JP2007107663A - Transfer method of natural gas hydrate and its device - Google Patents

Transfer method of natural gas hydrate and its device Download PDF

Info

Publication number
JP2007107663A
JP2007107663A JP2005300843A JP2005300843A JP2007107663A JP 2007107663 A JP2007107663 A JP 2007107663A JP 2005300843 A JP2005300843 A JP 2005300843A JP 2005300843 A JP2005300843 A JP 2005300843A JP 2007107663 A JP2007107663 A JP 2007107663A
Authority
JP
Japan
Prior art keywords
transfer device
gas hydrate
pressure
ngh
barrel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005300843A
Other languages
Japanese (ja)
Other versions
JP4817794B2 (en
Inventor
Tetsuo Murayama
哲郎 村山
Seiji Horiguchi
清司 堀口
Kazuo Uchida
和男 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2005300843A priority Critical patent/JP4817794B2/en
Publication of JP2007107663A publication Critical patent/JP2007107663A/en
Application granted granted Critical
Publication of JP4817794B2 publication Critical patent/JP4817794B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and device for transferring NGH under a high pressure to under a normal pressure. <P>SOLUTION: In the method for transferring natural gas hydrate (hereinafter referred to as NGH) manufactured by reacting water and natural gas under the high pressure to under the normal pressure by a screw type transfer device, the screw type transfer device 1 comprises a barrel 10 including a supply port 12 of the NGH arranged on one end, and a screw shaft 11 supported in the barrel 10, and is provided with a closed wall body 30 with a discharge port 13 opened on an end or a part continuing to the end of the barrel 10, and further is provided with a pressurizing chamber 2 of a predetermined capacity formed between a tip end part of the screw shaft 11 and the closed wall body 30. The method for transferring the NGH emits the NGH to a low pressure band side while maintaining a high pressure on a supply side during transferring via the screw type transfer device 1 by temporarily accumulating the NGH in the pressurizing chamber 2 by opening and closing a valve device 16. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、圧力レベルの異なる系への天然ガス水和物の移送に関するもので、例えば、54ataの高圧と5℃程度の常温近傍の温度に保持されている天然ガス水和物を、常圧で−20℃の雰囲気に保持されている貯槽や造粒機に連続的、かつ直接的に移送する方法とその装置に関する。   The present invention relates to the transfer of natural gas hydrates to systems having different pressure levels. For example, natural gas hydrates maintained at a high pressure of 54 ata and a temperature near room temperature of about 5 ° C. The present invention relates to a method and apparatus for continuously and directly transferring to a storage tank or granulator maintained in an atmosphere of −20 ° C.

一般的に天然ガスの輸送形態として、液化天然ガス(以下、LNGという)の形で行われているが、この方法では極低温(−162℃)に保持する必要があることから、この極低温を保持する手段と移送する手段に問題がある。近年、このLNGの持つ本質的な問題を解決するために、天然ガス水和物(ガスハイドレート、以下、NGHという)が注目されており、中でも、ハンドリングの容易性や分解に対する抵抗性などの面から、NGHを球形(直径が10〜50mm程度)などのペレット状に成型して保管し、輸送することが提案されている。   In general, the natural gas is transported in the form of liquefied natural gas (hereinafter referred to as LNG). However, in this method, it is necessary to maintain the cryogenic temperature (−162 ° C.). There is a problem in the means for holding and the means for transferring. In recent years, natural gas hydrate (gas hydrate, hereinafter referred to as NGH) has been attracting attention in order to solve the essential problems of this LNG. From the surface, it has been proposed that NGH is molded into a pellet shape such as a spherical shape (diameter of about 10 to 50 mm), stored and transported.

LNGは、単位体積当たりの容積減少率が大きい(天然ガスの元の体積の1/600)が、沸点が著しく低いため、−162℃という極低温に保って輸送する必要がある。従って、温度コントロールを誤ると急激に気化し、爆発する危険性もある。   LNG has a large volume reduction rate per unit volume (1/600 of the original volume of natural gas), but has a remarkably low boiling point. Therefore, it is necessary to transport LNG at an extremely low temperature of −162 ° C. Therefore, there is a danger of rapid vaporization and explosion if the temperature control is wrong.

一方、NGHは、単位体積当たりの容積減少率がLNGに比べ小さい(天然ガスの元の体積の1/170)が、LNGのように−162℃の液体として維持し続けるための多くの冷却エネルギーを投入する必要がなく、−20〜−10℃程度の冷却温度に保ちながら輸送できる特徴を有している。更に、NGHは自己保存効果、つまり、NGHの分解と同時に解凍潜熱でNGH表面が氷で包まれることにより、分解が抑制される効果を有していることから、常圧で前記−20〜−10℃の温度においてほとんど分解しないが、常温では穏やかに分解する特性を持っていおり、この特性を利用して安定的に貯蔵できる利点がある。   On the other hand, NGH has a smaller volume reduction rate per unit volume than 1/13 (1/170 of the original volume of natural gas), but much cooling energy to keep it as a liquid at −162 ° C. like LNG. There is no need to put in, and it can be transported while maintaining a cooling temperature of about -20 to -10 ° C. Furthermore, NGH has a self-preserving effect, that is, the decomposition is suppressed by wrapping the surface of the NGH with ice by thawing latent heat simultaneously with the decomposition of NGH. Although it hardly decomposes at a temperature of 10 ° C., it has the property of being gently decomposed at room temperature, and there is an advantage that it can be stably stored using this property.

NGHの製造工程においては、生成容器内に水を収容し、例えば、圧力を54ata、温度を5℃に保持し、この水と天然ガスと接触させることによってNGHスラリーを生成し、その後脱水し、粉末状のNGHが得られる。しかしながら、このNGH粉末はそのままでは充填密度が小さく、しかも前記のように高圧の雰囲気を必要とするので、保存することが困難である。そこで、保存に適した状態や形状とするために、常圧・低温(例えば、大気圧、−20℃)に保持されている貯槽で保存したり、ペレット状に成形される。   In the production process of NGH, water is contained in a production vessel, and for example, an NGH slurry is produced by maintaining the pressure at 54 at and the temperature at 5 ° C., and bringing the water into contact with natural gas, followed by dehydration, Powdered NGH is obtained. However, if this NGH powder is used as it is, the packing density is small and a high-pressure atmosphere is required as described above, so that it is difficult to store. Therefore, in order to obtain a state and shape suitable for storage, it is stored in a storage tank maintained at normal pressure and low temperature (for example, atmospheric pressure, −20 ° C.) or formed into a pellet.

また、NGH製造工程では、高圧の原料ガスは、原料水と共に生成容器に供給され、0℃程度の温度で、高圧下(例えば、54ata)で水和反応を行うが、この際、原料水中に原料ガスをバブリングする方式や、原料ガス雰囲気中に原料水を噴霧させる方式が提案されている(例えば、特許文献1、2)。
特開2000−302701号公報 特開2000−256226号公報
In the NGH production process, the high-pressure raw material gas is supplied to the production vessel together with the raw water, and a hydration reaction is performed at a temperature of about 0 ° C. under high pressure (for example, 54 ata). A method of bubbling a source gas and a method of spraying source water in a source gas atmosphere have been proposed (for example, Patent Documents 1 and 2).
JP 2000-302701 A JP 2000-256226 A

前記特許文献1、2に記載されたNGHの製造方法によると、NGHは水より比重が小さいので生成容器内の水面付近に浮上して水を含んだNGH層を形成するので、これを分離回収している。   According to the method for producing NGH described in Patent Documents 1 and 2, since NGH has a specific gravity smaller than that of water, it floats near the water surface in the production vessel to form an NGH layer containing water. is doing.

ここで、回収されるNGHは外観上、粉末であるが、その含水濃度によっては遠心分離機やスクリュープレス機等による脱水処理が必要となり、また、NGHのハンドリングを考慮すると粉末状よりはペレット状の方が好ましい。すなわち、何れもNGHスラリーの後処理が必要であり、その方法や、後処理する際に高圧状態のNGHを脱圧する方法等が考慮されていない。   Here, the recovered NGH is powdered in appearance, but depending on its water content, dehydration treatment with a centrifuge, screw press, etc. may be required, and in consideration of handling of NGH, it is in a pellet form rather than a powder form. Is preferred. That is, both require post-treatment of the NGH slurry, and no consideration is given to such a method or a method of depressurizing NGH in a high-pressure state during post-treatment.

また、前記特許文献1によると、高圧の生成容器から回収されたNGHを常圧の貯蔵容器に送る前に冷却容器で冷却してから脱圧するようにしているが、この方式では冷却容器中の気相部分に溜まった高圧の天然ガスを放出しなくてはならない。そこで通常は、この放出ガスを回収し、NGH製造原料ガスとしてリサイクルするための付帯設備(ガスホルダー、コンプレッサー、高圧配管、バルブ等)が必要となり、そのための動力も余分に掛かるという問題がある。   According to Patent Document 1, the NGH recovered from the high-pressure production container is cooled in the cooling container before being sent to the normal-pressure storage container, and then depressurized. The high-pressure natural gas accumulated in the gas phase must be released. Therefore, there is usually a problem that incidental equipment (gas holder, compressor, high-pressure pipe, valve, etc.) for recovering the released gas and recycling it as NGH production raw material gas is required, and extra power is required for that purpose.

本発明は、前記の問題を解決するために考案されたものであり、特に高圧で運転されるNGH製造装置で生成した高濃度のNGHや既に高圧下で脱水されたNGH粉末を常圧下で貯蔵若しくはペレット成形する場合に、前記放出ガスを発生することなく、しかも連続的に移送するための方法と装置を提供することを目的とする。   The present invention has been devised to solve the above-mentioned problems, and particularly stores high-concentration NGH produced by an NGH production apparatus operated at high pressure and NGH powder already dehydrated under high pressure under normal pressure. Alternatively, it is an object of the present invention to provide a method and an apparatus for continuously transferring the pellet without forming the released gas when pellet forming is performed.

前記目的を達成するための本発明は、次のように構成されている。
1)高圧下において水と天然ガスを反応させて製造されたガスハイドレートをスクリュー式移送装置によって低圧の帯域に移送する方法において、前記スクリュー式移送装置の移送終端部に移送されるガスハイドレートの吐出を阻止又はガスハイドレートに抵抗を与えることによって一時的に圧密化し、この圧密化されたガスハイドレートによってバレル内の圧力を、高圧下に保持することを特徴としている。
In order to achieve the above object, the present invention is configured as follows.
1) In a method of transferring gas hydrate produced by reacting water and natural gas under high pressure to a low-pressure zone using a screw type transfer device, the gas hydrate transferred to the transfer terminal of the screw type transfer device It is characterized by temporarily compacting by blocking the discharge of gas or providing resistance to the gas hydrate, and maintaining the pressure in the barrel under a high pressure by the compacted gas hydrate.

2)高圧下に保持されているガスハイドレートを低圧の帯域に移送する装置において、前記移送装置は、一端にガスハイドレートの供給口を配設したバレルと、このバレル内に支持されているスクリュー軸とからなるスクリュー式移送装置であって、前記バレルの終端あるいは終端に続く部分に吐出口を開口した閉止壁体が設けられ、前記吐出口は弁装置によって開閉可能に構成され、更に、前記スクリュー軸の先端部と前記閉止壁体との間に、所定の容量を有する加圧室が形成されており、前記弁装置を開閉操作することによって前記加圧室内のガスハイドレートを一時的に滞留させることによって、前記スクリュー式移送装置を経由して移送する間に供給側の高圧を保持しながら低圧の帯域側にガスハイドレートを放出するように構成されていることを特徴としている。   2) In an apparatus for transferring a gas hydrate held under high pressure to a low-pressure zone, the transfer apparatus is supported within a barrel having a gas hydrate supply port disposed at one end thereof. A screw type transfer device comprising a screw shaft, provided with a closing wall body having an outlet opening at the end of the barrel or a part following the end, the outlet being configured to be opened and closed by a valve device, A pressurizing chamber having a predetermined capacity is formed between the distal end portion of the screw shaft and the closing wall body, and the gas hydrate in the pressurizing chamber is temporarily changed by opening and closing the valve device. The gas hydrate is discharged to the low pressure zone side while maintaining the high pressure on the supply side during the transfer via the screw type transfer device. It is characterized in that.

本発明は、特殊な圧力保持機能を持つスクリュー式移送装置1を使用し、前記スクリュー式移送装置内のスクリュー軸の先端部とバレルの終端部との間に加圧室を形成し、この加圧室内に被移送物であるNGH粉末を一旦閉じ込め、その押圧力によってその部位を高圧にするものであり、これにより、NGH粉末自体にシール性が生じ、バレル内を高圧に保持できる。さらに、弁装置を間欠的に動作することによって、バレル内でのNGH粉末は高圧のままで、加圧室から常圧の貯槽等へのNGH排出量を増減することができる。従って、前記の放出ガスの発生はなく、放出ガスをリサイクルするための付帯設備やその動力も不要となる。   The present invention uses a screw type transfer device 1 having a special pressure holding function, and forms a pressurizing chamber between the tip end of the screw shaft and the end of the barrel in the screw type transfer device. The NGH powder, which is the object to be transferred, is once confined in the pressure chamber and the portion is made high pressure by the pressing force. As a result, the NGH powder itself has a sealing property, and the inside of the barrel can be maintained at a high pressure. Further, by intermittently operating the valve device, the amount of NGH discharged from the pressurizing chamber to a normal pressure storage tank or the like can be increased or decreased while the NGH powder in the barrel remains at a high pressure. Therefore, the emission gas is not generated, and an incidental facility for recycling the emission gas and its power are not required.

さらに、本発明においては、スクリュー式移送装置のバレル外周に冷却ジャケットを配置しているので、NGH粉末を移送する際に発生する熱を除去できると同時に、NGH粉末が自己保存効果を発揮する低温まで任意に冷却することができる。   Further, in the present invention, since the cooling jacket is disposed on the outer periphery of the barrel of the screw type transfer device, the heat generated when the NGH powder is transferred can be removed, and at the same time, the NGH powder exhibits a self-preserving effect. Can be arbitrarily cooled.

以下、本発明の実施の形態を図面を参照して説明する。図1は本発明に係るスクリュー式移送装置1を使用して高圧の雰囲気に保持されているNGH粉末nを、低圧の雰囲気に保持されている次工程、例えば貯槽やペレット成型工程に、前記高圧状態を保持しながら連続的に移送するための移送装置の概略図を示している。
(移送装置)
図1において、1は本発明に係るスクリュー式移送装置であって、バレル10とスクリュー軸11で構成され、このスクリュー軸11の先端部とバレル10の閉止壁30との間に本発明の特徴である加圧室2が形成され、この加圧室2に隣接して減圧室3がバルブ9を介して形成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows that the NGH powder n held in a high-pressure atmosphere using the screw-type transfer device 1 according to the present invention is applied to the next step in which the NGH powder n is held in a low-pressure atmosphere, such as a storage tank or a pellet molding step. Fig. 2 shows a schematic view of a transfer device for continuous transfer while maintaining the state.
(Transfer device)
In FIG. 1, reference numeral 1 denotes a screw type transfer device according to the present invention, which is composed of a barrel 10 and a screw shaft 11, and features of the present invention between a tip portion of the screw shaft 11 and a closing wall 30 of the barrel 10. A pressurizing chamber 2 is formed, and a decompression chamber 3 is formed adjacent to the pressurizing chamber 2 via a valve 9.

そして図示しないNGH製造工程から移送されてきた高圧(初期圧P1)を持つNGH粉末nは、NGH供給管路4を経由して前記スクリュー式移送装置1に供給され、後述する特殊構造を持つスクリュー軸11によって加圧されながら加圧室2内に押込みながら移送される。   Then, the NGH powder n having a high pressure (initial pressure P1) transferred from the NGH manufacturing process (not shown) is supplied to the screw type transfer device 1 via the NGH supply pipe 4, and has a special structure to be described later. While being pressurized by the shaft 11, it is transferred while being pushed into the pressurizing chamber 2.

この加圧室2内にNGH粉末nが移送された段階では加圧室2内の圧力は図2(B)のように前記初期圧P1より高圧に加圧されている。一方、前記減圧室3は、加圧室2の閉止壁30に開口されている吐出口13を開閉するバルブ装置16を設けたバルブ室であり、このバルブ装置16の動作によって前記吐出口13から排出されるNGH粉末nの吐出量を、バルブ9の押圧力(逆圧)によって制限して前記加圧室2内の圧力を調整し、保持する機能を持っている。   When the NGH powder n is transferred into the pressurizing chamber 2, the pressure in the pressurizing chamber 2 is higher than the initial pressure P1 as shown in FIG. On the other hand, the decompression chamber 3 is a valve chamber provided with a valve device 16 that opens and closes the discharge port 13 opened in the closing wall 30 of the pressurization chamber 2. The discharge amount of the discharged NGH powder n is limited by the pressing force (reverse pressure) of the valve 9 to adjust and hold the pressure in the pressurizing chamber 2.

前記移送装置1の供給口より初期圧P1で供給されたNGH粉末nは、この移送装置1を構成するスクリュー軸11と、加圧室2と、減圧室3の一連の作用によって二次圧P2に減圧されてNGH貯槽6に送出される。この二次圧P2は本発明においてはNGHの自己保存効果を奏する圧力である常圧を意味している。
(スクリュー式移送装置)
図2(A)と図3に示すように、NGH粉末nを移送するスクリュー式移送装置1は、バレル10と、このバレル10内に回転可能に嵌挿されたスクリュー軸11と、バレル10に隣接して配置された減圧室3を有している。そして、このスクリュー式移送装置1は、バレルの終端あるいは終端に続く部分に吐出口13を開口した閉止壁体30が設けられており、前記スクリュー軸11の先端部分と前記閉止壁体との間に加圧室2が形成されており、吐出口13に設けられた弁装置の開閉によってNGHを一時的に加圧室2に滞留させるように構成されている。
The NGH powder n supplied at the initial pressure P1 from the supply port of the transfer device 1 is subjected to a secondary pressure P2 by a series of actions of the screw shaft 11, the pressurizing chamber 2, and the decompression chamber 3 constituting the transfer device 1. The pressure is reduced to 3 and then sent to the NGH storage tank 6. In the present invention, the secondary pressure P2 means a normal pressure that is a pressure that exhibits the self-preserving effect of NGH.
(Screw type transfer device)
As shown in FIG. 2 (A) and FIG. 3, a screw type transfer device 1 for transferring NGH powder n includes a barrel 10, a screw shaft 11 rotatably fitted in the barrel 10, and a barrel 10. It has the decompression chamber 3 arrange | positioned adjacently. The screw type transfer device 1 is provided with a closing wall body 30 having a discharge port 13 opened at the end of the barrel or a portion following the end, and between the front end portion of the screw shaft 11 and the closing wall body. A pressurizing chamber 2 is formed in the pressurizing chamber 2, and NGH is temporarily retained in the pressurizing chamber 2 by opening and closing a valve device provided at the discharge port 13.

図2(A)に示すように前記スクリュー軸11は小径部S1と中径部S2と大径部S3で構成されており、小径部S1は供給口12の位置に配置されるNGH粉末nの導入部で、フライトFの高さが他に比較して高くなっており、NGH粉末nの単位移送量の多い大移送容積部V1が形成されている。   As shown in FIG. 2 (A), the screw shaft 11 is composed of a small diameter portion S1, a medium diameter portion S2, and a large diameter portion S3. The small diameter portion S1 is made of NGH powder n disposed at the position of the supply port 12. In the introduction part, the height of the flight F is higher than the others, and a large transfer volume part V1 with a large unit transfer amount of the NGH powder n is formed.

中径部S2は、スクリュー軸11の小径部S1と大径部S3との中間に配置され、前記小径部S1から前記大径部S3にかけてその軸径が次第に拡大するように形成されており、NGH粉末nの単位移送量を次第に減少される中移送容積部V2が形成されている。   The medium diameter portion S2 is disposed between the small diameter portion S1 and the large diameter portion S3 of the screw shaft 11, and is formed so that the shaft diameter gradually increases from the small diameter portion S1 to the large diameter portion S3. A medium transfer volume V2 in which the unit transfer amount of the NGH powder n is gradually reduced is formed.

大径部S3は、前記スクリュー軸11の先端部から中径部S2の手前に形成され、フライトFとスクリュー軸11との間隙が他に比較して最も狭くなっており、NGH粉末nの単位移送量が最も少ない小移送容積部V3が形成されている。   The large-diameter portion S3 is formed from the tip of the screw shaft 11 to the front of the medium-diameter portion S2, and the gap between the flight F and the screw shaft 11 is the narrowest compared to the others, and the unit of NGH powder n A small transfer volume V3 having the smallest transfer amount is formed.

そして、前記スクリュー式移送装置1は、NGH粉末nを移送しながら冷却する手段として、冷却ジャケット15を有し、ブラインタンク(不図示)とブラインポンプ(不図示)とを経由して循環するブラインによって、前記NGH粉末nを−20℃程度に冷却保持する。この温度制御手段として冷却ジャケット15の他に、例えばスクリュー軸11の内部を2重又は多重構造とし何れか一方の間隙にブラインを循環してもよく、また、前記冷却ジャケット15と組合わせて用いてもよい。   The screw type transfer device 1 has a cooling jacket 15 as a means for cooling while transferring the NGH powder n, and circulates through a brine tank (not shown) and a brine pump (not shown). Thus, the NGH powder n is cooled and held at about -20 ° C. As this temperature control means, in addition to the cooling jacket 15, for example, the inside of the screw shaft 11 may have a double or multiple structure, and brine may be circulated in one of the gaps, or used in combination with the cooling jacket 15. May be.

図3においてスクリュー式移送装置1の供給口12に供給されたNGH粉末nは、前記供給口12の位置に配置される小径部S1に設けられたフライトFとそのスクリュー軸11とバレル10とに仕切られたNGH粉末nを移送する移送容積部V1に収容され、前記スクリュー軸の回転に伴って中径部S2領域へ移送される。小径部S1は移送が主であるので、被搬送物であるNGH粉末nの粉体圧Pは余り上昇しない。   In FIG. 3, the NGH powder n supplied to the supply port 12 of the screw type transfer device 1 is supplied to the flight F, its screw shaft 11, and the barrel 10 provided in the small diameter portion S <b> 1 arranged at the position of the supply port 12. The partitioned NGH powder n is accommodated in the transfer volume V1 for transferring, and is transferred to the medium diameter portion S2 region with the rotation of the screw shaft. Since the small-diameter portion S1 is mainly transferred, the powder pressure P of the NGH powder n that is the conveyed object does not increase so much.

次に、前記小径部S1から中径部S2に移送されるNGH粉末nは、該中径部S2のスクリュー軸11の直径が次第に大きくなると共に、更にバレル10との間隙が狭くなることによって移送容積部V2が圧縮されてNGH粉末n自体の圧力Pは上昇していくが、このときのNGH粉末n自体の圧力Pは前記初期圧P1よりも低く、この前記初期圧P1の高圧ガスの連通を遮断するまでには至らない。   Next, the NGH powder n transferred from the small-diameter portion S1 to the medium-diameter portion S2 is transferred as the diameter of the screw shaft 11 of the medium-diameter portion S2 is gradually increased and the gap with the barrel 10 is further narrowed. Although the volume V2 is compressed and the pressure P of the NGH powder n itself increases, the pressure P of the NGH powder n itself at this time is lower than the initial pressure P1, and the high-pressure gas communication at the initial pressure P1 is communicated. It is not necessary to shut off.

前記中径部S2で圧縮・加圧されて移送されるNGH粉末nは、大径部S3のスクリュー軸11のバレルとの間隙に狭持されると共にその単位移送量が大きく減少される小移送容積V3に押込まれる。そして前記中径部S2から押込まれるNGH粉末nと、大径部S3にて狭持されることによる圧密とによってNGH粉末n自体の圧力Pは上昇を続け、大径部S3の中央から先端部にかけて初期圧P1を超える。   The NGH powder n that is compressed and pressurized at the medium diameter portion S2 and is transferred is held in the gap between the large diameter portion S3 and the barrel of the screw shaft 11, and the unit transfer amount is greatly reduced. Pushed into volume V3. The pressure P of the NGH powder n itself continues to increase due to the NGH powder n pushed from the medium diameter portion S2 and the compaction caused by being held by the large diameter portion S3. The initial pressure P1 is exceeded over the part.

そして、前記大径部S3で初期圧P1よりも高く昇圧されたNGH粉末nは加圧室2に押込まれるが、バルブ装置16のバルブ9の押圧力(逆圧)によってNGHの吐出量が制限されており、前記加圧室2内の圧力は初期圧P1よりも高圧となるように調整され、保持されている。前記加圧室2において被搬送物であるNGH粉末nは滞留し、初期圧P1よりも高圧(P3〜P4)である圧密体を形成する。   Then, the NGH powder n whose pressure has been increased to be higher than the initial pressure P1 in the large diameter portion S3 is pushed into the pressurizing chamber 2, but the discharge amount of NGH is reduced by the pressing force (reverse pressure) of the valve 9 of the valve device 16. The pressure in the pressurizing chamber 2 is adjusted and maintained so as to be higher than the initial pressure P1. In the pressurizing chamber 2, the NGH powder n that is the object to be transported stays and forms a consolidated body having a pressure (P3 to P4) higher than the initial pressure P1.

前記圧密体が初期圧P1よりも高圧(P3〜P4)となって、供給口12に供給されるNGHの初期圧P1が低圧側(常圧:二次圧P2)に抜けるのを阻止しており、このような効果を発揮する“マテリアルシール”が安定的に形成され保持される。   This prevents the compacted body from becoming higher than the initial pressure P1 (P3 to P4), so that the initial pressure P1 of NGH supplied to the supply port 12 does not escape to the low pressure side (normal pressure: secondary pressure P2). Thus, a “material seal” that exhibits such an effect is stably formed and held.

前記マテリアルシールは、スクリュー式移送装置1の稼動初期には不十分であるので、バルブ9により吐出口13を閉止しており、加圧室の圧力センサーB1と、減圧室の二次圧力センサーB2の圧力を検出して、前記NGHの圧密体の圧力が一定となるようにバルブ装置16の押圧力を調整している。また、前記各々の圧力センサーB1、B2によって、吐出口13側の圧力が常圧よりも上昇した場合に吐出口13を閉止し、初期圧P1の高圧ガスが減圧室3に流出するのを防ぐことができる。   Since the material seal is insufficient in the initial operation of the screw type transfer device 1, the discharge port 13 is closed by the valve 9, and the pressure sensor B1 in the pressurization chamber and the secondary pressure sensor B2 in the decompression chamber The pressure of the valve device 16 is adjusted so that the pressure of the NGH compact is constant. The pressure sensors B1 and B2 close the discharge port 13 when the pressure on the discharge port 13 side rises above the normal pressure to prevent the high pressure gas having the initial pressure P1 from flowing out into the decompression chamber 3. be able to.

また、加圧室2内においては、スクリュー式移送装置1に供給されたNGH粉末nは初期圧P1よりも高圧である圧密体を形成し、加圧室2の吐出口13から吐出するため、ペレタライザー等のペレット成型工程によって成型されたNGHペレットと同様に固形化されているため、ペレット成型工程を省略することができる。
(スクリュー式移送装置の他の実施例)
図4に示すスクリュー式移送装置1は、そのスクリュー軸11の先端部に、加圧室2に形成されるNGH粉末nの圧密体を更に強圧する押圧手段を設けたものである。前記押圧手段は、押圧部材がスクリュー軸11の先端部で突入自在なピストン17を形成している。
Further, in the pressurizing chamber 2, the NGH powder n supplied to the screw-type transfer device 1 forms a compact that is higher than the initial pressure P1 and is discharged from the discharge port 13 of the pressurizing chamber 2. Since it is solidified in the same manner as the NGH pellets molded by a pellet molding process such as a pelletizer, the pellet molding process can be omitted.
(Other embodiment of screw type transfer device)
The screw type transfer device 1 shown in FIG. 4 is provided with a pressing means that further pressurizes the compacted body of NGH powder n formed in the pressurizing chamber 2 at the tip of the screw shaft 11. The pressing means forms a piston 17 into which the pressing member can enter at the tip of the screw shaft 11.

前記ピストン17は、スクリュー軸11の先端から突出することによって加圧室2内の容積に変化を与え、NGH粉末nの圧密体の形成を促進するので、圧密体の突出量を調整することによってNGHの加圧力に変化を与える。そして、スクリュー軸11の回転と、前記ピストン17の突出量と、バルブ9の稼動量の一体的な制御によって初期圧P1より高圧の圧密体を素早く形成することができる。   The piston 17 projects from the tip of the screw shaft 11 to change the volume in the pressurizing chamber 2 and promotes the formation of a compacted body of NGH powder n. Therefore, by adjusting the projecting amount of the compacted body, Changes the pressure of NGH. A compact body with a pressure higher than the initial pressure P1 can be quickly formed by integrally controlling the rotation of the screw shaft 11, the protruding amount of the piston 17, and the operating amount of the valve 9.

図5に示すスクリュー式移送装置1は、加圧室2の一部がベローズ管18により形成されたものであり、このベローズ管18に高圧流体を送込んでベローズ管は膨張され、前記加圧室2の容積に変化を与え、この加圧室2内に形成される圧密体の圧力Pを昇圧するものである。   The screw-type transfer device 1 shown in FIG. 5 has a part of the pressurizing chamber 2 formed by a bellows pipe 18, and a high-pressure fluid is fed into the bellows pipe 18 to expand the bellows pipe. The volume of the chamber 2 is changed, and the pressure P of the consolidated body formed in the pressurizing chamber 2 is increased.

図6に示すスクリュー式移送装置1は、2基のスクリュー式移送装置1を対向に使用し、該スクリュー式移送装置の吐出口13を対向させて配置し、前記2基のスクリュー式移送装置の払出口14はバルブ装置16を中央に配置した状態に構成されている。また、それぞれのスクリュー式移送装置1に設けたモーターM1とM2は、各々速度調整ができる。   The screw-type transfer device 1 shown in FIG. 6 uses two screw-type transfer devices 1 facing each other, and is arranged so that the discharge ports 13 of the screw-type transfer devices face each other. The discharge port 14 is configured in a state in which the valve device 16 is disposed in the center. Further, the motors M1 and M2 provided in each screw type transfer device 1 can each adjust the speed.

2基のスクリュー式移送装置1が並列にNGH粉末nを高圧(初期圧P1)から低圧
(常圧:二次圧P2)に圧力差を遮断しながら移送するので、常圧下にある後工程にNGHを供給する供給量を増やすことができる。
Since the two screw-type transfer devices 1 transfer NGH powder n in parallel from the high pressure (initial pressure P1) to the low pressure (normal pressure: secondary pressure P2), the post-process under normal pressure is transferred. The supply amount for supplying NGH can be increased.

図7に示す実施例においては、第1のスクリュー式移送装置の吐出口13に、第2のスクリュー式移送装置の供給口12を連結管20を介して直列に配置した状態に構成されている。第1のスクリュー式移送装置におけるマテリアルシールと、第2のスクリュー式移送装置におけるマテリアルシールとからなる2重シール構造が圧力差を遮断するので、スクリュー式移送装置の動作が容易となり、NGHの移送量を多くすることができる。
(加圧室の変形について)
本発明は、スクリュー式移送装置のスクリュー軸をバレルの長さより短縮し、前記スクリュー軸の先端部とバレルの終端との間に加圧室2を形成した点に特徴があるが、この部分は、ある意味においてはNGHが通過する際の抵抗を付与する区域として作用するものである。従って、この加圧室内に複数個の球体などを充填して通過するNGHに抵抗を与えることができる。
In the embodiment shown in FIG. 7, the supply port 12 of the second screw type transfer device is arranged in series via the connecting pipe 20 to the discharge port 13 of the first screw type transfer device. . Since the double seal structure consisting of the material seal in the first screw type transfer device and the material seal in the second screw type transfer device blocks the pressure difference, the operation of the screw type transfer device becomes easy and NGH transfer The amount can be increased.
(About deformation of pressurizing chamber)
The present invention is characterized in that the screw shaft of the screw type transfer device is shortened from the length of the barrel, and the pressurizing chamber 2 is formed between the tip of the screw shaft and the end of the barrel. In a sense, it acts as an area that provides resistance when NGH passes. Therefore, resistance can be given to the NGH passing through the pressurizing chamber filled with a plurality of spheres.

また、この球体の代えて、多数のスリットを開口した抵抗板を1枚あるいは複数枚、NGHに抵抗を与えるような状態に配置することによって、この部位で図2(B)に示した圧力の変化のグラフの高圧部分を安定して発生させるように構成することもできる。
(ガス漏れ防止容器)
図8は本発明に係るNGHのスクリュー式移送装置1を耐圧容器内に設けた概略図である。
Further, instead of this sphere, one or a plurality of resistance plates having a large number of slits are arranged in such a state as to give resistance to NGH, so that the pressure shown in FIG. It can also be configured to stably generate the high pressure portion of the change graph.
(Gas leak prevention container)
FIG. 8 is a schematic view in which the NGH screw type transfer device 1 according to the present invention is provided in a pressure vessel.

図8において、スクリュー式移送装置1は耐圧密閉容器25内に、その配管と共に配置されている。また、前記耐圧密閉容器55はガス排気管(不図示)により漏れ出したガスを逃がすように構成されている。   In FIG. 8, the screw type transfer device 1 is disposed in the pressure-resistant sealed container 25 together with its piping. The pressure-resistant airtight container 55 is configured to release the leaked gas through a gas exhaust pipe (not shown).

耐圧密閉容器25内にスクリュー式移送装置1を配置することで、安全性を高めることができる。   By arranging the screw type transfer device 1 in the pressure-resistant sealed container 25, safety can be improved.

本発明の実施形態に係るNGH移送装置の概略構成図であるIt is a schematic block diagram of the NGH transfer apparatus which concerns on embodiment of this invention. (A)スクリュー式移送装置の一部切断断面図である。(B)スクリュー式移送装置の圧力線図である(A) It is a partially cut sectional view of a screw type transfer device. (B) It is a pressure diagram of a screw type transfer device. スクリュー式移送装置の一部切断断面拡大図であるIt is a partially cut cross-sectional enlarged view of a screw type transfer device. スクリュー式移送装置の他の例の一部切断断面拡大図であるIt is a partially cut cross-sectional enlarged view of another example of the screw type transfer device. スクリュー式移送装置の他の例の一部切断断面拡大図であるIt is a partially cut cross-sectional enlarged view of another example of the screw type transfer device. スクリュー式移送装置の他の例の一部切断断面拡大図であるIt is a partially cut cross-sectional enlarged view of another example of the screw type transfer device. スクリュー式移送装置の他の例の一部切断断面拡大図であるIt is a partially cut cross-sectional enlarged view of another example of the screw type transfer device. スクリュー式移送装置の他の実施形態を示す概略構成図であるIt is a schematic block diagram which shows other embodiment of a screw type transfer apparatus.

符号の説明Explanation of symbols

n NGH粉末 P NGH粉末の圧力
F フライト M モーター
B1、B2、B3、B4、B5、B6、B7 圧力センサー
P1 初期圧 P2 二次圧
S1 小径部 S2 中径部
S3 大径部 V1 大移送容積
V2 中移送容積 V3 小移送容積
1 スクリュー式移送装置 2 加圧室
3 減圧室 4 NGH供給管路
5 排出管路 6 貯槽
7 低圧ヘッダ 8 管路
9 バルブ 10 バレル
11 スクリュー軸 12 供給口
13 吐出口 14 放出口
15 冷却ジャケット 16 バルブ装置
17 ピストン 18 ベローズ管
19 シリンダ装置 20 連結管
21 払出バンカ 25 ガス漏れ防止容器
26 受入容器 30 閉止壁
n NGH powder P Pressure of NGH powder F Flight M Motors B1, B2, B3, B4, B5, B6, B7 Pressure sensor P1 Initial pressure P2 Secondary pressure S1 Small diameter part S2 Medium diameter part S3 Large diameter part V1 Large transfer volume V2 Medium transfer volume V3 Small transfer volume 1 Screw type transfer device 2 Pressurization chamber 3 Decompression chamber 4 NGH supply line 5 Discharge line 6 Storage tank 7 Low pressure header 8 Pipe line 9 Valve 10 Barrel 11 Screw shaft 12 Supply port 13 Discharge port 14 Discharge port 15 Cooling jacket 16 Valve device 17 Piston 18 Bellows pipe 19 Cylinder device 20 Connecting pipe 21 Discharge bunker 25 Gas leakage prevention container 26 Receiving container 30 Closing wall

Claims (7)

高圧下において水と天然ガスを反応させて製造されたガスハイドレートをスクリュー式移送装置によって低圧の帯域に移送する方法において、
前記スクリュー式移送装置の移送終端部に移送されるガスハイドレートの吐出を阻止又はガスハイドレートに抵抗を与えることによって一時的に圧密化し、この圧密化されたガスハイドレートによってバレル内の圧力を、高圧下に保持することを特徴とするガスハイドレートの移送方法。
In a method of transferring a gas hydrate produced by reacting water and natural gas under high pressure to a low pressure zone by a screw type transfer device,
The discharge of the gas hydrate transferred to the transfer terminal end of the screw type transfer device is temporarily consolidated by blocking or giving resistance to the gas hydrate, and the pressure in the barrel is reduced by the consolidated gas hydrate. A method for transferring gas hydrate, characterized by being held under high pressure.
高圧下に保持されているガスハイドレートを低圧の帯域に移送する装置において、
前記移送装置は、一端にガスハイドレートの供給口を配設したバレルと、このバレル内に支持されているスクリュー軸とからなるスクリュー式移送装置であって、
前記バレルの終端あるいは終端に続く部分に吐出口を開口した閉止壁体が設けられ、前記吐出口は弁装置によって開閉可能に構成され、
更に、前記スクリュー軸の先端部と前記閉止壁体との間に、所定の容量を有する加圧室が形成されており、
前記弁装置を開閉操作することによって前記加圧室内のガスハイドレートを一時的に滞留させることによって、前記スクリュー式移送装置を経由して移送する間に供給側の高圧を保持しながら低圧の帯域側にガスハイドレートを放出するように構成されていることを特徴とするガスハイドレートの移送装置。
In an apparatus for transferring a gas hydrate held under high pressure to a low pressure zone,
The transfer device is a screw type transfer device comprising a barrel having a gas hydrate supply port disposed at one end thereof, and a screw shaft supported in the barrel,
A closing wall body that opens a discharge port at the end of the barrel or a portion following the end is provided, and the discharge port is configured to be opened and closed by a valve device,
Furthermore, a pressurizing chamber having a predetermined capacity is formed between the tip of the screw shaft and the closing wall body,
The gas hydrate in the pressurizing chamber is temporarily retained by opening and closing the valve device, thereby maintaining a high pressure on the supply side while being transferred via the screw type transfer device. A device for transferring gas hydrate, characterized in that gas hydrate is discharged to the side.
前記スクリュー式移送装置を構成するバレル終端に形成される加圧室は、前記弁装置の操作によって所定量のガスハイドレートを吐出口より吐出させながら、前記バレル内の高圧を保持するのに必要な圧力を発生する容積を有していることを特徴とする請求項2記載のガスハイドレートの移送装置。   The pressurizing chamber formed at the end of the barrel constituting the screw type transfer device is necessary for maintaining a high pressure in the barrel while discharging a predetermined amount of gas hydrate from the discharge port by operating the valve device. 3. The gas hydrate transfer device according to claim 2, wherein the gas hydrate transfer device has a volume for generating an appropriate pressure. 前記スクリュー式移送装置のバレルの加圧室を形成する部分の内面にベローズ管を配置し、このベローズ管内に高圧流体を供給して前記加圧室の容積を変更できるように構成したことを特徴とする請求項2記載のガスハイドレートの移送装置。   A bellows pipe is arranged on an inner surface of a portion of the barrel of the screw type transfer device forming a pressurizing chamber, and a high-pressure fluid is supplied into the bellows pipe so that the volume of the pressurizing chamber can be changed. The gas hydrate transfer device according to claim 2. スクリュー式移送装置の加圧室に臨むスクリュー軸の先端部に、前記加圧室内に突出及び後退する体積変化部材が設けられ、この体積変化部材の前後移動によって前記加圧室内の加圧状態を変化するように構成されていることを特徴とする請求項2記載のガスハイドレートの移送装置。   A volume change member that protrudes and retracts into the pressure chamber is provided at the tip of the screw shaft facing the pressure chamber of the screw-type transfer device. 3. The gas hydrate transfer device according to claim 2, wherein the gas hydrate transfer device is configured to change. 前記スクリュー式移送装置を形成するバレルの外周面にジャケットが形成されており、このジャケット内に冷媒を循環させて冷却し、供給されたガスハイドレートが排出されるまでに、常圧近傍の圧力において安定して保持できる程度の低温に冷却するように構成したことを特徴とするガスハイドレートの移送装置。   A jacket is formed on the outer peripheral surface of the barrel forming the screw type transfer device, the refrigerant is circulated and cooled in the jacket, and the pressure near the normal pressure is discharged until the supplied gas hydrate is discharged. The apparatus for transferring gas hydrate is characterized in that it is cooled to a low temperature such that it can be held stably. 前記スクリュー式移送装置を形成するスクリュー軸は、ガスハイドレートの供給部側から加圧室側に向かってガスハイドレートを圧密化するよう、軸形状、フライト形状、及びフライトピッチが構成されていることを特徴とする請求項2記載のガスハイドレートの移送装置。
The screw shaft forming the screw type transfer device has a shaft shape, a flight shape, and a flight pitch so that the gas hydrate is consolidated from the gas hydrate supply unit side toward the pressurizing chamber side. The gas hydrate transfer device according to claim 2.
JP2005300843A 2005-10-14 2005-10-14 Method and apparatus for transferring natural gas hydrate Expired - Fee Related JP4817794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005300843A JP4817794B2 (en) 2005-10-14 2005-10-14 Method and apparatus for transferring natural gas hydrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005300843A JP4817794B2 (en) 2005-10-14 2005-10-14 Method and apparatus for transferring natural gas hydrate

Publications (2)

Publication Number Publication Date
JP2007107663A true JP2007107663A (en) 2007-04-26
JP4817794B2 JP4817794B2 (en) 2011-11-16

Family

ID=38033678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005300843A Expired - Fee Related JP4817794B2 (en) 2005-10-14 2005-10-14 Method and apparatus for transferring natural gas hydrate

Country Status (1)

Country Link
JP (1) JP4817794B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269952A (en) * 2006-03-31 2007-10-18 Mitsui Eng & Shipbuild Co Ltd Method for producing gas hydrate
WO2008114429A1 (en) * 2007-03-20 2008-09-25 Mitsui Engineering & Shipbuilding Co., Ltd. Method and device for transporting natural gas hydrate
CN115408889A (en) * 2022-11-01 2022-11-29 中国石油大学(华东) Method for exploiting sea natural gas hydrate by combining heat injection, fracturing and depressurization

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256226A (en) * 1999-03-15 2000-09-19 Mitsubishi Heavy Ind Ltd Method and apparatus for producing hydrate
JP2000302701A (en) * 1999-04-26 2000-10-31 Mitsui Eng & Shipbuild Co Ltd Apparatus for producing gas hydrate and its production
JP2001348583A (en) * 2000-06-07 2001-12-18 Mitsubishi Heavy Ind Ltd Apparatus for producing gas hydrate
JP2003327980A (en) * 2002-05-13 2003-11-19 Ishikawajima Harima Heavy Ind Co Ltd Method for continuously producing gas hydrate and apparatus therefor
JP2005272574A (en) * 2004-03-24 2005-10-06 Mitsui Eng & Shipbuild Co Ltd Method of and apparatus for discharge of gas hydrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256226A (en) * 1999-03-15 2000-09-19 Mitsubishi Heavy Ind Ltd Method and apparatus for producing hydrate
JP2000302701A (en) * 1999-04-26 2000-10-31 Mitsui Eng & Shipbuild Co Ltd Apparatus for producing gas hydrate and its production
JP2001348583A (en) * 2000-06-07 2001-12-18 Mitsubishi Heavy Ind Ltd Apparatus for producing gas hydrate
JP2003327980A (en) * 2002-05-13 2003-11-19 Ishikawajima Harima Heavy Ind Co Ltd Method for continuously producing gas hydrate and apparatus therefor
JP2005272574A (en) * 2004-03-24 2005-10-06 Mitsui Eng & Shipbuild Co Ltd Method of and apparatus for discharge of gas hydrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007269952A (en) * 2006-03-31 2007-10-18 Mitsui Eng & Shipbuild Co Ltd Method for producing gas hydrate
WO2008114429A1 (en) * 2007-03-20 2008-09-25 Mitsui Engineering & Shipbuilding Co., Ltd. Method and device for transporting natural gas hydrate
CN115408889A (en) * 2022-11-01 2022-11-29 中国石油大学(华东) Method for exploiting sea natural gas hydrate by combining heat injection, fracturing and depressurization

Also Published As

Publication number Publication date
JP4817794B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP5356781B2 (en) Conveying device used under high differential pressure condition and control method thereof
JP4817794B2 (en) Method and apparatus for transferring natural gas hydrate
JP4167977B2 (en) Granulation, cargo handling and transportation method of gas hydrate
WO2010128222A3 (en) Method and apparatus for storing mechanical energy by the quasi-isothermal expansion and compression of a gas
EP1909998A1 (en) Method for hot isostatic pressing
JP2007268406A (en) Depressurization device and apparatus for producing gas hydrate
JP2007269952A (en) Method for producing gas hydrate
JP2007269874A (en) Method for transferring gas hydrate
JP2006002000A (en) Methane hydrate generation device and methane gas supply system
JP4575804B2 (en) Decompressor
JP2012115880A (en) Device and method for forming gas hydrate pellet
JP4638706B2 (en) Gas hydrate manufacturing method
JP2009050843A (en) Pushing-in method for solid-gas two-phase substance, and apparatus
CN212132041U (en) Ultrahigh pressure hydrogen generation system
US4148405A (en) Solid feeder and method
JP2010235893A (en) Depressurization device of gas hydrate
JP5763324B2 (en) Gas hydrate manufacturing apparatus and gas hydrate manufacturing method
JP5153412B2 (en) Gas hydrate manufacturing method and manufacturing equipment
JP4817777B2 (en) Method and apparatus for transferring natural gas hydrate
JP5284162B2 (en) Gas hydrate manufacturing apparatus and control method thereof
JP5528921B2 (en) Gas hydrate adhesion water separator
WO2009119626A1 (en) Method and apparatus for forcing gas-solid two-phase substance
JP5284157B2 (en) Gas hydrate manufacturing apparatus and control method thereof
JP2012000541A (en) Gas hydrate pellet molding apparatus and gas hydrate pellet
AU2017396579A1 (en) Hydrogen Occlusion Cartridge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees