JP2005272574A - Method of and apparatus for discharge of gas hydrate - Google Patents

Method of and apparatus for discharge of gas hydrate Download PDF

Info

Publication number
JP2005272574A
JP2005272574A JP2004086462A JP2004086462A JP2005272574A JP 2005272574 A JP2005272574 A JP 2005272574A JP 2004086462 A JP2004086462 A JP 2004086462A JP 2004086462 A JP2004086462 A JP 2004086462A JP 2005272574 A JP2005272574 A JP 2005272574A
Authority
JP
Japan
Prior art keywords
pressure
gas hydrate
gas
vessel
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004086462A
Other languages
Japanese (ja)
Other versions
JP4817608B2 (en
Inventor
Satoru Tokisu
鴇巣  哲
Kikuo Nakamura
喜久男 中村
Toru Iwasaki
徹 岩崎
Takashi Arai
新井  敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2004086462A priority Critical patent/JP4817608B2/en
Publication of JP2005272574A publication Critical patent/JP2005272574A/en
Application granted granted Critical
Publication of JP4817608B2 publication Critical patent/JP4817608B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stabilize the quality of gas hydrate, when it is being discharged. <P>SOLUTION: When gas hydrate b is discharged from a high pressure vessel 1 containing gas hydrate (a) generated by reacting raw material gas with water under predetermined pressure to a low pressure vessel 5 via an intermediate vessel 3, the gas hydrate b is discharged from high pressure vessel 5 by setting the pressure of the intermediate vessel 3 lower than that of high pressure vessel 5 and then gas hydrate b in intermediate vessel 3 is discharged by mechanical transfer means (7) by reducing the pressure of the intermediate vessel to the pressure nearly equal to that of the low pressure vessel. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高圧条件下において生成されるガスハイドレートを低圧側に払い出す方法および装置に関する。   The present invention relates to a method and apparatus for discharging gas hydrate produced under high pressure conditions to the low pressure side.

ガスハイドレートは、水分子の作る籠の中にガスを取り込んでなる安定な固体状の水和物であり、取り込まれたガスがメタンの場合はメタンハイドレート、天然ガス(通常、メタンを主成分とした混合ガス)の場合は天然ガスハイドレートと呼ばれている。天然ガスハイドレートは、一般に低温高圧の条件下においては安定で、常温常圧では不安定なため、陸上では永久凍土地域、海域では水深500m以深の海底下に存在することが確認され、有望な天然ガス資源として注目されている。   Gas hydrate is a stable solid hydrate that is obtained by taking gas into the cage made by water molecules. When the taken gas is methane, methane hydrate and natural gas (usually methane is the main component). In the case of mixed gas as a component), it is called natural gas hydrate. Natural gas hydrate is generally stable under low-temperature and high-pressure conditions, and unstable at room temperature and normal pressure. Therefore, it has been confirmed that it exists on the permafrost region on land and under the seabed at a depth of 500 m or more in the sea. It is attracting attention as a natural gas resource.

一方で、ガスハイドレートは、その構造中に大量のガスを貯蔵できることに鑑み、天然ガスハイドレート(NGH)を工業的に生産して、液化天然ガス(LNG)に代わる天然ガスの新しい輸送・貯蔵手段として研究が進められている。例えば、天然ガスハイドレートは、数℃の温度、数十気圧の条件下で製造することができる。また、製造された天然ガスハイドレートの粉体またはペレットは、−10数℃、大気圧の条件下で容易に輸送、貯蔵することができる。   On the other hand, in view of the fact that a large amount of gas can be stored in the structure of gas hydrate, natural gas hydrate (NGH) is industrially produced, and new transportation of natural gas to replace liquefied natural gas (LNG) Research is ongoing as a means of storage. For example, natural gas hydrate can be produced under conditions of a temperature of several degrees Celsius and several tens of atmospheres. The produced natural gas hydrate powder or pellets can be easily transported and stored under conditions of −10 ° C. and atmospheric pressure.

ガスハイドレートの製造方法は、原料水を数℃に冷却し、高圧条件下(例えば、50kg/cm)の生成槽に供給し、原料ガスを水中に噴き込んで反応させることにより、ガスハイドレートを生成する方法が知られている。この生成槽で生成されたガスハイドレートは、水面に浮上した状態で排出口から排出され、例えば脱水機により脱水処理が施された後、大気圧下に取り出すようになっている(特許文献1参照。)。 A method for producing a gas hydrate is a method in which raw material water is cooled to several degrees Celsius, supplied to a production tank under high pressure conditions (for example, 50 kg / cm 2 ), and the raw material gas is injected into water to react. Methods for generating rates are known. The gas hydrate generated in the generation tank is discharged from the discharge port in a state of floating on the water surface, and is dehydrated by, for example, a dehydrator and then taken out under atmospheric pressure (Patent Document 1). reference.).

特開2004−35840号公報JP 2004-35840 A

ところで、このような高圧条件下で生成されたガスハイドレートを大気圧下に取り出す方法としては、例えば、高圧容器内で処理されたガスハイドレートを、排出口を通じて同一圧力に設定される他の容器内に落下させて収容し、この容器内の圧力を大気圧に戻してから取り出す方法が考えられる。しかし、ガスハイドレートは、その付着性や圧密性などの特性により、一部が排出経路内に付着するなどして自重落下による排出が困難になる場合がある。   By the way, as a method for taking out the gas hydrate generated under such high pressure conditions under atmospheric pressure, for example, the gas hydrate processed in the high pressure vessel is set to the same pressure through the discharge port. A method is conceivable in which the container is dropped into the container and accommodated, and the pressure in the container is returned to atmospheric pressure and then taken out. However, the gas hydrate may be difficult to be discharged due to its own weight drop due to a part of the gas hydrate adhering to the discharge path due to characteristics such as adhesion and compactness.

これに対し、例えば、高圧容器と低圧容器との間に、それぞれ弁を介して中間容器を配設し、それらの弁を開閉して、高圧容器内のガスハイドレートを一旦中間容器に払い出した後、低圧容器に払い出す方法が考えられるが、高圧容器から中間容器にガスハイドレートが払い出されると、中間容器の圧力が高圧容器の圧力となる。したがって、中間容器の圧力が高圧のままで低圧容器に払い出すと、ガスハイドレートの品質が低下するおそれがある。   On the other hand, for example, an intermediate container is disposed between each of the high-pressure container and the low-pressure container via a valve, the valves are opened and closed, and the gas hydrate in the high-pressure container is once discharged to the intermediate container. Thereafter, a method of discharging to the low-pressure vessel can be considered, but when the gas hydrate is discharged from the high-pressure vessel to the intermediate vessel, the pressure of the intermediate vessel becomes the pressure of the high-pressure vessel. Therefore, if the intermediate container is kept at a high pressure and discharged to the low-pressure container, the quality of the gas hydrate may be deteriorated.

すなわち、ガスハイドレートは、圧力差を設けて輸送する場合、移送時の衝撃などにより、ガスハイドレートの平均粒径が細かくなり、取り扱い特性が悪くなるという問題がある。   That is, when the gas hydrate is transported with a pressure difference, there is a problem that the average particle size of the gas hydrate becomes fine due to impact during transfer and the handling characteristics are deteriorated.

本発明は、ガスハイドレートの払い出し時における品質を安定化させることを課題とする。   This invention makes it a subject to stabilize the quality at the time of discharge of gas hydrate.

本発明は、上記課題を解決するため、ガスハイドレートが収容される高圧容器からガスハイドレートを中間容器を介して低圧容器に払い出すにあたり、中間容器の圧力を高圧容器の圧力以下の設定圧力にして高圧容器からガスハイドレートを払い出した後、中間容器の圧力を低圧容器の圧力とほぼ同じ圧力まで減圧し、機械移送手段により中間容器のガスハイドレートを払い出すことを特徴とする。   In order to solve the above-mentioned problem, the present invention provides a set pressure equal to or lower than the pressure of the high-pressure vessel when the gas hydrate is discharged from the high-pressure vessel containing the gas hydrate to the low-pressure vessel via the intermediate vessel. Then, after discharging the gas hydrate from the high-pressure vessel, the pressure in the intermediate vessel is reduced to substantially the same pressure as the pressure in the low-pressure vessel, and the gas hydrate in the intermediate vessel is discharged by the mechanical transfer means.

すなわち、中間容器に収容されたガスハイドレートを、圧力差を設けずに機械的な操作で移送することにより、ガスハイドレートにかかる外力が低減され、例えば、脱水処理されたガスハイドレートの品質を保持しながら払い出すことができる。   That is, the external force applied to the gas hydrate is reduced by transferring the gas hydrate stored in the intermediate container by a mechanical operation without providing a pressure difference. For example, the quality of the dehydrated gas hydrate You can pay out while holding.

具体的に、本発明のガスハイドレート払い出し装置は、ガスハイドレートが収容される高圧容器と、この高圧容器に第1の自動弁を介して接続された筒状の中間容器と、この中間容器に第2の自動弁を介して接続された低圧容器と、中間容器に昇圧ラインを通じて高圧ガスを供給するガス供給弁と、中間容器内のガスを減圧ラインを通じて排出するガス排出弁と、中間容器の圧力が低圧容器の圧力とほぼ同じ圧力になるようにガス排出弁を制御する圧力調節手段と、中間容器内の一端に供給されるガスハイドレートを他端に移送する機械移送手段とを備えてなるようにする。   Specifically, the gas hydrate dispensing apparatus of the present invention includes a high-pressure container in which gas hydrate is accommodated, a cylindrical intermediate container connected to the high-pressure container via a first automatic valve, and the intermediate container. A low pressure vessel connected to the intermediate vessel via a second automatic valve, a gas supply valve for supplying high pressure gas to the intermediate vessel through the pressure raising line, a gas discharge valve for discharging the gas in the intermediate vessel through the pressure reduction line, and the intermediate vessel Pressure adjusting means for controlling the gas discharge valve so that the pressure of the gas becomes substantially the same as that of the low-pressure vessel, and mechanical transfer means for transferring the gas hydrate supplied to one end in the intermediate vessel to the other end. To be.

この場合において、機械移送手段としては、例えば、ピストンの前進動作によりガスハイドレートを移送するものであることが望ましい。また、他の例として、スクリュの回転および前進動作によりガスハイドレートを移送するようにしてもよい。   In this case, it is desirable that the mechanical transfer means is, for example, a means for transferring the gas hydrate by the forward movement of the piston. As another example, the gas hydrate may be transferred by rotating and moving forward the screw.

本発明によれば、ガスハイドレートの払い出し時における品質を安定化させることができる。   According to the present invention, it is possible to stabilize the quality when the gas hydrate is dispensed.

以下、本発明の実施の形態について図面を用いて説明する。図1は、本発明に係るガスハイドレート払い出し装置の第1の実施形態を示す構成図である。なお、本実施形態において、特に断りがない限り、原料ガスとは天然ガスを示し、ガスハイドレートは天然ガスハイドレートを示すものとする。ただし、原料ガスは、天然ガスに限定されず、例えば、メタンガス、COガス、フロンガスなどを用いるようにしてもよい。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram showing a first embodiment of a gas hydrate dispensing apparatus according to the present invention. In the present embodiment, unless otherwise specified, the source gas indicates natural gas, and the gas hydrate indicates natural gas hydrate. However, the source gas is not limited to natural gas, and for example, methane gas, CO 2 gas, chlorofluorocarbon gas, or the like may be used.

図に示すように、本実施形態のガスハイドレート払い出し装置(以下、払い出し装置と称す。)は、高圧容器1と、中間容器3と、低圧容器5と、中間容器3に設けられるピストン7と、中間容器3の圧力を調整する圧力調整手段とを備えて構成される。   As shown in the figure, the gas hydrate dispensing device (hereinafter referred to as the dispensing device) of this embodiment includes a high-pressure vessel 1, an intermediate vessel 3, a low-pressure vessel 5, and a piston 7 provided in the intermediate vessel 3. And a pressure adjusting means for adjusting the pressure of the intermediate container 3.

高圧容器1は、例えば、ガスハイドレートの脱水機能または冷却機能を有する容器からなり、一端側の上方には、ガスハイドレートaの導入口9が形成される一方、他端側の下方には、容器内で処理されたガスハイドレートbを排出する排出口15が形成されている。   The high-pressure vessel 1 is composed of, for example, a vessel having a gas hydrate dehydrating function or a cooling function, and an inlet 9 for the gas hydrate a is formed above one end side, while the other side is below the other end side. A discharge port 15 for discharging the gas hydrate b processed in the container is formed.

中間容器3は、例えば、横型筒状の容器からなり、一端側の上方には、ガスハイドレートbが導入される供給口17が形成されている。供給口17は、鉛直上向きに立ち上げた管路を通じて高圧容器1の排出口15に接続され、この管路の途中には自動弁19が設けられている。一方、中間容器3の他端側の端面は、ガスハイドレートbが排出される排出口25となり、この排出口25は、低圧容器5の側壁に連結されている。中間容器3の排出口25の手前側には、自動弁21が設けられている。この自動弁21は、中間容器3の内径と同じ開口径を有するボールを備えている。   The intermediate container 3 is composed of, for example, a horizontal cylindrical container, and a supply port 17 into which the gas hydrate b is introduced is formed above one end side. The supply port 17 is connected to the discharge port 15 of the high-pressure vessel 1 through a pipeline that rises vertically upward, and an automatic valve 19 is provided in the middle of the pipeline. On the other hand, the end surface on the other end side of the intermediate container 3 becomes a discharge port 25 through which the gas hydrate b is discharged, and this discharge port 25 is connected to the side wall of the low-pressure vessel 5. An automatic valve 21 is provided on the front side of the discharge port 25 of the intermediate container 3. The automatic valve 21 includes a ball having the same opening diameter as the inner diameter of the intermediate container 3.

また、中間容器3の一端側(排出口25と反対側)には、中間容器3内を進退移動可能なピストン7が設けられ、供給口17から導入されるガスハイドレートbを排出口25に移送するようになっている。ピストン7は、ロッド23とこれを軸支するガイド部24との間を気密にシールするようになっている。   Also, a piston 7 that can move forward and backward in the intermediate container 3 is provided on one end side of the intermediate container 3 (on the opposite side to the discharge port 25), and the gas hydrate b introduced from the supply port 17 is supplied to the discharge port 25. It is designed to be transported. The piston 7 hermetically seals between the rod 23 and the guide portion 24 that pivotally supports the rod 23.

低圧容器5は、例えば、縦型の筒状容器からなり、中間容器3の排出口25が上部側壁に接続される一方、壁面を下方に向けて窄めた先の底部には、ガスハイドレートbを排出する排出口27が形成されている。   The low-pressure vessel 5 is composed of, for example, a vertical cylindrical vessel, and the discharge port 25 of the intermediate vessel 3 is connected to the upper side wall, while a gas hydrate is formed at the bottom portion where the wall surface is narrowed downward. A discharge port 27 for discharging b is formed.

中間容器3の圧力調整手段としては、原料ガスを供給して容器3内を昇圧する昇圧ライン29と、原料ガスを抜き出して容器3内を減圧する減圧ライン31がそれぞれ中間容器3に接続されている。昇圧ライン29にはガス供給弁33が配設され、中間容器3の圧力が高圧容器の圧力以下の任意の設定圧力になるように、周知の手段により原料ガスの供給量が調節される一方、減圧ライン31にはガス排出弁35が配設され、中間容器3の圧力が低圧容器5の圧力とほぼ同じになるように原料ガスの排出量が調節されるようになっている。なお、ガス排出弁33とは別に、圧力調整弁を独立して設けるようにしてもよい。   As the pressure adjusting means for the intermediate container 3, a pressure increasing line 29 for supplying a source gas to increase the pressure inside the container 3 and a pressure reducing line 31 for extracting the source gas and reducing the pressure inside the container 3 are connected to the intermediate container 3. Yes. A gas supply valve 33 is provided in the pressure increase line 29, and the supply amount of the source gas is adjusted by a known means so that the pressure of the intermediate container 3 becomes an arbitrary set pressure equal to or lower than the pressure of the high pressure container. A gas discharge valve 35 is disposed in the decompression line 31 so that the amount of discharge of the raw material gas is adjusted so that the pressure in the intermediate container 3 is substantially the same as the pressure in the low pressure container 5. In addition to the gas discharge valve 33, a pressure regulating valve may be provided independently.

次に、本実施形態の払い出し装置における動作を説明する。まず、高圧容器1内は高圧状態(例えば、50kg/cm)に管理され、例えば、原料水と原料ガスとの反応により生成されたガスハイドレートaが供給され、脱水や冷却処理などが施される。 Next, the operation of the payout device of this embodiment will be described. First, the inside of the high-pressure vessel 1 is managed in a high-pressure state (for example, 50 kg / cm 2 ). For example, the gas hydrate a generated by the reaction between the raw water and the raw material gas is supplied and subjected to dehydration and cooling treatment. Is done.

中間容器3は、自動弁19、ガス供給弁33、ガス排出弁35、自動弁21がすべて閉状態(このときピストン7は完全に後退している)で、ガス供給弁33を開いて原料ガスを中間容器3内に導入し、中間容器3が高圧容器1と同一の圧力まで昇圧されたところで、ガス供給弁33を閉じる。続いて、自動弁19を開き、高圧容器1内から中間容器3内に処理されたガスハイドレートbを払い出した後、自動弁19を閉じる。なお、ここでの払い出しは、ガスハイドレートbの自重落下によるものであるが、自重落下に問題が生じる場合は、中間容器3の圧力をガスハイドレートbの品質に影響を与えない範囲で、高圧容器1より低圧側に設定し、差圧を形成することにより差圧圧送するようにしてもよい。   In the intermediate container 3, the automatic valve 19, the gas supply valve 33, the gas discharge valve 35, and the automatic valve 21 are all closed (the piston 7 is completely retracted at this time), and the gas supply valve 33 is opened to feed the raw material gas. Is introduced into the intermediate container 3, and when the intermediate container 3 is pressurized to the same pressure as the high-pressure container 1, the gas supply valve 33 is closed. Subsequently, the automatic valve 19 is opened, and after the gas hydrate b processed in the intermediate vessel 3 is discharged from the high-pressure vessel 1, the automatic valve 19 is closed. The payout here is due to the falling of the gas hydrate b by its own weight. However, when a problem occurs in the falling of its own weight, the pressure of the intermediate container 3 is within a range that does not affect the quality of the gas hydrate b. The pressure difference may be set by setting a pressure lower than the high pressure vessel 1 and forming a pressure difference.

次に、中間容器3内にガスハイドレートbが導入されると、ガス排出弁35が開いて原料ガスが排出され、中間容器3内の圧力が設定圧力、つまり低圧容器とほぼ同じ圧力(例えば、ほぼ常圧)になるまで減圧される。中間容器3の圧力が設定圧力に達すると、自動弁21が開き、ピストン7が前進動作を始める。これにより、ガスハイドレートbは、中間容器3内を移送され、低圧容器5内に払い出される。なお、ピストン7は、自動弁21を経由して、図1の一点鎖線の位置まで前進するため、ガスハイドレートbは中間容器3内に残留することがない。ガスハイドレートbが低圧容器5内に払い出されると、ピストン7は元の位置まで後退するとともに、自動弁21が閉じられる。   Next, when the gas hydrate b is introduced into the intermediate container 3, the gas discharge valve 35 is opened to discharge the raw material gas, and the pressure in the intermediate container 3 is set to the set pressure, that is, substantially the same pressure as the low pressure container (for example, The pressure is reduced to approximately normal pressure). When the pressure in the intermediate container 3 reaches the set pressure, the automatic valve 21 is opened and the piston 7 starts to move forward. Thereby, the gas hydrate b is transferred through the intermediate container 3 and discharged into the low-pressure container 5. Since the piston 7 moves forward to the position of the one-dot chain line in FIG. 1 via the automatic valve 21, the gas hydrate b does not remain in the intermediate container 3. When the gas hydrate b is discharged into the low-pressure vessel 5, the piston 7 moves back to the original position and the automatic valve 21 is closed.

このように、本実施形態の払い出し装置によれば、中間容器3内に導入されるガスハイドレートbを、ピストン7により押し出して移送できるため、低圧容器5との間で差圧を設ける必要がなく、安定した品質(例えば、粒度分布など)を得ることができる。すなわち、ガスハイドレートbは、その払い出し時において、粒子の大きさなどが保持されるから、大気圧下における移送性やペレットなどの成型が容易になり、取り扱い特性が向上する。   Thus, according to the dispensing device of the present embodiment, the gas hydrate b introduced into the intermediate container 3 can be pushed out and transferred by the piston 7, so that it is necessary to provide a differential pressure with the low-pressure container 5. And stable quality (for example, particle size distribution) can be obtained. That is, since the gas hydrate b retains the particle size and the like at the time of dispensing, the transferability under atmospheric pressure and the molding of pellets and the like are facilitated, and the handling characteristics are improved.

次に、本発明の第2の実施形態に係る払い出し装置について図面を用いて説明する。図2は、本実施形態の払い出し装置の特徴部を示す構成図である。なお、第1の実施形態で既に説明した高圧容器1などは省略し、その他、同一の構成要素については同一の符号を付して説明を省略する。   Next, a payout device according to a second embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a configuration diagram showing a characteristic portion of the payout device of the present embodiment. Note that the high-pressure vessel 1 and the like already described in the first embodiment are omitted, and other components that are the same are denoted by the same reference numerals and description thereof is omitted.

図2に示すように、本実施形態の払い出し装置は、ガスハイドレートの機械移送手段となるピストン7に代えて、スクリュ30を用いる点で、第1の実施形態と相違する。本実施形態では、中間容器3のケーシングの軸線上を一端側から貫いた回転軸32の外周に螺旋状の羽根を形成したスクリュ30が設けられている。このスクリュ30は、回転軸32が中間容器3の外側で図示しない駆動装置の操作軸に連結され、軸方向の回転と進退移動が可能になっている。なお、中間容器3内のスクリュ30は、自動弁21が閉状態のとき、中間容器3内に収まるように、軸方向の全長が設定(図中Lの範囲)されている。   As shown in FIG. 2, the dispensing device of the present embodiment is different from the first embodiment in that a screw 30 is used instead of the piston 7 serving as a gas hydrate mechanical transfer means. In this embodiment, the screw 30 which formed the spiral blade | wing on the outer periphery of the rotating shaft 32 penetrated on the axis line of the casing of the intermediate container 3 from the one end side is provided. The screw 30 has a rotation shaft 32 connected to an operation shaft of a driving device (not shown) outside the intermediate container 3, and can be rotated and moved back and forth in the axial direction. The screw 30 in the intermediate container 3 is set to have a total axial length (range L in the drawing) so that the screw 30 is accommodated in the intermediate container 3 when the automatic valve 21 is closed.

この場合において、図3に示すように、ガスハイドレートの送り機能を強化するため、スクリュ30の軸の先端に、送り羽根34を複数枚設けるようにしてもよい。また、送り羽根34のピッチを可変にしてもよい。   In this case, as shown in FIG. 3, a plurality of feed blades 34 may be provided at the tip of the shaft of the screw 30 in order to enhance the gas hydrate feed function. Further, the pitch of the feed blades 34 may be variable.

次に、本実施形態における払い出し機の動作について説明する。まず、中間容器3内にガスハイドレートbが導入された後、中間容器3の圧力は、低圧容器5とほぼ同じ圧力まで減圧される。そして、自動弁21が開くと、スクリュ30は回転とともに軸方向に移動し、自動弁21の開口部を通過して図の一点鎖線の位置まで前進する。これにより、スクリュ30の駆動に合わせて移送されたガスハイドレートbは、低圧容器5内に払い出される。スクリュ30は、ガスハイドレートbを払い出した後、後退して元の位置で待機する。   Next, the operation of the dispenser in this embodiment will be described. First, after the gas hydrate b is introduced into the intermediate vessel 3, the pressure in the intermediate vessel 3 is reduced to substantially the same pressure as the low-pressure vessel 5. When the automatic valve 21 is opened, the screw 30 moves in the axial direction along with the rotation, passes through the opening of the automatic valve 21, and advances to the position of the one-dot chain line in the figure. Thereby, the gas hydrate b transferred in accordance with the drive of the screw 30 is discharged into the low-pressure vessel 5. After paying out the gas hydrate b, the screw 30 moves backward and waits at the original position.

これによれば、ガスハイドレートbは、中間容器3内をスクリュ30の移送機能を利用して移送されるため、第1の実施形態と同様に、安定した品質を得ることができる。   According to this, since the gas hydrate b is transferred in the intermediate container 3 by using the transfer function of the screw 30, stable quality can be obtained as in the first embodiment.

次に、本発明の第3の実施形態に係る払い出し装置について図面に基づいて説明する。図4に示す払い出し装置は、第1の実施形態の払い出し装置において、中間容器3を縦型に配置した中間容器41を備え、この中間容器41の斜め上方から導入されたガスハイドレートbをピストン7により底部まで移送させ、低圧容器43内に払い出すようになっている。これによれば、中間容器41内に導入されたガスハイドレートbは、自動弁21が開くと、大半は自重落下により低圧容器43内に払い出され、中間容器41の内面に付着する一部のガスハイドレートbは、ピストン7により払い出される。本実施形態の払い出し機によれば、設置面積を小さくできるから、設計上の自由度が高くなる。   Next, a payout device according to a third embodiment of the present invention will be described with reference to the drawings. The dispensing apparatus shown in FIG. 4 includes the intermediate container 41 in which the intermediate container 3 is arranged in a vertical shape in the dispensing apparatus of the first embodiment, and the gas hydrate b introduced obliquely from above the intermediate container 41 is used as a piston. 7 is transferred to the bottom and dispensed into the low-pressure vessel 43. According to this, when the automatic valve 21 is opened, most of the gas hydrate b introduced into the intermediate container 41 is discharged into the low-pressure container 43 due to its own weight fall, and a part that adheres to the inner surface of the intermediate container 41 The gas hydrate b is discharged by the piston 7. According to the dispenser of the present embodiment, since the installation area can be reduced, the degree of freedom in design is increased.

次に、本発明の第4の実施形態に係る払い出し装置について図面に基づいて説明する。図5に示す払い出し装置は、第1の実施形態の払い出し装置において、中間容器3を傾斜配置させてなる中間容器51を備え、この中間容器51の頂部側面から、鉛直方向にガスハイドレートbが導入されるようになっている。これによれば、第1の実施形態と比べて設置面積を小さくできることに加え、高圧容器1から払い出されるガスハイドレートbが自重落下しやすくなるため、ガスハイドレートbの払い出し効率を向上できる。   Next, a payout device according to a fourth embodiment of the present invention will be described with reference to the drawings. The dispensing apparatus shown in FIG. 5 includes the intermediate container 51 in which the intermediate container 3 is disposed in an inclined manner in the dispensing apparatus of the first embodiment, and the gas hydrate b is vertically formed from the top side surface of the intermediate container 51. It has been introduced. According to this, since the installation area can be reduced as compared with the first embodiment, the gas hydrate b discharged from the high-pressure vessel 1 easily falls by its own weight, so that the discharge efficiency of the gas hydrate b can be improved.

なお、図1、4、5において、ピストン7の駆動装置は、いずれも各中間容器の外部に配置されているが、例えば、図6に示すように、駆動装置20を中間容器41の内部に設けるようにしてもよい。これによれば、ロッド23の軸シールを省略できるから、装置構成が簡単化され、経済的である。   1, 4, and 5, the drive device for the piston 7 is disposed outside each intermediate container. For example, as shown in FIG. 6, the drive device 20 is placed inside the intermediate container 41. You may make it provide. According to this, since the shaft seal of the rod 23 can be omitted, the device configuration is simplified and economical.

本発明の第1の実施形態に係るガスハイドレート払い出し装置を示す構成図である。It is a lineblock diagram showing the gas hydrate discharge device concerning a 1st embodiment of the present invention. 本発明の第2の実施形態に係るガスハイドレート払い出し装置を示す構成図である。It is a block diagram which shows the gas hydrate payout apparatus which concerns on the 2nd Embodiment of this invention. 図2のスクリュにおいて、軸先端に送り羽根を設けた例を示す構成図である。FIG. 3 is a configuration diagram illustrating an example in which a feed blade is provided at a shaft tip in the screw of FIG. 2. 本発明の第3の実施形態に係るガスハイドレート払い出し装置を示す構成図である。It is a block diagram which shows the gas hydrate payout apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係るガスハイドレート払い出し装置を示す構成図である。It is a block diagram which shows the gas hydrate payout apparatus which concerns on the 4th Embodiment of this invention. 図1、4、5において、ピストンの駆動装置を中間容器内に設けた例を示す構成図である。1, 4, and 5 are configuration diagrams illustrating an example in which a piston drive device is provided in an intermediate container.

符号の説明Explanation of symbols

1 高圧容器
3,41,51 中間容器
5,43,53 低圧容器
7 ピストン
19、21 自動弁
29 昇圧ライン
30 スクリュ
31 減圧ライン
33 ガス供給弁
35 ガス排出弁
DESCRIPTION OF SYMBOLS 1 High pressure vessel 3,41,51 Intermediate vessel 5,43,53 Low pressure vessel 7 Piston 19,21 Automatic valve 29 Boosting line 30 Screw 31 Depressurization line 33 Gas supply valve 35 Gas discharge valve

Claims (4)

ガスハイドレートが収容される高圧容器から前記ガスハイドレートを中間容器を介して低圧容器に払い出すにあたり、前記中間容器の圧力を前記高圧容器の圧力以下の設定圧力にして前記高圧容器から前記ガスハイドレートを払い出した後、前記中間容器の圧力を前記低圧容器の圧力とほぼ同じ圧力まで減圧し、機械移送手段により前記中間容器の前記ガスハイドレートを払い出すガスハイドレートの払い出し方法。 When the gas hydrate is discharged from the high-pressure vessel in which the gas hydrate is stored to the low-pressure vessel through the intermediate vessel, the pressure from the high-pressure vessel is set to a set pressure equal to or lower than the pressure of the high-pressure vessel. A gas hydrate dispensing method in which after the hydrate is dispensed, the pressure in the intermediate container is reduced to substantially the same pressure as the pressure in the low-pressure container, and the gas hydrate in the intermediate container is dispensed by mechanical transfer means. ガスハイドレートが収容される高圧容器と、この高圧容器に第1の自動弁を介して接続された筒状の中間容器と、この中間容器に第2の自動弁を介して接続された低圧容器と、前記中間容器に昇圧ラインを通じて高圧ガスを供給するガス供給弁と、前記中間容器内のガスを減圧ラインを通じて排出するガス排出弁と、前記中間容器の圧力が前記低圧容器の圧力とほぼ同じ圧力になるように前記ガス排出弁を制御する圧力調節手段と、前記中間容器内の一端に供給される前記ガスハイドレートを他端に移送する機械移送手段とを備えてなるガスハイドレートの払い出し装置。 A high-pressure vessel in which gas hydrate is accommodated, a cylindrical intermediate vessel connected to the high-pressure vessel via a first automatic valve, and a low-pressure vessel connected to the intermediate vessel via a second automatic valve A gas supply valve for supplying high pressure gas to the intermediate container through a pressure line, a gas discharge valve for discharging gas in the intermediate container through a pressure reduction line, and the pressure in the intermediate container is substantially the same as the pressure in the low pressure container Discharge of gas hydrate comprising pressure adjusting means for controlling the gas discharge valve so as to become pressure, and mechanical transfer means for transferring the gas hydrate supplied to one end in the intermediate container to the other end apparatus. 前記機械移送手段は、ピストンの前進動作により前記ガスハイドレートを移送するものである請求項2に記載のガスハイドレートの払い出し装置。 The gas hydrate dispensing apparatus according to claim 2, wherein the mechanical transfer means transfers the gas hydrate by a forward movement of a piston. 前記機械移送手段は、スクリュの回転および前進動作により前記ガスハイドレートを移送するものである請求項2に記載のガスハイドレートの払い出し装置。
The gas hydrate dispensing apparatus according to claim 2, wherein the mechanical transfer means transfers the gas hydrate by rotating and moving forward the screw.
JP2004086462A 2004-03-24 2004-03-24 Gas hydrate dispensing method and dispensing apparatus Expired - Fee Related JP4817608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004086462A JP4817608B2 (en) 2004-03-24 2004-03-24 Gas hydrate dispensing method and dispensing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004086462A JP4817608B2 (en) 2004-03-24 2004-03-24 Gas hydrate dispensing method and dispensing apparatus

Publications (2)

Publication Number Publication Date
JP2005272574A true JP2005272574A (en) 2005-10-06
JP4817608B2 JP4817608B2 (en) 2011-11-16

Family

ID=35172592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004086462A Expired - Fee Related JP4817608B2 (en) 2004-03-24 2004-03-24 Gas hydrate dispensing method and dispensing apparatus

Country Status (1)

Country Link
JP (1) JP4817608B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007107663A (en) * 2005-10-14 2007-04-26 Mitsui Eng & Shipbuild Co Ltd Transfer method of natural gas hydrate and its device
WO2008111130A1 (en) * 2007-03-14 2008-09-18 Mitsui Engineering & Shipbuilding Co., Ltd. Method and apparatus for transferring natural gas hydrate
JP2012092219A (en) * 2010-10-27 2012-05-17 Mitsui Eng & Shipbuild Co Ltd Apparatus and method for producing gas hydrate
JP2016064947A (en) * 2014-09-24 2016-04-28 株式会社Ihi Ozone hydrate shipping container

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08151209A (en) * 1994-11-28 1996-06-11 Chubu Electric Power Co Inc Method for producing carbon dioxide gas clathrate and its squeeze shaping apparatus
JP2001072615A (en) * 1999-09-01 2001-03-21 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for producing hydrate
JP2003073678A (en) * 2001-08-31 2003-03-12 Mitsubishi Heavy Ind Ltd Dehydrator and dehydration method for gas hydrate slurry
JP2003103117A (en) * 2001-09-28 2003-04-08 Mitsubishi Heavy Ind Ltd Solid-liquid separator and solid-liquid separation method
JP2003105362A (en) * 2001-07-24 2003-04-09 Mitsubishi Heavy Ind Ltd Method and system for formation of natural gas hydrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08151209A (en) * 1994-11-28 1996-06-11 Chubu Electric Power Co Inc Method for producing carbon dioxide gas clathrate and its squeeze shaping apparatus
JP2001072615A (en) * 1999-09-01 2001-03-21 Ishikawajima Harima Heavy Ind Co Ltd Method and apparatus for producing hydrate
JP2003105362A (en) * 2001-07-24 2003-04-09 Mitsubishi Heavy Ind Ltd Method and system for formation of natural gas hydrate
JP2003073678A (en) * 2001-08-31 2003-03-12 Mitsubishi Heavy Ind Ltd Dehydrator and dehydration method for gas hydrate slurry
JP2003103117A (en) * 2001-09-28 2003-04-08 Mitsubishi Heavy Ind Ltd Solid-liquid separator and solid-liquid separation method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007107663A (en) * 2005-10-14 2007-04-26 Mitsui Eng & Shipbuild Co Ltd Transfer method of natural gas hydrate and its device
WO2008111130A1 (en) * 2007-03-14 2008-09-18 Mitsui Engineering & Shipbuilding Co., Ltd. Method and apparatus for transferring natural gas hydrate
JP2012092219A (en) * 2010-10-27 2012-05-17 Mitsui Eng & Shipbuild Co Ltd Apparatus and method for producing gas hydrate
JP2016064947A (en) * 2014-09-24 2016-04-28 株式会社Ihi Ozone hydrate shipping container

Also Published As

Publication number Publication date
JP4817608B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP4151942B2 (en) Gas hydrate generating apparatus, manufacturing apparatus, and manufacturing method
US20050107648A1 (en) Gas hydrate production device and gas hydrate dehydrating device
EP2258815A1 (en) Apparatus and method for gasifying gas hydrate pellet
JP2001342473A (en) Apparatus for producing gas hydrate and apparatus for dehydrating gas hydrate
JP4817608B2 (en) Gas hydrate dispensing method and dispensing apparatus
JP2011231302A (en) Continuous production and dehydration device and method of gas hydrate by principle of centrifugal separation
JP6030785B1 (en) Methane hydrate transfer
WO2009123152A1 (en) Process and apparatus for producing gas hydrate
JP5236977B2 (en) Dehydrator in gas hydrate production plant
JP2006095438A (en) Fluidized bed type reaction column for gas hydrate slurry
US9839887B2 (en) Apparatus for storing gas hydrate pellets
JP5027988B2 (en) Gas hydrate dispensing method and dispensing apparatus
KR100931368B1 (en) Production method of hydrate under high pressure and low temperature using ball mill, and the hydrate production equipment for the method
JP4575804B2 (en) Decompressor
JP2006002000A (en) Methane hydrate generation device and methane gas supply system
JP2006111760A (en) Gas hydrate generation apparatus
JP5284162B2 (en) Gas hydrate manufacturing apparatus and control method thereof
JP2007077253A (en) Method for transferring gas hydrate pellet
JP4564324B2 (en) Gas hydrate production equipment
JP5284157B2 (en) Gas hydrate manufacturing apparatus and control method thereof
JP5307429B2 (en) Operation controller for dehydrator in gas hydrate production plant
JP4620508B2 (en) Gravity dehydration type dehydrator
KR101648735B1 (en) Pelletizer-Integrated Stirring Reactor for Clathrate Hydrate Production
JP4564327B2 (en) Gas hydrate dehydrator
JP5528921B2 (en) Gas hydrate adhesion water separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110830

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees