Mitamura Riken Kogyo-Lecce) Sieve Shaker) and put ceramic balls such as zirconia beads and alumina beads into the sieve. Then, it is applied for 1 to 3 hours with a continuous amplitude of 2 mm.

このようにして解砕を行った後は、必要に応じて目開き20〜300μmの網篩等により分級する。   After crushing in this way, classification is performed with a mesh sieve having an opening of 20 to 300 μm as necessary.

[本発明のリチウム二次電池正極]
リチウム二次電池正極は、通常、リチウム遷移金属複合酸化物粉体と結着剤と導電材とを含有する正極活物質層を集電体上に形成してなる。本発明において、正極活物質としては、上記の本発明のリチウム遷移金属複合酸化物粉体を用いる。
[Positive electrode of lithium secondary battery of the present invention]
A lithium secondary battery positive electrode is usually formed by forming a positive electrode active material layer containing a lithium transition metal composite oxide powder, a binder, and a conductive material on a current collector. In the present invention, the above-described lithium transition metal composite oxide powder of the present invention is used as the positive electrode active material.

本発明のリチウム二次電池正極は、本発明のリチウム遷移金属複合酸化物粉体と結着剤及び導電材、並びに必要に応じて増粘剤等を乾式で混合してシート状にしたものを正極集電体に圧着するか、又はこれらの材料を分散媒に溶解又は分散させてスラリー(塗布液)として、これを正極集電体に塗布し、乾燥することによりシート状とし、正極活物質層を集電体上に形成させることにより製造される。ここで、塗布、乾燥により得られた正極活物質層は、電極材料の充填密度を高めるために、垂直プレス、ローラープレス等により圧密するのが好ましい。   The lithium secondary battery positive electrode of the present invention is a sheet obtained by dry mixing the lithium transition metal composite oxide powder of the present invention, a binder and a conductive material, and a thickener as necessary. The positive electrode current collector is bonded to the positive electrode current collector, or these materials are dissolved or dispersed in a dispersion medium to form a slurry (coating liquid), which is applied to the positive electrode current collector and dried to form a sheet. Produced by forming a layer on a current collector. Here, the positive electrode active material layer obtained by coating and drying is preferably consolidated by a vertical press, a roller press or the like in order to increase the packing density of the electrode material.

本発明のリチウム遷移金属複合酸化物粉体は、その特定の粉体特性により、塗膜化性能、即ち、結着剤及び導電材、その他の添加剤と共に適当な分散媒に溶解又は分散させて塗布液を調製し、これを正極集電体に塗布、乾燥して正極活物質層を形成した際、その塗布液の取り扱い性、塗布性能、形成された塗膜の平滑性、膜強度、薄膜成膜性、集電体との密度性に優れるものであることから、本発明のリチウム二次電池正極は、特にこのような塗布液の塗布、乾燥により正極集電体上に正極活物質層を形成してなるものであることが好ましい。   The lithium transition metal composite oxide powder of the present invention can be dissolved or dispersed in an appropriate dispersion medium together with a coating performance, that is, a binder, a conductive material, and other additives, depending on the specific powder characteristics. When a coating solution is prepared and applied to a positive electrode current collector and dried to form a positive electrode active material layer, the handling property of the coating solution, coating performance, smoothness of the formed coating film, film strength, thin film Since the lithium secondary battery positive electrode of the present invention is excellent in film formability and density with the current collector, the positive electrode active material layer is formed on the positive electrode current collector by application and drying of such a coating solution. Is preferably formed.

正極活物質層中の正極活物質の割合は、通常10重量%以上、好ましくは30重量%以上であり、通常99.9重量%以下、好ましくは99重量%以下である。正極活物質が多すぎると正極の強度が不足する傾向があり、少なすぎると容量の面で不十分となるおそれがある。   The ratio of the positive electrode active material in the positive electrode active material layer is usually 10% by weight or more, preferably 30% by weight or more, and usually 99.9% by weight or less, preferably 99% by weight or less. If the amount of the positive electrode active material is too large, the strength of the positive electrode tends to be insufficient. If the amount is too small, the capacity may be insufficient.

正極に使用される導電材としては、天然黒鉛、人造黒鉛、アセチレンブラック、ケッチェンブラック、ニードルコークス、フラーレン、カーボンナノチューブ類等を挙げることができ、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。   Examples of the conductive material used for the positive electrode include natural graphite, artificial graphite, acetylene black, ketjen black, needle coke, fullerene, and carbon nanotubes. These may be used alone. You may use 2 or more types together by arbitrary combinations and a ratio.

正極活物質層中の導電材の割合は通常0.1重量%以上、好ましくは1重量%以上であり、通常10重量%以下、好ましくは8重量%以下である。導電材が多すぎると、相対的に正極活物質量が少なくなって容量の面で不十分となることがあり、少なすぎると電気導電性が不十分となることがある。   The proportion of the conductive material in the positive electrode active material layer is usually 0.1% by weight or more, preferably 1% by weight or more, and usually 10% by weight or less, preferably 8% by weight or less. If the amount of the conductive material is too large, the amount of the positive electrode active material may be relatively small and the capacity may be insufficient. If the amount is too small, the electrical conductivity may be insufficient.

正極に使用される結着剤としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子、SBR(スチレン−ブタジエンゴム)、NBR(アクリロニトリル−ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体及びその水素添加物、EPDM(エチレン−プロピレン−ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレンスチレンブロック共重合体及びその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられ、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。   As the binder used for the positive electrode, polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, aromatic polyamide, cellulose, nitrocellulose, and other resin polymers, SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene) Rubber), fluorine rubber, isoprene rubber, butadiene rubber, rubber polymer such as ethylene / propylene rubber; styrene / butadiene / styrene block copolymer and its hydrogenated product, EPDM (ethylene-propylene-diene terpolymer) ), Thermoplastic elastomeric polymers such as styrene / ethylene / butadiene / ethylene copolymers, styrene / isoprene styrene block copolymers and hydrogenated products thereof; syndiotactic-1,2-polybutadiene, polyvinyl acetate Soft resinous polymers such as ethylene, vinyl acetate copolymer, propylene / α-olefin copolymer; polyvinylidene fluoride, polytetrafluoroethylene, fluorinated polyvinylidene fluoride, polytetrafluoroethylene / ethylene copolymer Fluorinated polymers such as: polymer compositions having ion conductivity of alkali metal ions (particularly lithium ions), etc., and these may be used alone or in any combination of two or more And may be used in combination in a ratio.

正極活物質層中の結着剤の割合は、通常0.1重量%以上、好ましくは1重量%以上、より好ましくは5重量%以上であり、通常60重量%以下、好ましくは40重量%以下である。結着剤含有量が少ないと正極活物質を十分保持できず、正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまうことがある。逆に結着剤含有量が多すぎると、相対的に正極活物質量や導電材量が少なくなって、電池容量や導電性が低下することがある。   The proportion of the binder in the positive electrode active material layer is usually 0.1% by weight or more, preferably 1% by weight or more, more preferably 5% by weight or more, and usually 60% by weight or less, preferably 40% by weight or less. It is. When the binder content is low, the positive electrode active material cannot be sufficiently retained, the mechanical strength of the positive electrode is insufficient, and battery performance such as cycle characteristics may be deteriorated. On the other hand, when the binder content is too large, the amount of the positive electrode active material and the amount of the conductive material are relatively decreased, and the battery capacity and conductivity may be lowered.

また、正極活物質層を形成するためのスラリーを調製する際に用いる分散媒としては、活物質及び結着剤、並びに導電材及び増粘剤を溶解又は分散することが可能なものであれば、その種類に特に制限はなく、水系媒体と有機系媒体のどちらを用いてもよい。水系媒体としては、例えば、水、アルコール等が挙げられる。有機系媒体としては、例えば、ヘキサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン、メチルナフタレン等の芳香族炭化水素類;キノリン、ピリジン等の複素環化合物;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;酢酸メチル、アクリル酸メチル等のエステル類;ジエチレントリアミン、N−N−ジメチルアミノプロピルアミン等のアミン類;ジメチルエーテル、エチレンオキシド、テトラヒドロフラン(THF)等のエーテル類;N−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;ヘキサメチルホスファルアミド、ジメチルスルホキシド等の非プロトン性極性溶媒などを挙げることができる。特に水系媒体を用いる場合、増粘剤に併せて分散媒を加え、SBR等のラテックスを用いてスラリー化するのが好ましい。なお、これらの分散媒は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。   Moreover, as a dispersion medium used when preparing the slurry for forming a positive electrode active material layer, what can dissolve or disperse | distribute an active material, a binder, a electrically conductive material, and a thickener is used. The type is not particularly limited, and either an aqueous medium or an organic medium may be used. Examples of the aqueous medium include water and alcohol. Examples of the organic medium include aliphatic hydrocarbons such as hexane; aromatic hydrocarbons such as benzene, toluene, xylene, and methylnaphthalene; heterocyclic compounds such as quinoline and pyridine; ketones such as acetone, methyl ethyl ketone, and cyclohexanone. Esters such as methyl acetate and methyl acrylate; amines such as diethylenetriamine and NN-dimethylaminopropylamine; ethers such as dimethyl ether, ethylene oxide and tetrahydrofuran (THF); N-methylpyrrolidone (NMP) and dimethyl Examples include amides such as formamide and dimethylacetamide; aprotic polar solvents such as hexamethylphosphalamide and dimethylsulfoxide. In particular, when an aqueous medium is used, it is preferable to add a dispersion medium together with the thickener and make a slurry using a latex such as SBR. In addition, these dispersion media may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.

正極集電体の材質としては、例えば、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料;カーボンクロス、カーボンペーパー等の炭素材料が挙げられる。中でも金属材料、特にアルミニウムが好ましい。   Examples of the material of the positive electrode current collector include metal materials such as aluminum, stainless steel, nickel plating, titanium, and tantalum; and carbon materials such as carbon cloth and carbon paper. Of these, metal materials, particularly aluminum, are preferred.

集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属薄膜が好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。薄膜の厚さは任意であるが、通常は1μm以上、好ましくは3μm以上、より好ましくは5μm以上であり、通常1mm以下、好ましくは100μm以下、より好ましくは50μm以下である。集電体が薄いと集電体として必要な強度が不足することがある。逆に厚すぎると、取り扱いづらくなる。   Examples of the shape of the current collector include metal foil, metal cylinder, metal coil, metal plate, metal thin film, expanded metal, punch metal, and foam metal in the case of a metal material. A thin film, a carbon cylinder, etc. are mentioned. Of these, metal thin films are preferred. In addition, you may form a thin film suitably in mesh shape. The thickness of the thin film is arbitrary, but is usually 1 μm or more, preferably 3 μm or more, more preferably 5 μm or more, and usually 1 mm or less, preferably 100 μm or less, more preferably 50 μm or less. If the current collector is thin, the strength required for the current collector may be insufficient. Conversely, if it is too thick, it becomes difficult to handle.

このような集電体上に形成される正極活物質層の厚さは通常10μm以上、200μm以下である。   The thickness of the positive electrode active material layer formed on such a current collector is usually 10 μm or more and 200 μm or less.

[本発明のリチウム二次電池]
本発明のリチウム二次電池は、本発明のリチウム二次電池正極とリチウムを吸蔵・放出可能な負極と、リチウム塩を含む電解質とを有する。
[Lithium secondary battery of the present invention]
The lithium secondary battery of this invention has the lithium secondary battery positive electrode of this invention, the negative electrode which can occlude / release lithium, and the electrolyte containing lithium salt.

負極は、負極活物質、結着剤及び必要に応じて導電材を含有する負極活物質層を集電体上に形成したものや、リチウム金属、リチウム−アルミニウム合金といったリチウム合金等の金属箔が用いられる。   The negative electrode includes a negative electrode active material, a binder, and a negative electrode active material layer containing a conductive material as necessary, and a metal foil such as a lithium alloy such as lithium metal or lithium-aluminum alloy. Used.

負極活物質は、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば任意であるが、通常は安全性の高さの面からリチウムを吸蔵、放出できる炭素材料が用いられる。   The negative electrode active material is arbitrary as long as it can electrochemically occlude and release lithium ions, but usually a carbon material that can occlude and release lithium is used in terms of safety.

炭素材料としては、例えば、人造黒鉛、天然黒鉛等の黒鉛(グラファイト)や、様々な熱分解条件での有機物の熱分解物が挙げられる。有機物の熱分解物としては、石炭系コークス、石油系コークス、石炭系ピッチの炭化物、石油系ピッチの炭化物、石炭系又は石油系のピッチを酸化処理したものの炭化物、ニードルコークス、ピッチコークス、フェノール樹脂、結晶セルロース等の炭化物等及びこれらを一部黒鉛化した炭素材、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維等が挙げられる。これらのうち、黒鉛、特に種々の原料から得た易黒鉛性ピッチに高温熱処理を施すことによって製造された人造黒鉛若しくは精製天然黒鉛又はこれらの黒鉛にピッチを含む黒鉛材料等であって種々の表面処理を施したものが好ましい。これらの炭素材料は、それぞれ1種を単独で用いても、2種以上を組み合わせて用いてもよい。   Examples of the carbon material include graphite (graphite) such as artificial graphite and natural graphite, and organic pyrolysis products under various pyrolysis conditions. Organic pyrolysis products include coal-based coke, petroleum-based coke, coal-based pitch carbide, petroleum-based pitch carbide, carbonized products obtained by oxidizing coal-based or petroleum-based pitch, needle coke, pitch coke, and phenol resin. And carbides such as crystalline cellulose and the like, carbon materials obtained by partially graphitizing these, furnace black, acetylene black, pitch-based carbon fibers, and the like. Among these, graphite, especially artificial graphite or purified natural graphite produced by subjecting easily graphitizable pitch obtained from various raw materials to high-temperature heat treatment, graphite material containing pitch in these graphite, etc., and various surfaces What processed is preferable. One of these carbon materials may be used alone, or two or more thereof may be used in combination.

黒鉛材料としては、学振法によるX線回折で求めた格子面(002面)のd値(層間距離)が、通常0.335nm以上0.34nm以下、特に0.337nm以下であるものが好ましい。黒鉛材料の灰分は、黒鉛材料の重量に対して、通常1重量%以下、好ましくは0.5重量%以下、より好ましくは0.1重量%以下である。学振法によるX線回折で求めた黒鉛材料の結晶子サイズ(Lc)は、通常30nm以上、好ましくは50nm以上、より好ましくは100nm以上である。レーザー回折・散乱法により求めた黒鉛材料のメジアン径は、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、特に好ましくは7μm以上であり、通常100μm以下、好ましくは50μm以下、より好ましくは40μm以下、特に好ましくは30μm以下である。   As the graphite material, those in which the d value (interlayer distance) of the lattice plane (002 plane) obtained by X-ray diffraction by the Gakushin method is usually 0.335 nm or more and 0.34 nm or less, and particularly preferably 0.337 nm or less. . The ash content of the graphite material is usually 1% by weight or less, preferably 0.5% by weight or less, more preferably 0.1% by weight or less, based on the weight of the graphite material. The crystallite size (Lc) of the graphite material determined by X-ray diffraction by the Gakushin method is usually 30 nm or more, preferably 50 nm or more, more preferably 100 nm or more. The median diameter of the graphite material determined by the laser diffraction / scattering method is usually 1 μm or more, preferably 3 μm or more, more preferably 5 μm or more, particularly preferably 7 μm or more, and usually 100 μm or less, preferably 50 μm or less, more preferably. It is 40 μm or less, particularly preferably 30 μm or less.

また、黒鉛材料のBET法比表面積は、通常0.5m/g以上、好ましくは0.7m/g以上、より好ましくは1.0m/g以上、特に好ましくは1.5m/g以上であり、通常25.0m/g以下、好ましくは20.0m/g以下、より好ましくは15.0m/g以下、特に好ましくは10.0m/g以下である。アルゴンレーザー光を用いたラマンスペクトル分析で、1580〜1620cm−1の範囲で検出されるピークPの強度Iと、1350〜1370cm−1の範囲で検出されるピークPの強度Iとの強度比I/Iが、0以上0.5以下であるものが好ましく、ピークPの半価幅は26cm−1以下、特に25cm−1以下が好ましい。 Further, the BET specific surface area of the graphite material is usually 0.5 m 2 / g or more, preferably 0.7 m 2 / g or more, more preferably 1.0 m 2 / g or more, particularly preferably 1.5 m 2 / g. or more, usually 25.0 m 2 / g or less, preferably 20.0 m 2 / g or less, more preferably 15.0 m 2 / g or less, particularly preferably 10.0 m 2 / g or less. In Raman spectrum analysis using argon laser beam, the intensity I A of the peak P A is detected in the range of 1580~1620Cm -1, and intensity I B of a peak P B detected in the range of 1350 -1 the intensity ratio I a / I B is preferably not more than 0 and 0.5 or less, the peak half width of P a is 26cm -1 or less, especially 25 cm -1 or less.

炭素材料以外の負極活物質としては、例えば、酸化錫や酸化ケイ素などの金属酸化物;リチウム単体やリチウムアルミニウム合金等のリチウム合金などが挙げられる。これらは、それぞれ1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよく、炭素材料と組み合わせて用いてもよい。   Examples of the negative electrode active material other than the carbon material include metal oxides such as tin oxide and silicon oxide; and lithium alloys such as lithium alone and lithium aluminum alloys. These may be used individually by 1 type, may be used in combination of 2 or more types, and may be used in combination with a carbon material.

負極活物質層は、正極活物質層と同様にして形成させればよい。すなわち、前述の負極活物質及び結着剤、並びに所望により増粘剤及び導電材を、分散媒でスラリー化したものを負極集電体に塗布し、乾燥することにより形成させることができる。分散媒、結着剤、導電材及び増粘剤としては、正極活物質と同じものを用いることができる。   The negative electrode active material layer may be formed in the same manner as the positive electrode active material layer. That is, it can be formed by applying the above-described negative electrode active material and binder, and, if desired, a thickener and a conductive material slurryed with a dispersion medium to a negative electrode current collector and drying. As the dispersion medium, the binder, the conductive material, and the thickener, the same materials as the positive electrode active material can be used.

負極集電体の材質としては、例えば、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料;カーボンクロス、カーボンペーパー等の炭素材料が挙げられる。金属材料の形状としては、金属箔、金属円柱、金属コイル、金属板、金属薄膜等が挙げられ、炭素材料の形状としては、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属薄膜が好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。薄膜の厚さは任意であるが、通常は1μm以上、好ましくは3μm以上、より好ましくは5μm以上であり、通常1mm以下、好ましくは100μm以下、より好ましくは50μm以下である。集電体が薄いと集電体として必要な強度が不足することがある。逆に厚すぎると、取り扱いづらくなる。   Examples of the material for the negative electrode current collector include metal materials such as copper, nickel, stainless steel, and nickel-plated steel; and carbon materials such as carbon cloth and carbon paper. Examples of the shape of the metal material include a metal foil, a metal cylinder, a metal coil, a metal plate, and a metal thin film. Examples of the shape of the carbon material include a carbon plate, a carbon thin film, and a carbon cylinder. Of these, metal thin films are preferred. In addition, you may form a thin film suitably in mesh shape. The thickness of the thin film is arbitrary, but is usually 1 μm or more, preferably 3 μm or more, more preferably 5 μm or more, and usually 1 mm or less, preferably 100 μm or less, more preferably 50 μm or less. If the current collector is thin, the strength required for the current collector may be insufficient. Conversely, if it is too thick, it becomes difficult to handle.

このような集電体上に形成される負極活物質層の厚さは通常10μm以上、200μm以下である。   The thickness of the negative electrode active material layer formed on such a current collector is usually 10 μm or more and 200 μm or less.

電解質としては、例えば、有機電解液、高分子固体電解質、ゲル状電解質、無機固体電解質等が挙げられ、これらのうち有機電解液(非水電解液)が好ましい。   Examples of the electrolyte include organic electrolytes, polymer solid electrolytes, gel electrolytes, inorganic solid electrolytes, etc. Among these, organic electrolytes (non-aqueous electrolytes) are preferable.

有機電解液に用いる有機溶媒には公知のいずれのものも用いることができる。例えば、ジメチルカーボネート、ジエチルカーボネート、プロピレンカーボネート、エチレンカーボネート、ビニレンカーボネート等のカーボネート類;テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル等のエーテル類;4−メチル−2−ペンタノン等のケトン類;スルホラン、メチルスルホラン等のスルホラン系化合物;ジメチルスルホキシド等のスルホキシド化合物;γ−ブチロラクトン等のラクトン類;アセトニトリル、プロピオニトリル、ベンゾニトリル、ブチロニトリル、バレロニトリル等のニトリル類;1,2−ジクロロエタン等の塩素化炭化水素類;アミン類;エステル類;ジメチルホルムアミド等のアミド類;リン酸トリメチル、リン酸トリエチル等のリン酸エステル化合物等が挙げられる。これらは単独で用いても、2種類以上を併用してもよい。   Any known organic solvent can be used for the organic electrolyte. For example, carbonates such as dimethyl carbonate, diethyl carbonate, propylene carbonate, ethylene carbonate, vinylene carbonate; tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, 1, Ethers such as 1,3-dioxolane, 4-methyl-1,3-dioxolane and diethyl ether; ketones such as 4-methyl-2-pentanone; sulfolane compounds such as sulfolane and methyl sulfolane; sulfoxide compounds such as dimethyl sulfoxide Lactones such as γ-butyrolactone; nitriles such as acetonitrile, propionitrile, benzonitrile, butyronitrile, valeronitrile; chlorinated hydrocarbons such as 1,2-dichloroethane; amines Esters, amides such as dimethylformamide; trimethyl phosphate, phosphoric acid ester compounds such as triethyl phosphate. These may be used alone or in combination of two or more.

有機電解液は、電解質を解離させるため、25℃における比誘電率が20以上である高誘電率溶媒を含んでいるのが好ましい。中でも、エチレンカーボネート、プロピレンカーボネート、及びそれらの水素原子をハロゲン等の他の元素又はアルキル基等で置換した有機溶媒を含んでいることが好ましい。有機電解液全体に占める高誘電率溶媒の電解液の割合は、通常20重量%以上、好ましくは30重量%以上、より好ましくは40重量%以上である。また、有機電解液には、CO、NO、CO、SO等のガスやポリサルファイドS 2−など負極表面にリチウムイオンの効率良い充放電を可能にする良好な被膜を形成する添加剤を、任意の割合で添加してもよい。 The organic electrolytic solution preferably contains a high dielectric constant solvent having a relative dielectric constant of 20 or more at 25 ° C. in order to dissociate the electrolyte. Especially, it is preferable to contain the organic solvent which substituted ethylene carbonate, propylene carbonate, and those hydrogen atoms with other elements, such as a halogen, or an alkyl group. The ratio of the electrolyte solution of the high dielectric constant solvent to the whole organic electrolyte solution is usually 20% by weight or more, preferably 30% by weight or more, more preferably 40% by weight or more. In addition, the organic electrolyte is added with a gas such as CO 2 , N 2 O, CO, SO 2 , or polysulfide S x 2− that forms a good coating that enables efficient charge / discharge of lithium ions on the negative electrode surface. You may add an agent in arbitrary ratios.

溶質となるリチウム塩は、従来公知の任意のものを用いることができる。具体例としては、LiClO、LiAsF、LiPF、LiBF、LiB(C、LiCl、LiBr、CHSOLi、CFSOLi、LiN(SOCF、LiN(SO、LiC(SOCF、LiN(SOCF等が挙げられる。これらの溶質は1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。 Any conventionally known lithium salt can be used as the solute. Specific examples include LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, CH 3 SO 3 Li, CF 3 SO 3 Li, LiN (SO 2 CF 3 ) 2. , LiN (SO 2 C 2 F 5 ) 2 , LiC (SO 2 CF 3 ) 3 , LiN (SO 3 CF 3 ) 2 and the like. These solutes may be used alone or in combination of two or more in any combination and ratio.

電解液中におけるリチウム塩の濃度は、通常0.5mol/L以上、好ましくは0.75mol/L以上で、1.5mol/L以下、好ましくは1.25mol/L以下である。この濃度が、高くても低くても伝導度が低下し、電池特性が低下することがある。   The concentration of the lithium salt in the electrolytic solution is usually 0.5 mol / L or more, preferably 0.75 mol / L or more, and 1.5 mol / L or less, preferably 1.25 mol / L or less. Whether the concentration is high or low, the conductivity may decrease, and the battery characteristics may deteriorate.

有機電解液に用いる無機固体電解質としては、電解質として用いることが知られている結晶質・非晶質の任意のものを用いることができる。結晶質の無機固体電解質としては、例えば、LiI、LiN、Li1+xTi2−x(PO(M=Al、Sc、Y、La)、Li0.5―3xRE0.5+xTiO(RE=La、Pr、Nd、Sm)等が挙げられる。非晶質の無機固体電解質としては、例えば、4.9LiI−34.1LiO−61B、33.3LiO−66.7SiO等の酸化物ガラス等が挙げられる。これらは任意の1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で用いてもよい。 As the inorganic solid electrolyte used for the organic electrolytic solution, any crystalline or amorphous one known to be used as an electrolyte can be used. Examples of the crystalline inorganic solid electrolyte include LiI, Li 3 N, Li 1 + x M x Ti 2-x (PO 4 ) 3 (M = Al, Sc, Y, La), Li 0.5-3x RE 0. .5 + x TiO 3 (RE = La, Pr, Nd, Sm) and the like. Examples of the amorphous inorganic solid electrolyte include oxide glasses such as 4.9LiI-34.1Li 2 O-61B 2 O 5 and 33.3Li 2 O-66.7SiO 2 . Any one of these may be used alone, or two or more may be used in any combination and ratio.

二次電池は、電極同士の短絡を防止するため正極と負極の間に非水電解質を保持するセパレータを備えているのが好ましい。   The secondary battery preferably includes a separator that holds a nonaqueous electrolyte between the positive electrode and the negative electrode in order to prevent a short circuit between the electrodes.

セパレータの材質や形状は、使用する有機電解液に対して安定で、かつ保液性に優れ、更に電極同士の短絡を確実に防止できるものであれば任意である。例えば、各種の高分子材料からなる微多孔性のフィルム、シート、不織布等が挙げられる。高分子材料としては、例えば、ナイロン、セルロースアセテート、ニトロセルロース、ポリスルホン、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリプロピレン、ポリエチレン、ポリブテン等のポリオレフィン高分子が挙げられる。化学的及び電気化学的な安定性の点からはポリオレフィン系高分子が好ましく、電池の自己閉塞温度の点からはポリエチレンが好ましい。ポリエチレンとしては、高温形状維持性に優れる超高分子ポリエチレンが好ましい。ポリエチレンの分子量は、通常50万以上、好ましくは100万以上、特に好ましくは150万以上で、通常500万以下、好ましくは400万以下、特に好ましくは300万以下である。分子量が小さいと高温時の形状が維持できなくなることがある。逆に、分子量が大きすぎると流動性が低くなり、加熱時セパレータの穴が閉塞しないことがある。   The material and shape of the separator are arbitrary as long as they are stable with respect to the organic electrolyte used, have excellent liquid retention, and can reliably prevent short-circuiting between electrodes. Examples thereof include microporous films, sheets and nonwoven fabrics made of various polymer materials. Examples of the polymer material include polyolefin polymers such as nylon, cellulose acetate, nitrocellulose, polysulfone, polyacrylonitrile, polyvinylidene fluoride, polypropylene, polyethylene, and polybutene. Polyolefin polymers are preferable from the viewpoint of chemical and electrochemical stability, and polyethylene is preferable from the viewpoint of the self-closing temperature of the battery. As the polyethylene, ultra high molecular weight polyethylene excellent in high temperature shape maintenance is preferable. The molecular weight of polyethylene is usually 500,000 or more, preferably 1,000,000 or more, particularly preferably 1.5 million or more, and usually 5 million or less, preferably 4 million or less, particularly preferably 3 million or less. If the molecular weight is small, the shape at high temperature may not be maintained. On the other hand, if the molecular weight is too large, the fluidity is lowered, and the hole of the separator may not be blocked during heating.

リチウム二次電池の形状は、一般的に採用されている各種形状の中から、その用途に応じて適宜選択することができる。形状としては、例えば、シート電極及びセパレータをスパイラル状にしたシリンダータイプ、ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダータイプ、ペレット電極及びセパレータを積層したコインタイプ等が挙げられる。リチウム二次電池は、目的とする電池の形状に合わせ公知の方法により組み立てればよい。   The shape of the lithium secondary battery can be appropriately selected from various shapes generally employed according to the application. Examples of the shape include a cylinder type in which a sheet electrode and a separator are spiral, a cylinder type having an inside-out structure in which a pellet electrode and a separator are combined, a coin type in which a pellet electrode and a separator are stacked, and the like. What is necessary is just to assemble a lithium secondary battery by a well-known method according to the shape of the target battery.

以下、本発明を実施例により更に詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に制約されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not restrict | limited to a following example, unless the summary is exceeded.

本発明のリチウム遷移金属複合酸化物粉体は、これを前述の如く、結着剤及び導電材と共にスラリー化したものを、集電体に塗布、乾燥して得られる湿式塗布型正極とした場合、塗布面の平滑性に優れ、また、膜強度、集電体との密着性に優れるものという特長を有するものである。従って、以下の実施例及び比較例で製造したリチウム遷移金属複合酸化物粉体については、これを用いた湿式塗布型正極の平滑性、強度、集電体との耐剥離性を下記方法により調べることにより、塗膜化特性の評価を行った。   When the lithium transition metal composite oxide powder of the present invention is a wet coated positive electrode obtained by applying a slurry of the lithium transition metal composite oxide powder together with a binder and a conductive material to a current collector as described above. It has the characteristics of excellent smoothness of the coated surface, excellent film strength, and excellent adhesion to the current collector. Therefore, for the lithium transition metal composite oxide powders produced in the following examples and comparative examples, the smoothness, strength, and peel resistance from the current collector of the wet-coated positive electrode using the powder are examined by the following method. As a result, the coating properties were evaluated.

[塗膜化特性の評価方法]
正極活物質であるリチウム遷移金属複合酸化物粉体/導電材(アセチレンブラック)/結着剤(ポリビニリデンフルオライド)=90重量%/5重量%/5重量%の組成比とし、N−メチルピロリドン(以下NMP)を分散媒としてスラリーを調製した。ポリビニリデンフルオライドは、予めNMPに溶解させたもの(PVDF#1120)を用いた。スラリー中の固形分濃度は45重量%を基本とし、吸液性の高い活物質で、ホモジナイザーで分散できない場合、NMPを追加し、固形分濃度を調整した。固形分濃度は高いほど、乾燥効率がよいので好ましい。これらの原料は活物質20gとし、全ての材料を100cmのポリカップに秤り取った。軽くスパチュラで混合したのち、刃の直径が約2cmのホモジナイザーで3000rpmにて10分間撹拌し、その後減圧で気泡をとり除き塗布用スラリーとした。厚さ20μmのAl箔を集電体とし、その上にこの塗布用スラリーをドクターブレードを用いてギャップ450μmで約10cm×10cm程度の膜を引き、100℃にて30分間オーブンで乾燥後、形成された活物質層(膜厚200〜350μm程度)の成膜面を目視にて観察した。
[Method for evaluating coating properties]
The composition ratio of lithium transition metal composite oxide powder as positive electrode active material / conductive material (acetylene black) / binder (polyvinylidene fluoride) = 90 wt% / 5 wt% / 5 wt%, N-methyl A slurry was prepared using pyrrolidone (hereinafter referred to as NMP) as a dispersion medium. As the polyvinylidene fluoride, one previously dissolved in NMP (PVDF # 1120) was used. The solid content concentration in the slurry was basically 45% by weight, and when it was an active material with high liquid absorption and could not be dispersed with a homogenizer, NMP was added to adjust the solid content concentration. The higher the solid content concentration, the better the drying efficiency. These raw materials were 20 g of active material, and all the materials were weighed in a 100 cm 3 polycup. After lightly mixing with a spatula, the mixture was stirred for 10 minutes at 3000 rpm with a homogenizer having a blade diameter of about 2 cm, and then bubbles were removed under reduced pressure to obtain a slurry for coating. A 20 μm thick Al foil is used as a current collector, and a slurry of about 10 cm × 10 cm with a gap of 450 μm is drawn on the slurry for coating thereon using a doctor blade, dried in an oven at 100 ° C. for 30 minutes, and then formed. The film forming surface of the active material layer (film thickness of about 200 to 350 μm) was visually observed.

膜に筋を引いてAlの下地が見えるもの、高さ50μm以上の粒状の突起が5点以上見られるもの、膜の剥がれがあるものを×とし、このような異常がなく、平滑面が得られているものを○とした。   A film with a streaked line that shows an Al underlayer, a grainy protrusion with a height of 50 μm or more, or more than 5 points, or a film that peels off is marked with x, and there is no such abnormality and a smooth surface is obtained. The marked ones were marked with ○.

(実施例1)
NiO、Co(OH)及びMnを、Ni:Co:Mn=0.33:0.33:0.33のモル比となるように秤量し、これに0.15mol/LのLiOH水溶液を加え、攪拌しながら、循環式媒体攪拌型湿式ビーズミルを用いて、スラリー中の固形分をメジアン径0.2μmに湿式粉砕した。このスラリーをスプレードライヤーにより噴霧乾燥し、ニッケル原料、コバルト原料、マンガン原料のみからなる、メジアン径約5μmのほぼ球状の造粒粒子を得た。得られた造粒粒子に、メジアン径3μmのLiOH粉末を(Ni+Co+Mn)に対してLiが1.05のモル比となるように添加し、乾式混合して、ニッケル原料、コバルト原料、マンガン原料の造粒粒子とリチウム原料との混合粉を得た。この混合粉をアルミナ製るつぼに仕込み、空気を流通させながら、昇温速度5℃/分で最高温度950℃まで昇温させ、950℃で12時間保持した後、降温速度5℃/分で降温させて、ほぼ仕込みのモル比組成のリチウム遷移金属複合酸化物を得た。
(Example 1)
NiO, Co (OH) 2 and Mn 3 O 4 were weighed so as to have a molar ratio of Ni: Co: Mn = 0.33: 0.33: 0.33, and 0.15 mol / L LiOH was added thereto. The solid content in the slurry was wet pulverized to a median diameter of 0.2 μm using a circulating medium stirring wet bead mill while adding the aqueous solution and stirring. This slurry was spray-dried with a spray dryer to obtain substantially spherical granulated particles having a median diameter of about 5 μm and consisting only of nickel raw material, cobalt raw material and manganese raw material. LiOH powder with a median diameter of 3 μm is added to the obtained granulated particles so that the molar ratio of Li is 1.05 with respect to (Ni + Co + Mn), and dry-mixed to obtain a nickel raw material, a cobalt raw material, and a manganese raw material. A mixed powder of granulated particles and lithium raw material was obtained. This mixed powder is charged into an alumina crucible and heated up to a maximum temperature of 950 ° C. at a temperature increase rate of 5 ° C./min while circulating air, held at 950 ° C. for 12 hours, and then cooled at a temperature decrease rate of 5 ° C./min. As a result, a lithium transition metal composite oxide having a substantially charged molar ratio composition was obtained.

次に、得られた粉体の乳鉢解砕(30分/100g)を実施し、その後、目開き45μmの網を通過させ分級し、本発明のリチウム遷移金属複合酸化物粉体を得た。   Next, mortar crushing (30 minutes / 100 g) of the obtained powder was carried out, and then passed through a mesh having a mesh size of 45 μm to obtain a lithium transition metal composite oxide powder of the present invention.

このリチウム遷移金属複合酸化物粉体について、メジアン径A、メジアン径B、A/B、最大粒径、BET比表面積、タップ密度、塗膜化特性を調べ、結果を表1に示した。なお、塗膜化特性試験は固形分濃度48重量%で実施し、筋引きも粒も見られなかった。本実施例では超音波分散前後のメジアン径の変化率が小さく、タップ密度も高く、塗布特性に優れたリチウム遷移金属複合酸化物粉体が得られた。   With respect to this lithium transition metal composite oxide powder, the median diameter A, median diameter B, A / B, maximum particle size, BET specific surface area, tap density, and coating property were examined, and the results are shown in Table 1. The coating property test was conducted at a solid content concentration of 48% by weight, and neither striation nor grain was observed. In this example, a lithium transition metal composite oxide powder having a small change rate of the median diameter before and after ultrasonic dispersion, a high tap density, and excellent coating characteristics was obtained.

(実施例2)
実施例1において乳鉢解砕の代りにピンミル解砕を行ったこと以外は同様の方法でリチウム遷移金属複合酸化物粉体を製造し、その評価結果を表1に示した。なお、ピンミルは中央化工機商事株式会社製の高純度解砕機(ピンミルHPC−1型)を用い、回転数5340rpmで運転した。本実施例においても、超音波分散前後のメジアン径の変化率が小さく、タップ密度も高く、塗膜化特性に優れたリチウム遷移金属複合酸化物粉体が得られた。
(Example 2)
A lithium transition metal composite oxide powder was produced in the same manner as in Example 1 except that pin mill crushing was performed instead of mortar crushing, and the evaluation results are shown in Table 1. The pin mill was operated at a rotational speed of 5340 rpm using a high-purity crusher (pin mill HPC-1 type) manufactured by Chuo Kako Kikai Co., Ltd. Also in this example, a lithium transition metal composite oxide powder having a small median diameter change rate before and after ultrasonic dispersion, a high tap density, and excellent coating properties was obtained.

(実施例3)
実施例2において、NiO、Co(OH)及びMnを、Ni:Co:Mn=0.33:0.33:0.33のモル比となるように秤量し、これに純水を加え、攪拌しながら、循環式媒体攪拌型湿式ビーズミルを用いて、スラリー中の固形分をメジアン径0.2μmに湿式粉砕し、これを噴霧乾燥、焼成及び解砕に供したこと以外は同様にしてリチウム遷移金属複合酸化物粉体を製造し、評価結果を表1に示した。本実施例においても、超音波分散前後のメジアン径の変化率が小さく、タップ密度も高く、塗膜化特性に優れたリチウム遷移金属複合酸化物粉体が得られた。
(Example 3)
In Example 2, NiO, Co (OH) 2 and Mn 3 O 4 were weighed so as to have a molar ratio of Ni: Co: Mn = 0.33: 0.33: 0.33. The solid content in the slurry was wet pulverized to a median diameter of 0.2 μm using a circulating medium agitation type wet bead mill while stirring, and the same except that this was subjected to spray drying, firing and crushing Thus, lithium transition metal composite oxide powders were produced, and the evaluation results are shown in Table 1. Also in this example, a lithium transition metal composite oxide powder having a small median diameter change rate before and after ultrasonic dispersion, a high tap density, and excellent coating properties was obtained.

(実施例4)
実施例3において、振動篩いの受け皿にリチウム遷移金属複合酸化物粉体とジルコニアビーズを入れ、2時間振動を与えることにより解砕を行ったこと以外は同様にしてリチウム遷移金属複合酸化物粉体を製造し、評価結果を表1に示した。本実施例においても、超音波分散前後のメジアン径の変化率が小さく、タップ密度も高く、塗膜化特性に優れたリチウム遷移金属複合酸化物粉体が得られた。
Example 4
In Example 3, lithium transition metal composite oxide powder was obtained in the same manner except that lithium transition metal composite oxide powder and zirconia beads were placed in a vibrating sieve tray and subjected to vibration for 2 hours. The evaluation results are shown in Table 1. Also in this example, a lithium transition metal composite oxide powder having a small median diameter change rate before and after ultrasonic dispersion, a high tap density, and excellent coating properties was obtained.

(比較例1)
実施例1において解砕を行わなかったこと以外は同様にしてリチウム遷移金属複合酸化物粉体を製造し、評価結果を表1に示した。この比較例で得られたリチウム遷移金属複合酸化物粉体は超音波分散前後のメジアン径の変化率が大きく、タップ密度も低かった。塗膜化特性試験は固形分濃度45重量%ではホモジナイザー混練することができなかったため、固形分濃度47重量%で実施したが、粒状の突起物が10点程度見られた。
(Comparative Example 1)
A lithium transition metal composite oxide powder was produced in the same manner except that crushing was not performed in Example 1, and the evaluation results are shown in Table 1. The lithium transition metal composite oxide powder obtained in this comparative example had a large median diameter change rate before and after ultrasonic dispersion and a low tap density. In the coating property test, the homogenizer could not be kneaded at a solid content concentration of 45% by weight, so the test was carried out at a solid content concentration of 47% by weight, but about 10 granular protrusions were observed.

この比較例1で得られたリチウム遷移金属複合酸化物粉体は、解砕を行わなかったために三次粒子が打壊することができずに残っており、タップ密度が上がらない。また、タップ密度が低いためリチウム遷移金属複合酸化物粉体の吸液量が高く、塗布スラリーを調製するためのNMP量を増加する必要があり、このため、成膜された活物質層の膜強度が低下し、乾燥後、集電体と活物質層が部分的に剥離した。   Since the lithium transition metal composite oxide powder obtained in Comparative Example 1 was not crushed, the tertiary particles could not be broken and remained, and the tap density did not increase. Moreover, since the tap density is low, the liquid absorption amount of the lithium transition metal composite oxide powder is high, and it is necessary to increase the amount of NMP for preparing the coating slurry. For this reason, the formed active material layer film The strength decreased, and the current collector and the active material layer were partially peeled after drying.

(比較例2)
実施例1において、解砕をホソカワミクロン社製気力分級機(ターボプレックス100ATP型、ホイールの回転数:10000rpm)で行ったこと以外は同様にしてリチウム遷移金属複合酸化物粉体を製造し、評価結果を表1に示した。なお、塗膜化特性試験は固形分濃度45重量%ではホモジナイザー混練することができなかったため、固形分濃度47重量%で実施した。
(Comparative Example 2)
A lithium transition metal composite oxide powder was produced in the same manner as in Example 1 except that crushing was performed with a pneumatic classifier (Turboplex 100ATP type, wheel rotation speed: 10,000 rpm) manufactured by Hosokawa Micron Co., Ltd., and evaluation results Is shown in Table 1. The coating property test was carried out at a solid content concentration of 47% by weight because the homogenizer kneading could not be carried out at a solid content concentration of 45% by weight.

この比較例2では、解砕の程度が強すぎたため、粉砕がすすみ、メジアン径Bが1.8μmと小さかった。メジアン径Bが小さすぎるため、タップ密度は上がり、また、活物質層の膜の平滑性は良好であったものの、塗布膜強度が弱く、乾燥後、活物質層が集電体から剥離した。   In Comparative Example 2, since the degree of crushing was too strong, pulverization proceeded and the median diameter B was as small as 1.8 μm. Since the median diameter B was too small, the tap density increased and the smoothness of the film of the active material layer was good, but the coating film strength was weak and the active material layer peeled off from the current collector after drying.

(比較例3)
実施例3において解砕を行わなかったこと以外は同様にしてリチウム遷移金属複合酸化物粉体を製造し、評価結果を表1に示した。なお、塗膜化特性試験は固形分濃度45重量%では混練できなかったため、固形分濃度47重量%で実施した。
(Comparative Example 3)
A lithium transition metal composite oxide powder was produced in the same manner except that crushing was not performed in Example 3, and the evaluation results are shown in Table 1. The coating property test was carried out at a solid content concentration of 47% by weight because it could not be kneaded at a solid content concentration of 45% by weight.

この比較例3では、超音波分散前後のメジアン径の変化率が大きく、タップ密度も低く、更に二次粒子の軽い焼結による三次粒子の構造を予めほぐしていないために最大粒径が本発明の上限を超えていた。そして、塗膜には筋引きが多数発生し、更に粒状の突起も点在した。   In Comparative Example 3, the median diameter change rate before and after the ultrasonic dispersion is large, the tap density is low, and the structure of the tertiary particles by light sintering of the secondary particles is not loosened in advance, so that the maximum particle size is the present invention. The upper limit of was exceeded. And many striations generate | occur | produced in the coating film, and also the granular protrusion was scattered.

(比較例4)
実施例3において、解砕を乳鉢解砕(5分/100g)としたこと以外は同様にしてリチウム遷移金属複合酸化物粉体を製造し、評価結果を表1に示した。なお、塗膜化特性試験は固形分濃度45重量%では混練できなかったため、固形分濃度47重量%で実施した。
(Comparative Example 4)
A lithium transition metal composite oxide powder was produced in the same manner as in Example 3 except that pulverization was performed in a mortar (5 minutes / 100 g), and the evaluation results are shown in Table 1. The coating property test was carried out at a solid content concentration of 47% by weight because it could not be kneaded at a solid content concentration of 45% by weight.

この比較例4では、比較例3と同様にタップ密度は高いが、解砕が弱すぎるために超音波分散前後のメジアン径の変化率が大きく、二次粒子の軽い焼結による三次粒子の構造をほぐすことができなかったために最大粒径が本発明の上限を超えており、塗膜には筋引きを多数発生し、更に粒状の突起も点在した。   In Comparative Example 4, the tap density is high as in Comparative Example 3, but because the crushing is too weak, the median diameter change rate before and after the ultrasonic dispersion is large, and the structure of the tertiary particles by light sintering of the secondary particles. As a result, the maximum particle size exceeded the upper limit of the present invention, and the coating film had many striations and was further dotted with granular protrusions.

Figure 2005276597
Figure 2005276597

本発明のリチウム二次電池正極活物質用リチウム遷移金属複合酸化物粉体は、結着剤及び導電材と共に集電体上に活物質層を形成させてリチウム二次電池正極とすることによって、携帯用電子機器、通信機器及び自動車用動力源などの各種リチウム二次電池用途に用いることができる。   The lithium transition metal composite oxide powder for a lithium secondary battery positive electrode active material of the present invention is formed as a lithium secondary battery positive electrode by forming an active material layer on a current collector together with a binder and a conductive material, It can be used for various lithium secondary battery applications such as portable electronic devices, communication devices, and automobile power sources.

Claims (6)

リチウム二次電池正極活物質用リチウム遷移金属複合酸化物粉体であって、JIS Z 8825−1に基づくレーザー回折法により、0.1重量%のヘキサメタリン酸ナトリウム水溶液中に、該リチウム遷移金属複合酸化物粉体をレーザー光の透過率が60〜90%となる濃度で分散させた分散液を循環流動させながら、超音波をかけずに測定したメジアン径(以下「メジアン径A」という)が3μm以上、10μm以下であり、
該メジアン径Aと、該分散液を循環流動させながら超音波分散(出力30W、周波数22.5kHz)を5分間かけたときに測定した該粉体のメジアン径(以下「メジアン径B」という)(μm)との比が、1≦メジアン径A/メジアン径B≦1.50であり、
最大粒径が40μm以下、
BET法による比表面積が0.5m/g以上、1.5m/g以下、
タップ密度が1.55g/cm3以上であることを特徴とするリチウム二次電池正極活物質用リチウム遷移金属複合酸化物粉体。
Lithium transition metal composite oxide powder for a positive electrode active material for a lithium secondary battery, wherein the lithium transition metal composite powder is added to a 0.1% by weight sodium hexametaphosphate aqueous solution by a laser diffraction method based on JIS Z 8825-1. The median diameter (hereinafter referred to as “median diameter A”) measured without applying ultrasonic waves while circulating and flowing a dispersion liquid in which oxide powder is dispersed at a concentration of 60 to 90% of laser light transmittance 3 μm or more and 10 μm or less,
The median diameter A and the median diameter of the powder measured when ultrasonic dispersion (output 30 W, frequency 22.5 kHz) is applied for 5 minutes while circulating the dispersion liquid (hereinafter referred to as “median diameter B”). (Μm) ratio is 1 ≦ median diameter A / median diameter B ≦ 1.50,
The maximum particle size is 40 μm or less,
Specific surface area by BET method is 0.5 m 2 / g or more, 1.5 m 2 / g or less,
A lithium transition metal composite oxide powder for a positive electrode active material for a lithium secondary battery, wherein the tap density is 1.55 g / cm 3 or more.
下記一般式(I)で表されることを特徴とする請求項1に記載のリチウム二次電池正極活物質用リチウム遷移金属複合酸化物粉体。
LiMO2−δ (I)
(式(I)中、xは、0.5≦x≦1.3の数であり、Mは、遷移金属から選ばれる少なくとも1種の元素を表し、δは、−0.1<δ<0.1の数を表す。)
The lithium transition metal composite oxide powder for a lithium secondary battery positive electrode active material according to claim 1, represented by the following general formula (I):
Li x MO 2-δ (I)
(In the formula (I), x is a number satisfying 0.5 ≦ x ≦ 1.3, M represents at least one element selected from transition metals, and δ is −0.1 <δ <. Represents the number 0.1.)
下記一般式(II)で表されることを特徴とする請求項2に記載のリチウム二次電池正極活物質用リチウム遷移金属複合酸化物粉体。
LiNiMnCo2−δ (II)
(式(II)中、xは、0.7≦x≦1.3の数であり、aは、0.2≦a≦0.8の数を表し、bは、0.2≦b≦0.8の数を表し、cは、0.15≦c≦0.4の数を表し、Qは、Fe、Cr、V、Ti、Cu、Ga、Bi、Sn、Zn、Mg、Ge、Nb、Ta、Be、Ca、Sc、Al、B及びZrよりなる群から選択される少なくとも1種の元素を表し、dは、0≦d≦0.4の数を表し、a+b+c+d=1であり、δは、−0.1<δ<0.1の数を表す。)
The lithium transition metal composite oxide powder for a lithium secondary battery positive electrode active material according to claim 2, represented by the following general formula (II).
Li x Ni a Mn b Co c Q d O 2-δ (II)
(In Formula (II), x is a number of 0.7 ≦ x ≦ 1.3, a is a number of 0.2 ≦ a ≦ 0.8, and b is 0.2 ≦ b ≦ 1.3. Represents a number of 0.8, c represents a number of 0.15 ≦ c ≦ 0.4, Q represents Fe, Cr, V, Ti, Cu, Ga, Bi, Sn, Zn, Mg, Ge, Represents at least one element selected from the group consisting of Nb, Ta, Be, Ca, Sc, Al, B and Zr, d represents a number 0 ≦ d ≦ 0.4, and a + b + c + d = 1 , Δ represents a number of −0.1 <δ <0.1.)
前記一般式(II)において、aは、0.2≦a≦0.4の数を表し、bは、0.2≦b≦0.4の数を表し、cは、0.2≦c≦0.4を表すことを特徴とする請求項3に記載のリチウム二次電池正極活物質用リチウム遷移金属複合酸化物粉体。   In the general formula (II), a represents a number of 0.2 ≦ a ≦ 0.4, b represents a number of 0.2 ≦ b ≦ 0.4, and c represents 0.2 ≦ c. The lithium transition metal composite oxide powder for a lithium secondary battery positive electrode active material according to claim 3, wherein ≦ 0.4. 少なくとも正極活物質、結着剤、および導電材を含有するリチウム二次電池正極において、前記正極活物質が請求項1ないし4のいずれか1項に記載のリチウム二次電池正極活物質用リチウム遷移金属複合酸化物粉体であることを特徴とするリチウム二次電池正極。   5. The lithium transition for a lithium secondary battery positive electrode active material according to claim 1, wherein the positive electrode active material includes at least a positive electrode active material, a binder, and a conductive material. A positive electrode for a lithium secondary battery, which is a metal composite oxide powder. リチウムを吸蔵及び放出することが可能な材料を含む負極および正極と、リチウム塩を含む電解質とを備えたリチウム二次電池において、該正極が請求項5に記載のリチウム二次電池正極であることを特徴とするリチウム二次電池。   A lithium secondary battery comprising a negative electrode and a positive electrode containing materials capable of inserting and extracting lithium, and an electrolyte containing a lithium salt, wherein the positive electrode is the positive electrode of the lithium secondary battery according to claim 5. A lithium secondary battery characterized by.
JP2004087267A 2004-03-24 2004-03-24 Lithium transition metal composite oxide powder for lithium secondary battery positive electrode active material, lithium secondary battery positive electrode and lithium secondary battery Expired - Fee Related JP4797332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004087267A JP4797332B2 (en) 2004-03-24 2004-03-24 Lithium transition metal composite oxide powder for lithium secondary battery positive electrode active material, lithium secondary battery positive electrode and lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004087267A JP4797332B2 (en) 2004-03-24 2004-03-24 Lithium transition metal composite oxide powder for lithium secondary battery positive electrode active material, lithium secondary battery positive electrode and lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2005276597A true JP2005276597A (en) 2005-10-06
JP4797332B2 JP4797332B2 (en) 2011-10-19

Family

ID=35176036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004087267A Expired - Fee Related JP4797332B2 (en) 2004-03-24 2004-03-24 Lithium transition metal composite oxide powder for lithium secondary battery positive electrode active material, lithium secondary battery positive electrode and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4797332B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007179917A (en) * 2005-12-28 2007-07-12 Hitachi Ltd Positive electrode active material for lithium secondary battery, and lithium secondary battery using it
JP2009129889A (en) * 2007-11-28 2009-06-11 Nissan Motor Co Ltd Positive electrode for secondary battery and nonaqueous electrolyte secondary battery using the same
JP2010033785A (en) * 2008-07-25 2010-02-12 Mitsui Mining & Smelting Co Ltd Lithium transition metal oxide powder
JP2011238416A (en) * 2010-05-07 2011-11-24 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and its manufacturing method, and nonaqueous electrolyte secondary battery using positive electrode active material
JP2012505137A (en) * 2008-10-07 2012-03-01 ジュート−ヒェミー アクチェンゲゼルシャフト Carbon coated spinel type lithium titanate
JP2013232400A (en) * 2013-02-14 2013-11-14 Mitsui Mining & Smelting Co Ltd Method of producing lithium metal composite oxide having layer structure
JP2014523070A (en) * 2011-06-24 2014-09-08 ビーエーエスエフ コーポレーション Method for the synthesis of layered oxide cathode compositions
WO2014170979A1 (en) * 2013-04-18 2014-10-23 住友電気工業株式会社 Negative electrode active material for sodium secondary battery using molten salt electrolyte solution, negative electrode, and sodium secondary battery using molten salt electrolyte solution
JP2015084322A (en) * 2013-09-18 2015-04-30 株式会社東芝 Nonaqueous electrolyte battery
CN116525817A (en) * 2023-07-04 2023-08-01 宁波容百新能源科技股份有限公司 Positive electrode active material, preparation method thereof, positive electrode sheet and secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6616278B2 (en) 2016-12-27 2019-12-04 株式会社エンビジョンAescジャパン Electrode for lithium ion secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092158A1 (en) * 2000-05-30 2001-12-06 Seimi Chemical Co., Ltd. Lithium-transition metal composite oxide
WO2002086993A1 (en) * 2001-04-20 2002-10-31 Yuasa Corporation Anode active matter and production method therefor, non- aqueous electrolyte secondary battery-use anode, and non-aqueous electrolyte secondary battery
JP2003123748A (en) * 2001-10-05 2003-04-25 Toda Kogyo Corp Positive electrode active material for nonaqueous electrolyte secondary battery and method of manufacturing the same
JP2003221235A (en) * 2001-11-20 2003-08-05 Nippon Chem Ind Co Ltd Lithium-cobalt composite oxide, method of manufacturing it, cathode active material for lithium secondary battery and lithium secondary battery
JP2005150102A (en) * 2003-10-24 2005-06-09 Hitachi Metals Ltd Cathode active material for lithium secondary cell and its manufacturing mathod as well as nouaqueous lithium secondary cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092158A1 (en) * 2000-05-30 2001-12-06 Seimi Chemical Co., Ltd. Lithium-transition metal composite oxide
WO2002086993A1 (en) * 2001-04-20 2002-10-31 Yuasa Corporation Anode active matter and production method therefor, non- aqueous electrolyte secondary battery-use anode, and non-aqueous electrolyte secondary battery
JP2003123748A (en) * 2001-10-05 2003-04-25 Toda Kogyo Corp Positive electrode active material for nonaqueous electrolyte secondary battery and method of manufacturing the same
JP2003221235A (en) * 2001-11-20 2003-08-05 Nippon Chem Ind Co Ltd Lithium-cobalt composite oxide, method of manufacturing it, cathode active material for lithium secondary battery and lithium secondary battery
JP2005150102A (en) * 2003-10-24 2005-06-09 Hitachi Metals Ltd Cathode active material for lithium secondary cell and its manufacturing mathod as well as nouaqueous lithium secondary cell

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007179917A (en) * 2005-12-28 2007-07-12 Hitachi Ltd Positive electrode active material for lithium secondary battery, and lithium secondary battery using it
JP2009129889A (en) * 2007-11-28 2009-06-11 Nissan Motor Co Ltd Positive electrode for secondary battery and nonaqueous electrolyte secondary battery using the same
JP2010033785A (en) * 2008-07-25 2010-02-12 Mitsui Mining & Smelting Co Ltd Lithium transition metal oxide powder
US9085491B2 (en) 2008-10-07 2015-07-21 Sued-Chemie Ip Gmbh & Co. Kg Carbon-coated lithium titanium spinel
JP2012505137A (en) * 2008-10-07 2012-03-01 ジュート−ヒェミー アクチェンゲゼルシャフト Carbon coated spinel type lithium titanate
JP2012121803A (en) * 2008-10-07 2012-06-28 Sued-Chemie Ag Carbon-coated spinel type lithium titanate and method for producing the same
JP2011238416A (en) * 2010-05-07 2011-11-24 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and its manufacturing method, and nonaqueous electrolyte secondary battery using positive electrode active material
JP2014523070A (en) * 2011-06-24 2014-09-08 ビーエーエスエフ コーポレーション Method for the synthesis of layered oxide cathode compositions
JP2013232400A (en) * 2013-02-14 2013-11-14 Mitsui Mining & Smelting Co Ltd Method of producing lithium metal composite oxide having layer structure
WO2014170979A1 (en) * 2013-04-18 2014-10-23 住友電気工業株式会社 Negative electrode active material for sodium secondary battery using molten salt electrolyte solution, negative electrode, and sodium secondary battery using molten salt electrolyte solution
JPWO2014170979A1 (en) * 2013-04-18 2017-02-16 住友電気工業株式会社 Negative electrode active material for sodium secondary battery using molten salt electrolyte, negative electrode and sodium secondary battery using molten salt electrolyte
JP2015084322A (en) * 2013-09-18 2015-04-30 株式会社東芝 Nonaqueous electrolyte battery
US10374220B2 (en) 2013-09-18 2019-08-06 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery
US11183680B2 (en) 2013-09-18 2021-11-23 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery
CN116525817A (en) * 2023-07-04 2023-08-01 宁波容百新能源科技股份有限公司 Positive electrode active material, preparation method thereof, positive electrode sheet and secondary battery
CN116525817B (en) * 2023-07-04 2023-11-28 宁波容百新能源科技股份有限公司 Positive electrode active material, preparation method thereof, positive electrode sheet and secondary battery

Also Published As

Publication number Publication date
JP4797332B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
JP4752244B2 (en) Layered lithium nickel manganese based composite oxide powder for lithium secondary battery positive electrode material, lithium secondary battery positive electrode using the same, and lithium secondary battery
JP5428251B2 (en) Lithium transition metal compound powder, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP4529784B2 (en) Layered lithium nickel manganese cobalt based composite oxide powder for positive electrode material of lithium secondary battery, production method thereof, positive electrode for lithium secondary battery using the same, and lithium secondary battery
KR100946610B1 (en) Layered lithium nickel manganese cobalt composite oxide powder for material of positive electrode of lithium secondary battery, process for producing the same, positive electrode of lithium secondary battery therefrom, and lithium secondary battery
JP4301875B2 (en) Lithium nickel manganese cobalt-based composite oxide for lithium secondary battery positive electrode material, positive electrode for lithium secondary battery using the same, and lithium secondary battery
JP5135843B2 (en) Lithium transition metal composite oxide, positive electrode for lithium secondary battery using the same, and lithium secondary battery using the same
JP5257272B2 (en) Positive electrode material for lithium secondary battery, secondary battery using the same, and method for producing positive electrode material for lithium secondary battery
JP5135912B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP5157071B2 (en) Lithium nickel manganese cobalt composite oxide powder for lithium secondary battery positive electrode material, method for producing the same, and positive electrode for lithium secondary battery and lithium secondary battery using the same
US20100196761A1 (en) Granular powder of transition metal compound as raw material for cathode active material for lithium secondary battery, and method for its production
WO2006085467A1 (en) Lithium secondary battery and positive electrode material thereof
JP5135842B2 (en) Lithium transition metal composite oxide, method for producing the same, positive electrode for lithium secondary battery using the same, and lithium secondary battery using the same
JP2011105594A (en) Nickel-manganese-cobalt based complex oxide, laminar lithium-nickel-manganese-cobalt based complex oxide, positive electrode material for lithium secondary batteries, positive electrode using the material, and lithium secondary battery
JP2007214138A (en) Layered lithium-nickel-based composite oxide powder for lithium secondary battery positive electrode material and its manufacturing method, positive electrode for lithium secondary battery, and lithium secondary battery
JPWO2007043665A1 (en) Mixture of lithium iron phosphate and carbon, electrode including the same, battery including the electrode, method for manufacturing the mixture, and method for manufacturing the battery
JP2006253119A (en) Lithium-nickel-manganese-cobalt-based composite oxide powder for lithium secondary battery positive electrode material, its manufacturing method, positive electrode for lithium secondary battery using it, and lithium secondary battery
JP2009117261A (en) Positive-electrode active material for lithium secondary battery, and positive electrode and lithium secondary battery using positive electrode active material
JP4997700B2 (en) Lithium nickel manganese composite oxide powder for positive electrode material of lithium secondary battery, production method thereof, and positive electrode for lithium secondary battery and lithium secondary battery using the same
JP2008117749A (en) Mixture of lithium phosphoric acid transition metal compound and carbon, electrode with the same, battery with electrode, method of manufacturing mixture and method of manufacturing battery
JP2009032647A (en) Material for positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery using it, and lithium secondary battery
JP4003759B2 (en) Layered lithium nickel composite oxide powder for positive electrode material of lithium secondary battery and method for producing the same, positive electrode for lithium secondary battery and lithium secondary battery
JP2005336004A (en) Nickel manganese cobalt based multiple oxide, lamellar lithium nickel manganese cobalt based multiple oxide, lithium secondary cell positive electrode material, positive electrode for lithium secondary cell and lithium secondary cell using the same
JP4591716B2 (en) Lithium transition metal compound powder for positive electrode material of lithium secondary battery, production method thereof, spray-dried product, and calcined precursor, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP2004103546A (en) Positive active material composite particle, electrode using the same, and lithium secondary battery
JP2005123180A (en) Lithium compound oxide particle for positive electrode material of lithium secondary battery and its manufacturing method, and lithium secondary battery positive electrode using them and the lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4797332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees