JP2005274222A - Compost decay degree determination method and its device - Google Patents

Compost decay degree determination method and its device Download PDF

Info

Publication number
JP2005274222A
JP2005274222A JP2004085139A JP2004085139A JP2005274222A JP 2005274222 A JP2005274222 A JP 2005274222A JP 2004085139 A JP2004085139 A JP 2004085139A JP 2004085139 A JP2004085139 A JP 2004085139A JP 2005274222 A JP2005274222 A JP 2005274222A
Authority
JP
Japan
Prior art keywords
compost
extract
maturity
correlation
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004085139A
Other languages
Japanese (ja)
Other versions
JP4418866B2 (en
Inventor
Mayuko Yamada
万祐子 山田
Koji Tsuchiya
広司 土屋
Masami Sugie
正美 杉江
Shinya Katayama
信也 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka Prefecture
Hamamatsu Photonics KK
Original Assignee
Shizuoka Prefecture
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka Prefecture, Hamamatsu Photonics KK filed Critical Shizuoka Prefecture
Priority to JP2004085139A priority Critical patent/JP4418866B2/en
Publication of JP2005274222A publication Critical patent/JP2005274222A/en
Application granted granted Critical
Publication of JP4418866B2 publication Critical patent/JP4418866B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compost decay degree determination method and its device for simply, rapidly, and quantitatively determining the decay degree of compost. <P>SOLUTION: It is found out that a compost extract produced from compost emits faint light (biophotons) and that a correlation exists between the light amount of the faint light and the decay degree of the compost. According to this method, first, a compost extract is produced from compost. Subsequently, the number of photons emitted from the compost extract is measured by using a photomultiplier, etc. Then, the decay degree of the compost is determined based on a previously found correlation between the number of photons emitted from the compost extract and the decay degree of the compost. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、堆肥の腐熟度を判定する方法及び装置に関するものである。   The present invention relates to a method and apparatus for determining the degree of maturity of compost.

近年、廃棄物のリサイクルが促進されたことによって、従来は堆肥原料として取り扱わなかった原料も堆肥化して利用する機会が増えている。このため、堆肥品質の不安定化や未知の有害作用の発生を抑えることがより重要になってきている。さらに、食の安全性を確保するためにも、農作物にとっての生産資材である堆肥の品質についての迅速かつ正確なモニタリング方法が求められている。   In recent years, recycling of waste has been promoted, so that there are increasing opportunities to compost and use raw materials that were not handled as compost raw materials. For this reason, it has become more important to suppress the destabilization of compost quality and the occurrence of unknown harmful effects. Furthermore, in order to ensure food safety, there is a need for a quick and accurate monitoring method for the quality of compost, which is a production material for agricultural products.

堆肥の品質の一つとして、堆肥の腐熟度が挙げられる。腐熟が進んでいない未熟な堆肥を土壌に施用すると、土壌中における有機質の急速な分解に伴って「高濃度無機態窒素の発生」「土壌の異常還元」「窒素飢餓」等の間接的障害作用と「生育阻害物質」等の放出による直接的な障害作用により、農作物の生育を阻害するおそれがある。このため、堆肥を土壌に施用する前に、堆肥の成分だけでなくその腐熟度を把握しておくことが好ましい。   One quality of compost is the maturity of compost. When immature compost, which has not progressed in maturity, is applied to soil, it causes indirect obstacles such as `` generation of high-concentration inorganic nitrogen '', `` abnormal reduction of soil '', `` nitrogen starvation '' due to rapid decomposition of organic matter in the soil. There is a risk that the growth of crops may be hindered by a direct hindrance effect due to the release of “growth inhibitory substances” and the like. For this reason, before applying compost to soil, it is preferable to grasp not only the compost components but also their maturity.

なお、発明の構成及び目的は異なるが、植物からの発光量を測定するものとしては、例えば特許文献1に開示された植物の病害抵抗性検定方法がある。
特許第3231098号公報
In addition, although the structure and objective of invention differ, there exists a disease resistance test method of the plant disclosed by patent document 1 as what measures the light-emission quantity from a plant, for example.
Japanese Patent No. 3231098

堆肥の腐熟度を判定する方法としては、水洗残渣物重量測定法や炭素率法などの「理化学分析法」、色別法やネスラー法などの「現場測定法」、及びミミズ法などの「生物判定法」といった幾つかの方法がある。しかし、これらの方法は、判定可能な堆肥の種類が限定されている、分析作業が煩雑である、結果が出るまでに長時間を要するといった問題を有している。また、現在ではこれらの結果を総合的に判断して堆肥の腐熟度を判定しているが、堆肥の腐熟度を正確に判定するには、「幼植物試験」や「発芽検定試験」のように農作物を利用した生物検定試験を行うことが必要になる。   Methods for determining the maturity of compost include “physical and chemical analysis methods” such as the weight measurement method of washing residue and the carbon ratio method, “on-site measurement methods” such as the color-specific method and the Nessler method, and There are several methods such as “judgment method”. However, these methods have the problems that the types of compost that can be determined are limited, the analysis work is complicated, and it takes a long time to obtain a result. At present, these results are comprehensively judged to determine the maturity level of compost. However, to accurately determine the maturity level of compost, the seedling test or germination test can be used. It is necessary to conduct bioassay tests using crops.

しかしながら、「幼植物試験」や「発芽検定試験」といった生物検定試験は、生物が育成される過程を利用した試験方法であるため、試験方法が煩雑である、結果が出るまでに長時間を要する、結果の定量的評価が難しい等の問題点を有している。従って、簡易・迅速に、且つ定量的に腐熟度を判定することが可能な堆肥の腐熟度判定方法が求められている。   However, bioassay tests such as the “plant seedling test” and “germination test” are test methods that use the process in which organisms are bred, so the test methods are complicated and it takes a long time to produce results. However, it is difficult to quantitatively evaluate the results. Therefore, there is a need for a method for determining the degree of maturity of compost capable of determining maturity simply and quickly and quantitatively.

本発明は、上記した問題点を鑑みてなされたものであり、簡易・迅速に、且つ定量的に堆肥の腐熟度を判定することが可能な堆肥の腐熟度判定方法及び装置を提供することを目的とする。   The present invention has been made in view of the above-described problems, and provides a compost maturity determination method and apparatus capable of determining the maturity of compost simply, quickly, and quantitatively. Objective.

上記した課題を解決するために、本発明による堆肥の腐熟度判定方法は、堆肥の腐熟度を判定する方法であって、堆肥から堆肥抽出液を生成する抽出液生成ステップと、堆肥抽出液を含むサンプルからの発光量を測定する測定ステップと、サンプルからの発光量と堆肥の腐熟度との相関に基づいて、堆肥の腐熟度を判定する判定ステップとを備えることを特徴とする。   In order to solve the above-described problems, a method for determining the degree of maturity of compost according to the present invention is a method for determining the degree of maturity of compost, and includes an extract generation step for generating a compost extract from compost, and a compost extract. And a determination step for determining the degree of compost maturity based on a correlation between the amount of light emission from the sample and the maturity level of the compost.

本発明者らは、堆肥抽出液が微弱な光(バイオホトン)を発しており、この微弱な光の光量と堆肥の腐熟度との間に相関が存在することを見出した。上記した堆肥の腐熟度判定方法によれば、堆肥抽出液を含むサンプルからの発光量を測定することにより、上記相関を利用して堆肥の腐熟度を判定することが可能なので、従来の方法と比較して格段に簡易且つ迅速に堆肥の腐熟度を判定することができる。また、上記した堆肥の腐熟度判定方法によれば、サンプルからの発光量といった定量的な尺度で堆肥の腐熟度を客観的に判定することができる。   The present inventors have found that the compost extract emits faint light (biophoton), and that there is a correlation between the amount of the faint light and the maturity of the compost. According to the above method for determining the degree of maturity of compost, it is possible to determine the degree of maturity of compost using the above correlation by measuring the amount of luminescence from the sample containing the compost extract. In comparison, the maturity of compost can be determined much more easily and quickly. Further, according to the above-described method for determining the degree of maturity of compost, the degree of maturity of compost can be objectively determined on a quantitative scale such as the amount of light emitted from the sample.

また、堆肥の腐熟度判定方法は、サンプルが堆肥抽出液であることを特徴としてもよい。これにより、上述したように簡易・迅速に、且つ定量的に堆肥の腐熟度を判定することができる。   Moreover, the maturity determination method of compost may be characterized in that the sample is a compost extract. Thereby, as described above, the maturity of compost can be determined easily, quickly and quantitatively.

また、堆肥の腐熟度判定方法は、サンプルが、堆肥抽出液に触れた植物体由来サンプルであることを特徴としてもよい。本発明者らは、植物体由来サンプルを堆肥抽出液に触れさせると、植物体由来サンプルが微弱な光(バイオホトン)を発し、この微弱な光の光量と堆肥の腐熟度との間に相関が存在することを見出した。この堆肥の腐熟度判定方法によれば、堆肥抽出液に触れた植物体由来サンプルからの発光量を測定することにより、上記相関を利用して堆肥の腐熟度を判定することが可能なので、簡易且つ迅速に堆肥の腐熟度を判定することができる。また、上記した堆肥の腐熟度判定方法によれば、植物体由来サンプルからの発光量といった定量的な尺度で堆肥の腐熟度を客観的に判定することができる。   Moreover, the maturity determination method of compost may be characterized in that the sample is a plant-derived sample that has come into contact with the compost extract. When the plant body sample is brought into contact with the compost extract, the plant body sample emits faint light (biophoton), and there is a correlation between the amount of the faint light and the maturity of the compost. Found it to exist. According to this method for determining the degree of maturity of compost, it is possible to determine the degree of maturity of compost using the above correlation by measuring the amount of luminescence from the plant-derived sample that has come into contact with the compost extract. And the maturity of compost can be determined quickly. Moreover, according to the above-described method for determining the degree of maturity of compost, the degree of maturity of compost can be objectively determined on a quantitative scale such as the amount of luminescence from the plant-derived sample.

また、堆肥の腐熟度判定方法は、抽出液生成ステップと測定ステップとの間に、酸性化処理、アルカリ化処理、及び酸化促進処理のうち少なくとも一つの処理を堆肥抽出液に対して行う抽出液処理ステップをさらに備えることを特徴してもよい。これにより、サンプルからの発光量が増し、堆肥の腐熟度をより正確に判定することができる。   The compost maturity determination method is an extract that performs at least one of an acidification process, an alkalinization process, and an oxidation promotion process on the compost extract between the extract generation step and the measurement step. It may be characterized by further comprising a processing step. Thereby, the emitted light amount from a sample increases and the maturity of compost can be determined more correctly.

また、堆肥の腐熟度判定方法は、抽出液生成ステップと測定ステップとの間に、堆肥抽出液に対して所定時間の恒温処理を行う恒温処理ステップをさらに備えることを特徴としてもよい。これにより、サンプルからの発光量が増し、堆肥の腐熟度をより正確に判定することができる。   Further, the compost maturity determination method may further include a constant temperature treatment step for performing a constant temperature treatment on the compost extract for a predetermined time between the extract generation step and the measurement step. Thereby, the emitted light amount from a sample increases and the maturity of compost can be determined more correctly.

また、堆肥の腐熟度判定方法は、抽出液生成ステップと測定ステップとの間に、堆肥抽出液に対して紫外線を照射する紫外線照射ステップをさらに備えることを特徴としてもよい。これにより、サンプルからの発光量が増し、堆肥の腐熟度をより正確に判定することができる。   The compost maturity determination method may further include an ultraviolet irradiation step of irradiating the compost extract with ultraviolet rays between the extract generation step and the measurement step. Thereby, the emitted light amount from a sample increases and the maturity of compost can be determined more correctly.

また、本発明による堆肥の腐熟度判定装置は、堆肥の腐熟度を判定する装置であって、堆肥から生成された堆肥抽出液を含むサンプルからの発光量を測定する測定手段と、測定手段において測定された発光量と堆肥の腐熟度との相関に基づいて、堆肥の腐熟度を判定する判定手段とを備えることを特徴とする。この堆肥の腐熟度判定装置によれば、測定手段において堆肥抽出液を含むサンプルからの発光量を測定し、判定手段において上記相関を利用して堆肥の腐熟度を判定するので、簡易・迅速に、且つ定量的に堆肥の腐熟度を判定することができる。   Further, the compost maturity determination apparatus according to the present invention is an apparatus for determining the maturity of compost, in the measurement means for measuring the amount of luminescence from the sample containing the compost extract produced from the compost, and the measurement means And determining means for determining the degree of maturity of compost based on the correlation between the measured amount of luminescence and the degree of maturity of compost. According to this compost maturity determination device, the measurement means measures the amount of light emitted from the sample containing the compost extract, and the determination means determines the maturity level of the compost using the above correlation. In addition, the maturity of compost can be determined quantitatively.

また、堆肥の腐熟度判定装置は、サンプルに対して紫外線を照射する紫外線照射手段をさらに備えることを特徴としてもよい。これにより、サンプルからの発光量が増し、堆肥の腐熟度をより正確に判定することができる。   Further, the compost maturity determination device may further include an ultraviolet irradiation means for irradiating the sample with ultraviolet rays. Thereby, the emitted light amount from a sample increases and the maturity of compost can be determined more correctly.

本発明による堆肥の腐熟度判定方法及び装置によれば、簡易・迅速に、且つ定量的に堆肥の腐熟度を判定することができる。   According to the method and apparatus for determining the degree of maturity of compost according to the present invention, the degree of maturity of compost can be determined easily, quickly and quantitatively.

以下、添付図面を参照しながら本発明による堆肥の腐熟度判定方法及び装置の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a compost maturity determination method and apparatus according to the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.

(実施の形態)
まず、以下の説明において用いられる用語について説明する。以下の説明において「堆肥」とは、土壌改良効果及び肥料要素の供給を期待して利用される農業生産資材である。堆肥は、家畜糞や農産副産物などの有機質資材が好気的に発酵され、原料中に含まれる易分解性物質が土壌施用に先行して分解され、水分調整資材に含まれる有害物質が十分に分解されて安定状態に至っていることが好ましい。
(Embodiment)
First, terms used in the following description will be described. In the following description, “compost” is an agricultural production material used with the expectation of soil improvement effect and supply of fertilizer elements. In compost, organic materials such as livestock manure and agricultural by-products are aerobically fermented, easily degradable substances contained in the raw material are decomposed prior to soil application, and sufficient amounts of harmful substances contained in the water conditioning material are sufficient. It is preferably decomposed to reach a stable state.

また、「堆肥の腐熟」とは、当該堆肥を土壌に施用した場合に農作物の生育に対して全く障害性がなく、当該堆肥の施用により土壌中の微生物にエネルギーを与えて活動を活発にさせること等により直接的または間接的に地力維持と結びつき、かつ土壌環境の悪変を招かない程度に、堆肥内の有機物をあらかじめ腐朽させることである。そして、このような状態まで腐熟したときが腐熟の終了すなわち終熟であり、このような状態に達するまでの様々な腐熟の程度を「腐熟度」という言葉で表す。   Also, “compost maturation” means that when the compost is applied to the soil, there is no obstacle to the growth of the crops, and the application of the compost gives energy to microorganisms in the soil and activates the activity. In other words, the organic matter in the compost is rotted in advance to such an extent that it is directly or indirectly linked to the maintenance of the geological force and does not cause adverse changes in the soil environment. And when it ripens to such a state, it is the end of ripening, that is, the ripening, and various degrees of ripening until reaching such a state are expressed by the term “ripening degree”.

次に、本発明による堆肥の腐熟度判定装置の実施形態について説明する。図1は、堆肥の腐熟度を判定する判定装置1の構成を示すブロック図である。図1を参照すると、判定装置1は、発光測定装置2及び判定手段10を備えている。発光測定装置2は、試料トレイ3、光電子増倍管4、フォトンカウンティング回路5、高圧電源6、電圧分割回路7、制御回路9、及び紫外光源11を備えている。   Next, an embodiment of a compost maturity determination apparatus according to the present invention will be described. FIG. 1 is a block diagram illustrating a configuration of a determination apparatus 1 that determines the degree of maturity of compost. Referring to FIG. 1, the determination device 1 includes a luminescence measurement device 2 and a determination means 10. The luminescence measuring apparatus 2 includes a sample tray 3, a photomultiplier tube 4, a photon counting circuit 5, a high voltage power supply 6, a voltage dividing circuit 7, a control circuit 9, and an ultraviolet light source 11.

試料トレイ3は、腐熟度を判定する対象である堆肥から生成された堆肥抽出液を含むサンプルを保持するための手段である。サンプルとしては、堆肥抽出液そのもの、或いは堆肥抽出液に触れた植物体由来サンプルが好適である。ここで、植物体由来サンプルとしては、例えば植物細胞、植物組織・切片、プロトプラスト、カルス、植物体や種子のホモジネートなどが挙げられる。また、好適には、ダイコン、サツマイモ、ダイズなどの植物切片を利用するとよい。試料トレイ3は、図示しない暗室内に置かれている。   The sample tray 3 is a means for holding a sample containing a compost extract produced from compost, which is a target for determining the degree of maturity. The sample is preferably a compost extract itself or a plant-derived sample that has come into contact with the compost extract. Here, examples of the plant-derived sample include plant cells, plant tissues / sections, protoplasts, callus, and homogenates of plants and seeds. Moreover, it is preferable to use plant slices such as radish, sweet potato, and soybean. The sample tray 3 is placed in a dark room (not shown).

光電子増倍管4及びフォトンカウンティング回路5は、本実施形態における測定手段を構成している。すなわち、光電子増倍管4は、試料トレイ3上のサンプルから発生する光子(フォトン)を検出するための手段である。光電子増倍管4は、その光電陰極が試料トレイ3と対向するように設けられている。光電子増倍管4は、サンプルからの光子を光電子に変換し、該光電子を電流増幅してフォトンカウンティング回路5へ出力する。フォトンカウンティング回路5は、光電子増倍管4の陽極と電気的に接続されており、光電子増倍管4からの出力電流を受ける。フォトンカウンティング回路5は、光電子増倍管4に入射した光子の個数を積算することにより、サンプルからの発光量を測定する。   The photomultiplier tube 4 and the photon counting circuit 5 constitute the measuring means in this embodiment. That is, the photomultiplier tube 4 is a means for detecting photons (photons) generated from the sample on the sample tray 3. The photomultiplier tube 4 is provided so that its photocathode faces the sample tray 3. The photomultiplier tube 4 converts photons from the sample into photoelectrons, current-amplifies the photoelectrons, and outputs the photons to the photon counting circuit 5. The photon counting circuit 5 is electrically connected to the anode of the photomultiplier tube 4 and receives an output current from the photomultiplier tube 4. The photon counting circuit 5 measures the amount of light emitted from the sample by integrating the number of photons incident on the photomultiplier tube 4.

高圧電源6は、光電子増倍管4に与える電源電圧を生成する。電圧分割回路7は、高圧電源6からの電源電圧を抵抗分割して光電子増倍管4の光電陰極、各ダイノード、及び陽極間に電位差を発生させる。紫外光源11は、本実施形態における紫外線照射手段であり、試料トレイ3上のサンプルに紫外線を照射する。サンプルは、紫外光源11から紫外線を照射されることによって励起される。   The high voltage power supply 6 generates a power supply voltage to be supplied to the photomultiplier tube 4. The voltage dividing circuit 7 generates a potential difference between the photocathode, each dynode, and the anode of the photomultiplier tube 4 by resistance-dividing the power supply voltage from the high-voltage power supply 6. The ultraviolet light source 11 is an ultraviolet irradiation means in this embodiment, and irradiates the sample on the sample tray 3 with ultraviolet rays. The sample is excited by being irradiated with ultraviolet rays from the ultraviolet light source 11.

制御回路9は、上述した高圧電源6及び紫外光源11を制御するための手段である。制御回路9は、通信回線を介して判定手段10と接続されており、判定手段10からの指示に従って高圧電源6及び紫外光源11の作動/非作動を制御する。また、制御回路9は、フォトンカウンティング回路5と電気的に接続されており、サンプルからの発光量に関するデータをフォトンカウンティング回路5から受け取る。そして、制御回路9は、発光量に関するデータを通信回線を通じて判定手段10へ送る。   The control circuit 9 is means for controlling the high-voltage power supply 6 and the ultraviolet light source 11 described above. The control circuit 9 is connected to the determination means 10 via a communication line, and controls the operation / non-operation of the high-voltage power supply 6 and the ultraviolet light source 11 according to instructions from the determination means 10. The control circuit 9 is electrically connected to the photon counting circuit 5 and receives data relating to the amount of light emitted from the sample from the photon counting circuit 5. Then, the control circuit 9 sends data relating to the light emission amount to the determination means 10 through the communication line.

判定手段10は、光電子増倍管4とフォトンカウンティング回路5とによって測定されたサンプルからの発光量と、堆肥の腐熟度との相関に基づいて、堆肥の腐熟度を判定する手段である。判定手段10は、例えば予め記憶されたプログラムをCPUが実行することにより構成されてもよいし、電子回路によって構成されてもよい。判定手段10は、サンプルからの発光量と堆肥の腐熟度との関係式を予め記憶しており、制御回路9からの発光量に関するデータを該関係式に適用することにより堆肥の腐熟度を判定する。このとき、判定手段10は、堆肥の腐熟度を示す指標として、例えば公定法であるコマツナ発芽検定における発芽率や、コマツナ根長、コマツナ発芽遅延などの推定値を算出する。また、判定手段10は、堆肥の腐熟度を示す指標として、堆肥内の水分や、堆肥内の窒素成分、堆肥のpH値、EC(堆肥抽出液の電気伝導度)などの推定値を算出してもよい。なお、サンプルからの発光量と堆肥の腐熟度との相関については、後の実施例において詳述する。   The determination means 10 is a means for determining the degree of compost maturity based on the correlation between the amount of light emitted from the sample measured by the photomultiplier tube 4 and the photon counting circuit 5 and the degree of maturity of the compost. The determination unit 10 may be configured by, for example, a CPU executing a program stored in advance, or may be configured by an electronic circuit. The determination means 10 stores in advance a relational expression between the amount of luminescence from the sample and the degree of maturity of the compost, and determines the degree of compost maturity by applying data relating to the amount of luminescence from the control circuit 9 to the relational expression. To do. At this time, the determination means 10 calculates an estimated value such as a germination rate, a komatsuna root length, and a komatsuna germination delay in the Komatsuna germination test, which is an official method, as an index indicating the maturity of compost. Further, the determination means 10 calculates an estimated value such as moisture in the compost, nitrogen component in the compost, pH value of the compost, EC (electric conductivity of the compost extract) as an index indicating the maturity of the compost. May be. The correlation between the amount of luminescence from the sample and the maturity of the compost will be described in detail in a later example.

次に、本実施形態による堆肥の腐熟度判定方法について説明するとともに、上述した判定装置1の動作について説明する。ここで、図2(a),図2(b),図3(a),図3(b),及び図4は、それぞれ本実施形態による第1〜第5の判定方法を示すフローチャートである。   Next, a method for determining the degree of maturity of compost according to this embodiment will be described, and the operation of the determination device 1 described above will be described. Here, FIG. 2A, FIG. 2B, FIG. 3A, FIG. 3B, and FIG. 4 are flowcharts showing first to fifth determination methods according to the present embodiment, respectively. .

第1の判定方法
図2(a)を参照しながら、本実施形態による第1の判定方法について説明する。まず、堆肥抽出液を生成する。すなわち、判定対象となる堆肥を乾燥・粉砕してフラスコなどの容器にとり、沸騰水を加えて所定時間放置する。そして、フラスコ内の液体を濾過することにより、堆肥抽出液を取り出す(抽出液生成ステップ、S11)。続いて、ステップS11において生成された堆肥抽出液をサンプルとして試料トレイ3にセットする。具体的には、適量の堆肥抽出液を所定容器内に滴下し、該容器を試料トレイ3中央部に設けられた窪みにセットする(S12)。
First Determination Method The first determination method according to the present embodiment will be described with reference to FIG. First, a compost extract is generated. That is, the compost to be determined is dried and pulverized, placed in a container such as a flask, and boiling water is added and left for a predetermined time. And the compost extract is taken out by filtering the liquid in a flask (extracted liquid production | generation step, S11). Then, the compost extract produced | generated in step S11 is set to the sample tray 3 as a sample. Specifically, an appropriate amount of compost extract is dropped into a predetermined container, and the container is set in a recess provided at the center of the sample tray 3 (S12).

続いて、試料トレイ3を発光測定装置2内の暗室にセットし、堆肥抽出液から放出された光子を光電子増倍管4において検出する。そして、光電子増倍管4に入射した光子の数をフォトンカウンティング回路5によって積算し、堆肥抽出液からの発光量を測定する(測定ステップ、S13)。測定された発光量に関するデータは、制御回路9を介して判定手段10へ送られる。   Subsequently, the sample tray 3 is set in a dark room in the luminescence measuring device 2, and photons emitted from the compost extract are detected by the photomultiplier tube 4. Then, the number of photons incident on the photomultiplier tube 4 is integrated by the photon counting circuit 5, and the amount of light emitted from the compost extract is measured (measurement step, S13). Data on the measured light emission amount is sent to the determination means 10 via the control circuit 9.

続いて、判定手段10において堆肥の腐熟度を判定する。すなわち、判定手段10は、フォトンカウンティング回路5から受け取った発光量に関するデータを所定の関係式に適用し、コマツナ発芽率や、コマツナ根長、コマツナ発芽遅延などの推定値を算出する。また、判定手段10は、堆肥内の水分、堆肥内の窒素成分、pH値、ECなどの推定値を算出する(判定ステップ、S14)。   Subsequently, the maturity of the compost is determined by the determination means 10. That is, the determination means 10 applies data relating to the light emission amount received from the photon counting circuit 5 to a predetermined relational expression, and calculates estimated values such as a komatsuna germination rate, a komatsuna root length, and a komatsuna germination delay. Moreover, the determination means 10 calculates estimated values such as moisture in the compost, nitrogen component in the compost, pH value, and EC (determination step, S14).

第2の判定方法
次に、図2(b)を参照しながら、本実施形態による第2の判定方法について説明する。なお、本方法における抽出液生成ステップS21は、上述した第1の判定方法の抽出液生成ステップS11と同様であるので、該ステップの説明を省略する。
Second Determination Method Next, the second determination method according to the present embodiment will be described with reference to FIG. In addition, since the extraction liquid production | generation step S21 in this method is the same as that of the extraction liquid production | generation step S11 of the 1st determination method mentioned above, description of this step is abbreviate | omitted.

抽出液生成ステップS21において堆肥抽出液を生成した後、該堆肥抽出液を植物体由来サンプルに滴下する。具体的には、例えば植物体に切断面を形成した植物切片を用意し、該切断面上に堆肥抽出液を塗布或いは滴下する(S22)。なお、このとき用いる植物としては、例えば大根、サツマイモ、大豆などの野菜類が好適である。   After the compost extract is generated in the extract generation step S21, the compost extract is dropped on the plant-derived sample. Specifically, for example, a plant slice having a cut surface formed on a plant body is prepared, and a compost extract is applied or dropped onto the cut surface (S22). In addition, as a plant used at this time, vegetables, such as a radish, a sweet potato, and a soybean, are suitable, for example.

続いて、ステップS22において堆肥抽出物に触れた植物体由来サンプルを試料トレイ3にセットする(S23)。そして、試料トレイ3を発光測定装置2内の暗室にセットし、植物体由来サンプルから放出された光子を光電子増倍管4において検出する。そして、光電子増倍管4に入射した光子の数をフォトンカウンティング回路5によって積算し、植物体由来サンプルからの発光量を測定する(測定ステップ、S24)。測定された発光量に関するデータは、制御回路9を介して判定手段10へ送られる。判定手段10では、上述した第1の方法と同様にして堆肥の腐熟度が判定される(判定ステップ、S25)。   Subsequently, the plant-derived sample that has touched the compost extract in step S22 is set on the sample tray 3 (S23). Then, the sample tray 3 is set in a dark room in the light emission measuring device 2, and photons emitted from the plant-derived sample are detected in the photomultiplier tube 4. Then, the number of photons incident on the photomultiplier tube 4 is integrated by the photon counting circuit 5, and the light emission amount from the plant-derived sample is measured (measurement step, S24). Data on the measured light emission amount is sent to the determination means 10 via the control circuit 9. In the determination means 10, the maturity of the compost is determined in the same manner as in the first method described above (determination step, S25).

第3の判定方法
次に、図3(a)を参照しながら、本実施形態による第3の判定方法について説明する。なお、本方法における抽出液生成ステップS31は、上述した第1の判定方法の抽出液生成ステップS11と同様である。
Third Determination Method Next, the third determination method according to the present embodiment will be described with reference to FIG. In addition, the extraction liquid production | generation step S31 in this method is the same as the extraction liquid production | generation step S11 of the 1st determination method mentioned above.

抽出液生成ステップS31において堆肥抽出液を生成した後、該堆肥抽出液を複数に分け、略一定温度の恒温環境でそれぞれ異なる時間放置する。具体的な例としては、堆肥抽出液を三つに分け、一つは時間を置かずに次のステップへ移す。また、他の一つは35℃に保たれた槽内に24時間放置した後、次のステップへ移す。また、他の一つは35℃に保たれた槽内に48時間放置した後、次のステップへ移す。(恒温処理ステップ、S32)。   After the compost extract is generated in the extract generation step S31, the compost extract is divided into a plurality of parts and left in a constant temperature environment at a substantially constant temperature for different times. As a specific example, the compost extract is divided into three, and one moves to the next step without taking time. The other one is left in a tank maintained at 35 ° C. for 24 hours and then moved to the next step. The other is left in a bath maintained at 35 ° C. for 48 hours and then moved to the next step. (Constant temperature treatment step, S32).

続いて、堆肥抽出液をサンプルとして試料トレイ3にセットし(S33)、堆肥抽出液からの発光量を測定する(測定ステップ、S34)。測定された発光量に関するデータは判定手段10へ送られる。判定手段10では、三分割された堆肥抽出液それぞれの発光量に関するデータに基づいて、堆肥の腐熟度が判定される。例えば、判定手段10では、三分割された堆肥抽出液それぞれの発光量のうち二つの発光量の差や比に基づいて、堆肥の腐熟度が判定される(判定ステップ、S35)。   Subsequently, the compost extract is set as a sample on the sample tray 3 (S33), and the amount of light emitted from the compost extract is measured (measurement step, S34). Data on the measured light emission amount is sent to the determination means 10. The determination means 10 determines the degree of maturity of the compost based on data relating to the amount of light emitted from each of the three compost extracts. For example, the determination means 10 determines the maturity level of the compost based on the difference or ratio of the two light emission amounts among the light emission amounts of the three divided compost extracts (determination step, S35).

なお、本判定方法においては堆肥抽出液を複数に分け、恒温環境においてそれぞれ異なる時間放置しているが、堆肥抽出液を分割せずに所定時間恒温環境において放置してもよい。   In this determination method, the compost extract is divided into a plurality of parts and left in a constant temperature environment for different times. However, the compost extract may be left in a constant temperature environment for a predetermined time without being divided.

第4の判定方法
次に、図3(b)を参照しながら、本実施形態による第4の判定方法について説明する。なお、本方法における抽出液生成ステップS41は、上述した第1の判定方法の抽出液生成ステップS11と同様である。
Fourth Determination Method Next, the fourth determination method according to the present embodiment will be described with reference to FIG. In addition, the extraction liquid production | generation step S41 in this method is the same as the extraction liquid production | generation step S11 of the 1st determination method mentioned above.

抽出液生成ステップS41において堆肥抽出液を生成した後、該堆肥抽出液に対し、酸性化処理、アルカリ化処理、または酸化促進処理のうち少なくとも一つの処理を行う。具体的には、酸性化処理を行う場合には、堆肥抽出液にHClといった酸性溶液を加える。また、アルカリ化処理を行う場合には、堆肥抽出液にNaOHといったアルカリ性溶液を加える。また、酸化促進処理を行う場合には、堆肥抽出液にH22といった酸化促進剤を加える(抽出液処理ステップ、S42)。 After the compost extract is generated in the extract generation step S41, at least one of acidification, alkalinization, and oxidation promotion is performed on the compost extract. Specifically, when acidification is performed, an acidic solution such as HCl is added to the compost extract. Moreover, when performing an alkalinization process, alkaline solution, such as NaOH, is added to a compost extract. Further, when the oxidation-promoting treatment, the compost extract adding oxidizing promoting agent such as H 2 O 2 (extract process step, S42).

続いて、堆肥抽出液をサンプルとして試料トレイ3にセットし(S43)、堆肥抽出液からの発光量を測定する(測定ステップ、S44)。測定された発光量に関するデータは判定手段10へ送られ、判定手段10において堆肥の腐熟度が判定される(判定ステップ、S45)。   Subsequently, the compost extract is set as a sample on the sample tray 3 (S43), and the amount of light emitted from the compost extract is measured (measurement step, S44). Data relating to the measured light emission amount is sent to the determination means 10, and the determination means 10 determines the maturity of the compost (determination step, S45).

第5の判定方法
次に、図4を参照しながら、本実施形態による第5の判定方法について説明する。なお、本方法における抽出液生成ステップS51は、上述した第1の判定方法の抽出液生成ステップS11と同様である。
Fifth Determination Method Next, the fifth determination method according to the present embodiment will be described with reference to FIG. In addition, the extraction liquid production | generation step S51 in this method is the same as that of the extraction liquid production | generation step S11 of the 1st determination method mentioned above.

抽出液生成ステップS51において堆肥抽出液を生成した後、該堆肥抽出液に対し、紫外線を照射する。すなわち、堆肥抽出液をサンプルとして試料トレイ3にセットし(S52)、試料トレイ3を発光測定装置2内の暗室にセットする。そして、発光測定装置2の紫外光源11からサンプル(堆肥抽出液)へ紫外線を所定時間照射することにより、堆肥抽出液を励起する(紫外線照射ステップ、S53)。続いて、堆肥抽出液からの発光量を測定する(測定ステップ、S54)。測定された発光量に関するデータは判定手段10へ送られ、判定手段10において堆肥の腐熟度が判定される(判定ステップ、S55)。   After the compost extract is generated in the extract generation step S51, the compost extract is irradiated with ultraviolet rays. That is, the compost extract is set as a sample in the sample tray 3 (S52), and the sample tray 3 is set in a dark room in the luminescence measuring device 2. Then, the compost extract is excited by irradiating the sample (compost extract) with ultraviolet rays from the ultraviolet light source 11 of the luminescence measuring device 2 for a predetermined time (ultraviolet irradiation step, S53). Subsequently, the amount of luminescence from the compost extract is measured (measuring step, S54). Data relating to the measured light emission amount is sent to the determination means 10, and the determination means 10 determines the maturity of the compost (determination step, S55).

以上に説明した第1〜第5の判定方法は、互いに組み合わせて実施されてもよい。例えば、恒温処理ステップを経た堆肥抽出液を含むサンプルからの発光量と、抽出液処理ステップを経た堆肥抽出液を含むサンプルからの発光量と、紫外線照射ステップを経た堆肥抽出液を含むサンプルからの発光量と、堆肥抽出液に触れた植物体由来サンプルからの発光量とに基づいて、堆肥の腐熟度を判定してもよい。或いは、抽出液生成ステップにおいて生成された堆肥抽出液に対して、抽出液処理ステップと、恒温処理ステップと、紫外線照射ステップとを実施し、この堆肥抽出液を含むサンプルからの発光量に基づいて堆肥の腐熟度を判定しても良い。   The first to fifth determination methods described above may be implemented in combination with each other. For example, the amount of light emitted from a sample containing a compost extract subjected to a constant temperature treatment step, the amount of light emitted from a sample containing a compost extract subjected to an extract treatment step, and a sample containing a compost extract subjected to an ultraviolet irradiation step The maturity of compost may be determined based on the amount of luminescence and the amount of luminescence from the plant-derived sample that has come into contact with the compost extract. Alternatively, the compost extract produced in the extract production step is subjected to an extract treatment step, a constant temperature treatment step, and an ultraviolet irradiation step, and based on the amount of light emitted from the sample containing the compost extract. You may determine the maturity of compost.

上述した本実施形態による第1の判定方法は、次の効果を有する。すなわち、本発明者らは、後述する実施例において示すとおり、堆肥抽出液を含むサンプル(本判定方法では、堆肥抽出液そのもの)が微弱な光(バイオホトン)を発しており、この微弱な光の光量と堆肥の腐熟度との間に相関が存在することを見出した。従って、本実施形態による第1の判定方法によれば、判定対象の堆肥から堆肥抽出液をステップS11において生成し、この堆肥抽出液を含むサンプルからの発光量を測定ステップS13において測定し、判定ステップS14において上記相関を利用して堆肥の腐熟度を判定することにより、堆肥の腐熟度を簡易且つ迅速に判定することができる。また、本実施形態による第1の判定方法によれば、発光量といった定量的な尺度で堆肥の腐熟度を客観的に判定することができる。   The first determination method according to the present embodiment described above has the following effects. That is, as shown in the examples described later, the present inventors emitted faint light (biophoton) from a sample containing compost extract (in this determination method, compost extract itself). We found that there was a correlation between the amount of light and the maturity of compost. Therefore, according to the first determination method according to the present embodiment, a compost extract is generated from the compost to be determined in step S11, and the amount of luminescence from the sample containing the compost extract is measured in measurement step S13. By determining the maturity level of the compost using the correlation in step S14, the maturity level of the compost can be determined easily and quickly. In addition, according to the first determination method of the present embodiment, the maturity of compost can be objectively determined on a quantitative scale such as the amount of luminescence.

また、堆肥の腐熟度判定方法では、本実施形態の第2の判定方法のように、サンプルが、堆肥抽出液に触れた植物体由来サンプルであってもよい。本発明者らは、このような植物体由来サンプルが微弱な光(バイオホトン)を発し、この微弱な光の光量と堆肥の腐熟度との間に相関が存在することを見出した。従って、本実施形態による第2の判定方法によれば、判定対象の堆肥から堆肥抽出液をステップS21において生成し、この堆肥抽出液に触れた植物体由来サンプルからの発光量を測定ステップS24において測定し、判定ステップS25において上記相関を利用して堆肥の腐熟度を判定することにより、堆肥の腐熟度を簡易・迅速に且つ定量的に判定することができる。   Further, in the compost maturity determination method, the sample may be a plant-derived sample that has come into contact with the compost extract, as in the second determination method of the present embodiment. The present inventors have found that such a plant-derived sample emits faint light (biophoton), and there is a correlation between the amount of the faint light and the maturity of compost. Therefore, according to the 2nd determination method by this embodiment, the compost extract is produced | generated from the compost of determination object in step S21, and the light-emission quantity from the plant-derived sample which touched this compost extract is measured in step S24. By measuring and determining the maturity level of the compost using the above correlation in the determination step S25, the maturity level of the compost can be determined easily, quickly and quantitatively.

また、堆肥の腐熟度判定方法は、本実施形態の第3の判定方法のように、抽出液生成ステップS31と測定ステップS34との間に、堆肥抽出液に対して所定時間の恒温処理を行う恒温処理ステップS32を備えることが好ましい。これによって、後述する実施例において示すように、サンプルからの発光量が増し、堆肥の腐熟度をより正確に判定することができる。   Further, in the method for determining the degree of maturity of compost, as in the third determination method of the present embodiment, a constant temperature treatment is performed on the compost extract for a predetermined time between the extract generation step S31 and the measurement step S34. It is preferable to include a constant temperature processing step S32. Thereby, as shown in the Example mentioned later, the emitted light amount from a sample increases and it can determine the maturity of compost more correctly.

また、堆肥の腐熟度判定方法は、本実施形態の第4の判定方法のように、抽出液生成ステップS41と測定ステップS44との間に、酸性化処理、アルカリ化処理、または酸化促進処理を堆肥抽出液に対して行う抽出液処理ステップS42を備えることが好ましい。これによって、後述する実施例において示すように、サンプルからの発光量が増し、堆肥の腐熟度をより正確に判定することができる。   In addition, the compost maturity determination method performs acidification treatment, alkalinization treatment, or oxidation promotion treatment between the extract generation step S41 and the measurement step S44 as in the fourth determination method of the present embodiment. It is preferable to provide an extract processing step S42 performed on the compost extract. Thereby, as shown in the Example mentioned later, the emitted light amount from a sample increases and it can determine the maturity of compost more correctly.

また、堆肥の腐熟度判定方法は、本実施形態の第5の判定方法のように、抽出液生成ステップS51と測定ステップS54との間に、堆肥抽出液に対して紫外線を照射する紫外線照射ステップS52を備えることが好ましい。これによって、後述する実施例において示すように、サンプルからの発光量が増し、堆肥の腐熟度をより正確に判定することができる。   Moreover, the maturity determination method of compost is the ultraviolet irradiation step which irradiates a compost extract with an ultraviolet-ray between extraction liquid production | generation step S51 and measurement step S54 like the 5th determination method of this embodiment. It is preferable to include S52. Thereby, as shown in the Example mentioned later, the emitted light amount from a sample increases and it can determine the maturity of compost more correctly.

また、本実施形態による判定装置1は、次の効果を有する。すなわち、本実施形態による判定装置1によれば、光電子増倍管4及びフォトンカウンティング回路5において堆肥抽出液を含むサンプルからの発光量を測定し、判定手段10において発光量と腐熟度との相関関係を利用して堆肥の腐熟度を判定するので、堆肥の腐熟度を簡易・迅速に、且つ定量的に判定することができる。   Moreover, the determination apparatus 1 according to the present embodiment has the following effects. That is, according to the determination apparatus 1 according to the present embodiment, the photomultiplier tube 4 and the photon counting circuit 5 measure the light emission amount from the sample containing the compost extract, and the determination means 10 correlates the light emission amount and the maturity degree. Since the maturity of compost is determined using the relationship, the maturity of compost can be determined easily, quickly and quantitatively.

また、判定装置1は、本実施形態のように、サンプルに対して紫外線を照射する紫外光源11を備えることが好ましい。これによって、後述する実施例において示すように、サンプルからの発光量が増し、堆肥の腐熟度をより正確に判定することができる。   Moreover, it is preferable that the determination apparatus 1 is provided with the ultraviolet light source 11 which irradiates a sample with an ultraviolet-ray like this embodiment. Thereby, as shown in the Example mentioned later, the emitted light amount from a sample increases and it can determine the maturity of compost more correctly.

以下に示す各実施例では、堆肥抽出液を含むサンプルからの発光量と堆肥の腐熟度との相関の例を示す。なお、上記実施形態の判定ステップS14,S25,S35,S45,S55、及び判定手段10において適用される発光量と腐熟度との相関は、以下に示す各実施例に限定されるものではない。   In each Example shown below, the example of the correlation with the light-emission amount from the sample containing a compost extract and the maturity of compost is shown. Note that the correlation between the light emission amount and the maturity applied in the determination steps S14, S25, S35, S45, S55 and the determination means 10 of the above embodiment is not limited to the following examples.

まず、実施例1として、堆肥抽出液に触れた植物切片からの発光量と堆肥の腐熟度との相関について調べた。本実施例では、植物切片からの発光量と堆肥の腐熟度との相関を調べるために、腐熟度の異なる3種類の堆肥(まだ発酵が不十分であると判断された未熟堆肥、発酵がほぼ済んだと判断された終熟堆肥、及び一般に終熟として売られている市販堆肥の3種類)を用意した。また、本実施例では、酪農から出る糞尿を原料とする堆肥を用いた。   First, as Example 1, the correlation between the amount of luminescence from a plant section touching the compost extract and the maturity of the compost was examined. In this example, in order to investigate the correlation between the amount of luminescence from the plant section and the maturity of the compost, three types of compost having different maturity levels (i.e., immature compost that has been judged to be insufficiently fermented, almost no fermentation) Three kinds of mature compost judged to be finished and commercially available compost generally sold as matured) were prepared. In this example, compost made from manure from dairy was used.

堆肥抽出液の生成
本実施例においては、幼植物検定法において用いられる熱水抽出液法と同様の方法によって堆肥抽出液を生成した。すなわち、未熟堆肥、終熟堆肥、及び市販堆肥のそれぞれを風乾粉砕堆肥とし、風乾粉砕堆肥5gを200ml容三角フラスコにとり、沸騰水(90℃以上)100mlを加えた後、アルミホイルで三角フラスコに蓋をした。そして、これを1時間放置した後、三角フラスコ内の液体に二重のガーゼを通過させて濾過した。こうして濾過された液体を、それぞれ未熟堆肥抽出液、終熟堆肥抽出液、及び市販堆肥抽出液とした。なお、これらの堆肥抽出液を生成してから発光測定までに時間間隔があく場合には、堆肥抽出液を冷凍保存することが好ましい。
Production of Compost Extract In this example, a compost extract was produced by the same method as the hot water extract used in the seedling assay method. That is, each of immature compost, final mature compost, and commercial compost is made into air-dried compost, 5 g of air-dried compost is placed in a 200 ml Erlenmeyer flask, 100 ml of boiling water (90 ° C. or higher) is added, and then the Erlenmeyer flask is made into an Erlenmeyer flask. Covered. And after leaving this for 1 hour, the double gauze was passed through the liquid in the Erlenmeyer flask and filtered. The liquid thus filtered was used as an immature compost extract, a final compost extract, and a commercial compost extract, respectively. In addition, when there is a time interval between the generation of these compost extracts and the luminescence measurement, the compost extract is preferably stored frozen.

発芽試験
後に測定する堆肥抽出液からの発光量と堆肥の腐熟度との相関を調べるための前準備として、先に生成した未熟堆肥抽出液、終熟堆肥抽出液、及び市販堆肥抽出液を用いて堆肥の腐熟度の指標である幼植物検定法の発芽試験を行った。すなわち、未熟堆肥抽出液、終熟堆肥抽出液、及び市販堆肥抽出液それぞれを、予め二重の濾紙を敷いてあるシャーレに10mlずつ分注した。そして、その上からコマツナの種子50粒を播き、シャーレに蓋をして25℃で3日間放置した後、コマツナの発芽率を調査した。なお、本実施例では、上記作業を3回繰り返し、その平均値をコマツナの発芽率とした。その結果、未熟堆肥抽出液における発芽率は30.6%、終熟堆肥抽出液における発芽率及び市販堆肥抽出液における発芽率はそれぞれ100%となった。
As a preparation for investigating the correlation between the amount of luminescence from the compost extract measured after the germination test and the degree of maturity of the compost, the previously produced immature compost extract, final mature compost extract, and commercial compost extract were used. The germination test of the seedling test method, which is an index of the maturity of compost, was conducted. That is, immature compost extract, final compost extract, and commercially available compost extract were each dispensed 10 ml in a petri dish on which double filter paper had been previously laid. Then, 50 seeds of Komatsuna were sown from above, and the petri dish was capped and allowed to stand at 25 ° C. for 3 days, and then the germination rate of Komatsuna was investigated. In this example, the above operation was repeated three times, and the average value was taken as the germination rate of Komatsuna. As a result, the germination rate in the immature compost extract was 30.6%, the germination rate in the final compost extract and the germination rate in the commercial compost extract were 100%, respectively.

発光量の測定
まず、植物切片を作成した。すなわち、大根を1cm角(厚さ5mm)に、サツマイモを1cm角(厚さ5mm)に、大豆を1種子の半分に切断したものをそれぞれ3つ用意した。なお、これらの植物切片の作成は、発光量を測定する5分前に行った。その後、各植物切片をそれぞれ25mmステンレスシャーレに入れ、各植物の3切片それぞれの表面(切断面)に、未熟堆肥抽出液、終熟堆肥抽出液、及び市販堆肥抽出液それぞれを1mlずつ滴下した。なお、このとき、各堆肥抽出液の温度を、土壌中における野菜の生育に最も適する25℃に統一した。こうして準備したシャーレを試料トレイ3(図1参照)にのせて発光測定装置2にセットし、各植物切片から放出される光子の数(すなわち発光量)を80分間測定した。
Measurement of luminescence amount First, a plant slice was prepared. That is, three radish cut into 1 cm square (thickness 5 mm), sweet potato cut into 1 cm square (thickness 5 mm), and soybean cut into half of one seed were prepared. In addition, preparation of these plant sections was performed 5 minutes before measuring the amount of luminescence. Thereafter, each plant section was placed in a 25 mm stainless steel dish, and 1 ml each of an immature compost extract, a final compost extract, and a commercially available compost extract was dropped on the surface (cut surface) of each of the three sections of each plant. At this time, the temperature of each compost extract was unified to 25 ° C., which is most suitable for the growth of vegetables in the soil. The petri dish thus prepared was placed on the sample tray 3 (see FIG. 1) and set in the luminescence measuring device 2, and the number of photons emitted from each plant section (that is, the amount of luminescence) was measured for 80 minutes.

図5〜図7は、それぞれ大根切片、サツマイモ切片、及び大豆切片から放出された光子数の時間変化を示すグラフである。これらの図中のグラフG1、G4、及びG7は未熟堆肥抽出液を滴下された切片からの発光量を示しており、グラフG2、G5、及びG8は終熟堆肥抽出液を滴下された切片からの発光量を示しており、グラフG3、G6、及びG9は市販堆肥抽出液を滴下された切片からの発光量を示している。また、図8は、大根切片、サツマイモ切片、及び大豆切片のそれぞれにおける80分間の光子数を示す表である。なお、図8において、括弧内の数値は市販堆肥抽出液を滴下された切片から放出された光子数を100として、各光子数を規格化した数値である。   5 to 7 are graphs showing temporal changes in the number of photons emitted from the radish slice, sweet potato slice, and soybean slice, respectively. The graphs G1, G4, and G7 in these figures show the amount of light emitted from the slices dropped with the immature compost extract, and the graphs G2, G5, and G8 show the shots from the slice dropped with the final compost extract. The graphs G3, G6, and G9 show the amount of light emitted from the section where the commercial compost extract was dropped. Moreover, FIG. 8 is a table | surface which shows the number of photons for 80 minutes in each of a radish slice, a sweet potato slice, and a soybean slice. In FIG. 8, the numerical value in parentheses is a numerical value obtained by normalizing the number of photons, where the number of photons emitted from the section into which the commercial compost extract is dropped is 100.

図5〜図7に示すように、大根切片及びサツマイモ切片については、未熟堆肥抽出液を滴下された切片から放出される光子数(発光量)が時間の経過とともに増加した。大豆切片については、未熟堆肥抽出液、終熟堆肥抽出液、及び市販堆肥抽出液のいずれを滴下されたかに関係なく時間の経過とともに光子放出数が減少したが、未熟堆肥抽出液を滴下された切片からの光子放出数は、全ての時間帯において他の堆肥抽出液を滴下された切片からの光子放出数よりも多かった。また、図8に示すように、いずれの植物切片においても、未熟堆肥抽出液を滴下された切片の光子放出数が他の堆肥抽出液を滴下された切片の光子放出数よりも多かった。大根切片、サツマイモ切片、及び大豆切片のそれぞれからの光子放出数と上記発芽試験結果(コマツナ発芽率)との相関値は、大根切片では0.85、サツマイモ切片では0.91、大豆切片では0.90となり、かなり高い正の相関が見出された。   As shown in FIGS. 5 to 7, for the radish slice and the sweet potato slice, the number of photons (the amount of luminescence) emitted from the slice dropped with the immature compost extract increased with time. For soybean slices, the number of photons emitted decreased with time regardless of whether the immature compost extract, the final compost extract, or the commercial compost extract was dripped, but the immature compost extract was dripped. The number of photons emitted from the sections was higher than the number of photons emitted from the sections dropped with other compost extracts in all time zones. Moreover, as shown in FIG. 8, in any plant section, the number of photons emitted from the sections dropped with immature compost extract was higher than the number of photons emitted from the sections dropped with other compost extracts. The correlation values between the number of photons emitted from each of the radish slice, sweet potato slice, and soybean slice and the germination test result (komatsuna germination rate) were 0.85 for radish slice, 0.91 for sweet potato slice, and 0 for soybean slice. .90, a fairly high positive correlation was found.

以上に説明した本実施例によって、堆肥抽出液に触れた植物切片からの光子放出数(すなわち発光量)と、当該堆肥の腐熟度との間に相関があることが見出された。   By the present Example described above, it was found that there is a correlation between the number of photons emitted from the plant sections touched with the compost extract (that is, the amount of luminescence) and the maturity of the compost.

次に、実施例2として、堆肥抽出液からの発光量と堆肥の腐熟度との相関について調べた。本実施例では、上記実施例1における未熟堆肥、終熟堆肥、及び市販堆肥を同様に用いた。また、これらの堆肥抽出液の生成方法、及び発芽試験方法については、上記実施例1と同様なので詳細な説明を省略する。   Next, as Example 2, the correlation between the amount of light emitted from the compost extract and the maturity of the compost was examined. In this example, immature compost, final matured compost, and commercially available compost in Example 1 were used in the same manner. Moreover, since the production | generation method of these compost extracts and the germination test method are the same as that of the said Example 1, detailed description is abbreviate | omitted.

発光量の測定
未熟堆肥抽出液、終熟堆肥抽出液、及び市販堆肥抽出液をそれぞれ1ml入れた3つのステンレスシャーレを用意し、これらのシャーレをひとつずつ試料トレイ3にのせて発光測定装置2にセットし、堆肥抽出液から放出される光子の数を各堆肥抽出液についてそれぞれ60分間測定した。
Measurement of luminescence amount Prepare three stainless steel petri dishes each containing 1 ml of immature compost extract, final compost extract, and commercial compost extract, and place these petri dishes one by one on the sample tray 3 in the luminescence measuring device 2. The number of photons emitted from the compost extract was measured for each compost extract for 60 minutes.

図9(a)は、各堆肥抽出液から放出された光子数の時間変化を示すグラフである。図中のグラフG10、G11、及びG12は、それぞれ未熟堆肥抽出液からの光子放出数、終熟堆肥抽出液からの光子放出数、及び市販堆肥抽出液からの光子放出数を示している。また、図9(b)は、未熟堆肥抽出液、終熟堆肥抽出液、及び市販堆肥抽出液のそれぞれから60分間に放出された光子数を示すグラフである。   Fig.9 (a) is a graph which shows the time change of the photon number discharge | released from each compost extract. Graphs G10, G11, and G12 in the figure respectively indicate the number of photons emitted from the immature compost extract, the number of photons emitted from the mature compost extract, and the number of photons emitted from the commercial compost extract. FIG. 9B is a graph showing the number of photons emitted from each of the immature compost extract, the final compost extract, and the commercial compost extract for 60 minutes.

図9(a)及び図9(b)に示すように、未熟堆肥抽出液からの光子放出数は全ての時間帯において他の堆肥抽出液からの光子放出数よりも多く、また、未熟堆肥抽出液からの光子放出総数も他の堆肥抽出液からの光子放出総数よりも多かった。本実施例における光子放出総数と上記発芽試験結果(コマツナ発芽率)との相関値は−0.97となり、かなり高い負の相関が見出された。   As shown in FIG. 9 (a) and FIG. 9 (b), the number of photons emitted from the immature compost extract is larger than the number of photons emitted from other compost extracts in all time zones. The total number of photons emitted from the liquor was also higher than the total number of photons emitted from other compost extracts. The correlation value between the total number of photons emitted in this example and the germination test result (komatsuna germination rate) was −0.97, and a fairly high negative correlation was found.

以上に説明した本実施例によって、堆肥抽出液から放出された光子の数(すなわち発光量)と、当該堆肥の腐熟度との間に相関があることが見出された。   According to the present embodiment described above, it was found that there is a correlation between the number of photons emitted from the compost extract (that is, the amount of luminescence) and the maturity of the compost.

次に、実施例3として、様々な堆肥原料から生成した堆肥抽出液からの発光量と、堆肥の腐熟度との相関について調べた。上記実施例1及び2では酪農から出た糞尿を原料とする堆肥を使って発光量と腐熟度との相関を調べたが、実際の堆肥は、酪農堆肥に加えて、鶏糞等の家畜排泄物、食品副産物、剪定くず、家庭ゴミなどに由来する堆肥も利用される。従って、本実施例では、上記のような様々な堆肥原料から生成された堆肥を用意した。図10は、本実施例に用いた堆肥の採材地、由来、腐熟度の生産者評価、水分、窒素成分、pH値、及びECを示す表である。図10に示すように、本実施例では由来や腐熟度の異なる40種類の堆肥を用意した。   Next, as Example 3, the correlation between the amount of luminescence from the compost extract produced from various compost raw materials and the maturity of the compost was examined. In Examples 1 and 2 above, the correlation between the amount of luminescence and maturity was investigated using compost made from manure from dairy farms, but the actual compost is not only dairy compost but also livestock excrement such as chicken manure. Compost derived from food by-products, pruning waste and household waste is also used. Therefore, in the present Example, the compost produced | generated from the above various compost raw materials was prepared. FIG. 10 is a table showing the sampling place, origin, producer evaluation of maturity, moisture, nitrogen component, pH value, and EC of the compost used in this example. As shown in FIG. 10, 40 types of compost having different origins and maturity levels were prepared in this example.

堆肥抽出液の生成
図10に示した40種類の堆肥のそれぞれを風乾粉砕堆肥とし、風乾粉砕堆肥5gに蒸留水100mlを加え撹拌し、60℃で3時間保温した後、メッシュで濾過して堆肥抽出液を生成した。なお、堆肥抽出液を各試験に供するまで、堆肥抽出液を−10℃で冷凍保存した。
Production of compost extract Each of the 40 types of compost shown in FIG. 10 is air-dried and composted, 100 ml of distilled water is added to 5 g of air-dried compost, and the mixture is stirred at 60 ° C. for 3 hours, and then filtered through a mesh. An extract was produced. In addition, the compost extract was stored frozen at −10 ° C. until the compost extract was used for each test.

発芽試験
堆肥抽出液からの発光量と堆肥の腐熟度との相関を調べるための前準備として、先に生成した40種類の堆肥それぞれの堆肥抽出液を用いて発芽試験(発芽率、根長、発芽遅延)を行った。本実施例では、発芽試験を行う前に各堆肥抽出液をそれぞれ二つに分け、その一方の堆肥抽出液にリン酸緩衝液を加えることによりECを4.0に調整し、他方の堆肥抽出液のECを未調整とした。本実施例におけるEC未調整の発芽試験結果を図11に、EC調整済の発芽試験結果を図12に示す。図11及び図12は、40種類の各堆肥抽出液におけるコマツナ発芽率の平均値、コマツナ根長の指数及び平均値、並びに発芽遅延の遅延率及び平均値を示している。なお、発芽遅延の平均値は、播種した50個のコマツナの種のうち1日〜1.5日で発芽しなかった個体数を示している。
Germination test As a preparation for investigating the correlation between the amount of luminescence from the compost extract and the maturity of the compost, the germination test (germination rate, root length, Germination delay). In this example, each compost extract was divided into two before the germination test, and EC was adjusted to 4.0 by adding a phosphate buffer to one of the compost extracts, and the other compost extract was extracted. The EC of the liquid was not adjusted. FIG. 11 shows the germination test result without EC adjustment in this example, and FIG. 12 shows the germination test result after EC adjustment. 11 and 12 show the average value of the Komatsuna germination rate, the index and average value of the Komatsuna root length, and the delay rate and average value of the germination delay in each of the 40 types of compost extracts. In addition, the average value of germination delay has shown the number of individuals which did not germinate in 1 day-1.5 days among the seeds of 50 Komatsuna seeded.

発光量の測定
40種類の各堆肥抽出液をそれぞれ二分割し、第1及び第2のグループに分けた。そして、第1のグループについては解凍直後に、第2のグループについては35℃のインキュベータ中で24時間放置した(恒温処理)後に、それぞれ次のようにして発光測定を行った。すなわち、堆肥抽出液をアルミ製シャーレ(外径38mm、高さ10mm、厚さ1mm)に2ml入れ、発光測定装置2(図1参照)においてゲート時間1秒、測定時間5分といった条件で堆肥抽出液からの光子放出数を測定した。
Measurement of luminescence amount Each of the 40 types of compost extract was divided into two and divided into first and second groups. The first group was subjected to luminescence measurement immediately after thawing, and the second group was allowed to stand in an incubator at 35 ° C. for 24 hours (constant temperature treatment), and then subjected to luminescence measurement as follows. That is, 2 ml of the compost extract is put into an aluminum petri dish (outer diameter 38 mm, height 10 mm, thickness 1 mm), and compost is extracted under the conditions of a gate time of 1 second and a measurement time of 5 minutes in the luminescence measuring device 2 (see FIG. 1). The number of photons emitted from the liquid was measured.

図13は、図11及び図12に示した発芽率、根長指数、及び発芽遅延指数と、上記発光測定において測定された堆肥抽出液からの光子放出数との相関値を示す表である。図13に示すように、恒温処理(35℃、24時間)を実施したEC未調整の堆肥抽出液からの光子放出数と、発芽率、根長指数、及び発芽遅延指数との間に高い相関があることを本発明者らは見出した。また、恒温処理を実施したEC調整済の堆肥抽出液からの光子放出数と発芽率との間にも、比較的高い相関があることを本発明者らは見出した。なお、図13において、比較的高い相関値には下線を付している。この結果から、測定ステップを行う前に堆肥抽出液に対して恒温処理ステップを行うことが好ましいことがわかる。なお、この結果は、未熟堆肥では易分解物の比率が高いことから、恒温(35℃)条件下において分解が促進されたことによるものと考えられ、その際の分解に伴う酸化反応の差から図13のような相関が得られたと考えられる。   FIG. 13 is a table showing a correlation value between the germination rate, root length index, and germination delay index shown in FIGS. 11 and 12 and the number of photons emitted from the compost extract measured in the luminescence measurement. As shown in FIG. 13, there is a high correlation between the number of photons emitted from the EC non-adjusted compost extract subjected to isothermal treatment (35 ° C., 24 hours) and the germination rate, root length index, and germination delay index. The present inventors have found that there is. The present inventors have also found that there is a relatively high correlation between the number of photons emitted from the EC-adjusted compost extract subjected to the isothermal treatment and the germination rate. In FIG. 13, the relatively high correlation value is underlined. From this result, it can be seen that it is preferable to perform a constant temperature treatment step on the compost extract before performing the measurement step. In addition, this result is considered to be due to the fact that immature compost has a high ratio of easily decomposables, and therefore it is considered that decomposition was promoted under constant temperature (35 ° C) conditions, and from the difference in oxidation reaction accompanying decomposition at that time It is considered that the correlation as shown in FIG. 13 was obtained.

また、図13に示された相関値のうち比較的高い相関値に基づき、恒温処理を施された堆肥抽出液からの光子放出数X1とコマツナ発芽検定における発芽率Y1との相関を以下の数式(1)のように表すことができる。同様に、光子放出数X1とコマツナ発芽遅延Y2との相関を以下の数式(2)のように表すことができる。また、恒温処理を施されたEC調整済の堆肥抽出液からの光子放出数X2とEC調整済でのコマツナ発芽率Y3との相関を以下の数式(3)のように表すことができる。なお、式中のRは重相関である。
[数1]
1=-59.7X1+157.4 R=0.68 ・・・(1)
[数2]
2=-86X1+174.7 R=0.66 ・・・(2)
[数3]
3=-33.3X2+130.6 R=0.66 ・・・(3)
前述した実施形態において、判定ステップ(判定手段)は、このように定式化された堆肥抽出液からの発光量と堆肥の腐熟度との相関に基づいて、発芽率や発芽遅延を推定することにより、堆肥の腐熟度を判定することができる。
Further, based on a relatively high correlation value shown in FIG. 13, the correlation between the photon emission number X 1 from the compost extract subjected to isothermal treatment and the germination rate Y 1 in the Komatsuna germination test is as follows: It can be expressed as the following formula (1). Similarly, the correlation between the photon emission number X 1 and the Komatsuna germination delay Y 2 can be expressed as the following formula (2). Further, the correlation between the photon emission number X 2 from the EC-adjusted compost extract subjected to the isothermal treatment and the Komatsuna germination rate Y 3 after the EC adjustment can be expressed as the following formula (3). . Note that R in the formula is a multiple correlation.
[Equation 1]
Y 1 = -59.7X 1 +157.4 R = 0.68 (1)
[Equation 2]
Y 2 = -86X 1 +174.7 R = 0.66 (2)
[Equation 3]
Y 3 = -33.3X 2 +130.6 R = 0.66 (3)
In the embodiment described above, the determination step (determination means) estimates the germination rate and germination delay based on the correlation between the amount of luminescence from the compost extract formulated in this way and the degree of maturity of compost. The maturity of compost can be determined.

次に、実施例4として、紫外線を照射された堆肥抽出液からの発光量と、堆肥の腐熟度との相関について調べた。なお、本実施形態における堆肥原料は、上記実施例3(図10参照)と同様とした。また、本実施例においても上記実施例3と同様に、各堆肥抽出液をそれぞれ二つに分け、その一方の堆肥抽出液にリン酸緩衝液を加えることによりECを4.0に調整し、他方の堆肥抽出液のECを未調整とした。   Next, as Example 4, the correlation between the amount of luminescence from the compost extract irradiated with ultraviolet rays and the maturity of the compost was examined. In addition, the compost raw material in this embodiment was the same as that in Example 3 (see FIG. 10). Also in this example, as in Example 3 above, each compost extract was divided into two parts, and the EC was adjusted to 4.0 by adding a phosphate buffer to one of the compost extracts, The EC of the other compost extract was not adjusted.

発光量の測定
EC未調整の40種類の各堆肥抽出液をそれぞれ三分割し、第1〜第3のグループに分けた。そして、第1のグループについては解凍直後に、第2のグループについては35℃のインキュベータ中で24時間放置した後に、第3のグループについては35℃のインキュベータ中で48時間放置した後に、それぞれ次のようにして発光測定を行った。すなわち、堆肥抽出液をアルミ製シャーレに2ml入れ、発光測定装置2にセットした後、紫外光源11から堆肥抽出液に紫外線を5秒間照射した。そして、ゲート時間1秒、測定時間5分といった条件で堆肥抽出液からの光子放出数を測定した。また、EC調整済の40種類の各堆肥抽出液についても、上記手順で光子放出数を測定した。
Measurement of luminescence amount Each of 40 types of compost extracts without EC adjustment was divided into three and divided into first to third groups. The first group was immediately after thawing, the second group was left in an incubator at 35 ° C. for 24 hours, and the third group was left in an incubator at 35 ° C. for 48 hours. Luminescence measurement was performed as follows. That is, 2 ml of the compost extract was placed in an aluminum petri dish and set in the light emission measuring device 2, and then the compost extract was irradiated with ultraviolet light from the ultraviolet light source 11 for 5 seconds. Then, the number of photons emitted from the compost extract was measured under conditions such as a gate time of 1 second and a measurement time of 5 minutes. In addition, the number of photons emitted was also measured in the above procedure for each of the 40 types of compost extracts adjusted for EC.

図14は、図11及び図12に示した根長指数、根長平均値、発芽遅延指数、及び発芽率と、堆肥抽出液からの光子放出数に基づく以下の数値A1〜A5との相関値を示す表である。すなわち、解凍直後の光子放出数をa1、24時間恒温処理後の光子放出数をa2、48時間恒温処理後の光子放出数をa3として、A1=a2−a1、A2=a3−a1、A3=a2/a1、A4=a3/a1、A5=a3/a2である。 FIG. 14 shows the following numerical values A 1 to A 5 based on the root length index, root length average value, germination delay index, and germination rate shown in FIGS. 11 and 12, and the number of photons emitted from the compost extract. It is a table | surface which shows a correlation value. That is, assuming that the photon emission number immediately after thawing is a 1 , the photon emission number after the 24-hour isothermal treatment is a 2 , and the photon emission number after the 48-hour isothermal treatment is a 3 , A 1 = a 2 −a 1 , A 2 = A 3 -a 1 , A 3 = a 2 / a 1 , A 4 = a 3 / a 1 , A 5 = a 3 / a 2 .

図14に示すように、EC未調整であり恒温処理(35℃、48時間)と紫外線照射処理とを施された堆肥抽出液からの発光量と、EC未調整での発芽率との間に、比較的高い相関が見出された(例えば数値A2,A4)。また、上記数値A5と、EC未調整での根長指数、根長平均値、発芽遅延率、及び発芽率との間に比較的高い相関が見出された。また、上記数値A5と、EC調整済での発芽遅延率及び発芽率との間に比較的高い相関が見出された。なお、図14において、比較的高い相関値には下線を付している。この結果から、測定ステップを行う前に堆肥抽出液に対して紫外線照射ステップを行うことが好ましいことがわかる。 As shown in FIG. 14, the amount of light emitted from the compost extract that has not been adjusted for EC and that has been subjected to constant temperature treatment (35 ° C., 48 hours) and ultraviolet irradiation treatment, and the germination rate without EC adjustment. A relatively high correlation was found (for example, numerical values A 2 and A 4 ). In addition, a relatively high correlation was found between the numerical value A 5 and the root length index, root length average value, germination delay rate, and germination rate without EC adjustment. Further, a relatively high correlation was found between the numerical value A 5 and the germination delay rate and germination rate after EC adjustment. In FIG. 14, the relatively high correlation value is underlined. This result shows that it is preferable to perform an ultraviolet irradiation step with respect to the compost extract before performing a measurement step.

また、図14は、堆肥分析値(水分、窒素成分、pH値、及びEC)と、堆肥抽出液からの光子放出数に基づく数値A1〜A5との相関値も示している。 FIG. 14 also shows correlation values between the compost analysis values (water, nitrogen component, pH value, and EC) and numerical values A 1 to A 5 based on the number of photons emitted from the compost extract.

次に、実施例5として、酸性化処理、アルカリ化処理、または酸化促進処理を施された堆肥抽出液からの発光量と、堆肥の腐熟度との相関について調べた。なお、本実施形態における堆肥原料は、上記実施例3(図10参照)のうち、pH値に基づいて選択した15種類(No.2,4,10,11,13,15,18,20,22,24,25,26,30,32,34)とし、蒸留水をブランクとした。また、本実施例においても上記実施例3,4と同様に、各堆肥抽出液をそれぞれ二つに分け、その一方の堆肥抽出液にリン酸緩衝液を加えることによりECを4.0に調整し、他方の堆肥抽出液のECを未調整とした。   Next, as Example 5, the correlation between the amount of luminescence from the compost extract subjected to acidification, alkalinization, or oxidation promotion and the maturity of the compost was examined. In addition, the compost raw material in this embodiment is 15 types (No. 2, 4, 10, 11, 13, 15, 18, 20, 20) selected based on the pH value in Example 3 (see FIG. 10). 22, 24, 25, 26, 30, 32, 34) and distilled water as a blank. Also in this example, as in Examples 3 and 4, each compost extract was divided into two, and the EC was adjusted to 4.0 by adding a phosphate buffer to one of the compost extracts. The EC of the other compost extract was not adjusted.

発光量の測定
EC未調整の解凍直後の堆肥抽出液2mlをスチロール製シャーレ(外径40mm、高さ10mm、厚さ1mm)に入れ、15種類の堆肥抽出液を連続して測定可能な発光測定装置にシャーレをセットした後、光量測定の開始直前に各処理薬剤(酸性化処理を行う場合は1N−HCl0.5ml、アルカリ化処理を行う場合はNaOH0.5ml、酸化促進処理を行う場合は46%H220.2ml)を加え、ゲート時間1秒、測定時間80分といった条件で堆肥抽出液からの光子放出数を測定した。また、EC調整済の堆肥抽出液についても、上記手順で光子放出数を測定した。
Measurement of luminescence amount 2 ml of compost extract immediately after thawing without EC adjustment is put in a styrene petri dish (outer diameter 40 mm, height 10 mm, thickness 1 mm), and luminescence measurement that can measure 15 types of compost extract continuously. After setting the petri dish on the apparatus, immediately before starting the light quantity measurement, each treatment agent (0.5 ml of 1N HCl for acidification treatment, 0.5 ml of NaOH for alkalinization treatment, 46 for oxidation promotion treatment) % H 2 O 2 0.2 ml) was added, and the number of photons emitted from the compost extract was measured under the conditions of a gate time of 1 second and a measurement time of 80 minutes. In addition, the number of photons emitted from the EC-adjusted compost extract was also measured according to the above procedure.

図15〜図17は、堆肥抽出液に酸性化処理を施した場合(図15)、堆肥抽出液にアルカリ化処理を施した場合(図16)、堆肥抽出液に酸化促進処理を施した場合(図17)のそれぞれにおける、図11及び図12に示した根長指数、根長平均値、発芽遅延指数、及び発芽率と、堆肥抽出液からの光子放出数に基づく以下の数値B1〜B7との相関値を示す表である。なお、図15〜図17において、顕著な相関値には二重下線を、比較的高い相関値には下線をそれぞれ付している。
1=(堆肥抽出液からの80分間の光子数の総和)
2=B1−(ブランクからの80分間の光子数の総和)
3=(堆肥抽出液からの80分間の光子数の総和)−(処理薬液を加えない堆肥抽出液からの80分間の光子数の総和)
4=B3−(ブランクからの80分間の光子数の総和)
5=B4の絶対値の対数
6=(堆肥抽出液からの80分間の光子数の偏差)
7=B6の絶対値の対数
FIGS. 15 to 17 show the case where the compost extract is subjected to an acidification treatment (FIG. 15), the compost extract is subjected to an alkalinization treatment (FIG. 16), and the compost extract is subjected to an oxidation promotion treatment. In each of (FIG. 17), the following numerical values B 1 to B based on the root length index, root length average value, germination delay index, and germination rate shown in FIGS. 11 and 12 and the number of photons emitted from the compost extract it is a table showing a correlation value between B 7. 15 to 17, the significant correlation value is underlined with a double underline, and the relatively high correlation value is underlined.
B 1 = (Total number of photons from compost extract for 80 minutes)
B 2 = B 1 − (total number of photons from blank for 80 minutes)
B 3 = (total number of photons in 80 minutes from the compost extract) − (total number of photons in 80 minutes from the compost extract to which no treatment chemical solution is added)
B 4 = B 3 − (total number of photons from blank for 80 minutes)
B 5 = logarithm of the absolute value of B 4 B 6 = (80-minute photon deviation from compost extract)
B 7 = logarithm of the absolute value of B 6

本実施例では、酸性化処理やアルカリ化処理といったpH調整処理または酸化促進処理によって、堆肥抽出液に恒温処理を行う実施例3よりも大きな光子放出数が得られた。また、図15〜図17に示すように、pH調整処理または酸化促進処理を施した場合には、根長、発芽遅延、発芽率といった生物検定値だけでなく水分や窒素成分量といった理化学分析値においても比較的高い相関が見出された。未熟な堆肥から生成した堆肥抽出液中ほど易分解性物質が多く含まれるため、化学反応が促進される条件下では光子放出の主因となる酸化反応が促進されるであろうことは前述したが、本実施例ではpH値が調整されることにより一部の酸化反応が増幅されたものと推察される。また、本実施例では、酸化促進処理を施した場合に、pH値を調整した場合と比較してより大きな光子放出数が得られた。酸素付加を伴う酸化反応は継続的な連鎖性を示すことから、分解性の高い酸素源の供給により酸化反応が増幅されたものと推察される。   In this example, a larger number of photon emission was obtained than in Example 3 in which the compost extract was subjected to constant temperature treatment by pH adjustment treatment or oxidation promotion treatment such as acidification treatment or alkalinization treatment. As shown in FIGS. 15 to 17, when pH adjustment treatment or oxidation promotion treatment is performed, not only bioassay values such as root length, germination delay and germination rate but also physicochemical analysis values such as moisture and nitrogen component amounts A relatively high correlation was also found. As described above, the compost extract produced from immature compost contains more readily degradable substances, so that the oxidation reaction, which is the main cause of photon emission, will be promoted under conditions where the chemical reaction is promoted. In this example, it is presumed that a part of the oxidation reaction was amplified by adjusting the pH value. Further, in this example, when the oxidation promotion treatment was performed, a larger photon emission number was obtained as compared with the case where the pH value was adjusted. Since the oxidation reaction accompanied by oxygen addition shows a continuous chain property, it is presumed that the oxidation reaction was amplified by the supply of a highly decomposable oxygen source.

図15〜図17に示された相関値のうち比較的高い相関値に基づき、堆肥抽出液からの光子放出数(発光量)と堆肥の腐熟度との相関を定式化することができる。例えば、酸化促進処理を施されたEC調整済の堆肥抽出液からの光子放出数X3とEC調整済でのコマツナ根長Y4との相関を以下の数式(4)のように表すことができる。また、酸化促進処理を施されたEC未調整の堆肥抽出液からの光子放出数X4と堆肥の水分量Y5との相関を以下の数式(5)のように表すことができる。
[数4]
4=-5.8X3+39.1 R=0.72 ・・・(4)
[数5]
5=37X4−122.9 R=0.60 ・・・(5)
前述した実施形態において、判定ステップ(判定手段)は、このように定式化された堆肥抽出液からの光子放出数と堆肥の腐熟度との相関に基づいて、コマツナ根長や堆肥水分量を推定し、堆肥の腐熟度を判定することができる。
Based on a relatively high correlation value among the correlation values shown in FIGS. 15 to 17, the correlation between the number of photons emitted from the compost extract (emission amount) and the maturity of the compost can be formulated. For example, the correlation between the photon emission number X 3 from the EC-adjusted compost extract subjected to oxidation promotion treatment and the Komatsuna root length Y 4 after the EC adjustment can be expressed as the following formula (4). it can. Further, the correlation between the photon emission number X 4 from the EC non-adjusted compost extract subjected to the oxidation promotion treatment and the moisture amount Y 5 of the compost can be expressed as the following formula (5).
[Equation 4]
Y 4 = -5.8X 3 +39.1 R = 0.72 (4)
[Equation 5]
Y 5 = 37X 4 -122.9 R = 0.60 (5)
In the embodiment described above, the determination step (determination means) estimates the komatsuna root length and the amount of compost moisture based on the correlation between the number of photons emitted from the compost extract formulated in this way and the maturity of the compost. And the maturity of the compost can be determined.

次に、実施例6として、堆肥抽出液を滴下された大根切片からの光子放出数と、堆肥の腐熟度との相関について調べた。なお、本実施形態における堆肥原料は、上記実施例3(図10参照)のうち、20種類(No.1〜5,7〜15,18〜21,24)とした。また、本実施例においても上記実施例3〜5と同様に、各堆肥抽出液をそれぞれ二つに分け、その一方の堆肥抽出液にリン酸緩衝液を加えることによりECを4.0に調整し、他方の堆肥抽出液のECを未調整とした。   Next, as Example 6, the correlation between the number of photons emitted from the radish slices dropped with the compost extract and the maturity of the compost was examined. In addition, the compost raw material in this embodiment was made into 20 types (No. 1-5, 7-15, 18-21, 24) among the said Example 3 (refer FIG. 10). Also in this example, as in Examples 3-5 above, each compost extract was divided into two, and the EC was adjusted to 4.0 by adding a phosphate buffer to one of the compost extracts. The EC of the other compost extract was not adjusted.

発光量の測定
青首大根の中間部を約3mm厚にスライスした後に直径36mmの円板状に成形し、大根切片を作成した。これを実施例5のスチロール製シャーレに入れた後に、大根切片の切断面上にEC未調整の堆肥抽出液0.15mlを滴下し、20℃のインキュベータ内で放置した。そして、堆肥抽出液の滴下1時間後,2時間後,3時間後,4時間後,及び24時間後に、ゲート時間10秒、測定時間3分といった条件で大根切片からの光子放出数を測定した。また、EC調整済の堆肥抽出液についても、上記手順で光子放出数を測定した。なお、24時間後の測定では、円板状の大根切片の表面及び裏面からの光子放出数をそれぞれ測定した。
Measurement of luminescence amount The middle part of the blue neck radish was sliced to a thickness of about 3 mm and then formed into a disk shape having a diameter of 36 mm to prepare a radish slice. After putting this in the styrene petri dish of Example 5, 0.15 ml of non-EC-adjusted compost extract was dropped on the cut surface of the radish section and left in an incubator at 20 ° C. Then, the number of photons emitted from the radish slices was measured under the conditions of 1 hour, 2 hours, 3 hours, 4 hours, and 24 hours after dropping the compost extract, with a gate time of 10 seconds and a measurement time of 3 minutes. . In addition, the number of photons emitted from the EC-adjusted compost extract was also measured according to the above procedure. In the measurement after 24 hours, the number of photons emitted from the front and back surfaces of the disc-shaped radish slice was measured.

図18は、大根切片に堆肥抽出液を滴下したときの、図11及び図12に示した根長指数、根長平均値、発芽遅延指数、及び発芽率と、大根切片からの光子放出数との相関値を、堆肥抽出液の滴下1時間後,2時間後,3時間後,4時間後,24時間後(切片表面),及び24時間後(切片裏面)のそれぞれについて示す表である。なお、図18において、比較的高い相関値には下線を付している。   FIG. 18 shows the root length index, root length average value, germination delay index, and germination rate shown in FIGS. 11 and 12, and the number of photons emitted from the radish slice when the compost extract was dropped on the radish slice. Is a table showing the respective correlation values of 1 hour, 2 hours, 3 hours, 4 hours, 24 hours (section surface), and 24 hours (section back surface) after dropping of the compost extract. In FIG. 18, the relatively high correlation value is underlined.

本実施例では、堆肥抽出液を滴下された大根切片から得られた光子数は恒温処理した堆肥抽出液からの光子数よりも多く、また短時間で光子数の変化が現れた。大根切片からの光子数と生物検定値との間には滴下24時間後に比較的高い相関が見出され、滴下1時間後にさらに高い相関が見出された。その要因として、植物体の組織液中に含まれる酵素等によって堆肥中の未分解物質の分解が促進されたことや、酸化反応が増幅されたこと等が推察される。また、堆肥抽出液中の有害物質に対する植物(大根切片)のストレス反応により酸化反応が促進されたことが推察される。   In this example, the number of photons obtained from the radish slices to which the compost extract was dropped was larger than the number of photons from the compost extract subjected to isothermal treatment, and a change in the number of photons appeared in a short time. A relatively high correlation was found between the photon number from the radish slice and the bioassay value 24 hours after the dropping, and a higher correlation was found 1 hour after the dropping. This is presumed to be due to the fact that the decomposition of undegraded substances in the compost was promoted by the enzymes contained in the tissue fluid of the plant body, the oxidation reaction was amplified, and the like. Moreover, it is guessed that the oxidation reaction was accelerated | stimulated by the stress reaction of the plant (radish slice) with respect to the harmful substance in a compost extract.

図18に示された相関値のうち比較的高い相関値に基づき、大根切片からの光子放出数と堆肥の腐熟度との相関を定式化することができる。例えば、EC未調整の堆肥抽出液を滴下された大根切片からの光子放出数X5と、コマツナ発芽率Y1、コマツナ発芽遅延Y2、及びコマツナ根長Y6との相関を、それぞれ以下の数式(6)〜(8)のように表すことができる。また、大根切片からの光子放出数X5と、窒素成分Y7、pH値Y8、及びECY9との相関を、それぞれ以下の数式(9)〜(11)のように表すことができる。
[数6]
1=68.9X5−42.6 R=0.62 ・・・(6)
[数7]
2=98.3X5−111.8 R=0.67 ・・・(7)
[数8]
6=10.6X5−15.4 R=0.69 ・・・(8)
[数9]
7=3.1X5−5.9 R=0.64 ・・・(9)
[数10]
8=−3.4X5+17.4 R=0.65 ・・・(10)
[数11]
9=−3.7X5+25.3 R=0.58 ・・・(11)
前述した実施形態において、判定ステップ(判定手段)は、このように定式化された、植物切片からの光子放出数と堆肥の腐熟度との相関に基づいて、生物検定値や理化学分析値を推定し、堆肥の腐熟度を判定することができる。
Based on a relatively high correlation value shown in FIG. 18, the correlation between the number of photons emitted from the radish slice and the degree of maturity of compost can be formulated. For example, the correlation between the photon emission number X 5 from the radish slice dripped with the EC non-adjusted compost extract, the Komatsuna germination rate Y 1 , the Komatsuna germination delay Y 2 , and the Komatsuna root length Y 6 is as follows: It can represent like Numerical formula (6)-(8). Further, the correlation between the photon emission number X 5 from the radish section and the nitrogen component Y 7 , pH value Y 8 , and ECY 9 can be expressed as the following mathematical formulas (9) to (11), respectively.
[Equation 6]
Y 1 = 68.9X 5 −42.6 R = 0.62 (6)
[Equation 7]
Y 2 = 98.3X 5 -111.8 R = 0.67 (7)
[Equation 8]
Y 6 = 10.6X 5 -15.4 R = 0.69 (8)
[Equation 9]
Y 7 = 3.1X 5 -5.9 R = 0.64 (9)
[Equation 10]
Y 8 = −3.4X 5 +17.4 R = 0.65 (10)
[Equation 11]
Y 9 = −3.7X 5 +25.3 R = 0.58 (11)
In the embodiment described above, the determination step (determination means) estimates the bioassay value and the physicochemical analysis value based on the correlation between the number of photons emitted from the plant section and the maturity of the compost formulated in this way. And the maturity of the compost can be determined.

次に、実施例7として、堆肥抽出液を滴下されたサツマイモ切片からの光子放出数と、堆肥の腐熟度との相関について調べた。なお、本実施形態における堆肥原料は、上記実施例6と同様である。また、本実施例においても上記実施例3〜6と同様に、各堆肥抽出液をそれぞれ二つに分け、その一方の堆肥抽出液にリン酸緩衝液を加えることによりECを4.0に調整し、他方の堆肥抽出液のECを未調整とした。   Next, as Example 7, the correlation between the number of photons emitted from the sweet potato slices dropped with the compost extract and the maturity of the compost was examined. In addition, the compost raw material in this embodiment is the same as that of the said Example 6. FIG. Also in this example, as in Examples 3 to 6, each compost extract was divided into two parts, and the EC was adjusted to 4.0 by adding a phosphate buffer to one of the compost extracts. The EC of the other compost extract was not adjusted.

発光量の測定
サツマイモ(紅黄金)の中間部を約3mm厚にスライスした後に直径36mmの円板状に成形し、サツマイモ切片を作成した。これをスチロール製シャーレに入れた後に、サツマイモ切片の切断面上にEC未調整の堆肥抽出液0.30mlを滴下し、20℃のインキュベータ内で放置した。そして、堆肥抽出液の滴下2時間後,4時間後,6時間後,8時間後,10時間後,12時間後,及び24時間後に、ゲート時間10秒、測定時間3分といった条件でサツマイモ切片からの光子放出数を測定した。また、EC調整済の堆肥抽出液についても、上記手順で光子放出数を測定した。なお、24時間後の測定では、円板状のサツマイモ切片の表面及び裏面からの光子放出数をそれぞれ測定した。
Measurement of Luminescence The middle part of sweet potato (red golden) was sliced to a thickness of about 3 mm and then formed into a disk shape having a diameter of 36 mm to prepare a sweet potato slice. After putting this in a styrene petri dish, 0.30 ml of an unadjusted compost extract was dropped onto the cut surface of the sweet potato slices and left in an incubator at 20 ° C. Then, after 2 hours, 4 hours, 6 hours, 8 hours, 10 hours, 12 hours, and 24 hours after dropping of the compost extract, the sweet potato slices were measured under the conditions of a gate time of 10 seconds and a measurement time of 3 minutes. The number of photons emitted from was measured. In addition, the number of photons emitted from the EC-adjusted compost extract was also measured according to the above procedure. In the measurement after 24 hours, the number of photons emitted from the front and back surfaces of the disk-shaped sweet potato slices was measured.

図19は、サツマイモ切片に堆肥抽出液を滴下したときの、図11及び図12に示した根長指数、根長平均値、発芽遅延指数、及び発芽率と、サツマイモ切片からの光子放出数との相関値を、堆肥抽出液の滴下2時間後,4時間後,6時間後,8時間後,10時間後,12時間後,24時間後(切片表面),及び24時間後(切片裏面)のそれぞれについて示す表である。なお、図19において、顕著な相関値には二重下線を付し、比較的高い相関値には下線を付している。   FIG. 19 shows the root length index, root length average value, germination delay index, and germination rate shown in FIGS. 11 and 12, and the number of photons emitted from the sweet potato slice when the compost extract was dropped on the sweet potato slice. Correlation values of 2 hours, 4 hours, 6 hours, 8 hours, 10 hours, 12 hours, 24 hours (section surface), and 24 hours (section back surface) after dropping the compost extract It is a table | surface shown about each of these. In FIG. 19, the significant correlation value is underlined and the relatively high correlation value is underlined.

本実施例では、堆肥抽出液を滴下されたサツマイモ切片から得られた光子数が、上記実施例6(大根切片)よりも多かった。なお、光子数に変化が現れるまでの時間は、実施例6のほうが早かった。また、サツマイモ切片からの光子数と生物検定値との間には滴下24時間後に顕著な相関が見出された。   In this example, the number of photons obtained from the sweet potato slices to which the compost extract was dropped was larger than that in Example 6 (radish slice). The time until the change in the number of photons appeared was faster in Example 6. In addition, a significant correlation was found between the photon number from the sweet potato slice and the bioassay value 24 hours after the dropping.

図19に示された相関値のうち顕著な相関値または比較的高い相関値に基づき、サツマイモ切片からの光子放出数と堆肥の腐熟度との相関を定式化することができる。例えば、EC未調整の堆肥抽出液を滴下されたサツマイモ切片からの光子放出数X6と、コマツナ発芽率Y1、コマツナ発芽遅延Y2、コマツナ根長Y6、pH値Y8との相関を、それぞれ以下の数式(12)〜(15)のように表すことができる。また、EC調整済の堆肥抽出液を滴下されたサツマイモ切片からの光子放出数X7と、EC調整済でのコマツナ発芽率Y3、コマツナ根長Y4、及びコマツナ発芽遅延Y10との相関を、それぞれ以下の数式(16)〜(18)のように表すことができる。
[数12]
1=−0.004X6+115.6 R=0.69 ・・・(12)
[数13]
2=−0.004X6+58.9 R=0.65 ・・・(13)
[数14]
6=−0.0054X6+112.5 R=0.73 ・・・(14)
[数15]
8=−0.0008X6+9.4 R=0.61 ・・・(15)
[数16]
3=−0.002X7+104.9 R=0.60 ・・・(16)
[数17]
4=−0.008X7+114.2 R=0.76 ・・・(17)
[数18]
10=0.0008X7+0.95 R=0.65 ・・・(18)
前述した実施形態において、判定ステップ(判定手段)は、このように定式化された、植物切片からの光子放出数と堆肥の腐熟度との相関に基づいて、生物検定値や理化学分析値を推定し、堆肥の腐熟度を判定することができる。
Based on a significant correlation value or a relatively high correlation value shown in FIG. 19, the correlation between the number of photons emitted from the sweet potato slice and the maturity of the compost can be formulated. For example, the correlation between the photon emission number X 6 from a sweet potato slice dripped with an EC non-adjusted compost extract and the Komatsuna germination rate Y 1 , Komatsuna germination delay Y 2 , Komatsuna root length Y 6 , and pH value Y 8 These can be expressed as the following mathematical formulas (12) to (15). Moreover, the correlation between the photon emission number X 7 from the sweet potato slices dropped with the EC adjusted compost extract and the Komatsuna germination rate Y 3 , Komatsuna root length Y 4 , and Komatsuna germination delay Y 10 after EC adjustment. Can be expressed as the following mathematical formulas (16) to (18), respectively.
[Equation 12]
Y 1 = −0.004X 6 +115.6 R = 0.69 (12)
[Equation 13]
Y 2 = −0.004X 6 +58.9 R = 0.65 (13)
[Formula 14]
Y 6 = −0.0054X 6 +112.5 R = 0.73 (14)
[Equation 15]
Y 8 = −0.0008X 6 +9.4 R = 0.61 (15)
[Equation 16]
Y 3 = −0.002X 7 +104.9 R = 0.60 (16)
[Equation 17]
Y 4 = −0.008X 7 +114.2 R = 0.76 (17)
[Equation 18]
Y 10 = 0.0008X 7 +0.95 R = 0.65 (18)
In the embodiment described above, the determination step (determination means) estimates the bioassay value and the physicochemical analysis value based on the correlation between the number of photons emitted from the plant section and the maturity of the compost formulated in this way. And the maturity of the compost can be determined.

堆肥の腐熟度を判定する判定装置の構成を示すブロック図である。It is a block diagram which shows the structure of the determination apparatus which determines the maturity of compost. (a)第1の判定方法を示すフローチャートである。(b)第2の判定方法を示すフローチャートである。(A) It is a flowchart which shows the 1st determination method. (B) It is a flowchart which shows the 2nd determination method. (a)第3の判定方法を示すフローチャートである。(b)第4の判定方法を示すフローチャートである。(A) It is a flowchart which shows the 3rd determination method. (B) It is a flowchart which shows the 4th determination method. 第5の判定方法を示すフローチャートである。It is a flowchart which shows the 5th determination method. 実施例1において、大根切片から放出された光子数の時間変化を示すグラフである。In Example 1, it is a graph which shows the time change of the number of photons emitted from the radish section. 実施例1において、サツマイモ切片から放出された光子数の時間変化を示すグラフである。In Example 1, it is a graph which shows the time change of the number of photons emitted from the sweet potato slice. 実施例1において、大豆切片から放出された光子数の時間変化を示すグラフである。In Example 1, it is a graph which shows the time change of the number of photons emitted from the soybean section. 実施例1において、大根切片、サツマイモ切片、及び大豆切片から放出された光子数の総数を示す表である。In Example 1, it is a table | surface which shows the total number of the photons emitted from the radish section, the sweet potato section, and the soybean section. 実施例2において、未熟堆肥抽出液、終熟堆肥抽出液、及び市販堆肥抽出液のそれぞれから放出された光子数の(a)時間変化を示すグラフ、及び(b)総数を示すグラフである。In Example 2, (a) The graph which shows the time change of the number of photons emitted from each of an immature compost extract, a final mature compost extract, and a commercial compost extract, and (b) a graph which shows the total number. 実施例3に用いた堆肥の採材地、由来、腐熟度の生産者評価、水分、窒素成分、pH値、及びECを示す表である。It is a table | surface which shows the sampling place of origin of the compost used for Example 3, origin, producer evaluation of a maturity degree, a water | moisture content, a nitrogen component, pH value, and EC. 実施例3におけるEC未調整での発芽試験結果である。It is a germination test result in EC unadjusted in Example 3. 実施例3におけるEC調整済での発芽試験結果である。It is a germination test result after EC adjustment in Example 3. 実施例3において、図11及び図12に示した発芽率、根長指数、及び発芽遅延指数と、堆肥抽出液からの発光量との相関値を示す表である。In Example 3, it is a table | surface which shows the correlation value with the germination rate shown in FIG.11 and FIG.12, a root length index | exponent, a germination delay index | exponent, and the light-emission quantity from a compost extract. 実施例4において、図11及び図12に示した根長指数、根長平均値、発芽遅延指数、及び発芽率と、堆肥抽出液からの発光量に基づく数値A1〜A5の相関値を示す表である。In Example 4, the root length index, root length average value, germination delay index, and germination rate shown in FIGS. 11 and 12 and the correlation values of numerical values A 1 to A 5 based on the amount of luminescence from the compost extract are shown. It is a table | surface which shows. 実施例5において、堆肥抽出液に酸性化処理を施した場合における、図11及び図12に示した根長指数、根長平均値、発芽遅延指数、及び発芽率と、堆肥抽出液からの発光量に基づく数値B1〜B7との相関値を示す表である。In Example 5, when the compost extract was acidified, the root length index, the root length average value, the germination delay index, and the germination rate shown in FIGS. 11 and 12 and the luminescence from the compost extract is a table showing the correlation between the numerical B 1 .about.B 7 based on the amount. 実施例5において、堆肥抽出液にアルカリ化処理を施した場合における、図11及び図12に示した根長指数、根長平均値、発芽遅延指数、及び発芽率と、堆肥抽出液からの発光量に基づく数値B1〜B7との相関値を示す表である。In Example 5, when the compost extract was subjected to alkalinization treatment, the root length index, root length average value, germination delay index, and germination rate shown in FIGS. 11 and 12, and luminescence from the compost extract is a table showing the correlation between the numerical B 1 .about.B 7 based on the amount. 実施例5において、堆肥抽出液に酸化促進処理を施した場合における、図11及び図12に示した根長指数、根長平均値、発芽遅延指数、及び発芽率と、堆肥抽出液からの発光量に基づく数値B1〜B7との相関値を示す表である。In Example 5, when the compost extract was subjected to oxidation promotion treatment, the root length index, the root length average value, the germination delay index, and the germination rate shown in FIGS. 11 and 12, and luminescence from the compost extract is a table showing the correlation between the numerical B 1 .about.B 7 based on the amount. 大根切片に堆肥抽出液を滴下したときの、図11及び図12に示した根長指数、根長平均値、発芽遅延指数、及び発芽率と、大根切片からの光子放出数との相関値を示す表である。When the compost extract is dropped on the radish slice, the root length index, root length average value, germination delay index, and germination rate shown in FIGS. 11 and 12 are correlated with the number of photons emitted from the radish slice. It is a table | surface which shows. サツマイモ切片に堆肥抽出液を滴下したときの、図11及び図12に示した根長指数、根長平均値、発芽遅延指数、及び発芽率と、サツマイモ切片からの光子放出数との相関値を示す表である。When the compost extract is dripped onto the sweet potato slices, the root length index, root length average value, germination delay index, and germination rate shown in FIGS. 11 and 12 are correlated with the number of photons emitted from the sweet potato slices. It is a table | surface which shows.

符号の説明Explanation of symbols

1…判定装置、2…発光測定装置、3…試料トレイ、4…光電子増倍管、5…フォトンカウンティング回路、6…高圧電源、7…電圧分割回路、9…制御回路、10…判定手段、11…紫外光源。   DESCRIPTION OF SYMBOLS 1 ... Determination apparatus, 2 ... Luminescence measuring apparatus, 3 ... Sample tray, 4 ... Photomultiplier tube, 5 ... Photon counting circuit, 6 ... High voltage power supply, 7 ... Voltage division circuit, 9 ... Control circuit, 10 ... Determination means, 11 ... UV light source.

Claims (8)

堆肥の腐熟度を判定する方法であって、
前記堆肥から堆肥抽出液を生成する抽出液生成ステップと、
前記堆肥抽出液を含むサンプルからの発光量を測定する測定ステップと、
前記サンプルからの発光量と前記堆肥の腐熟度との相関に基づいて、前記堆肥の腐熟度を判定する判定ステップと
を備えることを特徴とする、堆肥の腐熟度判定方法。
A method for determining the maturity of compost,
An extract generation step for generating a compost extract from the compost;
A measuring step for measuring the amount of luminescence from the sample containing the compost extract;
And a determination step of determining the degree of maturity of the compost based on the correlation between the amount of luminescence from the sample and the maturity of the compost.
前記サンプルが前記堆肥抽出液であることを特徴とする、請求項1に記載の堆肥の腐熟度判定方法。   The method according to claim 1, wherein the sample is the compost extract. 前記サンプルが、前記堆肥抽出液に触れた植物体由来サンプルであることを特徴とする、請求項1に記載の堆肥の腐熟度判定方法。   The method according to claim 1, wherein the sample is a plant-derived sample that has come into contact with the compost extract. 前記抽出液生成ステップと前記測定ステップとの間に、酸性化処理、アルカリ化処理、及び酸化促進処理のうち少なくとも一つの処理を前記堆肥抽出液に対して行う抽出液処理ステップをさらに備えることを特徴とする、請求項1〜3のいずれか一項に記載の堆肥の腐熟度判定方法。   And further comprising an extract treatment step for performing at least one of acidification treatment, alkalinization treatment, and oxidation promotion treatment on the compost extract between the extract production step and the measurement step. The method for determining the degree of maturity of compost according to any one of claims 1 to 3. 前記抽出液生成ステップと前記測定ステップとの間に、前記堆肥抽出液に対して所定時間の恒温処理を行う恒温処理ステップをさらに備えることを特徴とする、請求項1〜4のいずれか一項に記載の堆肥の腐熟度判定方法。   The thermostat processing step which performs a thermostat process of the predetermined time with respect to the said compost extract is further provided between the said extract production | generation step and the said measurement step, It is any one of Claims 1-4 characterized by the above-mentioned. The method for determining the degree of maturity of compost as described in 1. 前記抽出液生成ステップと前記測定ステップとの間に、前記堆肥抽出液に対して紫外線を照射する紫外線照射ステップをさらに備えることを特徴とする、請求項1〜5のいずれか一項に記載の堆肥の腐熟度判定方法。   The method according to any one of claims 1 to 5, further comprising an ultraviolet irradiation step of irradiating the compost extract with ultraviolet rays between the extract generation step and the measurement step. A method for judging the maturity of compost. 堆肥の腐熟度を判定する装置であって、
前記堆肥から生成された堆肥抽出液を含むサンプルからの発光量を測定する測定手段と、
前記測定手段において測定された前記発光量と前記堆肥の腐熟度との相関に基づいて、前記堆肥の腐熟度を判定する判定手段と
を備えることを特徴とする、堆肥の腐熟度判定装置。
An apparatus for determining the maturity of compost,
Measuring means for measuring the amount of luminescence from the sample containing the compost extract produced from the compost,
A compost maturity determination device, comprising: a determination unit that determines the maturity level of the compost based on the correlation between the amount of luminescence measured by the measurement unit and the maturity level of the compost.
前記サンプルに対して紫外線を照射する紫外線照射手段をさらに備えることを特徴とする、請求項7に記載の堆肥の腐熟度判定装置。   The compost maturity determination apparatus according to claim 7, further comprising ultraviolet irradiation means for irradiating the sample with ultraviolet rays.
JP2004085139A 2004-03-23 2004-03-23 Compost maturity determination method and apparatus Expired - Fee Related JP4418866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004085139A JP4418866B2 (en) 2004-03-23 2004-03-23 Compost maturity determination method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004085139A JP4418866B2 (en) 2004-03-23 2004-03-23 Compost maturity determination method and apparatus

Publications (2)

Publication Number Publication Date
JP2005274222A true JP2005274222A (en) 2005-10-06
JP4418866B2 JP4418866B2 (en) 2010-02-24

Family

ID=35174071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004085139A Expired - Fee Related JP4418866B2 (en) 2004-03-23 2004-03-23 Compost maturity determination method and apparatus

Country Status (1)

Country Link
JP (1) JP4418866B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7842510B2 (en) 2006-08-24 2010-11-30 Ryokusan Corporation Limited Method for measuring maturity degree of compost and measuring solution
CN113607915A (en) * 2021-04-23 2021-11-05 重庆工商大学 Portable compost maturity detector based on embedded system and detection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7842510B2 (en) 2006-08-24 2010-11-30 Ryokusan Corporation Limited Method for measuring maturity degree of compost and measuring solution
CN113607915A (en) * 2021-04-23 2021-11-05 重庆工商大学 Portable compost maturity detector based on embedded system and detection method
CN113607915B (en) * 2021-04-23 2024-02-02 重庆工商大学 Portable compost maturity detector and detection method based on embedded system

Also Published As

Publication number Publication date
JP4418866B2 (en) 2010-02-24

Similar Documents

Publication Publication Date Title
Sera et al. Influence of plasma treatment on wheat and oat germination and early growth
Kludze et al. Straw application effects on methane and oxygen exchange and growth in rice
Cassman et al. A conceptual framework for nitrogen management of irrigated rice in high-yield environments
Drew et al. High resolution temporal variation in wood properties in irrigated and non-irrigated Eucalyptus globulus
CN104067726B (en) The seed seedling-raising method of a kind of birch-leaf pear
Nazarenko et al. Chromosomal rearrangements caused by gamma-irradiation in winter wheat cells
Ramesh et al. Determination of lethal dose and effect of EMS and gamma ray on germination percentage and seedling parameters in barnyard millet variety Co (Kv) 2
JP4418866B2 (en) Compost maturity determination method and apparatus
CN111247901B (en) Method for evaluating deep sowing resistance of corn
Wilson The nature and reaction of water from hydathodes
CN104267152B (en) A kind of drug-fast method of detection barnyard grass fast
JP4019153B2 (en) Fertilizer quality evaluation method, fertilizer quality evaluation device, and fertilizer quality evaluation program
Ndou et al. Response of selected wheat genotypes to ethylmethanesulphonate concentration, treatment temperature and duration
Golubinova et al. Effect of Cycocel 750 SL on Germination and Initial Development of Some Sorghum Species.
Suzuki et al. Roots: the dynamic interface between plants and the earth
Hassan et al. The Use of Seed Vigour Tests for Predicting Field Emergence
Wihardjaka et al. Methane emission from direct seeded rice under the influences of rice straw and nitrification inhibitor
Kastelein et al. Occurrence of Rhexocercosporidium carotae on cold stored carrot roots in the Netherlands
Suhendra et al. Seed vigor testing of coffee [Coffea sp.] to gibberellin hormone [GA3] concentration and water temperature differences
CN1219210C (en) Method for identifying pesticide resistance of dentes foxtail to high performance cover grass
JP2001099830A (en) Plant selection system based on organism information
Koca The Cytogenetic Effects of Sheffer A, A Liquid Fertilizer and Growth Regulator in Root Tip Cells of Vicia Faba L.
JP2002162394A (en) Method for measuring maturity degree of compost
Zsembeli et al. Dynamics of CO 2-emission of the soil in conventional and reduced tillage systems
KOSTADINOV et al. PHYSIOLOGICAL PARAMETERS AND VEGETATIVE BEHAUVIER OF BIOLOGICAL GROWN HEAD LETTUCE TYPE (LACTUCA SATIVA L. VAR. CAPITATA L).

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070312

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091007

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4418866

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees