JP5135842B2 - Lithium transition metal composite oxide, method for producing the same, positive electrode for lithium secondary battery using the same, and lithium secondary battery using the same - Google Patents

Lithium transition metal composite oxide, method for producing the same, positive electrode for lithium secondary battery using the same, and lithium secondary battery using the same Download PDF

Info

Publication number
JP5135842B2
JP5135842B2 JP2007079408A JP2007079408A JP5135842B2 JP 5135842 B2 JP5135842 B2 JP 5135842B2 JP 2007079408 A JP2007079408 A JP 2007079408A JP 2007079408 A JP2007079408 A JP 2007079408A JP 5135842 B2 JP5135842 B2 JP 5135842B2
Authority
JP
Japan
Prior art keywords
lithium
transition metal
composite oxide
metal composite
lithium transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007079408A
Other languages
Japanese (ja)
Other versions
JP2008243447A (en
Inventor
一寛 菊地
力 清原
純貴 伊藤
賢二 岡原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2007079408A priority Critical patent/JP5135842B2/en
Publication of JP2008243447A publication Critical patent/JP2008243447A/en
Application granted granted Critical
Publication of JP5135842B2 publication Critical patent/JP5135842B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウム遷移金属複合酸化物、その製造方法、および、それを用いたリチウム二次電池用正極、ならびに、それを用いたリチウム二次電池に存する。   The present invention resides in a lithium transition metal composite oxide, a method for producing the same, a positive electrode for a lithium secondary battery using the same, and a lithium secondary battery using the same.

近年、携帯用電子機器および通信機器の小型化、軽量化に伴い、その電源として、また、自動車用動力源として、高出力、高エネルギー密度であるリチウム二次電池が注目されている。
従来、リチウム二次電池の正極活物質としては、標準組成がLiCoO、LiNiO、LiMn等のリチウム遷移金属複合酸化物が用いられてきた。さらに、安全性や原料コストの観点から、LiCoOやLiNiOと同じ層状構造を有し、かつ、遷移金属の一部をマンガン等で置換したリチウム遷移金属複合酸化物を用いる技術、具体的には、LiNiOのニッケルサイトの一部をマンガンで置換したLiNi1−xMn(ただし0<x<1)、ニッケルサイトの一部をマンガンとコバルトで置換したLiNi1−x−yMnCo(ただし0<x<1、0<y<1、0<x+y<1)が注目されていた(例えば特許文献1〜2)。
In recent years, with the reduction in size and weight of portable electronic devices and communication devices, lithium secondary batteries having high output and high energy density have attracted attention as power sources and automobile power sources.
Conventionally, lithium transition metal composite oxides having standard compositions such as LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 have been used as positive electrode active materials for lithium secondary batteries. Furthermore, from the viewpoint of safety and raw material cost, a technology using a lithium transition metal composite oxide having the same layered structure as LiCoO 2 and LiNiO 2 and partially replacing transition metal with manganese or the like, specifically LiNi 1-x Mn x O 2 in which a part of nickel sites of LiNiO 2 is substituted with manganese (where 0 <x <1), and LiNi 1-xy in which a part of nickel sites is substituted with manganese and cobalt Mn x Co y O 2 (where 0 <x <1, 0 <y <1, 0 <x + y <1) has attracted attention (for example, Patent Documents 1 and 2).

また、リチウム遷移金属複合酸化物のなかでもLiCoOは、正極活物質として注目された材料のひとつであり、これを対象として様々な技術が提案されている(例えば、特許文献3)。しかしながら、LiCoOは、原料であるCoが高価である点と、電池安全性が十分ではない点とが課題だった。
これに対して、近年では、リチウムニッケルマンガンコバルト酸化物を正極活物質として使用することが提案されている(例えば、特許文献4)。リチウムニッケルマンガンコバルト酸化物は、高価であるCoの使用量が少ないことにより、原料が安価であると共に、電池安全性を高めることができる正極活物質として用いることができる。即ち、リチウムニッケルマンガンコバルト酸化物を用いることにより、特許文献3の技術では得られなかったコスト面でのメリットと、電池安全性が向上するというメリットとが得られるのである。
特開2003−17052号公報 特開2003−45414号公報 特開平10−279315号公報 特開2003−242976号公報
Among the lithium transition metal composite oxides, LiCoO 2 is one of the materials that have attracted attention as a positive electrode active material, and various techniques have been proposed for this (for example, Patent Document 3). However, LiCoO 2 has a problem that Co as a raw material is expensive and battery safety is not sufficient.
On the other hand, in recent years, it has been proposed to use lithium nickel manganese cobalt oxide as a positive electrode active material (for example, Patent Document 4). The lithium nickel manganese cobalt oxide can be used as a positive electrode active material that is inexpensive and can improve battery safety due to the small amount of expensive Co used. That is, by using lithium nickel manganese cobalt oxide, there can be obtained a merit in cost that cannot be obtained by the technique of Patent Document 3 and a merit that battery safety is improved.
JP 2003-17052 A JP 2003-45414 A JP-A-10-279315 JP 2003-242976 A

しかしながら、従来のリチウムニッケルマンガンコバルト酸化物は、電池としての抵抗が高いことによる出力が低い問題があり、更なる改善が望まれていた。また、特許文献4に記載の製造方法では、リチウムニッケルマンガンコバルト酸化物を製造するために、共沈法を用いて製造した前駆体に対して加熱処理を行なうため、工程が複雑で生産性が十分ではなく、改善が望まれていた。   However, the conventional lithium nickel manganese cobalt oxide has a problem of low output due to high resistance as a battery, and further improvement has been desired. In addition, in the manufacturing method described in Patent Document 4, in order to manufacture lithium nickel manganese cobalt oxide, the precursor manufactured using the coprecipitation method is subjected to heat treatment, so that the process is complicated and the productivity is high. It was not enough and improvement was desired.

本発明者らは、上記課題に鑑み鋭意検討した結果、一次粒子および/またはそれらが凝集してなる二次粒子から構成されるリチウム遷移金属複合酸化物について、粒子毎の組成のばらつきが小さく、より均一な粒子群を作製することにより、特性の高いリチウム二次電池が得られるようになることを見出し、本発明に到達した。
即ち、本発明の要旨は、以下のとおりである。
1.一次粒子および/またはそれらが凝集してなる二次粒子から構成されるリチウムとニッケルを含む遷移金属複合酸化物において、該粒子に含有されるリチウムに起因する発光電圧の三乗根と、ニッケルに起因する発光電圧の三乗根をプロットしたとき、下記数式(1)で算出される各粒子の近似直線に対する標準偏差σにおいて、σが0.43以下であり、かつ、3σから外れる粒子頻度が0.4%以下であることを特徴とする、リチウム遷移金属複合酸化物。
As a result of intensive studies in view of the above problems, the inventors of the present invention have a small variation in the composition of each particle for the lithium-transition metal composite oxide composed of primary particles and / or secondary particles obtained by aggregating them, The inventors have found that a lithium secondary battery with high characteristics can be obtained by producing a more uniform particle group, and the present invention has been achieved.
That is, the gist of the present invention is as follows.
1. In a transition metal composite oxide containing lithium and nickel composed of primary particles and / or secondary particles formed by agglomerating them, the root of the emission voltage caused by lithium contained in the particles, and nickel When plotting the cube root of the light emission voltage caused, σ d is 0.43 or less and deviates from 3σ d in the standard deviation σ d with respect to the approximate straight line of each particle calculated by the following formula (1). A lithium transition metal composite oxide characterized by having a particle frequency of 0.4% or less.

Figure 0005135842
Figure 0005135842

(近似直線はΣdが最小になるように求めた)
2. 下記一般式(2)で表される、前記1に記載のリチウム遷移金属複合酸化物。
(Approximate line was calculated so that Σd 2 was minimized)
2. 2. The lithium transition metal composite oxide according to 1 above, which is represented by the following general formula (2).

(化1)
LiNiαMnβCoγδ (2)(式中、QはAl、Fe、Ga、Sn、V、Cr、Cu、Zn、Mg、Ti、Ge、B、Bi、Nb、Ta、ZrおよびCaから選ばれる少なくとも一種の元素を表す。0.2≦α≦0.6、0.2≦β≦0.6、0≦γ≦0.5、0≦δ≦0.1、0.8≦α+β+γ+δ≦1.2、0<x≦1.2の関係を満たす数を示す。)
3. 比表面積が0.1m/g以上8m/g以下である、前記1または2に記載のリチウム遷移金属複合酸化物。
4. タップ密度が0.8g/cm以上3.0g/cm以下である、前記1から3のいずれかに記載のリチウム遷移金属複合酸化物。
5. リチウム遷移金属複合酸化物を構成する粒子のメジアン径が1μm以上20μm以下である、前記1から4のいずれかに記載のリチウム遷移金属複合酸化物。
6. 水銀圧入法により求められる二次粒子の細孔分布曲線において、細孔半径1μmより大きい範囲にメインピークトップを有し、かつ、細孔半径0.3μm以上1μm以下にサブピークトップを有することを特徴とする、前記1から5のいずれかに記載のリチウム遷移金属複合酸化物。
7. CuKα線を使用した粉末X線回折測定において、回折角2θが64°付近に存在する(018)ピークおよび65°付近に存在する(110)ピークの半価幅が、それぞれ0.2以下であることを特徴とする、前記1から6のいずれかに記載のリチウム遷移金属複合酸化物。
8. 一次粒子および/またはそれらが凝集してなる二次粒子から構成されるリチウムとニッケルを含む遷移金属複合酸化物において、水銀圧入法により求められる該二次粒子の細孔分布曲線において、細孔半径1μmより大きい範囲にメインピークトップを有し、かつ、細孔半径0.3μm以上1μm以下にサブピークトップを有することを特徴とする、下記一般式(2)で表されるリチウム遷移金属複合酸化物。
(Chemical formula 1)
Li x Ni α Mn β Co γ Q δ O 2 (2) (where Q is Al, Fe, Ga, Sn, V, Cr, Cu, Zn, Mg, Ti, Ge, B, Bi, Nb, Ta) Represents at least one element selected from Zr and Ca, 0.2 ≦ α ≦ 0.6, 0.2 ≦ β ≦ 0.6, 0 ≦ γ ≦ 0.5, 0 ≦ δ ≦ 0.1, (A number satisfying the relationship of 0.8 ≦ α + β + γ + δ ≦ 1.2 and 0 <x ≦ 1.2 is shown.)
3. 3. The lithium transition metal composite oxide according to 1 or 2 above, wherein the specific surface area is 0.1 m 2 / g or more and 8 m 2 / g or less.
4). 4. The lithium transition metal composite oxide according to any one of 1 to 3, wherein a tap density is 0.8 g / cm 3 or more and 3.0 g / cm 3 or less.
5. 5. The lithium transition metal composite oxide according to any one of 1 to 4, wherein the median diameter of particles constituting the lithium transition metal composite oxide is 1 μm or more and 20 μm or less.
6). The pore distribution curve of secondary particles obtained by the mercury intrusion method has a main peak top in a range larger than a pore radius of 1 μm and a sub-peak top in a pore radius of 0.3 μm to 1 μm. The lithium transition metal composite oxide according to any one of 1 to 5 above.
7). In the powder X-ray diffraction measurement using CuKα rays, the half-value widths of the (018) peak having a diffraction angle 2θ around 64 ° and the (110) peak around 65 ° are each 0.2 or less. 7. The lithium transition metal composite oxide according to any one of 1 to 6 above, wherein
8). In the transition metal composite oxide containing lithium and nickel composed of primary particles and / or secondary particles obtained by agglomerating them, in the pore distribution curve of the secondary particles obtained by the mercury intrusion method, the pore radius Lithium transition metal composite oxide represented by the following general formula (2), having a main peak top in a range larger than 1 μm and a sub-peak top in a pore radius of 0.3 μm to 1 μm .

(化2)
LiNiαMnβCoγδ (2)(式中、QはAl、Fe、Ga、Sn、V、Cr、Cu、Zn、Mg、Ti、Ge、B、Bi、Nb、Ta、ZrおよびCaから選ばれる少なくとも一種の元素を表す。0.2≦α≦0.6、0.2≦β≦0.6、0≦γ≦0.5、0≦δ≦0.1、0.8≦α+β+γ+δ≦1.2、0<x≦1.2の関係を満たす数を示す。)
9. CuKα線を使用した粉末X線回折測定において、回折角2θが64°付近に存在
する(018)ピークおよび65°付近の存在する(110)ピークの半価幅が、それぞれ0.2以下であることを特徴とする、前記8に記載のリチウム遷移金属複合酸化物。
10. 前記1から9のいずれかに記載のリチウム遷移金属複合酸化物を含有する、リチウム二次電池用正極。
11. 前記10に記載のリチウム二次電池用正極、負極および電解質からなることを特徴とするリチウム二次電池。
12. 原料化合物を液体媒体中で湿式粉砕混合し、次いで噴霧乾燥、焼成することを特徴とするリチウム遷移金属複合酸化物の製造方法であって、リチウム遷移金属複合酸化物が、一次粒子および/またはそれらが凝集してなる二次粒子から構成されるリチウムとニッケルを含む遷移金属複合酸化物において、該粒子に含有されるリチウムに起因する発光電圧の三乗根と、ニッケルに起因する発光電圧の三乗根をプロットしたとき、下記数式(1)で算出される各粒子の近似直線に対する標準偏差σにおいて、σが0.43以下であり、かつ、3σから外れる粒子頻度が0.4%以下であることを特徴とする、リチウム遷移金属複合酸化物の製造方法。
(Chemical formula 2)
Li x Ni α Mn β Co γ Q δ O 2 (2) (where Q is Al, Fe, Ga, Sn, V, Cr, Cu, Zn, Mg, Ti, Ge, B, Bi, Nb, Ta) Represents at least one element selected from Zr and Ca, 0.2 ≦ α ≦ 0.6, 0.2 ≦ β ≦ 0.6, 0 ≦ γ ≦ 0.5, 0 ≦ δ ≦ 0.1, (A number satisfying the relationship of 0.8 ≦ α + β + γ + δ ≦ 1.2 and 0 <x ≦ 1.2 is shown.)
9. In powder X-ray diffraction measurement using CuKα rays, the half-value widths of the (018) peak having a diffraction angle 2θ of around 64 ° and the (110) peak of around 65 ° are each 0.2 or less. 9. The lithium transition metal composite oxide as described in 8 above.
10. A positive electrode for a lithium secondary battery, comprising the lithium transition metal composite oxide according to any one of 1 to 9 above.
11. 11. A lithium secondary battery comprising the positive electrode for a lithium secondary battery according to 10 above, a negative electrode, and an electrolyte.
12 A method for producing a lithium transition metal composite oxide comprising wet pulverizing and mixing raw material compounds in a liquid medium, followed by spray drying and firing, wherein the lithium transition metal composite oxide comprises primary particles and / or In a transition metal composite oxide containing lithium and nickel composed of secondary particles formed by agglomerating particles, the third root of the emission voltage caused by lithium contained in the particles and the emission voltage caused by nickel When plotting the roots, σ d is 0.43 or less and the frequency of particles deviating from 3σ d is 0.4 in the standard deviation σ d with respect to the approximate straight line of each particle calculated by the following formula (1). % Or less, The manufacturing method of lithium transition metal complex oxide characterized by the above-mentioned.

Figure 0005135842
Figure 0005135842

(近似直線はΣdが最小になるように求めた)
13. リチウム遷移金属複合酸化物が、下記一般式(2)で表される、前記12記載のリチウム遷移金属複合酸化物の製造方法。
(Approximate line was calculated so that Σd 2 was minimized)
13. 13. The method for producing a lithium transition metal composite oxide according to 12, wherein the lithium transition metal composite oxide is represented by the following general formula (2).

(化3)
LiNiαMnβCoγδ (2)(式中、QはAl、Fe、Ga、Sn、V、Cr、Cu、Zn、Mg、Ti、Ge、B、Bi、Nb、Ta、ZrおよびCaから選ばれる少なくとも一種の元素を表す。0.2≦α≦0.6、0.2≦β≦0.6、0≦γ≦0.5、0≦δ≦0.1、0.8≦α+β+γ+δ≦1.2、0<x≦1.2の関係を満たす数を示す。)
14. 原料化合物のリチウムを含有する化合物が、フッ化リチウム、炭酸リチウム、リン酸リチウム、ヒ酸リチウムのうちいずれか1種以上であることを特徴とする、前記12または13に記載のリチウム遷移金属複合酸化物の製造方法。
(Chemical formula 3)
Li x Ni α Mn β Co γ Q δ O 2 (2) (where Q is Al, Fe, Ga, Sn, V, Cr, Cu, Zn, Mg, Ti, Ge, B, Bi, Nb, Ta) Represents at least one element selected from Zr and Ca, 0.2 ≦ α ≦ 0.6, 0.2 ≦ β ≦ 0.6, 0 ≦ γ ≦ 0.5, 0 ≦ δ ≦ 0.1, (A number satisfying the relationship of 0.8 ≦ α + β + γ + δ ≦ 1.2 and 0 <x ≦ 1.2 is shown.)
14 14. The lithium transition metal composite as described in 12 or 13 above, wherein the raw material compound containing lithium is at least one of lithium fluoride, lithium carbonate, lithium phosphate, and lithium arsenate. Production method of oxide.

本発明によれば、リチウム二次電池の正極材料として好適な高性能(高容量、高レート特性、抵抗特性等)のリチウム遷移金属複合酸化物を安価に提供することができる。特に、本発明によれば、従来品よりも粒子毎の組成のばらつきが少ないリチウム遷移金属複合酸化物を提供することができる。さらに、本発明によれば、高性能なリチウム二次電池用正極およびリチウム二次電池を提供することができる。   According to the present invention, a lithium transition metal composite oxide having high performance (high capacity, high rate characteristics, resistance characteristics, etc.) suitable as a positive electrode material for a lithium secondary battery can be provided at low cost. In particular, according to the present invention, it is possible to provide a lithium transition metal composite oxide with less variation in composition for each particle than conventional products. Furthermore, according to the present invention, a high-performance positive electrode for a lithium secondary battery and a lithium secondary battery can be provided.

以下、本発明の実施の形態について詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変形して実施することができる。
[1.リチウム遷移金属複合酸化物]
本発明のリチウム遷移金属複合酸化物は、一次粒子および/またはそれらが凝集してなる二次粒子の形態を有しており、該粒子毎の組成のばらつきが小さく、より均一な粒子群
からなっている。より具体的には、一次粒子および/またはそれらが凝集してなる二次粒子から構成されるリチウムとニッケルを含む遷移金属複合酸化物において、該粒子に含有されるリチウムに起因する発光電圧の三乗根と、ニッケルに起因する発光電圧の三乗根をプロットしたとき、下記数式(1)で算出される各粒子の近似直線に対する標準偏差σにおいて、σが0.43以下であり、かつ3σから外れる粒子頻度が0.4%以下であることを特徴とする、リチウム遷移金属複合酸化物である。
Hereinafter, embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and can be arbitrarily modified without departing from the gist of the present invention. .
[1. Lithium transition metal composite oxide]
The lithium transition metal composite oxide of the present invention has a form of primary particles and / or secondary particles formed by agglomerating them, and is composed of a more uniform particle group with less variation in composition among the particles. ing. More specifically, in a transition metal composite oxide containing lithium and nickel composed of primary particles and / or secondary particles formed by agglomerating them, the emission voltage due to lithium contained in the particles is reduced to three. When plotting the root and the third root of the emission voltage caused by nickel, σ d is 0.43 or less in the standard deviation σ d with respect to the approximate straight line of each particle calculated by the following formula (1). The lithium transition metal composite oxide is characterized in that the frequency of particles deviating from 3σ d is 0.4% or less.

Figure 0005135842
Figure 0005135842

ここで粒子に含有されるリチウムと遷移金属元素との濃度同期分布は、例えば市販のマイクロ波誘導プラズマ発光分光分析機のヘリウムマイクロ波プラズマに導入し、発光分光分析を行うことによって、発光波長から元素を特定し、発光強度から粒子径を特定し、発光回数から頻度を特定して、得ることができる。前記により得られた数千個の粒子について、リチウムと遷移金属元素とに起因する発光電圧の三乗根をプロットした濃度同期分布から近似直線をとり、更に数式(1)によって各粒子の近似直線に対する標準偏差σが算出される。この標準偏差σが0.43以下であり、かつ、3σから外れる粒子頻度が、全測定粒子に対して0.4%以下であることで、粒子毎の組成のばらつきが少ないことが評価される。標準偏差σが大きいということは、分布そのものがばらついていることを示すので、標準偏差σは通常0.43以下、更に0.41以下であることが好ましく、3σから外れる粒子頻度が多いということは、極端に組成の偏析がある粒子が多いということを示すので、3σから外れる粒子頻度は通常0.4%以下、更に0.35%以下であることが好ましく、最も好ましくは0.3%以下である。 Here, the concentration-synchronized distribution of lithium and the transition metal element contained in the particles is introduced into helium microwave plasma of a commercially available microwave induction plasma emission spectroscopic analyzer, and the emission spectral analysis is performed. It can be obtained by specifying the element, specifying the particle diameter from the emission intensity, and specifying the frequency from the number of emission times. For the thousands of particles obtained as described above, an approximate straight line is taken from the concentration-synchronized distribution plotting the third root of the luminescence voltage caused by lithium and the transition metal element. Further, the approximate straight line of each particle is expressed by Equation (1). A standard deviation σ d with respect to is calculated. It is evaluated that the standard deviation σ d is 0.43 or less and the frequency of particles deviating from 3σ d is 0.4% or less with respect to all measured particles, so that there is little variation in composition among particles. Is done. A large standard deviation σ d indicates that the distribution itself varies. Therefore, the standard deviation σ d is usually 0.43 or less, more preferably 0.41 or less, and the frequency of particles deviating from 3σ d is low. A large number indicates that there are a large number of particles having an extremely segregated composition, so that the frequency of particles deviating from 3σ d is usually 0.4% or less, more preferably 0.35% or less, most preferably 0.3% or less.

また、本発明のリチウム遷移金属複合酸化物は、Li、Ni、Mn、CoおよびOを少なくとも含有する。また適宜、その他の元素を含有していても良い。
本発明のリチウム遷移金属複合酸化物は、具体的には下記一般式(2)で表されるリチウム遷移金属複合酸化物が好ましい。
The lithium transition metal composite oxide of the present invention contains at least Li, Ni, Mn, Co, and O. Moreover, you may contain the other element suitably.
Specifically, the lithium transition metal composite oxide of the present invention is preferably a lithium transition metal composite oxide represented by the following general formula (2).

(化4)
LiNiαMnβCoγδ (2)(式中、QはAl、Fe、Ga、Sn、V、Cr、Cu、Zn、Mg、Ti、Ge、B、Bi、Nb、Ta、ZrおよびCaから選ばれる少なくとも一種の元素を表す。0.2≦α≦0.6、0.2≦β≦0.6、0≦γ≦0.5、0≦δ≦0.1、0.8≦α+β+γ+δ≦1.2、0<x≦1.2の関係を満たす数を示す。)
なお、以下適宜、上記式(2)において記号「Q」で表わされる元素を「所定元素」という。
(Chemical formula 4)
Li x Ni α Mn β Co γ Q δ O 2 (2) (where Q is Al, Fe, Ga, Sn, V, Cr, Cu, Zn, Mg, Ti, Ge, B, Bi, Nb, Ta) Represents at least one element selected from Zr and Ca, 0.2 ≦ α ≦ 0.6, 0.2 ≦ β ≦ 0.6, 0 ≦ γ ≦ 0.5, 0 ≦ δ ≦ 0.1, (A number satisfying the relationship of 0.8 ≦ α + β + γ + δ ≦ 1.2 and 0 <x ≦ 1.2 is shown.)
Hereinafter, the element represented by the symbol “Q” in the above formula (2) is referred to as “predetermined element”.

この所定元素としては、Al、Fe、Ga、Sn、V、Cr、Cu、Zn、Mg、Ti、Ge、B、Bi、Nb、Ta、ZrおよびCaが挙げられる。更に、この中でも、所定元素としては、Al、Fe、Mg、Ga、Ti、B、Bi、NbおよびCaがより好ましく、また、Al、Mg、B、BiおよびNbが更に好ましい。なお、所定元素は、1種を単独で用いても良く、2種以上を任意の組み合わせおよび比率で併用しても良い。   Examples of the predetermined element include Al, Fe, Ga, Sn, V, Cr, Cu, Zn, Mg, Ti, Ge, B, Bi, Nb, Ta, Zr, and Ca. Furthermore, among these, as the predetermined element, Al, Fe, Mg, Ga, Ti, B, Bi, Nb and Ca are more preferable, and Al, Mg, B, Bi and Nb are still more preferable. In addition, a predetermined element may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.

また、上記式(2)中、xは0<x≦1.2の関係を満足する数である。詳しくは、xは、通常0より大きく、好ましくは0.8以上、また、通常1.2以下、好ましくは1.
15以下の数である。xの値が大きすぎると本発明の正極活物質の結晶構造が不安定化したり、これを使用したリチウム二次電池の電池容量の低下を招くおそれがある。また、xの値が小さすぎても、やはりこれを使用したリチウム二次電池の電池容量の低下を招くおそれがある。
In the above formula (2), x is a number that satisfies the relationship 0 <x ≦ 1.2. Specifically, x is usually larger than 0, preferably 0.8 or more, and usually 1.2 or less, preferably 1.
The number is 15 or less. If the value of x is too large, the crystal structure of the positive electrode active material of the present invention may become unstable, or the battery capacity of a lithium secondary battery using the positive electrode active material may be reduced. Moreover, even if the value of x is too small, there is a risk that the battery capacity of a lithium secondary battery using this will also be reduced.

さらに、上記式(2)中、αは0.2≦α≦0.6の関係を満足する数である。詳しくは、αは、通常0.2以上、好ましくは0.3以上、また、通常0.6以下、好ましくは0.5以下、更に好ましくは0.43以下の数である。αの値が大きすぎると本発明のリチウム遷移金属複合酸化物が、Niを主体とする従来のリチウム二次電池用正極活物質に用いられるものと類似となるため、これを用いたリチウム二次電池の電池安全性が低下するおそれがある。また、αの値が小さすぎると、焼結性が低下することによる低密度化が顕著になるおそれがある。   Further, in the above formula (2), α is a number satisfying the relationship of 0.2 ≦ α ≦ 0.6. Specifically, α is usually 0.2 or more, preferably 0.3 or more, and usually 0.6 or less, preferably 0.5 or less, more preferably 0.43 or less. If the value of α is too large, the lithium transition metal composite oxide of the present invention is similar to that used in the conventional positive electrode active material for lithium secondary batteries mainly composed of Ni. The battery safety of the battery may be reduced. On the other hand, if the value of α is too small, there is a possibility that the reduction in density due to the decrease in sinterability becomes remarkable.

また、上記式(2)中、βは0.2≦β≦0.6の関係を満足する数である。詳しくは、βは、通常0.2以上、好ましくは0.3以上、また、通常0.6以下、好ましくは0.5以下、更に好ましくは0.43以下の数である。βの値が大きすぎると、焼結性が低下することによる低密度化と、これを用いたリチウム二次電池の電池特性の劣化が顕著となるおそれがある。また、βの値が小さすぎると原料コストが増大するおそれがある。   In the above formula (2), β is a number satisfying the relationship of 0.2 ≦ β ≦ 0.6. Specifically, β is a number of usually 0.2 or more, preferably 0.3 or more, and usually 0.6 or less, preferably 0.5 or less, more preferably 0.43 or less. If the value of β is too large, there is a risk that the density will be lowered due to the decrease in sinterability and the battery characteristics of a lithium secondary battery using this will become noticeable. On the other hand, if the value of β is too small, the raw material cost may increase.

さらに、上記式(2)中、γは0≦γ≦0.5の関係を満足する数である。詳しくは、γは、通常0以上、好ましくは0.1以上、また、通常0.5以下、好ましくは0.45以下の数である。一般にCoは資源的に乏しく高価であるため、γが大きすぎるのは好ましくない。
また、上記式(2)中、δは0≦δ≦0.1の関係を満足する数である。詳しくは、δは、通常0以上、好ましくは0.001以上、また、通常0.1以下、好ましくは0.05以下の数である。δが大きすぎると本発明の正極活物質を用いたリチウム二次電池の容量が低下するおそれがあるため好ましくない。なお、所定元素Qとして2種以上の元素を用いる場合には、用いた所定元素Qの合計をδとし、その値が上記範囲内に収まっていることが望ましい。
Further, in the above formula (2), γ is a number satisfying the relationship of 0 ≦ γ ≦ 0.5. Specifically, γ is usually a number of 0 or more, preferably 0.1 or more, and usually 0.5 or less, preferably 0.45 or less. In general, since Co is scarce in resources and expensive, it is not preferable that γ is too large.
In the above formula (2), δ is a number that satisfies the relationship of 0 ≦ δ ≦ 0.1. Specifically, δ is usually a number of 0 or more, preferably 0.001 or more, and usually 0.1 or less, preferably 0.05 or less. If δ is too large, the capacity of the lithium secondary battery using the positive electrode active material of the present invention may decrease, which is not preferable. When two or more kinds of elements are used as the predetermined element Q, it is desirable that the total of the used predetermined elements Q is δ and the value is within the above range.

さらに、上記のα、β、γおよびδは、0.8≦α+β+γ+δ≦1.2の関係を満たす。また、一般式(2)においては、酸素量に多少の不定比性があっても良い。
また、本発明のリチウム遷移金属複合酸化物は、比表面積が0.1m/g以上8m/g以下である。比表面積はNi,Mn,Coの比率や所定元素Qの添加量によって大きく変化するが、より好ましくは0.2m/g以上6m/g以下であり、最も好ましくは0.5m/g以上5m/g以下である。なお、比表面積は、公知のBET式粉体比表面積測定装置によって測定できる。本発明では、大倉理研製:AMS8000型全自動粉体比表面積測定装置を用い、吸着ガスに窒素、キャリアガスにヘリウムを使用し、連続流動法によるBET1点式法測定を行った。具体的には粉体試料を混合ガスにより150℃の温度で加熱脱気し、次いで液体窒素温度まで冷却して窒素/ヘリウム混合ガスを吸着させた後、これを水により室温まで加温して吸着された窒素ガスを脱着させ、その量を熱伝導検出器によって検出し、これから試料の比表面積を算出した。
Furthermore, the above α, β, γ and δ satisfy the relationship 0.8 ≦ α + β + γ + δ ≦ 1.2. In the general formula (2), the amount of oxygen may have some non-stoichiometry.
Moreover, the lithium transition metal complex oxide of the present invention has a specific surface area of 0.1 m 2 / g or more and 8 m 2 / g or less. The specific surface area varies greatly depending on the ratio of Ni, Mn, Co and the amount of the predetermined element Q added, more preferably 0.2 m 2 / g to 6 m 2 / g, most preferably 0.5 m 2 / g. It is 5 m 2 / g or less. The specific surface area can be measured with a known BET type powder specific surface area measuring device. In the present invention, an OMS Riken: AMS8000 type automatic powder specific surface area measuring device was used, nitrogen was used as an adsorption gas, and helium was used as a carrier gas. Specifically, the powder sample is heated and deaerated with a mixed gas at a temperature of 150 ° C., then cooled to liquid nitrogen temperature to adsorb the nitrogen / helium mixed gas, and then heated to room temperature with water. The adsorbed nitrogen gas was desorbed, the amount was detected by a heat conduction detector, and the specific surface area of the sample was calculated from this.

更に、本発明のリチウム遷移金属複合酸化物は、タップ密度が0.8g/cm以上3.0g/cm以下である。タップ密度も同様にNi,Mn,Coの比率や所定元素Qの添加量によって大きく変化するが、より好ましくは0.9g/cm以上であり、最も好ましくは1.0g/cm以下である。密度が高い分には問題ないので特に上限はないが、通常は3.0g/cm以下である。なお、タップ密度は、試料粉体を10mlのガラス製メスシリンダーに入れ、200回タップした後の粉体充填密度(タップ密度)を測定した。 Furthermore, the lithium transition metal composite oxide of the present invention has a tap density of 0.8 g / cm 3 or more and 3.0 g / cm 3 or less. Similarly, the tap density varies greatly depending on the ratio of Ni, Mn, Co and the amount of the predetermined element Q added, but is more preferably 0.9 g / cm 3 or more, and most preferably 1.0 g / cm 3 or less. . Since there is no problem with the higher density, there is no particular upper limit, but it is usually 3.0 g / cm 3 or less. In addition, the tap density measured the powder filling density (tap density) after putting sample powder into a 10 ml glass measuring cylinder and tapping 200 times.

また、本発明のリチウム遷移金属複合酸化物は、リチウム遷移金属複合酸化物を構成する粒子のメジアン径が1μm以上20μm以下である。あまり小さすぎると粉体の取り扱いが困難になり、大きすぎるとリチウム二次電池用正極にする場合に電極の厚さに対して粒子が大きすぎてしまう。よって、より好ましくは2μm以上15μm以下、最も好ましくは3μm以上10μm以下である。なお、メジアン径は、公知のレーザー回折/散乱式粒度分布測定装置によって、複素屈折率として実数部1.60、虚数部0.10を設定し、粒子径基準を体積基準として測定されたものである。本発明では、測定の際に用いる分散媒として、0.1重量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散(出力30W、周波数22.5kHz)後に測定を行った。   In the lithium transition metal composite oxide of the present invention, the median diameter of the particles constituting the lithium transition metal composite oxide is 1 μm or more and 20 μm or less. If it is too small, it becomes difficult to handle the powder, and if it is too large, the particles will be too large with respect to the thickness of the electrode when making a positive electrode for a lithium secondary battery. Therefore, it is more preferably 2 μm or more and 15 μm or less, and most preferably 3 μm or more and 10 μm or less. The median diameter was measured by a known laser diffraction / scattering particle size distribution measuring apparatus with the real part 1.60 and the imaginary part 0.10 set as the complex refractive index and the particle diameter reference as the volume reference. is there. In the present invention, a 0.1 wt% sodium hexametaphosphate aqueous solution was used as a dispersion medium used in the measurement, and measurement was performed after 5 minutes of ultrasonic dispersion (output 30 W, frequency 22.5 kHz).

また、本発明のリチウム遷移金属複合酸化物は、一次粒子および/またはそれらが凝集してなる二次粒子から構成されるリチウムとニッケルを含む遷移金属複合酸化物において、水銀圧入法により求められる該二次粒子の細孔分布曲線において、細孔半径1μmより大きい範囲(好ましくは、50μm以下)にメインピークトップを有し、かつ細孔半径0.3μm以上1μm以下にサブピークトップを有することを特徴とする。   Further, the lithium transition metal composite oxide of the present invention is a transition metal composite oxide containing lithium and nickel composed of primary particles and / or secondary particles obtained by agglomerating them, and is obtained by the mercury intrusion method. The pore distribution curve of the secondary particles has a main peak top in a range larger than a pore radius of 1 μm (preferably 50 μm or less) and a sub-peak top in a pore radius of 0.3 μm to 1 μm. And

ここで、水銀圧入法により求められる該二次粒子の細孔分布曲線について、以下に詳細に説明する。
水銀圧入法は、多孔質粒子等の試料について、圧力を加えながらその細孔に水銀を浸入させ、圧力と圧入された水銀量との関係から、比表面積や細孔径分布等の情報を得る手法である。
Here, the pore distribution curve of the secondary particles obtained by the mercury intrusion method will be described in detail below.
The mercury intrusion method is a method for obtaining information such as specific surface area and pore size distribution from the relationship between pressure and the amount of mercury intruded into a pore of a sample such as porous particles while applying pressure. It is.

具体的には、まず試料の入った容器内を真空排気した上で、容器内に水銀を満たす。水銀は表面張力が高く、そのままでは試料表面の細孔には水銀は侵入しないが、水銀に圧力をかけ、徐々に昇圧していくと、径の大きい細孔から順に径の小さい細孔へと、徐々に細孔の中に水銀が浸入していく。圧力を連続的に増加させながら水銀液面の変化(つまり細孔への水銀圧入量)を検出していけば、水銀に加えた圧力と水銀圧入量との関係を表す水銀圧入曲線が得られる。   Specifically, the container containing the sample is first evacuated and filled with mercury. Mercury has a high surface tension, so mercury does not penetrate into the pores on the sample surface as it is, but when pressure is applied to the mercury and the pressure is increased gradually, the pores increase from the largest to the smallest. Mercury gradually enters the pores. If a change in the mercury liquid level (that is, the amount of mercury intruded into the pores) is detected while the pressure is continuously increased, a mercury intrusion curve representing the relationship between the pressure applied to the mercury and the amount of mercury intruded can be obtained. .

ここで、細孔の形状を円筒状と仮定し、その半径をr、水銀の表面張力をδ、接触角をθとすると、細孔から水銀を押し出す方向への力の大きさは−2πrδ(cosθ)で表される(θ>90°なら、この値は正となる)。また、圧力P下で細孔へ水銀を押し込む方向への力の大きさはπrPで表されることから、これらの力の釣り合いから以下の数式(3)、(4)が導かれる。 Here, assuming that the pore shape is cylindrical, the radius is r, the surface tension of mercury is δ, and the contact angle is θ, the magnitude of the force in the direction of pushing mercury out of the pore is −2πrδ ( cos θ) (if θ> 90 °, this value is positive). Further, since the magnitude of the force in the direction of pushing mercury into the pores under the pressure P is represented by πr 2 P, the following formulas (3) and (4) are derived from the balance of these forces.

(数4)
−2πrδ(cosθ)=πrP 数式(3)
Pr=−2δ(cosθ) 数式(4)
水銀の場合、表面張力δ=480dyn/cm程度、接触角θ=140°程度の値が一般的によく用いられている。これらの値を用いた場合、圧力P下で水銀が圧入される細孔の半径は以下の数式(5)で表される。
(Equation 4)
−2πrδ (cos θ) = πr 2 P Formula (3)
Pr = −2δ (cos θ) Formula (4)
In the case of mercury, values of surface tension δ = 480 dyn / cm and contact angle θ = 140 ° are generally used. When these values are used, the radius of the pore into which mercury is injected under the pressure P is expressed by the following formula (5).

Figure 0005135842
Figure 0005135842

即ち、水銀に加えた圧力Pと水銀が浸入する細孔の半径rとの間には相関があることか
ら、得られた水銀圧入曲線に基づいて、試料の細孔半径の大きさとその体積との関係を表す細孔分布曲線を得ることができる。例えば、圧力Pを0.1MPaから100MPaまで変化させると、7500nm程度から7.5nm程度までの範囲の細孔について測定が行える。なお、水銀圧入法による細孔半径の大凡の測定限界は、下限が約3nm以上、上限が約200μm以上である。
That is, since there is a correlation between the pressure P applied to mercury and the radius r of the pore into which mercury intrudes, the size of the pore radius of the sample and its volume are calculated based on the obtained mercury intrusion curve. A pore distribution curve representing the relationship can be obtained. For example, when the pressure P is changed from 0.1 MPa to 100 MPa, the pores in the range from about 7500 nm to about 7.5 nm can be measured. The approximate limit of measurement of the pore radius by mercury porosimetry is about 3 nm or more for the lower limit and about 200 μm or more for the upper limit.

水銀圧入法による測定は、水銀ポロシメータ等の装置を用いて行うことができる。水銀ポロシメータの具体例としては、Micromeritics社製オートポア、カンタクローム社製ポアマスター等が挙げられる。
また、本明細書において「細孔分布曲線」とは、細孔の半径を横軸に、その半径以上の半径を有する細孔の単位重量(通常は1g)あたりの細孔体積の合計を細孔半径の対数で微分した値を縦軸にプロットしたものであり、通常はプロットした点を結んだグラフとして表す。
Measurement by the mercury intrusion method can be performed using an apparatus such as a mercury porosimeter. Specific examples of the mercury porosimeter include an autopore manufactured by Micromeritics, a pore master manufactured by Kantachrome, and the like.
In this specification, the “pore distribution curve” is defined as the total pore volume per unit weight (usually 1 g) of pores having a radius equal to or larger than the radius of the pore. A value obtained by differentiating the logarithm of the hole radius is plotted on the vertical axis, and is usually represented as a graph connecting the plotted points.

また、本明細書において「メインピーク」とは、細孔分布曲線が有するピークの中で最も大きいピークを意味し、通常は二次粒子間の空隙に対応したピークを現す。そして「サブピーク」とは、細孔分布曲線が有するメインピーク以外のそれより小さいピークを意味する。「ピークトップ」とは、細孔分布曲線が有する各ピークにおいて縦軸の座標値が最も大きい値をとる点を意味する。   In the present specification, the “main peak” means the largest peak among the peaks of the pore distribution curve, and usually represents a peak corresponding to the voids between the secondary particles. The “sub peak” means a smaller peak than the main peak of the pore distribution curve. “Peak top” means a point where the coordinate value of the vertical axis takes the largest value in each peak of the pore distribution curve.

本発明にかかる細孔分布曲線が有するメインピークは、細孔半径1μmより大きい範囲(好ましくは50μm以下)にメインピークトップを有する。細孔半径がある程度大きいということは、二次粒子がある程度しっかり形成されていることを意味し、電極としての活物質の充填率や特定の量の導電材を用いたときの導電パスの確保という観点から好ましい。細孔半径1μm以下であると、二次粒子の形成が十分ではなくなる。メインピーク半径の上限は特にないが、あまり大きくても二次粒子同士の接触がとれずに導電パス不足となることから、通常50μm以下である。   The main peak of the pore distribution curve according to the present invention has a main peak top in a range larger than the pore radius of 1 μm (preferably 50 μm or less). The fact that the pore radius is large to some extent means that the secondary particles are formed to a certain extent, and it is necessary to secure the conductive path when using a filling rate of the active material as an electrode or a specific amount of conductive material. It is preferable from the viewpoint. When the pore radius is 1 μm or less, secondary particles are not sufficiently formed. The upper limit of the main peak radius is not particularly limited, but even if it is too large, the secondary particles cannot be contacted with each other and the conductive path is insufficient, so that it is usually 50 μm or less.

本発明にかかる細孔分布曲線が有するサブピークは、細孔半径0.3μm以上1μm以下にサブピークトップを有する。前述のメインピークより小さい細孔半径領域にサブピークを有するということは、通常二次粒子内部に細孔を有することを意味する。本発明のリチウム遷移金属複合酸化物は、このような空隙を二次粒子内部に有することによって、低温出力特性と良好な塗布性を両立させることが可能となっているものと推測される。前述のメインピークの細孔半径から、サブピークトップは通常1μm以下であり、下限は特にないが、あまり小さくても二次粒子内部のリチウムイオンの拡散が阻害され、出力特性が低下するおそれがあるので、通常0.3μm以上である。二次粒子内部に細孔を有するリチウム遷移金属複合酸化物を製造する方法については、以下[2.製造方法]に詳細に説明する。   The subpeak included in the pore distribution curve according to the present invention has a subpeak top at a pore radius of 0.3 μm to 1 μm. Having a sub-peak in a pore radius region smaller than the main peak described above usually means having a pore inside the secondary particle. The lithium transition metal composite oxide of the present invention is presumed to have both low-temperature output characteristics and good coating properties by having such voids in the secondary particles. From the pore radius of the main peak described above, the sub peak top is usually 1 μm or less, and there is no lower limit. However, even if it is too small, the diffusion of lithium ions inside the secondary particles may be hindered and the output characteristics may be deteriorated. Therefore, it is usually 0.3 μm or more. The method for producing a lithium transition metal composite oxide having pores inside secondary particles is described in [2. Manufacturing method] will be described in detail.

また、本発明のリチウム遷移金属複合酸化物は、CuKα線を使用した粉末X線回折測定において、回折角2θが64°付近に存在する(018)ピークおよび65°付近の存在する(110)ピークの半価幅が、それぞれ0.2以下であることが好ましい。
一般的に、結晶性の尺度としてX線回折ピークの半価幅が用いられるが、結晶性と電池特性の相関について検討したところ、本発明では、前述の(018)ピークおよび(110)ピークの半価幅が、それぞれ0.2以下であるものが良好な電池特性を示すことを見出した。半価幅が大きいことは結晶性が低いことを意味し、電池特性の不良につながることから、通常は0.2以下、より好ましくは0.15以下である。
The lithium transition metal composite oxide of the present invention has a (018) peak at a diffraction angle 2θ of around 64 ° and a (110) peak at around 65 ° in powder X-ray diffraction measurement using CuKα rays. It is preferable that the half width of each is 0.2 or less.
In general, the half width of the X-ray diffraction peak is used as a measure of crystallinity. However, when the correlation between the crystallinity and the battery characteristics was examined, in the present invention, the above-described (018) peak and (110) peak were measured. It has been found that those having a half width of 0.2 or less each show good battery characteristics. A large half width means that the crystallinity is low and leads to poor battery characteristics. Therefore, it is usually 0.2 or less, more preferably 0.15 or less.

[2.製造方法]
本発明のリチウム遷移金属複合酸化物の製造方法(以下適宜、「本発明の製造方法」と
いう)は、少なくとも、原料化合物を湿式粉砕混合し噴霧乾燥して得られる焼成前駆体からなる焼成材料を焼成する工程を備える。
従って通常、本発明のリチウム遷移金属複合酸化物は、目的とするリチウム遷移金属複合酸化物と同じ元素組成となるように、本発明のリチウム遷移金属複合酸化物を構成する元素を含有する原料化合物を混合し、この原料化合物の混合物(以下適宜、「原料混合物」という)を噴霧乾燥により粒子状の焼成前駆体に成形した後、この焼成前駆体を含む焼成材料を焼成することによって製造することができる。
[2. Production method]
The method for producing a lithium transition metal composite oxide of the present invention (hereinafter referred to as “the production method of the present invention” as appropriate) comprises at least a calcined material comprising a calcined precursor obtained by wet pulverizing and mixing raw material compounds and spray drying. The process of baking is provided.
Therefore, usually, the raw material compound containing the elements constituting the lithium transition metal composite oxide of the present invention so that the lithium transition metal composite oxide of the present invention has the same elemental composition as the target lithium transition metal composite oxide The mixture of raw material compounds (hereinafter referred to as “raw material mixture” as appropriate) is formed into a particulate firing precursor by spray drying, and then the firing material containing the firing precursor is fired. Can do.

[2−1.混合工程]
まず、原料化合物を混合して原料混合物を調製する。
原料化合物は、本発明の正極活物質を構成する元素を含有するものであれば特に制限はなく、本発明の効果を著しく損なわない限り任意の化合物を用いることができる。通常は、Li、NiおよびMn、並びに、Coや所定元素Q等の元素の一部または複数を含む、酸化物;炭酸塩、硫酸塩、硝酸塩、リン酸塩等の無機塩;ハロゲン化物;有機塩等の各種のものを組み合わせて用いることができる。また、所定元素Qは別途混合することが可能となる場合があり、その場合には、これらの所定元素Qを含む原料化合物は必ずしも当初に、目的とする正極活物質と同じ元素組成となるように混合することを要しない。
[2-1. Mixing process]
First, raw material compounds are mixed to prepare a raw material mixture.
The raw material compound is not particularly limited as long as it contains an element constituting the positive electrode active material of the present invention, and any compound can be used as long as the effects of the present invention are not significantly impaired. Usually, oxides, including Li, Ni, Mn, and a part or a plurality of elements such as Co and the predetermined element Q; inorganic salts such as carbonates, sulfates, nitrates, phosphates; halides; organics Various things such as salt can be used in combination. In addition, it may be possible to separately mix the predetermined element Q. In this case, the raw material compound containing the predetermined element Q always has the same elemental composition as the target positive electrode active material at the beginning. Does not require mixing.

リチウムを含有する化合物(以下適宜、「リチウム化合物」という)としては、通常LiCO、LiNO等の無機リチウム塩;LiOH、LiOH・HO等のリチウムの水酸化物;LiCl、LiI等のリチウムハロゲン化物;LiO等の無機リチウム化合物;アルキルリチウム、酢酸リチウム、脂肪酸リチウム等の有機リチウム化合物などを挙げることができるが、粒子毎の組成のばらつきが小さく、より均一な粒子群を作製する上では、水に難溶なリチウム化合物が好ましい。水溶性のリチウム化合物を使用すると、後述する湿式粉砕混合処理後の噴霧乾燥工程において、溶解していたリチウム成分が急激に析出することにより、粒子毎のリチウムと遷移金属元素との濃度分布にばらつきが生じ、電池特性の劣化を招く。水に難溶なリチウム化合物としては、例えばLiF、LiCO、LiPO、LiAsOなどが挙げられる。リチウム化合物は1種を単独で用いても良く、水に難溶であれば2種以上を本発明の効果を著しく損なわない限り任意の組み合わせおよび比率で併用しても良い。 As a compound containing lithium (hereinafter referred to as “lithium compound” as appropriate), usually an inorganic lithium salt such as Li 2 CO 3 and LiNO 3 ; a hydroxide of lithium such as LiOH and LiOH · H 2 O; LiCl and LiI Lithium halides such as; Lithium oxide such as Li 2 O; and organic lithium compounds such as alkyl lithium, lithium acetate, and fatty acid lithium, etc. In preparing the above, a lithium compound which is hardly soluble in water is preferable. When water-soluble lithium compounds are used, the concentration distribution of lithium and transition metal elements varies from particle to particle due to rapid precipitation of the dissolved lithium component in the spray drying process after the wet pulverization and mixing process described below. Will occur, leading to deterioration of battery characteristics. Examples of the lithium compound that is hardly soluble in water include LiF, Li 2 CO 3 , Li 3 PO 4 , and Li 3 AsO 4 . One lithium compound may be used alone, or two or more lithium compounds may be used in any combination and ratio as long as the effects of the present invention are not significantly impaired as long as they are hardly soluble in water.

ニッケルを含有する化合物(以下適宜、「ニッケル化合物」という)としては、Ni(OH)、NiO、NiOOH、NiCO・2Ni(OH)・4HO、NiC・2HO、Ni(NO・6HO、NiSO、NiSO・6HO、脂肪酸ニッケル、ニッケルハロゲン化物等を挙げることができる。
中でも好ましいものとしては、Ni(OH)、NiO、NiOOH、NiCO・2Ni(OH)・4HO、NiC・2HO等が挙げられる。このような窒素および硫黄を含まないニッケル化合物は、焼成工程においてNOxおよびSOx等の有害物質を発生させないので好ましい。さらに、工業原料として安価に入手でき、かつ、焼成を行なう際に反応性が高いという観点から、特に好ましいのはNi(OH)、NiOおよびNiOOHである。
As a compound containing nickel (hereinafter, referred to as “nickel compound” as appropriate), Ni (OH) 2 , NiO, NiOOH, NiCO 3 .2Ni (OH) 2 .4H 2 O, NiC 2 O 4 .2H 2 O, Ni (NO 3 ) 2 .6H 2 O, NiSO 4 , NiSO 4 .6H 2 O, fatty acid nickel, nickel halide and the like can be mentioned.
Among these, Ni (OH) 2 , NiO, NiOOH, NiCO 3 .2Ni (OH) 2 .4H 2 O, NiC 2 O 4 .2H 2 O and the like are preferable. Such a nickel compound containing no nitrogen and sulfur is preferable because it does not generate harmful substances such as NOx and SOx in the firing step. Furthermore, Ni (OH) 2 , NiO, and NiOOH are particularly preferable from the viewpoint of being inexpensively available as industrial raw materials and having high reactivity when firing.

なお、ニッケル化合物も1種を単独で用いても良く、2種以上を本発明の効果を著しく損なわない限り任意の組み合わせおよび比率で併用しても良い。
マンガンを含有する化合物(以下適宜、「マンガン化合物」という)としては、Mn、Mn、MnO、MnOOH、MnCO、Mn(NO、MnSO、有機マンガン化合物、マンガン水酸化物、マンガンハロゲン化物等を挙げることができる。中でも好ましいものとしては、MnOOH、Mn、MnO、Mn等が挙げられる。これらは、最終目的物である本発明の正極活物質のマンガン酸化数に近い価数を有しているため好ましい。
In addition, a nickel compound may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and ratios, unless the effect of this invention is impaired remarkably.
As a compound containing manganese (hereinafter referred to as “manganese compound” as appropriate), Mn 3 O 4 , Mn 2 O 3 , MnO 2 , MnOOH, MnCO 3 , Mn (NO 3 ) 2 , MnSO 4 , an organic manganese compound, Examples thereof include manganese hydroxide and manganese halide. Among these, MnOOH, Mn 2 O 3 , MnO 2 , Mn 3 O 4 and the like are preferable. These are preferable because they have a valence close to the manganese oxidation number of the positive electrode active material of the present invention which is the final object.

なお、マンガン化合物も1種を単独で用いても良く、本発明の効果を著しく損なわない限り、2種以上の化合物を任意の組み合わせおよび比率で併用しても良い。
コバルトを含有する化合物(以下適宜、「コバルト化合物」という)としては、CoO、Co、Co、Co(OH)、CoOOH、Co(NO・6HO、CoSO・7HO、有機コバルト化合物、コバルトハロゲン化物等を挙げることができる。中でも好ましいものとしては、CoO、Co、Co、CoOOH、Co(OH)等が挙げられる。
In addition, a manganese compound may also be used individually by 1 type, and 2 or more types of compounds may be used together by arbitrary combinations and ratios, unless the effect of this invention is impaired remarkably.
As a compound containing cobalt (hereinafter referred to as “cobalt compound” as appropriate), CoO, Co 2 O 3 , Co 3 O 4 , Co (OH) 2 , CoOOH, Co (NO 3 ) 2 .6H 2 O, CoSO 4 · 7H 2 O, organic cobalt compounds include cobalt halides. Among these, preferred are CoO, Co 2 O 3 , Co 3 O 4 , CoOOH, Co (OH) 2 and the like.

なお、コバルト化合物も1種を単独で用いても良く、本発明の効果を著しく損なわない限り、2種以上の化合物を任意の組み合わせおよび比率で併用しても良い。
さらに、例えば所定元素Qを含有する化合物としては、通常は無機塩や有機塩などを用いればよい。
また、所定元素Qを含有する化合物も1種を単独で用いても良く、本発明の効果を著しく損なわない限り、2種以上の化合物を任意の組み合わせおよび比率で併用しても良い。
In addition, a cobalt compound may also be used individually by 1 type, and 2 or more types of compounds may be used together by arbitrary combinations and ratios, unless the effect of this invention is impaired remarkably.
Further, for example, as the compound containing the predetermined element Q, usually, an inorganic salt, an organic salt or the like may be used.
Moreover, the compound containing the predetermined element Q may also be used individually by 1 type, and 2 or more types of compounds may be used together by arbitrary combinations and ratios, unless the effect of this invention is impaired remarkably.

原料化合物の混合方法は、少なくとも湿式粉砕混合方式であれば特に限定されない。また、粒子毎の組成のばらつきが小さく、より均一な粒子群を作製する上では、湿式粉砕混合処理は原料化合物スラリーの平均粒径が0.45μm以下であることが好ましい。これより大きい平均粒径のスラリーを用いて合成したリチウム遷移金属複合酸化物においては、粒子毎の組成のばらつきが大きくなり、電池特性の劣化に繋がる。よって、原料化合物スラリーの平均粒径は、通常0.45μm以下、更に好ましくは0.40μm以下、最も好ましくは0.35μm以下である。なお、メジアン径は、公知のレーザー回折/散乱式粒度分布測定装置によって、屈折率1.24を設定し、粒子径基準を体積基準として測定されたものである。本発明では、測定の際に用いる分散媒として、0.1重量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散(出力30W、周波数22.5kHz)後に測定を行った。   The mixing method of the raw material compounds is not particularly limited as long as it is at least a wet pulverization mixing method. Moreover, in order to produce a more uniform particle group with small variation in composition among particles, the wet pulverization and mixing treatment preferably has an average particle diameter of the raw material compound slurry of 0.45 μm or less. In a lithium transition metal composite oxide synthesized using a slurry having an average particle size larger than this, the variation in composition among particles becomes large, leading to deterioration of battery characteristics. Therefore, the average particle diameter of the raw material compound slurry is usually 0.45 μm or less, more preferably 0.40 μm or less, and most preferably 0.35 μm or less. The median diameter was measured with a known laser diffraction / scattering particle size distribution measuring device with a refractive index of 1.24 and a particle diameter reference as a volume reference. In the present invention, a 0.1 wt% sodium hexametaphosphate aqueous solution was used as a dispersion medium used in the measurement, and measurement was performed after 5 minutes of ultrasonic dispersion (output 30 W, frequency 22.5 kHz).

スラリーの固形分濃度については、1重量%以上50重量%の間で適宜選択される。あまり低すぎても生産性の低下を招くため、通常1重量%以上、好ましくは5重量%以上、更に好ましくは10重量%以上であり、あまり高すぎてもスラリーの大幅な増粘を招くので、通常50重量%以下、好ましくは40重量%以下、更に好ましくは30重量%以下である。   The solid content concentration of the slurry is appropriately selected between 1 wt% and 50 wt%. If it is too low, the productivity will be lowered, so it is usually 1% by weight or more, preferably 5% by weight or more, more preferably 10% by weight or more. If it is too high, the slurry will be greatly thickened. The amount is usually 50% by weight or less, preferably 40% by weight or less, and more preferably 30% by weight or less.

なお、本発明においては、固形分濃度を高くして、スラリーが大幅に増粘した場合には分散剤を、逆にスラリーの粘度が低すぎる場合には増粘剤を添加し、スラリー粘度を調製する場合がある。しかし、これらの添加剤は、必要以上に添加しすぎると、以下に説明する焼成工程において、焼結や不均一な焼き上がりなどを招くことがあり、電池特性の劣化につながるおそれがある。よって、本願発明においては、これらの添加剤の添加は必要以上に行わないほうが好ましく、また、これらの添加剤の添加をできる限り行わないほうが、より良好なリチウム遷移金属複合酸化物が得られることが多い。   In the present invention, when the solid content concentration is increased and the slurry is greatly thickened, a dispersant is added. Conversely, when the viscosity of the slurry is too low, a thickener is added. May be prepared. However, if these additives are added excessively more than necessary, in the firing step described below, sintering or uneven firing may be caused, which may lead to deterioration of battery characteristics. Therefore, in the present invention, it is preferable not to add these additives more than necessary, and a better lithium transition metal composite oxide can be obtained if these additives are not added as much as possible. There are many.

[2−2.噴霧乾燥工程]
得られた原料混合物は、次に、造粒工程に供される。本発明においては、造粒は噴霧乾燥によって行われる。噴霧乾燥により、原料混合物の粒子状物として焼成前駆体を得ることができる。
噴霧乾燥は、生成する焼成前駆体の均一性や粉体流動性、粉体ハンドリング性能、二次粒子を効率よく形成できる等の点で優れた造粒方法である。噴霧乾燥の具体的方法に制限は無く、公知の方法により任意に行なうことができる。例えば、上記原料化合物の混合を湿式で行なった場合には、通常は原料化合物がスラリーとして得られるために、ノズルの
先端に気体流と原料混合物のスラリーとを流入させることによってノズルからスラリーを液滴として吐出させ、乾燥ガスと接触させて液滴を迅速に乾燥させる方法を用いることができる。
[2-2. Spray drying process]
The obtained raw material mixture is then subjected to a granulation step. In the present invention, granulation is performed by spray drying. By spray drying, a calcined precursor can be obtained as a particulate material of the raw material mixture.
Spray drying is an excellent granulation method in terms of the uniformity of the calcined precursor to be produced, powder flowability, powder handling performance, and the ability to efficiently form secondary particles. There is no restriction | limiting in the specific method of spray drying, It can carry out arbitrarily by a well-known method. For example, when the raw material compound is mixed in a wet process, the raw material compound is usually obtained as a slurry. Therefore, the slurry is liquefied from the nozzle by flowing a gas flow and a raw material mixture slurry into the tip of the nozzle. It is possible to use a method in which droplets are ejected as droplets and contacted with a drying gas to rapidly dry the droplets.

上記噴霧乾燥の際の条件は本発明の効果を著しく損なわない限り任意であるが、乾燥ガス入り口温度は通常80℃以上400℃以下、更に好ましくは100℃以上300℃以下である。また、導入する乾燥ガス(L/min)と吐出させるスラリー(L/min)から算出される気液比は、通常500以上5000以下、更に好ましくは1000以上3000以下である。   The conditions for the spray drying are arbitrary as long as the effects of the present invention are not significantly impaired, but the drying gas inlet temperature is usually 80 ° C. or higher and 400 ° C. or lower, more preferably 100 ° C. or higher and 300 ° C. or lower. The gas-liquid ratio calculated from the introduced dry gas (L / min) and the discharged slurry (L / min) is usually 500 or more and 5000 or less, more preferably 1000 or more and 3000 or less.

さらに、噴霧乾燥によって得られる焼成前駆体は、使用した原料化合物が共存する金属複合混合物の粒子状物である。したがって、原料化合物として、本発明の正極活物質を構成する元素(但し、酸素を除く)をそれぞれ含有する化合物を不足無く用いている場合、この焼成前駆体は、焼成材料として次の焼成工程に供される。但し、湿式粉砕混合工程に添加しなかった所定元素Qの原料化合物は、この焼成前駆体を作製した時点で乾式混合される。   Furthermore, the firing precursor obtained by spray drying is a particulate material of a metal composite mixture in which the used raw material compounds coexist. Therefore, when a compound containing each of the elements constituting the positive electrode active material of the present invention (excluding oxygen) is used as a raw material without a shortage, this firing precursor is used as a firing material in the next firing step. Provided. However, the raw material compound of the predetermined element Q that has not been added to the wet pulverization and mixing step is dry-mixed at the time when the firing precursor is produced.

[2−3.焼成工程]
前記焼成前駆体は、次いで焼成工程に供される。焼成により、本発明のリチウム遷移金属複合酸化物を得ることができる。
焼成の具体的な方法は、本発明の効果を著しく損なわない限り任意であるが、例えば、箱形炉、管状炉、トンネル炉、ロータリーキルン等の装置を用いて行なうことができる。
また、通常、焼成は、昇温工程、最高温度保持工程および降温工程の三工程に分けられる。ここで、最高温度保持工程は必ずしも一回とは限らず、目的に応じて二段階またはそれ以上の段階に分けて行なうようにしてもよい。
[2-3. Firing step]
The firing precursor is then subjected to a firing step. The lithium transition metal composite oxide of the present invention can be obtained by firing.
Although the specific method of baking is arbitrary as long as the effect of this invention is not impaired remarkably, it can carry out using apparatuses, such as a box furnace, a tubular furnace, a tunnel furnace, a rotary kiln, for example.
In general, firing is divided into three steps: a temperature raising step, a maximum temperature holding step, and a temperature lowering step. Here, the maximum temperature holding process is not necessarily performed once, and may be performed in two or more stages according to the purpose.

さらに、焼成中にその他の処理を行なう工程を行なうようにしてもよい。例えば、二次粒子を破壊しない程度に凝集を解消するために行なう解砕工程や、一次粒子或いはより微小な粉末にまで砕くための粉砕工程を挟んで、昇温工程、最高温度保持工程および降温工程をそれぞれ2回またはそれ以上繰り返して行なうようにしてもよい。
また、焼成時の条件は本発明の効果を著しく損なわない限り任意である。ただし、通常は、以下の条件で焼成を行なう。
Furthermore, you may make it perform the process of performing another process during baking. For example, a temperature raising step, a maximum temperature holding step, and a temperature lowering step, with a crushing step performed to eliminate agglomeration to such an extent that the secondary particles are not destroyed, and a crushing step for crushing to primary particles or finer powder Each step may be repeated twice or more.
Moreover, the conditions at the time of baking are arbitrary unless the effect of this invention is impaired remarkably. However, firing is usually performed under the following conditions.

昇温工程では、通常0.1℃/分〜5℃/分の昇温速度で昇温を行なうことが望ましい。昇温速度が遅すぎても時間がかかって工業的に不利であるが、あまり速すぎても炉によっては炉内温度が設定温度に追従しなくなるおそれがあるためである。
また、最高温度保持工程では、焼成温度は通常500℃以上、好ましくは600℃以上、より好ましくは800℃以上、また、通常1200℃以下、好ましくは1100℃以下である。温度が低すぎると、結晶性の良い本発明の正極活物質を得るために長時間の焼成時間を要する傾向にある。反面、温度が高すぎると本発明の正極活物質が激しく焼結して焼成後の粉砕・解砕歩留まりが低下し、工業的に不利となるおそれがある。また、本発明の正極活物質に酸素欠損等の欠陥が多く生成し、本発明の正極活物質を使用したリチウム二次電池の電池容量の低下や、充放電による結晶構造の崩壊による劣化を招くおそれがある。
In the temperature raising step, it is usually desirable to raise the temperature at a rate of temperature rise of 0.1 ° C / min to 5 ° C / min. This is because even if the heating rate is too slow, it takes time and is industrially disadvantageous. However, if the heating rate is too fast, the furnace temperature may not follow the set temperature depending on the furnace.
In the maximum temperature holding step, the firing temperature is usually 500 ° C. or higher, preferably 600 ° C. or higher, more preferably 800 ° C. or higher, and usually 1200 ° C. or lower, preferably 1100 ° C. or lower. If the temperature is too low, a long baking time tends to be required to obtain the positive electrode active material of the present invention having good crystallinity. On the other hand, if the temperature is too high, the positive electrode active material of the present invention is vigorously sintered and the pulverization / disintegration yield after firing is lowered, which may be industrially disadvantageous. Moreover, many defects such as oxygen deficiency are generated in the positive electrode active material of the present invention, leading to a decrease in battery capacity of a lithium secondary battery using the positive electrode active material of the present invention and deterioration due to collapse of the crystal structure due to charge / discharge. There is a fear.

さらに、最高温度保持工程での保持時間は、通常1時間以上100時間以下の広い範囲から選択される。また、焼成時間が短すぎると結晶性の良い本発明の正極活物質が得られにくい。
また、降温工程では、通常0.1℃/分〜10℃/分の降温速度で降温を行なう。あまり遅すぎても時間がかかって工業的に不利になるおそれがあり、また、あまり速すぎても
目的物の均一性に欠ける場合や、容器の劣化を早める傾向にある。
Furthermore, the holding time in the maximum temperature holding step is usually selected from a wide range of 1 hour to 100 hours. Further, if the firing time is too short, it is difficult to obtain the positive electrode active material of the present invention having good crystallinity.
In the temperature lowering step, the temperature is usually decreased at a temperature decreasing rate of 0.1 ° C./min to 10 ° C./min. If it is too slow, it may take time and may be industrially disadvantageous, and if it is too fast, the uniformity of the target product may be insufficient, or the container tends to deteriorate.

さらに、焼成雰囲気としては、空気、酸素、窒素、アルゴン、二酸化炭素等の各種が使用できるが、焼成雰囲気によってタップ密度などの粉体特性が変化するので、空気などの酸素濃度が10体積%〜80体積%である雰囲気が好ましい。酸素濃度が高すぎると、得られるリチウム遷移金属複合酸化物の嵩密度が低下するおそれがある。
焼成により得られたリチウム遷移金属複合酸化物は、適宜解砕および/または分級に処せられる。分級手法は特に限定されないが、タッピングボールによりメッシュを通す振動分級を行うと、二次粒子の形態が崩れ、粒度分布や細孔分布などに大きな変化を生じさせることがある。よって、メッシュに叩きつける力ではない分級方法、例えばメッシュ上の焼成粉体をメッシュに押し付けて通す方法、回転翼の遠心力により円筒型メッシュを通す方法などがより好ましいと考えられる。
Furthermore, various types of air, oxygen, nitrogen, argon, carbon dioxide, etc. can be used as the firing atmosphere, but the powder properties such as tap density vary depending on the firing atmosphere, so that the oxygen concentration of air or the like is 10 vol% to An atmosphere of 80% by volume is preferred. If the oxygen concentration is too high, the bulk density of the resulting lithium transition metal composite oxide may be reduced.
The lithium transition metal composite oxide obtained by firing is appropriately subjected to crushing and / or classification. Although the classification method is not particularly limited, when vibration classification through a mesh with a tapping ball is performed, the shape of the secondary particles may be disrupted, which may cause a large change in particle size distribution, pore distribution, and the like. Therefore, it is considered that a classification method that is not the force of hitting the mesh, for example, a method in which the fired powder on the mesh is pressed through the mesh and a method in which the cylindrical mesh is passed by the centrifugal force of the rotating blades are considered to be more preferable.

[2−4.その他の工程]
また、上記の本発明のリチウム遷移金属複合酸化物の製造方法においては、本発明の効果を著しく損なわない限り、上述した混合(粉砕を含む)、噴霧乾燥および焼成以外の工程を備えていても良い。
例えば、得られた本発明のリチウム遷移金属複合酸化物は、正極活物質としてそのまま用いてもよいが、表面処理を施してから用いるようにしてもよい。表面処理の方法に制限は無く、本発明の効果を著しく損なわない限り任意の表面処理を行なうことができる。表面処理の目的と効果はいろいろあるが、例えば、正極活物質表面の反応活性点が低減し、マンガン等の金属元素溶出を抑制することができる。この目的で用いられる手法としては、例えばリチウム遷移金属複合酸化物をシランカップリング剤などの有機ケイ素化合物で表面処理する方法(例えば特開2002−83596号公報参照)等が挙げられる。また、正極として用いた場合の導電性を向上させるため、例えば炭素材を機械的に複合化被覆処理する方法(例えば特開2003−137554号公報参照)等が挙げられる。
[2-4. Other processes]
Further, in the method for producing a lithium transition metal composite oxide of the present invention described above, steps other than the above-described mixing (including pulverization), spray drying and firing may be provided as long as the effects of the present invention are not significantly impaired. good.
For example, the obtained lithium transition metal composite oxide of the present invention may be used as it is as the positive electrode active material, or may be used after surface treatment. The surface treatment method is not limited, and any surface treatment can be performed as long as the effects of the present invention are not significantly impaired. Although there are various purposes and effects of the surface treatment, for example, the reactive sites on the surface of the positive electrode active material can be reduced, and elution of metal elements such as manganese can be suppressed. As a method used for this purpose, for example, a method in which a lithium transition metal composite oxide is surface-treated with an organosilicon compound such as a silane coupling agent (see, for example, JP-A-2002-83596) can be mentioned. Moreover, in order to improve the electroconductivity at the time of using as a positive electrode, the method (for example, Unexamined-Japanese-Patent No. 2003-137554) etc. which carry out the composite coating process of a carbon material mechanically etc. are mentioned.

[3.リチウム二次電池用正極]
上述した本発明のリチウム遷移金属複合酸化物は、正極活物質として本発明のリチウム二次電池用正極(以下適宜、「本発明の正極」という)に用いられる。
本発明のリチウム二次電池用正極は、集電体(正極集電体)と、集電体上に形成された活物質層(正極活物質層)とを備える。また、適宜、本発明の効果を著しく損なわない限り、その他の層や部材を備えていても良い。
[3. Positive electrode for lithium secondary battery]
The lithium transition metal composite oxide of the present invention described above is used as a positive electrode active material for the positive electrode for a lithium secondary battery of the present invention (hereinafter referred to as “the positive electrode of the present invention” as appropriate).
The positive electrode for a lithium secondary battery of the present invention includes a current collector (positive electrode current collector) and an active material layer (positive electrode active material layer) formed on the current collector. Moreover, as long as the effect of this invention is not impaired significantly, you may provide the other layer and member.

[3−1.正極集電体]
正極集電体の素材としては、公知のものを任意に使用することができるが、通常は金属や合金が用いられる。具体的には、正極の集電体としては、アルミニウムやニッケル、ステンレス等が挙げられる。中でも、正極の集電体としてはアルミニウムが好ましい。なお、これらは1種を単独で用いてもよく、2種以上を任意の組み合わせおよび比率で併用しても良い。
[3-1. Positive electrode current collector]
As a material of the positive electrode current collector, a known material can be arbitrarily used, but usually a metal or an alloy is used. Specifically, examples of the current collector for the positive electrode include aluminum, nickel, and stainless steel. Among these, aluminum is preferable as the positive electrode current collector. In addition, these may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and ratios.

さらに、集電体と表面に形成された活物質層との結着効果を向上させるため、これら集電体の表面は予め粗面化処理しておくことが好ましい。表面の粗面化方法としては、ブラスト処理や粗面ロールにより圧延するなどの方法、研磨剤粒子を固着した研磨布紙、砥石、エメリバフ、鋼線などを備えたワイヤブラシなどで集電体表面を研磨する機械的研磨法、電解研磨法、化学研磨法などが挙げられる。   Furthermore, in order to improve the binding effect between the current collector and the active material layer formed on the surface, it is preferable that the surface of these current collectors is roughened in advance. Surface roughening methods include blasting or rolling with a rough surface roll, surface of the current collector with a wire brush equipped with abrasive cloth paper, grindstone, emery buff, steel wire, etc. with abrasive particles fixed Examples thereof include a mechanical polishing method, an electrolytic polishing method, and a chemical polishing method.

また、集電体の形状も任意である。例えば、本発明の正極を用いたリチウム二次電池の重量を低減させる、即ち重量当たりのエネルギー密度を向上させるために、エキスパンドメタルやパンチングメタルのような穴あきタイプの集電体を使用することもできる。この
場合、その開口率を変更することで重量も自在に変更可能となる。また、このような穴あけタイプの集電体の両面に活物質層を形成させた場合、この穴を通しての活物質層のリベット効果により活物質層の剥離がさらに起こりにくくなる傾向にあるが、開口率があまりに高くなった場合には、活物質層と集電体との接触面積が小さくなるため、かえって接着強度は低くなるおそれがある。
Further, the shape of the current collector is also arbitrary. For example, in order to reduce the weight of a lithium secondary battery using the positive electrode of the present invention, that is, to improve the energy density per weight, use a perforated current collector such as an expanded metal or a punching metal. You can also. In this case, the weight can be freely changed by changing the aperture ratio. In addition, when an active material layer is formed on both sides of such a perforated current collector, the active material layer tends to be more difficult to peel off due to the rivet effect of the active material layer through the hole. If the rate is too high, the contact area between the active material layer and the current collector becomes small, so that the adhesive strength may be lowered.

なお、正極集電体として薄膜を使用する場合、その厚さは任意であるが、通常1μm以上、好ましくは5μm以上であり、通常100μm以下、好ましくは50μm以下である。厚すぎると、本発明の正極を用いたリチウム二次電池全体の容量が低下するおそれがあり、逆に薄すぎると取り扱いが困難になるおそれがある。
[3−2.正極活物質層]
本発明の正極の正極活物質層は、本発明の正極活物質を含有して構成された層であり、本発明の正極活物質を含有する限り、公知の任意の構成とすることができる。なお、この正極活物質層に含有させる本発明の正極活物質は、1種を単独で用いても良く、2種以上を任意の組み合わせおよび比率で併用しても良い。
In addition, when using a thin film as a positive electrode electrical power collector, although the thickness is arbitrary, it is 1 micrometer or more normally, Preferably it is 5 micrometers or more, and is 100 micrometers or less normally, Preferably it is 50 micrometers or less. If it is too thick, the capacity of the entire lithium secondary battery using the positive electrode of the present invention may be reduced. Conversely, if it is too thin, handling may be difficult.
[3-2. Positive electrode active material layer]
The positive electrode active material layer of the positive electrode of the present invention is a layer configured to contain the positive electrode active material of the present invention, and can have any known configuration as long as it contains the positive electrode active material of the present invention. In addition, the positive electrode active material of this invention contained in this positive electrode active material layer may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and ratios.

また、本発明の正極の正極活物質層は、本発明の効果を著しく損なわない限り、本発明の正極活物質以外の任意の正極活物質を併用することができる。併用する正極活物質は、リチウムイオンを吸蔵・放出可能なものであればその種類に制限はないが、例えば、Fe、Co、Ni、Mnなどの遷移金属の酸化物、遷移金属とリチウムとの複合酸化物、遷移金属の硫化物などが挙げられる。また、上記の併用する正極活物質も、1種を単独で用いても良く、2種以上を任意の組み合わせおよび比率で併用しても良い。ただし、本発明の正極の正極活物質層中においては、本発明の正極活物質の割合が多いことが好ましい。   Moreover, the positive electrode active material layer of the positive electrode of the present invention can be used in combination with any positive electrode active material other than the positive electrode active material of the present invention as long as the effects of the present invention are not significantly impaired. The positive electrode active material used in combination is not limited as long as it can occlude / release lithium ions. For example, transition metal oxides such as Fe, Co, Ni, and Mn, transition metal and lithium Examples thereof include composite oxides and transition metal sulfides. In addition, the positive electrode active materials used in combination may be used alone or in combination of two or more in any combination and ratio. However, it is preferable that the ratio of the positive electrode active material of the present invention is large in the positive electrode active material layer of the positive electrode of the present invention.

さらに、正極活物質層には、通常、バインダーが含有される。このバインダーは、正極活物質を結着させて集電体上に保持するためのものである。
バインダーは、本発明の効果を著しく損なわない限り任意のものを用いることができるが、耐候性、耐薬品性、耐熱性、難燃性等を考慮して選択するのが好ましい。具体例としては、シリケート、水ガラスのような無機化合物や、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース等の有機化合物などを挙げることができる。なお、バインダーは1種を単独で用いても良く、2種以上を任意の組み合わせおよび比率で併用しても良い。
Furthermore, the positive electrode active material layer usually contains a binder. This binder is for binding the positive electrode active material and holding it on the current collector.
Any binder can be used as long as the effects of the present invention are not significantly impaired. However, the binder is preferably selected in consideration of weather resistance, chemical resistance, heat resistance, flame retardancy, and the like. Specific examples include inorganic compounds such as silicate and water glass, and organic compounds such as polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl acetate, polymethyl methacrylate, polyethylene, and nitrocellulose. In addition, a binder may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.

また、正極活物質層には、各種の助剤等を含有させても良い。助剤等の例としては、電極の導電性を高める導電剤などが挙げられる。導電剤は、活物質に適量混合して導電性を付与できるものであれば特に制限はないが、例えば、天然黒鉛、人造黒鉛、アセチレンブラック等の炭素粉末や、各種の金属のファイバー、箔などが挙げられる。なお、これらの助剤は、1種を単独で用いても良く、2種以上を任意の組み合わせおよび比率で併用しても良い。   The positive electrode active material layer may contain various auxiliaries and the like. Examples of the auxiliary agent include a conductive agent that increases the conductivity of the electrode. The conductive agent is not particularly limited as long as it is capable of imparting conductivity by mixing an appropriate amount in the active material. For example, carbon powder such as natural graphite, artificial graphite, acetylene black, various metal fibers, foil, etc. Is mentioned. In addition, these adjuvants may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.

正極活物質層中の正極活物質の割合は、本発明の効果を著しく損なわない限り任意であるが、通常10重量%以上、好ましくは30重量%以上であり、また、通常99.9重量%以下、好ましくは99重量%以下である。正極活物質が多すぎると本発明の正極の強度が不足する傾向があり、少なすぎると本発明の正極を用いたリチウム二次電池の容量の面で不十分となるおそれがある。   The proportion of the positive electrode active material in the positive electrode active material layer is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 10% by weight or more, preferably 30% by weight or more, and usually 99.9% by weight. Hereinafter, it is preferably 99% by weight or less. If the amount of the positive electrode active material is too large, the strength of the positive electrode of the present invention tends to be insufficient. If the amount is too small, the capacity of the lithium secondary battery using the positive electrode of the present invention may be insufficient.

また、正極活物質層にバインダーを含有させる場合、正極活物質層中のバインダーの割合も本発明の効果を著しく損なわない限り任意であるが、通常0.1重量%以上、好ましくは1重量%以上であり、また、通常60重量%以下、好ましくは40重量%以下である。正極活物質が多すぎると本発明の正極を用いたリチウム二次電池の容量の面で不十分となるおそれがあり、少なすぎると本発明の正極の強度が不十分となるおそれがある。   Further, when the binder is contained in the positive electrode active material layer, the ratio of the binder in the positive electrode active material layer is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 0.1% by weight or more, preferably 1% by weight. In addition, it is usually 60% by weight or less, preferably 40% by weight or less. If the amount of the positive electrode active material is too large, the capacity of the lithium secondary battery using the positive electrode of the present invention may be insufficient. If the amount is too small, the strength of the positive electrode of the present invention may be insufficient.

さらに、正極活物質層に導電剤を含有させる場合、正極活物質層中の導電剤の割合も本発明の効果を著しく損なわない限り任意であるが、通常0.1重量%以上、好ましくは1重量%以上であり、また、通常50重量%以下、好ましくは10重量%以下である。導電剤が多すぎると本発明の正極を用いたリチウム二次電池の容量の面で不十分となるおそれがあり、少なすぎると本発明の正極を用いたリチウム二次電池の電気導電性が不十分となるおそれがある。   Furthermore, when the positive electrode active material layer contains a conductive agent, the proportion of the conductive agent in the positive electrode active material layer is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 0.1% by weight or more, preferably 1 It is usually not more than 50% by weight and preferably not more than 10% by weight. If the amount of the conductive agent is too large, the capacity of the lithium secondary battery using the positive electrode of the present invention may be insufficient. If the amount is too small, the electric conductivity of the lithium secondary battery using the positive electrode of the present invention will be poor. May be sufficient.

また、本発明の正極の正極活物質層の厚さは本発明の効果を著しく損なわない限り任意であるが、通常1μm以上、好ましくは10μm以上、さらに好ましくは20μm以上であり、また、通常200μm以下、好ましくは150μm以下、さらに好ましくは100μm以下である。正極活物質層が薄すぎると正極活物質層の均一性が確保しにくくなるだけでなく、本発明の正極を用いたリチウム二次電池の容量が小さくことがある。一方、厚すぎると本発明の正極を用いたリチウム二次電池のレート特性が低下するおそれがある。   The thickness of the positive electrode active material layer of the positive electrode of the present invention is arbitrary as long as the effects of the present invention are not significantly impaired, but is usually 1 μm or more, preferably 10 μm or more, more preferably 20 μm or more, and usually 200 μm. Hereinafter, it is preferably 150 μm or less, more preferably 100 μm or less. If the positive electrode active material layer is too thin, not only is the uniformity of the positive electrode active material layer difficult to ensure, but the capacity of the lithium secondary battery using the positive electrode of the present invention may be small. On the other hand, if it is too thick, the rate characteristics of the lithium secondary battery using the positive electrode of the present invention may be lowered.

さらに、本発明の正極の製造方法に制限は無く、集電体上に上述した正極活物質層を形成することができれば公知の任意の方法を用いることができる。例を挙げると、正極活物質層の上記構成成分をシート状に成形し、これを集電体に圧着する方法;上記構成成分を含有するスラリーを調製し、これを集電体上に塗布、乾燥する方法などが挙げられる。また、塗布、乾燥により得られた正極活物質層は、正極活物質の充填密度を高めるために、ローラープレス等により圧密するのが好ましい。   Furthermore, there is no restriction | limiting in the manufacturing method of the positive electrode of this invention, Well-known arbitrary methods can be used if the positive electrode active material layer mentioned above can be formed on a collector. For example, a method of forming the above-described constituent components of the positive electrode active material layer into a sheet shape, and pressure-bonding the same to a current collector; preparing a slurry containing the above-described constituent components, and applying this onto the current collector; The method of drying etc. are mentioned. In addition, the positive electrode active material layer obtained by coating and drying is preferably consolidated by a roller press or the like in order to increase the packing density of the positive electrode active material.

塗布、乾燥により正極活物質層を形成する場合、塗布するスラリーを調製するための溶媒としては、上記正極活物質層の構成成分を溶解又は分散させることが可能なものを任意に用いることができる。具体例を挙げると、水系溶媒と有機系溶媒とのどちらを用いても良い。水系溶媒の例としては水等が挙げられ、有機系溶媒の例としてはN−メチルピロリドン、テトラヒドロフラン、ジメチルホルムアミド等を挙げることができる。なお、これらの溶媒は、1種を単独で用いても良く、2種以上を任意の組み合わせおよび比率で併用しても良い。   When the positive electrode active material layer is formed by coating and drying, a solvent capable of dissolving or dispersing the constituent components of the positive electrode active material layer can be arbitrarily used as a solvent for preparing the slurry to be applied. . As a specific example, either an aqueous solvent or an organic solvent may be used. Examples of the aqueous solvent include water, and examples of the organic solvent include N-methylpyrrolidone, tetrahydrofuran, dimethylformamide, and the like. In addition, these solvents may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.

[4.リチウム二次電池]
本発明の正極は、リチウム二次電池に好適に用いられる。
[4. Lithium secondary battery]
The positive electrode of the present invention is suitably used for a lithium secondary battery.

本発明のリチウム二次電池は、本発明の正極と、リチウムを吸蔵・放出可能な負極と、リチウム塩を含む電解質とを備えて構成される。また、適宜、例えばセパレータ等のその他の部材を備えていても良い。
[4−1.正極]
本発明のリチウム二次電池の正極としては、上述した本発明の正極を用いる。
The lithium secondary battery of the present invention comprises the positive electrode of the present invention, a negative electrode capable of inserting and extracting lithium, and an electrolyte containing a lithium salt. In addition, other members such as a separator may be provided as appropriate.
[4-1. Positive electrode]
The positive electrode of the present invention described above is used as the positive electrode of the lithium secondary battery of the present invention.

[4−2.負極]
負極としては、リチウムを吸蔵および放出可能な公知の負極を任意に用いることができる。例えば、リチウム金属、リチウム−アルミニウム合金等のリチウム合金などの金属箔などを用いることもできるが、通常、正極の場合と同様に、集電体(負極集電体)上に活物質層(負極活物質層)を設けた負極を用いることが好ましい。また、正極と同様に、負極も本発明の効果を著しく損なわない限り、その他の層や部材を備えていても良い。
[4-2. Negative electrode]
As the negative electrode, a known negative electrode capable of inserting and extracting lithium can be arbitrarily used. For example, a metal foil such as lithium metal or a lithium alloy such as a lithium-aluminum alloy can be used. Usually, as in the case of the positive electrode, an active material layer (negative electrode) is formed on the current collector (negative electrode current collector). It is preferable to use a negative electrode provided with an active material layer. Similarly to the positive electrode, the negative electrode may include other layers and members as long as the effects of the present invention are not significantly impaired.

[4−2−1.負極集電体]
負極集電体の素材としては、公知のものを任意に使用することができるが、通常は金属や合金が用いられる。具体的には、負極の集電体としては、銅、ニッケル、ステンレス等
が挙げられる。中でも、負極の集電体としては銅が好ましい。なお、これらは1種を単独で用いてもよく、2種以上を任意の組み合わせおよび比率で併用しても良い。
また、負極の集電体も、正極の集電体と同様に、予め粗面化処理しておくのが好ましい。
[4-2-1. Negative electrode current collector]
As a material of the negative electrode current collector, a known material can be arbitrarily used, but usually a metal or an alloy is used. Specifically, examples of the negative electrode current collector include copper, nickel, and stainless steel. Among these, copper is preferable as the current collector for the negative electrode. In addition, these may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and ratios.
The negative electrode current collector is also preferably subjected to a roughening treatment in advance, as with the positive electrode current collector.

さらに、正極同様、集電体の形状も任意であり、エキスパンドメタルやパンチングメタルのような穴あきタイプの集電体を使用することもできる。また、集電体として薄膜を使用する場合の好ましい厚さも、正極の場合と同様である。   Further, like the positive electrode, the shape of the current collector is also arbitrary, and a perforated current collector such as expanded metal or punching metal can also be used. Moreover, the preferable thickness when using a thin film as a current collector is the same as that of the positive electrode.

[4−2−2.負極活物質層]
負極活物質層は、負極活物質を含有して構成された層である。
負極活物質としては、リチウムイオンの吸蔵・放出が可能な材料であれば他に制限は無く、公知の負極活物質を任意に用いることができる。ただし、通常は、負極活物質として炭素材料を用いることが好ましい。炭素材料の例としては、天然黒鉛、熱分解炭素等が挙げられる。なお、負極活物質は1種を単独で用いてもよく、2種以上を任意の組み合わせおよび比率で併用しても良い。
負極活物質層は、通常は正極活物質層の場合と同様に、上述の負極活物質と、バインダーと、必要に応じて各種の助剤等とを含有する。バインダーや助剤の具体例としては、正極活物質層と同様のものが挙げられる。また、その製造方法も、正極活物質層と同様である。
[4-2-2. Negative electrode active material layer]
The negative electrode active material layer is a layer configured to contain a negative electrode active material.
The negative electrode active material is not particularly limited as long as it is a material capable of inserting and extracting lithium ions, and a known negative electrode active material can be arbitrarily used. However, it is usually preferable to use a carbon material as the negative electrode active material. Examples of the carbon material include natural graphite and pyrolytic carbon. In addition, a negative electrode active material may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.
The negative electrode active material layer usually contains the above-described negative electrode active material, a binder, and various auxiliary agents as necessary, as in the case of the positive electrode active material layer. Specific examples of the binder and auxiliary agent are the same as those for the positive electrode active material layer. Moreover, the manufacturing method is the same as that of the positive electrode active material layer.

[4−3.電解液]
電解質としては、リチウム塩を含む電解質であれば他に制限は無く、公知の電解質を任意に用いることができる。例えば、電解液、固体電解質、ゲル状電解質などが挙げられるが、中でも電解液が好ましく、特に非水電解液がより好ましい。
[4-3. Electrolyte]
The electrolyte is not particularly limited as long as it is an electrolyte containing a lithium salt, and a known electrolyte can be arbitrarily used. For example, an electrolytic solution, a solid electrolyte, a gel electrolyte, and the like can be mentioned, among which an electrolytic solution is preferable, and a nonaqueous electrolytic solution is more preferable.

非水電解液としては、各種の電解塩を非水系溶媒に溶解したものが挙げられる。電解塩としては、例えば、LiCiO、LiAsF、LiPF、LiBF、LiBr、LiCFSO等のリチウム塩などが挙げられる。また、非水系溶媒としては、テトラヒドロフラン、1,4−ジオキサン、ジメチルホルムアミド、アセトニトリル、ベンゾニトリル、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられる。なお、これらの電解塩や非水系溶媒はそれぞれ1種を単独で用いても良いし、2種以上を任意の組み合わせおよび比率で併用しても良い。 Examples of the nonaqueous electrolytic solution include those obtained by dissolving various electrolytic salts in a nonaqueous solvent. Examples of the electrolytic salt include lithium salts such as LiCiO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiBr, and LiCF 3 SO 3 . Examples of the non-aqueous solvent include tetrahydrofuran, 1,4-dioxane, dimethylformamide, acetonitrile, benzonitrile, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, ethylene carbonate, propylene carbonate, butylene carbonate, and the like. In addition, each of these electrolytic salts and non-aqueous solvents may be used alone or in combination of two or more in any combination and ratio.

[4−4.セパレータ]
正極と負極との間には、短絡を防止するために、通常はセパレータを介在させる。セパレータの材質や形状は特に制限されず本発明の効果を著しく損なわない限り任意のものを用いることができるが、上述の非水系電解液に対して安定で、保液性に優れ、且つ、電極同士の短絡を確実に防止できるものが好ましい。
セパレータとしては、例えば、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリエステル等の高分子からなる微多孔性高分子フィルム、ガラス繊維等の不繊布フィルター、ガラス繊維と高分子繊維との複合不繊布フィルターなどを挙げることができる。
[4-4. Separator]
Usually, a separator is interposed between the positive electrode and the negative electrode in order to prevent a short circuit. The material and shape of the separator are not particularly limited, and any separator can be used as long as the effects of the present invention are not significantly impaired. However, the separator is stable with respect to the above non-aqueous electrolyte, has excellent liquid retention, and has an electrode. Those that can reliably prevent short-circuiting between them are preferable.
Examples of the separator include a microporous polymer film made of a polymer such as polytetrafluoroethylene, polyethylene, polypropylene, and polyester, a non-woven filter such as glass fiber, and a composite non-woven filter made of glass fiber and polymer fiber. Can be mentioned.

以下、本発明を実施例により更に詳細に説明するが、本発明は以下の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変形して実施することができる。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a following example, In the range which does not deviate from the summary of this invention, it can change arbitrarily and can implement.

実施例1
LiCO、Ni(OH)、Mn、CoOOHをLi:Ni:Mn:Co=1.05:0.33:0.33:0.33(モル比)となるように混合し、これに純水を加え、固形分濃度18重量%のスラリーを調製した。循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分の平均粒子径が0.3μmになるまで粉砕した後、二流体ノズル型スプレードライヤーを用いて噴霧乾燥を行い、メジアン径約6μmの粒子状のリチウム遷移金属複合酸化物前駆体を得た。スラリー中の固形分の平均粒子径は、レーザー回折/散乱式粒度分布測定装置によって、屈折率として1.24を設定し、粒子径基準を体積基準として測定され、測定の際に用いる分散媒として、0.1重量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散(出力30W、周波数22.5kHz)後に測定を行った。
Example 1
Li 2 CO 3 , Ni (OH) 2 , Mn 3 O 4 , CoOOH are mixed so that Li: Ni: Mn: Co = 1.05: 0.33: 0.33: 0.33 (molar ratio) Then, pure water was added thereto to prepare a slurry having a solid concentration of 18% by weight. After pulverization using a circulating medium agitation type wet pulverizer until the average particle size of the solid content in the slurry becomes 0.3 μm, spray drying is performed using a two-fluid nozzle type spray dryer, and the median diameter is about 6 μm. A particulate lithium transition metal composite oxide precursor was obtained. The average particle size of the solid content in the slurry is measured with a laser diffraction / scattering particle size distribution measuring device with a refractive index of 1.24, the particle size reference is measured as a volume reference, and the dispersion medium used in the measurement Then, 0.1 wt% sodium hexametaphosphate aqueous solution was used, and measurement was performed after ultrasonic dispersion (output 30 W, frequency 22.5 kHz) for 5 minutes.

上述のようにして得られた粉体約10gを直径約5cmのアルミナ製るつぼに仕込み、空気や窒素を流通させながら焼成することのできる雰囲気焼成炉に入れて1L/minの流量の空気を流通させながら、昇温速度3.3℃/分で最高温度1000℃まで昇温させ、1000℃で6時間保持した後、降温速度3.3℃/分で降温させて、ほぼ仕込みのモル比組成のリチウム遷移金属複合酸化物を得た。
このリチウム遷移金属複合酸化物は、CuKα線を使用した粉末X線回折パターンにより層状構造の単相であることが確認された。なお、粉末X線回折パターンは以下の装置・条件により行った。
About 10 g of the powder obtained as described above is placed in an alumina crucible having a diameter of about 5 cm, and placed in an atmosphere firing furnace that can be fired while circulating air and nitrogen, and air at a flow rate of 1 L / min is circulated. The temperature was increased to a maximum temperature of 1000 ° C. at a rate of temperature increase of 3.3 ° C./min, held at 1000 ° C. for 6 hours, and then decreased at a rate of temperature decrease of 3.3 ° C./min. Lithium transition metal composite oxide was obtained.
This lithium transition metal composite oxide was confirmed to be a single phase having a layered structure by a powder X-ray diffraction pattern using CuKα rays. In addition, the powder X-ray diffraction pattern was performed with the following apparatus and conditions.

〔粉末X線回折測定装置〕 PANalytical PW1700
〔測定条件〕X線出力:40kV、30mA、走査軸:θ/2θ
走査範囲(2θ):10.0−90.0°
測定モード:Continuous
読込幅:0.05°、走査速度:3.0°/min.
スリット:DS 1°、SS 1°、RS 0.2mm
また、メジアン径は6.1μmであった。メジアン径は、レーザー回折/散乱式粒度分布測定装置によって、複素屈折率として実数部1.60、虚数部0.10を設定し、分散媒として、0.1重量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散(出力30W、周波数22.5kHz)後に測定を行った。
[Powder X-ray diffraction measurement device] PANalytical PW1700
[Measurement conditions] X-ray output: 40 kV, 30 mA, scanning axis: θ / 2θ
Scanning range (2θ): 10.0-90.0 °
Measurement mode: Continuous
Reading width: 0.05 °, scanning speed: 3.0 ° / min.
Slit: DS 1 °, SS 1 °, RS 0.2mm
The median diameter was 6.1 μm. The median diameter is determined by a laser diffraction / scattering type particle size distribution measuring device, a real part 1.60 and an imaginary part 0.10 are set as a complex refractive index, and a 0.1% by weight sodium hexametaphosphate aqueous solution is used as a dispersion medium. The measurement was performed after 5 minutes of ultrasonic dispersion (output 30 W, frequency 22.5 kHz).

得られたリチウム遷移金属複合酸化物約5gを10mlのガラス製メスシリンダーに入れ、200回タップした後の粉体充填密度(タップ密度)を測定した結果、1.3g/cmであった。
また、この複合酸化物のBET比表面積を大倉理研製「AMS8000型全自動粉体比表面積測定装置」を用いて測定した結果、1.4m2/gであった。
About 5 g of the obtained lithium transition metal composite oxide was put in a 10 ml glass graduated cylinder, and the powder packing density (tap density) after tapping 200 times was measured. As a result, it was 1.3 g / cm 3 .
The BET specific surface area of this composite oxide was 1.4 m 2 / g as a result of measurement using “AMS8000 type fully automatic powder specific surface area measuring device” manufactured by Okura Riken.

リチウムとニッケルの発光電圧の測定は、以下のようにして行った。試料数mgをガラス板に散布後、低流量サンプラーで吸引しあらかじめホルダーに装着したメンブランフィルター(0.4μm孔径)上に捕集した。捕集された試料をパーティクルアナライザー(堀場製作所製DP−1000)で分析した。プラズマガスには0.1%O含有Heガスを使用し、ガス流量は260mL/min.とした。また、各々の元素の発光の検出波長、およびゲインは、以下の通りとした。 The measurement of the light emission voltage of lithium and nickel was performed as follows. A sample of several mg was sprayed on a glass plate, and then sucked with a low-flow sampler and collected on a membrane filter (0.4 μm pore diameter) previously attached to a holder. The collected sample was analyzed with a particle analyzer (DP-1000 manufactured by Horiba, Ltd.). As the plasma gas, He gas containing 0.1% O 2 was used, and the gas flow rate was 260 mL / min. It was. The detection wavelength and gain of light emission of each element were as follows.

Mn:257.610nm(Ch1) Gain=0.85
Co:238.892nm(Ch2) Gain=1.0
Ni:341.480nm(Ch3) Gain=1.0
Li:670.784nm(Ch4) Gain=0.8
また、得られたリチウムとニッケルの発光電圧の三乗根について、少なくとも一方の数
値が0のものと、少なくとも一方の数値が測定装置の上限電圧を超えるものについては、数式(1)における計算から除外した。
Mn: 257.610 nm (Ch1) Gain = 0.85
Co: 238.892 nm (Ch2) Gain = 1.0
Ni: 341.480 nm (Ch3) Gain = 1.0
Li: 670.784 nm (Ch4) Gain = 0.8
Moreover, about the cube root of the light emission voltage of lithium and nickel obtained, at least one of the numerical values is 0 and the case where at least one of the numerical values exceeds the upper limit voltage of the measuring apparatus, from the calculation in Equation (1) Excluded.

比較例1
Ni(OH)、Mn、CoOOHをNi:Mn:Co=0.33:0.33:0.33(モル比)となるように混合し、これに純水を加え、固形分濃度18重量%のスラリーを調製した。循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分の平均粒子径が0.3μmになるまで粉砕した後、二流体ノズル型スプレードライヤーを用いて噴霧乾燥を行い、メジアン径約6μmの粒子状のリチウム遷移金属複合酸化物前駆体を得た。
Comparative Example 1
Ni (OH) 2 , Mn 3 O 4 , and CoOOH are mixed so as to be Ni: Mn: Co = 0.33: 0.33: 0.33 (molar ratio), and pure water is added thereto to obtain a solid content. A slurry having a concentration of 18% by weight was prepared. After pulverization using a circulating medium agitation type wet pulverizer until the average particle size of the solid content in the slurry becomes 0.3 μm, spray drying is performed using a two-fluid nozzle type spray dryer, and the median diameter is about 6 μm. A particulate lithium transition metal composite oxide precursor was obtained.

上述のようにして得られた粉体に対し、Li:(Ni+Mn+Co)=1.05:1となるように粉末状のLiCOを混合し、その混合粉体約10gを直径約5cmのアルミナ製るつぼに仕込み、空気や窒素を流通させながら焼成することのできる雰囲気焼成炉に入れて1L/minの流量の空気を流通させながら、昇温速度3.3℃/分で最高温度1000℃まで昇温させ、1000℃で6時間保持した後、降温速度3.3℃/分で降温させて、ほぼ仕込みのモル比組成のリチウム遷移金属複合酸化物を得た。メジアン径は5.0μm、タップ密度は1.7g/cm、比表面積は0.9m/gであった。
リチウムとニッケルの発光電圧の測定は、実施例1と同様にして行った。
The powder obtained as described above was mixed with powdered Li 2 CO 3 so that Li: (Ni + Mn + Co) = 1.05: 1, and about 10 g of the mixed powder was about 5 cm in diameter. A maximum temperature of 1000 ° C. at a temperature rising rate of 3.3 ° C./minute while charging air in an atmosphere crucible that can be fired while circulating air and nitrogen in an alumina crucible and flowing air at a flow rate of 1 L / min. The mixture was held at 1000 ° C. for 6 hours and then cooled at a rate of temperature decrease of 3.3 ° C./min to obtain a lithium transition metal composite oxide having a substantially charged molar ratio composition. The median diameter was 5.0 μm, the tap density was 1.7 g / cm 3 , and the specific surface area was 0.9 m 2 / g.
The measurement of the emission voltage of lithium and nickel was performed in the same manner as in Example 1.

比較例2
LiCOの代わりにLiOHを用いた以外は、実施例1と同様にしてリチウム遷移金属複合酸化物を得た。メジアン径は5.6μm、タップ密度は1.2g/cm、比表面積は1.4m/gであった。
リチウムとニッケルの発光電圧の測定は、実施例1と同様にして行った。
Comparative Example 2
A lithium transition metal composite oxide was obtained in the same manner as in Example 1 except that LiOH was used instead of Li 2 CO 3 . The median diameter was 5.6 μm, the tap density was 1.2 g / cm 3 , and the specific surface area was 1.4 m 2 / g.
The measurement of the emission voltage of lithium and nickel was performed in the same manner as in Example 1.

比較例3
LiCOの代わりにLiOHを用いた以外は、比較例1と同様にしてリチウム遷移金属複合酸化物を得た。メジアン径は5.5μm、タップ密度は1.6g/cm、比表面積は0.9m/gであった。
リチウムとニッケルの発光電圧の測定は、実施例1と同様にして行った。
Comparative Example 3
A lithium transition metal composite oxide was obtained in the same manner as in Comparative Example 1 except that LiOH was used instead of Li 2 CO 3 . The median diameter was 5.5 μm, the tap density was 1.6 g / cm 3 , and the specific surface area was 0.9 m 2 / g.
The measurement of the emission voltage of lithium and nickel was performed in the same manner as in Example 1.

比較例4
循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分の平均粒子径が0.5μmになるまで粉砕した以外は、実施例1と同様にしてリチウム遷移金属複合酸化物を得た。メジアン径は6.5μm、タップ密度は1.4g/cm、比表面積は1.0m/gであった。
リチウムとニッケルの発光電圧の測定は、実施例1と同様にして行った。
Comparative Example 4
A lithium transition metal composite oxide was obtained in the same manner as in Example 1 except that the mixture was pulverized using a circulating medium agitation type wet pulverizer until the average particle size of the solid content in the slurry became 0.5 μm. The median diameter was 6.5 μm, the tap density was 1.4 g / cm 3 , and the specific surface area was 1.0 m 2 / g.
The measurement of the emission voltage of lithium and nickel was performed in the same manner as in Example 1.

比較例5
循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分の平均粒子径が0.7μmになるまで粉砕した以外は、実施例1と同様にしてリチウム遷移金属複合酸化物を得た。メジアン径は6.6μm、タップ密度は1.4g/cm、比表面積は1.1m/gであった。
リチウムとニッケルの発光電圧の測定は、実施例1と同様にして行った。
Comparative Example 5
A lithium transition metal composite oxide was obtained in the same manner as in Example 1 except that the mixture was pulverized using a circulating medium agitation type wet pulverizer until the average particle size of the solid content in the slurry became 0.7 μm. The median diameter was 6.6 μm, the tap density was 1.4 g / cm 3 , and the specific surface area was 1.1 m 2 / g.
The measurement of the emission voltage of lithium and nickel was performed in the same manner as in Example 1.

比較例6
循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分の平均粒子径が0.9μmになるまで粉砕した以外は、実施例1と同様にしてリチウム遷移金属複合酸化物を得た。メジアン径は6.5μm、タップ密度は1.5g/cm、比表面積は0.9m/gで
あった。
リチウムとニッケルの発光電圧の測定は、実施例1と同様にして行った。
Comparative Example 6
A lithium transition metal composite oxide was obtained in the same manner as in Example 1 except that the mixture was pulverized using a circulating medium agitation type wet pulverizer until the average particle size of the solid content in the slurry became 0.9 μm. The median diameter was 6.5 μm, the tap density was 1.5 g / cm 3 , and the specific surface area was 0.9 m 2 / g.
The measurement of the emission voltage of lithium and nickel was performed in the same manner as in Example 1.

<電池評価試験例>
上記で得られたリチウム遷移金属複合酸化物を用いてリチウム二次電池を作製し、以下の容量で評価を行った。
A.正極の作製と容量確認およびレート試験
実施例1および比較例1〜6で得られたリチウム遷移金属複合酸化物を75重量%、アセチレンブラック20重量%、ポリテトラフルオロエチレンパウダー5重量%の割合で秤量したものを乳鉢で十分混合し、薄くシート状にしたものを9mmφ、12mmφのポンチを用いて打ち抜いた。この際、全体重量は各々約8mg、約18mgになるように調整した。これをAlのエキスパンドメタルに圧着して正極とした。
<Example of battery evaluation test>
A lithium secondary battery was produced using the lithium transition metal composite oxide obtained above and evaluated with the following capacity.
A. Production of positive electrode, capacity confirmation and rate test The lithium transition metal composite oxide obtained in Example 1 and Comparative Examples 1 to 6 was 75% by weight, acetylene black 20% by weight, and polytetrafluoroethylene powder 5% by weight. The weighed ones were thoroughly mixed in a mortar, and the ones made into thin sheets were punched out using 9 mmφ and 12 mmφ punches. At this time, the total weight was adjusted to about 8 mg and about 18 mg, respectively. This was crimped to Al expanded metal to obtain a positive electrode.

9mmφに打ち抜いた前記正極を試験極とし、Li金属を対極としてコインセルを組んだ。これに、0.2mA/cmの定電流充電、即ち正極からリチウムイオンを放出させる反応を上限4.2Vで行い、ついで0.2mA/cmの定電流放電、即ち正極にリチウムイオンを吸蔵させる反応を下限3.0Vで行った際の正極活物質単位重量当たりの初期充電容量をQs(C)[mAh/g]、初期放電容量をQs(D)[mAh/g]、ついで電流値を上げていき、11mA/cmの定電流放電容量をQs11(D)[mAh/g]とし、その数値を比較した。 The positive electrode punched out to 9 mmφ was used as a test electrode, and a coin cell was assembled using Li metal as a counter electrode. This is followed by a constant current charge of 0.2 mA / cm 2 , that is, a reaction for releasing lithium ions from the positive electrode at an upper limit of 4.2 V, and then a constant current discharge of 0.2 mA / cm 2 , that is, occlusion of lithium ions in the positive electrode. The initial charge capacity per unit weight of the positive electrode active material when the reaction is performed at the lower limit of 3.0 V is Qs (C) [mAh / g], the initial discharge capacity is Qs (D) [mAh / g], and then the current value The constant current discharge capacity of 11 mA / cm 2 was set to Qs 11 (D) [mAh / g], and the numerical values were compared.

B.負極の作製と容量確認
負極活物質としての平均粒径約8〜10μmの黒鉛粉末(d002=3.35Å)と、バインダーとしてのポリフッ化ビニリデンとを重量比で92.5:7.5の割合で秤量し、これをN−メチルピロリドン溶液中で混合し、負極合剤スラリーとした。このスラリーを20μmの厚さの銅箔の片面に塗布し、乾燥して溶媒を蒸発させた後、12mmφに打ち抜き、0.5ton/cmでプレス処理をしたものを負極とした。
B. Production of negative electrode and capacity confirmation Graphite powder (d002 = 3.35Å) having an average particle diameter of about 8 to 10 μm as a negative electrode active material and polyvinylidene fluoride as a binder in a ratio of 92.5: 7.5 by weight And weighed the mixture in an N-methylpyrrolidone solution to obtain a negative electrode mixture slurry. The slurry was applied to one side of a 20 μm thick copper foil, dried to evaporate the solvent, punched to 12 mmφ, and pressed at 0.5 ton / cm 2 to form a negative electrode.

なお、この負極を試験極とし、Li金属を対極として電池セルを組み、0.5mA/cm2の定電流で負極にLiイオンを吸蔵させる試験を下限0Vで行った際の負極活物質単
位重量当たりの初期吸蔵容量をQf[mAh/g]とした。
C.コインセルの組立
コイン型セルを使用して、電池性能を評価した。即ち、正極缶の上に正極を置き、その上にセパレータとして厚さ25μmの多孔性ポリエチレンフィルムを置き、ポリプロピレン製ガスケットで押さえた後、負極を置き、厚み調整用のスペーサーを置いた後、非水電解液溶液として、1mol/Lの六フッ化リン酸リチウム(LiPF6)を溶解させたエ
チレンカーボネート(EC)とジエチルカーボネート(DEC)の体積分率3:7の混合溶媒を電解液として用い、これを電池内に加えて十分しみ込ませた後、負極缶をのせ電池を封口した。なおこの時、正極活物質の重量と負極活物質重量のバランスは、ほぼ、
In addition, the negative electrode active material unit weight when the negative electrode was used as a test electrode, a battery cell was assembled using Li metal as a counter electrode, and a test for occluding Li ions in the negative electrode at a constant current of 0.5 mA / cm 2 was performed at a lower limit of 0 V. The initial storage capacity per unit was Qf [mAh / g].
C. Assembling the coin cell The battery performance was evaluated using a coin-type cell. That is, a positive electrode is placed on a positive electrode can, a porous polyethylene film having a thickness of 25 μm is placed thereon as a separator, pressed with a polypropylene gasket, a negative electrode is placed, and a spacer for adjusting the thickness is placed. As a water electrolyte solution, a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 3: 7 in which 1 mol / L lithium hexafluorophosphate (LiPF 6 ) was dissolved was used as the electrolyte solution. This was added to the battery and sufficiently impregnated, and then the negative electrode can was placed to seal the battery. At this time, the balance between the weight of the positive electrode active material and the weight of the negative electrode active material is approximately

(数6)
正極活物質重量[g]/負極活物質重量[g]=(Qf[mAh/g]/1.2)/Qs(C)[mAh/g]
となるように設定した。
(Equation 6)
Positive electrode active material weight [g] / Negative electrode active material weight [g] = (Qf [mAh / g] /1.2) / Qs (C) [mAh / g]
It set so that it might become.

D.室温抵抗測定
得られたコインセルについて、下記数式3で表されるコンディショニング電流値I [mA]={Qs(D)[mAh/g]}×正極活物質重量M[g]/5で充電上限電圧4.1V
、放電下限電圧3.0Vとして、充放電2サイクルの初期コンディショニングを行い、その際の2サイクル目における正極活物質単位重量当たりの放電容量Qs(D)[mAh
/g]を測定した。
D. Room temperature resistance measurement For the obtained coin cell, the conditioning current value I [mA] = {Qs (D) [mAh / g]} represented by the following formula 3 × charge active material weight M [g] / 5 4.1V
In addition, initial conditioning of 2 cycles of charge and discharge is performed with a discharge lower limit voltage of 3.0 V, and the discharge capacity Qs 2 (D) [mAh per unit weight of positive electrode active material in the second cycle at that time
/ G] was measured.

引き続いて、−30℃の低温雰囲気下で電池を十分緩和した後、1時間率電流値、1C[mA]=Qs(D)[mAh/g]×正極活物質重量M[g]として、定電流1/3C[m
A]で充電深度40%に調整し、次いで定電流0.25Cで10秒間放電を行った。この
ときの放電10秒後の電圧をV[mV]とし、放電前の電圧をV[mV]として、その差ΔV[mV]=V[mV]−V[mV]を算出し、放電電流0.25C[mA]を用いて抵抗R[
Ω]=ΔV[mV]/0.25C[mA]として算出した。この抵抗R[Ω]が小さい程、低温
における出力特性に優れ、急速放電に有利である等の効果が得られる。
Subsequently, after sufficiently relaxing the battery in a low temperature atmosphere of −30 ° C., 1 hour rate current value, 1 C [mA] = Qs 2 (D) [mAh / g] × positive electrode active material weight M [g] Constant current 1 / 3C [m
A] was adjusted to a charging depth of 40%, and then discharging was performed at a constant current of 0.25 C for 10 seconds. At this time, the voltage after 10 seconds of discharge is V [mV], the voltage before discharge is V 0 [mV], and the difference ΔV [mV] = V [mV] −V 0 [mV] is calculated. Resistance R [using current 0.25 C [mA]
Ω] = ΔV [mV] /0.25 C [mA]. The smaller the resistance R [Ω], the better the output characteristics at a low temperature and the more advantageous for rapid discharge.

表−1に、前記実施例1および比較例1〜6で得られたリチウム遷移金属複合酸化物の対極Liの0.2mA/cm充放電容量、11mA/cm放電容量、低温抵抗値、σ並びに3σから外れる粒子頻度をそれぞれ示す。
表−1より、実施例で得られたリチウム遷移金属複合酸化物は比較例1〜6で得られたものに対して、粒子毎の組成のばらつきが少なく、殆どの粒子が効率的に充放電に関われるため、放電容量が高く、抵抗値が低い、電池性能に優れているものであることが分かる。即ち、リチウム原料としては水に難溶であるものを用い、循環式媒体攪拌型湿式粉砕機を用いて原料を湿式粉砕する工程の前にリチウム原料を投入し、スラリー中の固形分の平均粒子径が0.4μm以下になるまで粉砕することが、電池特性に優れたリチウム遷移金属複合酸化物を得るために重要な点であり、従来成し得なかった技術である。
In Table 1, 0.2 mA / cm 2 charge / discharge capacity, 11 mA / cm 2 discharge capacity, low temperature resistance value of the counter electrode Li of the lithium transition metal composite oxide obtained in Example 1 and Comparative Examples 1 to 6, The particle frequencies deviating from σ d andd are shown respectively.
From Table 1, the lithium transition metal composite oxides obtained in the examples have little variation in the composition of each particle compared to those obtained in Comparative Examples 1 to 6, and most of the particles are efficiently charged and discharged. Therefore, it can be seen that the battery capacity is high, the resistance value is low, and the battery performance is excellent. That is, a lithium raw material that is sparingly soluble in water is used, and the lithium raw material is charged before the step of wet pulverizing the raw material using a circulating medium agitation type wet pulverizer. Grinding until the diameter becomes 0.4 μm or less is an important point for obtaining a lithium transition metal composite oxide having excellent battery characteristics, which is a technique that could not be achieved conventionally.

表−2に、実施例1および比較例3で得られたリチウム遷移金属複合酸化物のメインピークトップおよびサブピークトップ、(018)ピークおよび(110)ピークの半価幅を示す。これによると、比較例で得られたリチウム遷移金属複合酸化物はサブピークトップが0.3μm以下の小さい細孔径領域にあり、かつ量も少ないことから、低温出力特性に不利なモルフォロジーであることが示唆される。また、実施例のリチウム遷移金属複合酸化物は、(018)ピークおよび(110)ピークの半価幅が小さく、結晶性に優れ、比較例に対して電池特性の優れたものであることが分かる。   Table 2 shows the half-value widths of the main peak top and sub-peak top, (018) peak, and (110) peak of the lithium transition metal composite oxide obtained in Example 1 and Comparative Example 3. According to this, the lithium transition metal composite oxide obtained in the comparative example has a sub-peak top in a small pore diameter region of 0.3 μm or less and a small amount, and therefore has a disadvantageous morphology for low temperature output characteristics. It is suggested. In addition, it can be seen that the lithium transition metal composite oxides of the examples have small half-value widths of the (018) peak and the (110) peak, excellent crystallinity, and excellent battery characteristics compared to the comparative example. .

Figure 0005135842
Figure 0005135842

Figure 0005135842
Figure 0005135842

Claims (14)

一次粒子および/またはそれらが凝集してなる二次粒子から構成されるリチウムとニッケルを含む遷移金属複合酸化物において、該粒子に含有されるリチウムに起因する発光電圧の三乗根と、ニッケルに起因する発光電圧の三乗根をプロットしたとき、下記数式(1)で算出される各粒子の近似直線に対する標準偏差σにおいて、σが0.43以下であり、かつ、3σから外れる粒子頻度が0.4%以下であることを特徴とする、リチウム遷移金属複合酸化物。
Figure 0005135842
(近似直線はΣdが最小になるように求めた)
In a transition metal composite oxide containing lithium and nickel composed of primary particles and / or secondary particles formed by agglomerating them, the root of the emission voltage caused by lithium contained in the particles, and nickel When plotting the cube root of the light emission voltage caused, σ d is 0.43 or less and deviates from 3σ d in the standard deviation σ d with respect to the approximate straight line of each particle calculated by the following formula (1). A lithium transition metal composite oxide characterized by having a particle frequency of 0.4% or less.
Figure 0005135842
(Approximate line was calculated so that Σd 2 was minimized)
下記一般式(2)で表される、請求項1に記載のリチウム遷移金属複合酸化物。
(化1)
LiNiαMnβCoγδ (2)(式中、QはAl、Fe、Ga、Sn、V、Cr、Cu、Zn、Mg、Ti、Ge、B、Bi、Nb、Ta、ZrおよびCaから選ばれる少なくとも一種の元素を表す。0.2≦α≦0.6、0.2≦β≦0.6、0≦γ≦0.5、0≦δ≦0.1、0.8≦α+β+γ+δ≦1.2、0<x≦1.2の関係を満たす数を示す。)
The lithium transition metal composite oxide according to claim 1, which is represented by the following general formula (2).
(Chemical formula 1)
Li x Ni α Mn β Co γ Q δ O 2 (2) (where Q is Al, Fe, Ga, Sn, V, Cr, Cu, Zn, Mg, Ti, Ge, B, Bi, Nb, Ta) Represents at least one element selected from Zr and Ca, 0.2 ≦ α ≦ 0.6, 0.2 ≦ β ≦ 0.6, 0 ≦ γ ≦ 0.5, 0 ≦ δ ≦ 0.1, (A number satisfying the relationship of 0.8 ≦ α + β + γ + δ ≦ 1.2 and 0 <x ≦ 1.2 is shown.)
比表面積が0.1m/g以上8m/g以下である、請求項1または2に記載のリチウム遷移金属複合酸化物。 3. The lithium transition metal composite oxide according to claim 1, wherein the specific surface area is 0.1 m 2 / g or more and 8 m 2 / g or less. タップ密度が0.8g/cm以上3.0g/cm以下である、請求項1から3のいずれかに記載のリチウム遷移金属複合酸化物。 4. The lithium transition metal composite oxide according to claim 1, wherein the tap density is 0.8 g / cm 3 or more and 3.0 g / cm 3 or less. リチウム遷移金属複合酸化物を構成する粒子のメジアン径が1μm以上20μm以下である、請求項1から4のいずれかに記載のリチウム遷移金属複合酸化物。   The lithium transition metal composite oxide according to any one of claims 1 to 4, wherein the median diameter of particles constituting the lithium transition metal composite oxide is 1 µm or more and 20 µm or less. 水銀圧入法により求められる二次粒子の細孔分布曲線において、細孔半径1μmより大きい範囲にメインピークトップを有し、かつ、細孔半径0.3μm以上1μm以下にサブピークトップを有することを特徴とする、請求項1から5のいずれかに記載のリチウム遷移金属複合酸化物。   The pore distribution curve of secondary particles obtained by the mercury intrusion method has a main peak top in a range larger than a pore radius of 1 μm and a sub-peak top in a pore radius of 0.3 μm to 1 μm. The lithium transition metal composite oxide according to any one of claims 1 to 5. CuKα線を使用した粉末X線回折測定において、回折角2θが64°付近に存在する(018)ピークおよび65°付近に存在する(110)ピークの半価幅が、それぞれ0.2以下であることを特徴とする、請求項1から6のいずれかに記載のリチウム遷移金属複合酸化物。   In the powder X-ray diffraction measurement using CuKα rays, the half-value widths of the (018) peak having a diffraction angle 2θ around 64 ° and the (110) peak around 65 ° are each 0.2 or less. The lithium transition metal composite oxide according to any one of claims 1 to 6, wherein 一次粒子および/またはそれらが凝集してなる二次粒子から構成されるリチウムとニッケルを含む遷移金属複合酸化物において、水銀圧入法により求められる該二次粒子の細孔分布曲線において、細孔半径1μmより大きい範囲にメインピークトップを有し、かつ、細孔半径0.3μm以上1μm以下にサブピークトップを有することを特徴とする、下記一般式(2)で表されるリチウム遷移金属複合酸化物。
(化2)
LiNiαMnβCoγδ (2)
(式中、QはAl、Fe、Ga、Sn、V、Cr、Cu、Zn、Mg、Ti、Ge、B、Bi、Nb、Ta、ZrおよびCaから選ばれる少なくとも一種の元素を表す。0.2≦α≦0.6、0.2≦β≦0.6、0≦γ≦0.5、0≦δ≦0.1、0.8≦α+β+γ+δ≦1.2、0<x≦1.2の関係を満たす数を示す。)
In the transition metal composite oxide containing lithium and nickel composed of primary particles and / or secondary particles obtained by agglomerating them, in the pore distribution curve of the secondary particles obtained by the mercury intrusion method, the pore radius Lithium transition metal composite oxide represented by the following general formula (2), having a main peak top in a range larger than 1 μm and a sub-peak top in a pore radius of 0.3 μm to 1 μm .
(Chemical formula 2)
Li x Ni α Mn β Co γ Q δ O 2 (2)
(In the formula, Q represents at least one element selected from Al, Fe, Ga, Sn, V, Cr, Cu, Zn, Mg, Ti, Ge, B, Bi, Nb, Ta, Zr and Ca. 0 0.2 ≦ α ≦ 0.6, 0.2 ≦ β ≦ 0.6, 0 ≦ γ ≦ 0.5, 0 ≦ δ ≦ 0.1, 0.8 ≦ α + β + γ + δ ≦ 1.2, 0 <x ≦ 1 .2 indicates the number satisfying the relationship of 2.
CuKα線を使用した粉末X線回折測定において、回折角2θが64°付近に存在する(018)ピークおよび65°付近の存在する(110)ピークの半価幅が、それぞれ0.2以下であることを特徴とする、請求項8に記載のリチウム遷移金属複合酸化物。   In powder X-ray diffraction measurement using CuKα rays, the half-value widths of the (018) peak having a diffraction angle 2θ of around 64 ° and the (110) peak of around 65 ° are each 0.2 or less. The lithium transition metal composite oxide according to claim 8, wherein: 請求項1から9のいずれかに記載のリチウム遷移金属複合酸化物を含有する、リチウム二次電池用正極。   A positive electrode for a lithium secondary battery, comprising the lithium transition metal composite oxide according to claim 1. 請求項10に記載のリチウム二次電池用正極、負極および電解質からなることを特徴とするリチウム二次電池。   A lithium secondary battery comprising the positive electrode for a lithium secondary battery according to claim 10, a negative electrode, and an electrolyte. 原料化合物を液体媒体中で湿式粉砕混合し、次いで噴霧乾燥、焼成することを特徴とするリチウム遷移金属複合酸化物の製造方法であって、リチウム遷移金属複合酸化物が、一次粒子および/またはそれらが凝集してなる二次粒子から構成されるリチウムとニッケルを含む遷移金属複合酸化物において、該粒子に含有されるリチウムに起因する発光電圧の三乗根と、ニッケルに起因する発光電圧の三乗根をプロットしたとき、下記数式(1)で算出される各粒子の近似直線に対する標準偏差σにおいて、σが0.43以下であり、かつ、3σから外れる粒子頻度が0.4%以下であることを特徴とする、リチウム遷移金属複合酸化物の製造方法。
Figure 0005135842
(近似直線はΣdが最小になるように求めた)
A method for producing a lithium transition metal composite oxide comprising wet pulverizing and mixing raw material compounds in a liquid medium, followed by spray drying and firing, wherein the lithium transition metal composite oxide comprises primary particles and / or In a transition metal composite oxide containing lithium and nickel composed of secondary particles formed by agglomerating particles, the third root of the emission voltage caused by lithium contained in the particles and the emission voltage caused by nickel When plotting the roots, σ d is 0.43 or less and the frequency of particles deviating from 3σ d is 0.4 in the standard deviation σ d with respect to the approximate straight line of each particle calculated by the following formula (1). % Or less, The manufacturing method of lithium transition metal complex oxide characterized by the above-mentioned.
Figure 0005135842
(Approximate line was calculated so that Σd 2 was minimized)
リチウム遷移金属複合酸化物が、下記一般式(2)で表される、請求項12記載のリチウム遷移金属複合酸化物の製造方法。
(化3)
LiNiαMnβCoγδ (2)(式中、QはAl、Fe、Ga、Sn、V、Cr、Cu、Zn、Mg、Ti、Ge、B、Bi、Nb、Ta、ZrおよびCaから選ばれる少なくとも一種の元素を表す。0.2≦α≦0.6、0.2≦β≦0.6、0≦γ≦0.5、0≦δ≦0.1、0.8≦α+β+γ+δ≦1.2、0<x≦1.2の関係を満たす数を示す。)
The method for producing a lithium transition metal composite oxide according to claim 12, wherein the lithium transition metal composite oxide is represented by the following general formula (2).
(Chemical formula 3)
Li x Ni α Mn β Co γ Q δ O 2 (2) (where Q is Al, Fe, Ga, Sn, V, Cr, Cu, Zn, Mg, Ti, Ge, B, Bi, Nb, Ta) Represents at least one element selected from Zr and Ca, 0.2 ≦ α ≦ 0.6, 0.2 ≦ β ≦ 0.6, 0 ≦ γ ≦ 0.5, 0 ≦ δ ≦ 0.1, (A number satisfying the relationship of 0.8 ≦ α + β + γ + δ ≦ 1.2 and 0 <x ≦ 1.2 is shown.)
原料化合物のリチウムを含有する化合物が、フッ化リチウム、炭酸リチウム、リン酸リチウム、ヒ酸リチウムのうちいずれか1種以上であることを特徴とする、請求項12または13に記載のリチウム遷移金属複合酸化物の製造方法。 14. The lithium transition metal according to claim 12, wherein the compound containing lithium as a raw material compound is at least one of lithium fluoride, lithium carbonate, lithium phosphate, and lithium arsenate. A method for producing a composite oxide.
JP2007079408A 2007-03-26 2007-03-26 Lithium transition metal composite oxide, method for producing the same, positive electrode for lithium secondary battery using the same, and lithium secondary battery using the same Expired - Fee Related JP5135842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007079408A JP5135842B2 (en) 2007-03-26 2007-03-26 Lithium transition metal composite oxide, method for producing the same, positive electrode for lithium secondary battery using the same, and lithium secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007079408A JP5135842B2 (en) 2007-03-26 2007-03-26 Lithium transition metal composite oxide, method for producing the same, positive electrode for lithium secondary battery using the same, and lithium secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2008243447A JP2008243447A (en) 2008-10-09
JP5135842B2 true JP5135842B2 (en) 2013-02-06

Family

ID=39914554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007079408A Expired - Fee Related JP5135842B2 (en) 2007-03-26 2007-03-26 Lithium transition metal composite oxide, method for producing the same, positive electrode for lithium secondary battery using the same, and lithium secondary battery using the same

Country Status (1)

Country Link
JP (1) JP5135842B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5515435B2 (en) * 2009-06-04 2014-06-11 住友化学株式会社 Raw material powder for lithium nickel composite metal oxide
EP2520547A4 (en) * 2009-12-28 2014-11-19 Sumitomo Chemical Co Method for manufacturing a lithium complex metal oxide
CA3009630C (en) 2015-12-16 2023-08-01 Amastan Technologies Llc Spheroidal dehydrogenated metals and metal alloy particles
CN108886144B (en) 2016-03-30 2022-03-04 巴斯夫户田电池材料有限公司 Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using same
JP2017188428A (en) 2016-03-30 2017-10-12 Basf戸田バッテリーマテリアルズ合同会社 Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery using the same
AU2020264446A1 (en) 2019-04-30 2021-11-18 6K Inc. Mechanically alloyed powder feedstock
WO2021118762A1 (en) 2019-11-18 2021-06-17 6K Inc. Unique feedstocks for spherical powders and methods of manufacturing
US11590568B2 (en) 2019-12-19 2023-02-28 6K Inc. Process for producing spheroidized powder from feedstock materials
EP4173060A1 (en) 2020-06-25 2023-05-03 6K Inc. Microcomposite alloy structure
AU2021349358A1 (en) 2020-09-24 2023-02-09 6K Inc. Systems, devices, and methods for starting plasma
AU2021371051A1 (en) 2020-10-30 2023-03-30 6K Inc. Systems and methods for synthesis of spheroidized metal powders
CN116504921B (en) * 2023-06-19 2023-09-19 蔚来电池科技(安徽)有限公司 Positive electrode sheet, electrochemical device, and electricity consumption device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123179A (en) * 2003-09-26 2005-05-12 Mitsubishi Chemicals Corp Lithium compound oxide particle for lithium secondary battery positive electrode material, and lithium secondary battery positive electrode using the same, and the lithium secondary battery

Also Published As

Publication number Publication date
JP2008243447A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
JP5135842B2 (en) Lithium transition metal composite oxide, method for producing the same, positive electrode for lithium secondary battery using the same, and lithium secondary battery using the same
JP5135843B2 (en) Lithium transition metal composite oxide, positive electrode for lithium secondary battery using the same, and lithium secondary battery using the same
KR101517733B1 (en) Cathode active material and preparation method thereof
JP4318313B2 (en) Positive electrode active material powder for lithium secondary battery
JP5257272B2 (en) Positive electrode material for lithium secondary battery, secondary battery using the same, and method for producing positive electrode material for lithium secondary battery
WO2011125722A1 (en) Positive electrode material for lithium secondary battery, method for producing the same, positive electrode for lithium secondary battery, and lithium secondary battery
WO2011083861A1 (en) Powder for positive electrode material for lithium secondary battery and process for production thereof, and positive electrode for lithium secondary battery and lithium secondary battery each utilizing the powder
JP4591717B2 (en) Lithium nickel manganese cobalt based composite oxide powder for lithium secondary battery positive electrode material, method for producing the same, spray-dried powder, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP5940529B2 (en) Lithium titanate aggregate, lithium ion secondary battery and lithium ion capacitor using the same
JPWO2004082046A1 (en) Positive electrode active material powder for lithium secondary battery
WO2005112152A1 (en) Method for producing lithium-containing complex oxide for positive electrode of lithium secondary battery
JP2008147068A (en) Lithium composite oxide for nonaqueous electrolyte secondary battery
JP2008305777A (en) Lithium transition metal compound powder, its production method, spray dried product being baking precursor of the powder, positive electrode for lithium secondary battery using the product, and lithium secondary battery
JP2003092108A (en) Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2011108554A (en) Lithium transition metal based compound powder, its manufacturing method, and positive electrode material for lithium secondary battery and lithium secondary battery using it
JP2008153017A (en) Positive active material for nonaqueous electrolyte secondary battery
JP2011105594A (en) Nickel-manganese-cobalt based complex oxide, laminar lithium-nickel-manganese-cobalt based complex oxide, positive electrode material for lithium secondary batteries, positive electrode using the material, and lithium secondary battery
JP2009080979A (en) Active materials for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2009117261A (en) Positive-electrode active material for lithium secondary battery, and positive electrode and lithium secondary battery using positive electrode active material
WO2013115451A1 (en) Positive active material for lithium secondary battery and method of preparing same
CN108432001A (en) Manufacturing method, positive active material, anode and the lithium rechargeable battery of positive active material
JP4591716B2 (en) Lithium transition metal compound powder for positive electrode material of lithium secondary battery, production method thereof, spray-dried product, and calcined precursor, positive electrode for lithium secondary battery and lithium secondary battery using the same
JP4655453B2 (en) Positive electrode material for lithium secondary battery, secondary battery using the same, and method for producing positive electrode material for lithium secondary battery
JP2005336004A (en) Nickel manganese cobalt based multiple oxide, lamellar lithium nickel manganese cobalt based multiple oxide, lithium secondary cell positive electrode material, positive electrode for lithium secondary cell and lithium secondary cell using the same
JP4329434B2 (en) Positive electrode for lithium secondary battery and lithium secondary battery using the same

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090708

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121029

R150 Certificate of patent or registration of utility model

Ref document number: 5135842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees