JP2005272272A - Sintered compact of fluorine-containing indium-tin oxide and method for manufacturing the same - Google Patents

Sintered compact of fluorine-containing indium-tin oxide and method for manufacturing the same Download PDF

Info

Publication number
JP2005272272A
JP2005272272A JP2004091739A JP2004091739A JP2005272272A JP 2005272272 A JP2005272272 A JP 2005272272A JP 2004091739 A JP2004091739 A JP 2004091739A JP 2004091739 A JP2004091739 A JP 2004091739A JP 2005272272 A JP2005272272 A JP 2005272272A
Authority
JP
Japan
Prior art keywords
indium
fluorine
powder
tin oxide
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004091739A
Other languages
Japanese (ja)
Other versions
JP4437934B2 (en
Inventor
Tomonari Takeuchi
友成 竹内
Hiroyuki Kageyama
博之 蔭山
Hiromi Nakazawa
弘実 中澤
Toshiyuki Atami
敏幸 熱海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Geomatec Co Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Geomatec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Geomatec Co Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004091739A priority Critical patent/JP4437934B2/en
Priority to TW094108371A priority patent/TWI384523B/en
Priority to KR1020050024888A priority patent/KR101135732B1/en
Publication of JP2005272272A publication Critical patent/JP2005272272A/en
Application granted granted Critical
Publication of JP4437934B2 publication Critical patent/JP4437934B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/30Low melting point metals, i.e. Zn, Pb, Sn, Cd, In, Ga

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide novel technology capable of manufacturing a high-density sintered compact for an F-ITO target in order to form a transparent conductive film having excellent surface smoothness. <P>SOLUTION: The method for manufacturing the sintered compact of the fluorine-containing indium-tin oxide comprising applying a DC pulse current under pressurization to powder raw materials containing indium, tin, oxygen and fluorine; the target material for sputtering composed of the sintered compact of the fluorine-containing indium-tin oxide obtained by the method described in the previous item; the thin film manufactured by using the target material for sputtering described in the previous item; the thin film, described in the previous item, wherein the ratio (surface smoothness; ΔZ/d) of the height difference (ΔZ; difference between the maximum value and minimum value of the film thicknesses) by the ruggedness of the thin film to the mean value (d) of the thin film thickness does not exceed 10%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、透明導電膜の形成材料として有用なフッ素含有インジウム-錫酸化物(“Fluorine-containing Indium-Tin-Oxide”:組成式In1-xSnxFyOzで表される;以下「F-ITO」と略記すことがある)焼結体を迅速に製造するための焼結方法に関する。 The present invention is useful fluorine-containing indium as the material for forming the transparent conductive film - tin oxide ( "Fluorine-containing Indium-Tin -Oxide": represented by the composition formula In 1-x Sn x F y O z; hereinafter The present invention relates to a sintering method for rapidly producing a sintered body (sometimes abbreviated as “F-ITO”).

ITO薄膜は、高い導電性と優れた透光性を有することから、液晶ディスプレーなどの種々の表示装置における透明導電膜として、広く利用されている。   The ITO thin film is widely used as a transparent conductive film in various display devices such as a liquid crystal display because it has high conductivity and excellent translucency.

ITO薄膜を作製する方法としては、スプレー法、ディップ法、真空蒸着法、スパッタ法などがあるが、製造コスト、生産性、膜質、膜の特性(導電率、透光性)などの点において相対的に優れているスパッタ法が、現在の主流生産技術となっている。   Methods for producing ITO thin films include spraying, dipping, vacuum deposition, sputtering, etc., but relative in terms of manufacturing cost, productivity, film quality, film characteristics (conductivity, translucency), etc. Sputtering methods that are superior in quality are the current mainstream production technology.

スパッタ法には、InとSnとの合金ターゲット(ITターゲット)を用いる方法と、In2O3とSnO2の焼結体とからなる酸化物ターゲット(ITOターゲット)を用いる方法とがある。ITターゲットを用いる方法では、薄膜作製時に酸素導入量の変動に対する膜導電率の依存性が極めて大きく、また成膜の再現性が劣るため、大面積の基板上に導電性の均一な膜を得ることが難しい。そのため、ITOターゲットを用いた方法が、大面積化、均質膜作製などの点で有利である。 The sputtering method includes a method using an alloy target (IT target) of In and Sn and a method using an oxide target (ITO target) made of a sintered body of In 2 O 3 and SnO 2 . In the method using an IT target, the dependence of the film conductivity on the variation in the amount of oxygen introduced during the production of the thin film is extremely large, and the reproducibility of the film formation is inferior, so that a uniform conductive film is obtained on a large substrate. It is difficult. Therefore, a method using an ITO target is advantageous in terms of increasing the area and producing a homogeneous film.

近年、液晶ディスプレー、有機ELディスプレーなどにおいて、ディスプレーパネルの表示を高品位にするために、透明導電膜には、高い導電性および高い透光性に加えて、高度の表面平滑性が求められるようになってきている。この様な要求に応えるために、ターゲット材である金属酸化物の酸素の一部をフッ素により置換する試みが行われている。   In recent years, in order to improve display panel display quality in liquid crystal displays, organic EL displays, etc., transparent conductive films are required to have high surface smoothness in addition to high conductivity and high translucency. It is becoming. In order to meet such a demand, an attempt has been made to substitute a part of oxygen of a metal oxide as a target material with fluorine.

例えば、特許文献1は、フッ化インジウム、フッ化錫などを出発原料とし、それと酸素などをプラズマ反応させて、透明導電膜を製造する方法を開示している。また、フッ素成分の原料として、四フッ化炭素などのガスを用いている研究(非特許文献1)も、報告されている。しかしながら、これらの公知文献に開示されている様に、ガスを薄膜形成原料に用いる反応成膜法では、前述のITターゲットを用いる酸素ガス導入成膜の場合と同様に、膜中に取込まれるフッ素量にばらつきが生じ、またその量も十分ではないため、結果として所望の特性を発現する薄膜が得られていない。従って、ITOターゲットを用いる場合と同様に、フッ素を含有するターゲット用いてスパッタリング法で成膜する方が好適であろうと予測される。実際、特許文献2には、フッ化インジウムおよび酸化インジウムを含有するターゲットを用いるスパッタ成膜方法が開示されており、従来よりも高導電性の薄膜が得られることが報告されている。   For example, Patent Document 1 discloses a method of manufacturing a transparent conductive film by using indium fluoride, tin fluoride or the like as a starting material, and causing plasma reaction with oxygen and the like. A study using a gas such as carbon tetrafluoride as a raw material for the fluorine component (Non-patent Document 1) has also been reported. However, as disclosed in these known documents, in the reactive film formation method using a gas as a thin film forming raw material, as in the case of the oxygen gas introduction film formation using the above-mentioned IT target, it is taken into the film. Since the amount of fluorine varies and the amount thereof is not sufficient, a thin film exhibiting desired characteristics cannot be obtained as a result. Therefore, as with the case of using an ITO target, it is predicted that it is preferable to form a film by sputtering using a target containing fluorine. In fact, Patent Document 2 discloses a sputtering film forming method using a target containing indium fluoride and indium oxide, and it is reported that a highly conductive thin film can be obtained.

しかしながら、フッ素含有ITOターゲットを作製する方法については、ほとんど報告されていない。上記の特許文献2は、フッ化インジウムおよび酸化インジウム粉末を加圧成型したタブレットをターゲットとして用いた実施例を示している。しかるに、成形により得られたタブレットは、密度が低く、導電性が低いため、成膜中の放電電圧が上昇して、成膜速度が低いなどの大きな難点を有している。そのため、焼結した高密度ターゲットを用いることが好ましいものと推測されるが、焼結法によるF-ITOターゲットの製造についての報告はない。これは、ITOが難焼結性セラミックスであることに起因する。ITOターゲットは、通常インジウムと錫と酸素とからなる粉末を成型し、電気炉などにより1450〜1650℃の高温で10時間程度の熱処理により、作製される(例えば、特許文献3)。しかしながら、この方法をそのままフッ素含有のインジウム-錫酸化物粉末を用いるF-ITOターゲットの製造に適用する場合には、高温・長時間の熱処理により、原料粉からフッ素が脱離してしまい、フッ素を含有しないITOターゲットしか得られない。フッ素の脱離を抑制するためには、例えば、原料粉末を密閉系内に閉じ込め、比較的低温でかつ短時間の熱処理を施す方法が考えられるが、そのような方法により、F-ITOターゲットを作製したという報告例はない。   However, few methods have been reported for producing fluorine-containing ITO targets. Said patent document 2 has shown the Example which used the tablet which press-molded the indium fluoride and the indium oxide powder as a target. However, since the tablet obtained by molding has low density and low conductivity, the discharge voltage during film formation rises and the film formation rate is low. For this reason, it is presumed that it is preferable to use a sintered high-density target, but there is no report on the production of an F-ITO target by a sintering method. This is because ITO is a hardly sinterable ceramic. The ITO target is usually produced by molding a powder composed of indium, tin, and oxygen and heat-treating it at a high temperature of 1450-1650 ° C. for about 10 hours with an electric furnace or the like (for example, Patent Document 3). However, when this method is applied as it is to the production of an F-ITO target using fluorine-containing indium-tin oxide powder, fluorine is desorbed from the raw material powder by high-temperature and long-time heat treatment. Only ITO targets that do not contain can be obtained. In order to suppress the desorption of fluorine, for example, a method of confining the raw material powder in a closed system and subjecting it to a heat treatment at a relatively low temperature for a short time can be considered. There are no reports of production.

結論として、高品位のディスプレー作製およびその普及のためには、簡便でかつ短時間の工程でF-ITOスパッタターゲットを製造する技術の開発が不可欠である。
特開昭60-121272号公報 J. N. Avaritsiotis and R. P. Howson, Thin Solid Films, vol.80, pp.63-66 (1981). 特開2000-273618号公報 特開平10−72253号公報
In conclusion, it is indispensable to develop a technology to manufacture F-ITO sputter targets in a simple and short process for producing high-quality displays and spreading them.
JP-A-60-121272 JN Avaritsiotis and RP Howson, Thin Solid Films, vol.80, pp.63-66 (1981). JP 2000-273618 A Japanese Patent Laid-Open No. 10-72253

従って、本発明は、表面平滑性に優れた透明導電膜を形成するために、F-ITOターゲット用高密度焼結体を低温でかつ短時間で製造しうる新たな技術を提供することを主な目的とする。   Therefore, the present invention mainly provides a new technique capable of producing a high-density sintered body for an F-ITO target at a low temperature in a short time in order to form a transparent conductive film having excellent surface smoothness. With a purpose.

本発明者は、上記のような従来技術の問題に鑑みて鋭意研究を重ねた結果、インジウムと錫と酸素とフッ素とを含有する混合粉末を加圧しつつ、直流パルス電流を印加する(通電焼結する)場合には、短時間内に高密度のF-ITO焼結体が作製できること、および得られた焼結体は透明導電膜作製用のターゲットとして好適であることを見出し、本発明を完成するに至った。   As a result of intensive studies in view of the above-described problems of the prior art, the present inventor applied a DC pulse current while applying pressure to a mixed powder containing indium, tin, oxygen, and fluorine (electric current firing). In this case, the present inventors have found that a high-density F-ITO sintered body can be produced within a short time, and that the obtained sintered body is suitable as a target for producing a transparent conductive film. It came to be completed.

すなわち、本発明は、下記のフッ素含有インジウム-錫酸化物焼結体とこれを用いるスパッタリング用ターゲット材を提供する。
1.インジウム、錫、酸素およびフッ素を含有する粉末原料に加圧下で直流パルス電流を印加することを特徴とするフッ素含有インジウム-錫酸化物焼結体の製造方法。
2.粉末原料が、(1)インジウム-錫酸化物とフッ化水素酸とを反応させて得られる粉末、(2)酸化インジウムとフッ化水素酸とを反応させて得られる粉末に酸化錫を混合した粉末、(3)酸化錫とフッ化水素酸とを反応させて得られる粉末に酸化インジウムを混合した粉末、(4)酸化インジウムとフッ化インジウムと酸化錫との混合粉末、(5)酸化インジウムと酸化錫とフッ化錫との混合粉末、(6)酸化インジウムとフッ化水素酸とを反応させて得られる粉末、(7)酸化インジウムとフッ化インジウムとの混合粉末、および(8)これら(1)〜(7)に示す混合粉末をさらに熱処理した粉末からなる群から選ばれた少なくとも1種である上記項1に記載のフッ素含有インジウム-錫酸化物焼結体の製造方法。
3.上記項1または2に記載の方法により得られたフッ素含有インジウム-錫酸化物焼結体。
4.上記項3に記載のフッ素含有インジウム-錫酸化物焼結体からなるスパッタリング用ターゲット材。
5.上記項4に記載のスパッタリング用ターゲット材を用いて作製した薄膜。
6.膜厚の平均値(d)に対する薄膜の凹凸による高低差(ΔZ;膜厚の最大値と最小値の差)の比(表面平滑度;ΔZ/d)が、10%を超えない上記項5に記載の薄膜。
That is, the present invention provides the following fluorine-containing indium-tin oxide sintered body and a sputtering target material using the same.
1. A method for producing a fluorine-containing indium-tin oxide sintered body, wherein a direct current pulse current is applied under pressure to a powder raw material containing indium, tin, oxygen and fluorine.
2. Powder raw materials were (1) powder obtained by reacting indium-tin oxide and hydrofluoric acid, and (2) tin oxide mixed with powder obtained by reacting indium oxide and hydrofluoric acid. Powder, (3) a powder obtained by reacting tin oxide and hydrofluoric acid, mixed with indium oxide, (4) mixed powder of indium oxide, indium fluoride and tin oxide, (5) indium oxide Mixed powder of tin oxide and tin fluoride, (6) powder obtained by reacting indium oxide and hydrofluoric acid, (7) mixed powder of indium oxide and indium fluoride, and (8) these 2. The method for producing a fluorine-containing indium-tin oxide sintered body according to item 1, which is at least one selected from the group consisting of powders obtained by further heat-treating the mixed powder shown in (1) to (7).
3. 3. A fluorine-containing indium-tin oxide sintered body obtained by the method according to item 1 or 2.
4). 4. A sputtering target material comprising the fluorine-containing indium-tin oxide sintered body according to item 3.
5). A thin film produced using the sputtering target material according to Item 4.
6). Item 5 above wherein the ratio (surface smoothness; ΔZ / d) of the height difference (ΔZ; difference between the maximum value and the minimum value of the film thickness) due to the unevenness of the thin film to the average value (d) of the film thickness does not exceed 10% A thin film according to 1.

本発明によれば、高密度のF-ITO焼結体を短時間で安定して製造することができる。   According to the present invention, a high-density F-ITO sintered body can be stably produced in a short time.

本発明による高密度のF-ITO焼結体をスパッタリング用ターゲット材として使用する場合には、表面平滑性に優れ、高導電性および高透光性を発揮する透明導電膜を作製することができる。   When the high-density F-ITO sintered body according to the present invention is used as a sputtering target material, it is possible to produce a transparent conductive film that has excellent surface smoothness and exhibits high conductivity and high translucency. .

本発明方法は、種々の組成を有するフッ素含有透明導電膜作製用のスパッタターゲット材料、例えば、フッ素含有ZnO系ターゲット材料の作製にも適用可能である。すなわち、本発明方法によれば、従来の電気炉などによる外熱式焼結法では作製が困難であったフッ素含有高密度ターゲットを短時間で安定に作製することができる。   The method of the present invention can also be applied to the production of sputter target materials for producing fluorine-containing transparent conductive films having various compositions, for example, fluorine-containing ZnO-based target materials. That is, according to the method of the present invention, it is possible to stably produce a fluorine-containing high-density target that has been difficult to produce by an external heating sintering method using a conventional electric furnace or the like in a short time.

以下、本発明方法で使用する出発原料、焼結方法、得られる焼結体などについて、さらに詳細に説明する。
出発原料
出発原料調製用の各成分原料粉末としては、特に制限はない。例えば、インジウム源としては、酸化インジウム、塩化インジウム、硝酸インジウム、硫酸インジウム、フッ化インジウム、臭化インジウムなどが挙げられる。錫源としては、酸化錫、塩化錫、硝酸錫、硫酸錫、フッ化錫、臭化錫などが挙げられる。フッ素源としては、フッ化水素酸、フッ化インジウム、フッ化錫、フッ化アセチルなどが挙げられる。
Hereinafter, the starting material, the sintering method, and the obtained sintered body used in the method of the present invention will be described in more detail.
There is no restriction | limiting in particular as each component raw material powder for starting raw material preparation. For example, examples of the indium source include indium oxide, indium chloride, indium nitrate, indium sulfate, indium fluoride, and indium bromide. Examples of the tin source include tin oxide, tin chloride, tin nitrate, tin sulfate, tin fluoride, and tin bromide. Examples of the fluorine source include hydrofluoric acid, indium fluoride, tin fluoride, and acetyl fluoride.

出発原料としては、これら各成分原料を配合した混合物、またはこれら各成分原料間の反応生成物、もしくはそれら反応生成物を熱処理または水熱処理した粉末などを使用することができる。   As the starting material, a mixture in which these component materials are blended, a reaction product between these component materials, a powder obtained by heat-treating or hydrothermally treating these reaction products, or the like can be used.

出発原料中のフッ素成分、インジウム成分および錫成分の割合は、薄膜組成に応じて定まるターゲット材料の必要組成に応じて、適宜選択することができる。   The proportions of the fluorine component, indium component and tin component in the starting material can be appropriately selected according to the required composition of the target material determined according to the thin film composition.

出発原料は、特に限定されるものではないが、より好ましい混合粉末として、(1)インジウム-錫酸化物とフッ化水素酸とを反応させて得られる粉末、(2)酸化インジウムとフッ化水素酸とを反応させて得られる粉末に酸化錫を混合した粉末、(3)酸化錫とフッ化水素酸とを反応させて得られる粉末に酸化インジウムを混合した粉末、(4)酸化インジウムとフッ化インジウムと酸化錫との混合粉末、(5)酸化インジウムと酸化錫とフッ化錫との混合粉末、(6)酸化インジウムとフッ化水素酸とを反応させて得られる粉末、(7)酸化インジウムとフッ化インジウムとの混合粉末、および(8)これら(1)〜(7)に示す混合粉末をさらに熱処理(通常100〜600℃程度で熱処理)した粉末などが例示される。上記の熱処理を行うことにより、混合粉末中に残存する未反応残留物などが除去されて、焼結体の性状を改善することができる。例えば、(1)の粉末は、水溶液を用いた反応生成粉なので、水酸基等の残留物が存在する可能性が高く、これが後の通電焼結の際にガス化するため、緻密な焼結体が得られない場合がある。この様な場合には、焼結前に粉末を100〜600℃程度で熱処理して、残留物を予め除去することにより、通電焼結の際のガス発生量が少なくなり、緻密な焼結体が得られ易い。   The starting material is not particularly limited, but as a more preferable mixed powder, (1) a powder obtained by reacting indium-tin oxide and hydrofluoric acid, (2) indium oxide and hydrogen fluoride Powder obtained by mixing tin oxide with powder obtained by reacting with acid, (3) Powder obtained by mixing tin oxide and hydrofluoric acid with powder obtained by mixing indium oxide, and (4) Indium oxide and fluoride. Mixed powder of indium phosphide and tin oxide, (5) mixed powder of indium oxide, tin oxide and tin fluoride, (6) powder obtained by reacting indium oxide and hydrofluoric acid, (7) oxidation Examples thereof include mixed powders of indium and indium fluoride, and (8) powders obtained by further heat treatment (usually heat treatment at about 100 to 600 ° C.) of the mixed powders shown in (1) to (7). By performing the above heat treatment, unreacted residues remaining in the mixed powder are removed, and the properties of the sintered body can be improved. For example, since the powder of (1) is a reaction product powder using an aqueous solution, there is a high possibility that residues such as hydroxyl groups are present, and this is gasified during the subsequent current sintering, so a dense sintered body May not be obtained. In such a case, the powder is heat-treated at about 100 to 600 ° C. before sintering, and the residue is removed in advance, thereby reducing the amount of gas generated during current sintering and a dense sintered body. Is easy to obtain.

インジウムと錫の混合比は、両者の合計重量を基準として、錫含有量が0〜30%程度、より好ましくは0〜20%程度である。酸素とフッ素の混合比は、両者の合計重量を基準として、フッ素含有量が1〜30%程度、好ましくは2〜20%程度である。   The mixing ratio of indium and tin is such that the tin content is about 0 to 30%, more preferably about 0 to 20%, based on the total weight of both. The mixing ratio of oxygen and fluorine is such that the fluorine content is about 1 to 30%, preferably about 2 to 20%, based on the total weight of both.

混合粉末の粒径は、特に制限されるものではないが、焼結体の高密度化を達成するためには、通常0.01〜10μm程度、より好ましくは0.05〜5μm程度とする。
通電焼結
本発明においては、上記の出発原料粉末をパルス通電により焼結して、通常昇温開始から焼結完了まで約100分或いはそれ以下の短時間(10〜100分程度)の焼結操作で、高密度F-ITO焼結体を製造することができる。
The particle size of the mixed powder is not particularly limited, but is usually about 0.01 to 10 μm, more preferably about 0.05 to 5 μm, in order to achieve high density of the sintered body.
In the present invention, in the present invention, the starting raw material powder is sintered by pulse energization, and is usually sintered for about 100 minutes or less (about 10 to 100 minutes) from the start of temperature rise to the completion of sintering. By operation, a high-density F-ITO sintered body can be produced.

通電焼結法は、原料粉末に対し、加圧加熱下にパルス電流を印加することにより、焼結を行う方法である。より具体的には、本発明においては、通電焼結(或いはパルス通電焼結、パルス大電流焼結、放電プラズマ焼結、放電焼結などとも呼称)などのON-OFFパルス通電による焼結法を用い、まず所定の型内に収容した原料粉体を圧縮して圧粉体とし、この圧粉体にパルス状電流を通電するとともに、そのピーク電流とパルス幅とを制御して材料温度を制御しつつ、圧縮焼結することができる。   The electric current sintering method is a method in which a raw material powder is sintered by applying a pulse current under pressure and heating. More specifically, in the present invention, a sintering method by ON-OFF pulse energization such as current sintering (or pulse current sintering, pulse high current sintering, discharge plasma sintering, discharge sintering, etc.). First, the raw material powder contained in a predetermined mold is compressed into a green compact. A pulsed current is applied to the green compact, and the peak current and pulse width are controlled to control the material temperature. Compression and sintering can be performed while controlling.

本発明においては、インジウムと錫と酸素とフッ素とを含有する混合原料粉末圧粉体に対し、例えば通常約10〜60MPa、より好ましくは約20〜50MPaの加圧下で、例えば約2,000〜10,000A程度、より好ましくは5,000〜8,000A程度の直流パルス電流を印加し、昇温開始から焼結完了まで100分程度或いはそれ以内の短時間で高密度F-ITO焼結体を作製することができる。焼結時の温度は、原料の組成、原料粉の粒径および粒径分布、焼結体の大きさ、加圧力、印加電流量などを考慮して選択すればよいが、通常900〜1400℃程度であり、より好ましくは1000〜1300℃程度である。   In the present invention, for a mixed raw material powder compact containing indium, tin, oxygen and fluorine, for example, usually about 10-60 MPa, more preferably about 20-50 MPa, for example, about 2,000-10,000 A. A high-density F-ITO sintered body can be produced in a short time of about 100 minutes or less from the start of temperature rise to the completion of sintering by applying a DC pulse current of about 5,000 to 8,000 A, more preferably about 5,000 to 8,000 A. . The temperature during sintering may be selected in consideration of the composition of the raw material, the particle size and particle size distribution of the raw material powder, the size of the sintered body, the applied pressure, the amount of applied current, etc., but usually 900 to 1400 ° C. About 1000 to 1300 ° C.

本発明のより好ましい実施態様では、通電焼結(“放電プラズマ焼結”或いは“Spark-Plasma-Sintering”、SPSともいう) 用装置を用いて、インジウムと錫と酸素とフッ素を含有する原料粉末圧粉体の焼結を行う。このSPS法を実施するための放電プラズマ焼結機およびその作動原理などは、例えば、特許第3,007,929号明細書(特開平10-251070号公報)などに開示されている。   In a more preferred embodiment of the present invention, a raw material powder containing indium, tin, oxygen and fluorine using an apparatus for electric current sintering (also called “discharge plasma sintering” or “Spark-Plasma-Sintering” or SPS). The green compact is sintered. A discharge plasma sintering machine for operating this SPS method and its operating principle are disclosed in, for example, Japanese Patent No. 3,007,929 (Japanese Patent Laid-Open No. 10-251070).

本発明方法において、例えば治具としてグラファイトを用いた場合には、得られる焼結体の表面近傍が、治具の成分であるグラファイトを含むことがある。この様な焼結体表面近傍に含まれるグラファイトなどの不純物は、焼結体表面を研磨あるいは大気中で熱処理することにより容易に取り除くことができる。   In the method of the present invention, for example, when graphite is used as a jig, the vicinity of the surface of the obtained sintered body may contain graphite as a component of the jig. Such impurities such as graphite contained in the vicinity of the surface of the sintered body can be easily removed by polishing or heat-treating the surface of the sintered body in the air.

本発明方法により得られるフッ素含有インジウム-錫酸化物焼結体は、組成式In1-xSnxFyOzで表される組成を有している。この組成式において、通常xおよびyは、それぞれ0≦x≦1程度および0<y≦0.3程度の範囲にあり、zはz=(x−y+3)/2で規定される値である。 Fluorine-containing indium obtained by the method of the present invention - tin oxide sintered body has a composition represented by the composition formula In 1-x Sn x F y O z. In this composition formula, x and y are usually in the range of about 0 ≦ x ≦ 1 and 0 <y ≦ 0.3, respectively, and z is a value defined by z = (x−y + 3) / 2. .

以下に実施例および比較例を示し、本発明の特徴とするところをより一層明確にする。   Examples and Comparative Examples are shown below to further clarify the features of the present invention.

なお、以下の実施例および比較例においては、In源として粒径約1〜5μmの酸化インジウム(In2O3)粉末を使用し、Sn源として粒径約1〜5μmの酸化錫(SnO2)粉末を使用した。
[実施例1]
出発原料粉末の調製
まず、In2O3約305gとSnO2約46gとを十分に混合した後、電気炉で1400℃、2時間焼成した。この焼成物を、市販のHF水溶液(濃度約47%)を10倍希釈した溶液約700mLに入れ、排気設備のあるドラフト中で撹拌しながら、約80℃で加熱し、蒸発乾固させた。得られた固形物を電気炉で500℃、2時間熱処理した後、粉砕混合して、出発原料粉末とした。
燒結体の作製
通電焼結には、放電プラズマ焼結装置((株)住友石炭鉱業製、“SPS-3.20MK-IV”)を用いた。また治具は、グラファイト製で内径10cmの円筒形のものを用いた。この治具内に、上記で得られた出発原料粉末約350gを均一に入れ、上下にAl2O3粉約10gを敷き詰め、約30MPaの圧力を印加し、焼結チャンバー内を約10Paまで脱気した。次いで、治具に約1000〜6000Aの直流パルス電流を印加することにより、原料周辺を昇温速度約20℃/分で1000〜1200℃の所定の温度に加熱した。この状態を約30分間保持した後、電流印加および加圧印加を止め、生成した焼結体を室温まで冷却し、焼結チャンバー内を大気圧に戻し、燒結生成物を取り出した。
In the following examples and comparative examples, indium oxide (In 2 O 3 ) powder having a particle size of about 1 to 5 μm is used as the In source, and tin oxide (SnO 2 ) having a particle size of about 1 to 5 μm is used as the Sn source. ) Powder was used.
[Example 1]
Preparation of starting material powder First, about 305 g of In 2 O 3 and about 46 g of SnO 2 were sufficiently mixed, and then baked in an electric furnace at 1400 ° C. for 2 hours. This calcined product was put into about 700 mL of a 10-fold diluted commercial HF aqueous solution (concentration: about 47%), and heated at about 80 ° C. while stirring in a fume hood equipped with an exhaust facility to evaporate to dryness. The obtained solid was heat treated in an electric furnace at 500 ° C. for 2 hours, and then pulverized and mixed to obtain a starting material powder.
A spark plasma sintering apparatus (“SPS-3.20MK-IV” manufactured by Sumitomo Coal Mining Co., Ltd.) was used for the electric current sintering of the sintered body . A jig made of graphite and having a cylindrical shape with an inner diameter of 10 cm was used. In this jig, uniformly put about 350 g of the starting raw material powder obtained above, spread about 10 g of Al 2 O 3 powder on the top and bottom, apply a pressure of about 30 MPa, and remove the inside of the sintering chamber to about 10 Pa. I worried. Next, by applying a DC pulse current of about 1000 to 6000 A to the jig, the periphery of the raw material was heated to a predetermined temperature of 1000 to 1200 ° C. at a temperature rising rate of about 20 ° C./min. After maintaining this state for about 30 minutes, the application of current and pressure was stopped, the formed sintered body was cooled to room temperature, the inside of the sintering chamber was returned to atmospheric pressure, and the sintered product was taken out.

得られた焼結生成物は、いずれも直径約10cm、厚さ約7mmの円盤状であった。次いで、各燒結生成物の上下両面に存在するAl2O3層を研磨により除去して、濃青緑色の目的とする円盤状焼結体を得た。 All of the obtained sintered products had a disk shape with a diameter of about 10 cm and a thickness of about 7 mm. Next, the Al 2 O 3 layers present on the upper and lower surfaces of each sintered product were removed by polishing to obtain a target discoid sintered body of dark blue green.

得られた各焼結体の密度は、図1に示す通り、例えば、1200℃の焼結体では6.4g/cm3であり、ITOの理論密度(約7.1g/cm3)を基準として、約90%であった。この1200℃での焼結体は、図2のX線回折パターンから明らかな様に、ITOとInOFとの混合物(F-ITO)である。この焼結体の元素分析を行ったところ、表1に示す通り、錫含有量(Sn/Sn+In)が約10%であり、フッ素含有量(F/F+O)が約4%であった。 As shown in FIG. 1, the density of each obtained sintered body is 6.4 g / cm 3 for a sintered body at 1200 ° C., for example, based on the theoretical density of ITO (about 7.1 g / cm 3 ). About 90%. The sintered body at 1200 ° C. is a mixture of ITO and InOF (F-ITO), as is apparent from the X-ray diffraction pattern of FIG. When elemental analysis of this sintered body was conducted, as shown in Table 1, the tin content (Sn / Sn + In) was about 10% and the fluorine content (F / F + O) was about 4%. there were.

Figure 2005272272
これらの結果から明らかな様に、本発明によれば、高密度F-ITO焼結体を作製することができる。
薄膜の形成
上記において、燒結温度1200℃で作製したF-ITO焼結体をターゲットとして用いて、ガラス基板上にスパッタ法により、成膜を行った。成膜中の基板温度は、200℃または300℃とし、スパッタパワー=DC:200W、成膜圧力=3mTorr、成膜時間=15分で行った。
Figure 2005272272
As is clear from these results, according to the present invention, a high-density F-ITO sintered body can be produced.
Formation of a thin film In the above, a F-ITO sintered body produced at a sintering temperature of 1200 ° C. was used as a target, and a film was formed on a glass substrate by sputtering. The substrate temperature during film formation was 200 ° C. or 300 ° C., sputtering power = DC: 200 W, film formation pressure = 3 mTorr, and film formation time = 15 minutes.

得られた膜の膜厚、比抵抗、表面高低差、表面平滑度および透光度を表2に示す。比抵抗は約2〜6×10-4Ωcm、550nmの透光度は89〜90%であり、これらの値は、従来のITOターゲットを用いた薄膜の報告値(1×10-4Ωcmおよび91%;R. Latz, K. Michael, and M. Scherer, Jpn. J. Appl. Phys., 30, L149 (1991).)とほぼ同等の値であった。 Table 2 shows the film thickness, specific resistance, surface height difference, surface smoothness and translucency of the obtained film. The specific resistance is about 2-6 × 10 −4 Ωcm, the transmissivity at 550 nm is 89-90%, and these values are the reported values for thin films using conventional ITO targets (1 × 10 −4 Ωcm and 91%; R. Latz, K. Michael, and M. Scherer, Jpn. J. Appl. Phys., 30, L149 (1991).).

Figure 2005272272
また、得られた薄膜のΔZ/d値(表面平滑度)は、約4〜9%であり、通常のITOターゲットによる薄膜の値(約20%以上)に比べ、表面平滑性が著しく向上していた。
Figure 2005272272
Moreover, the ΔZ / d value (surface smoothness) of the obtained thin film is about 4-9%, and the surface smoothness is remarkably improved compared to the value of the thin film (about 20% or more) with the normal ITO target. It was.

以上の結果から、本発明方法により得られるF-ITO焼結体は、表面平滑性の極めて高い透明導電膜を作製するためのスパッタターゲットとして、優れた効果を発揮することが明らかである。
[実施例2]
酸化インジウム粉末(約305g)とフッ化水素酸(市販の濃度47%の溶液を10倍希釈した溶液、約3500mL)とを反応させた後、約80℃で蒸発乾固させて粉末を調製し、これに酸化錫(約46g)を混合し、混合物を電気炉で500℃、2時間熱処理した。
From the above results, it is clear that the F-ITO sintered body obtained by the method of the present invention exhibits an excellent effect as a sputtering target for producing a transparent conductive film having extremely high surface smoothness.
[Example 2]
After reacting indium oxide powder (approx. 305 g) with hydrofluoric acid (commercially diluted solution of 47% solution, approximately 3500 mL), the powder was prepared by evaporating to dryness at approximately 80 ° C. This was mixed with tin oxide (about 46 g), and the mixture was heat-treated in an electric furnace at 500 ° C. for 2 hours.

上記で得られた熱処理生成物を出発原料として、実施例1と同様の通電焼結法により、1200℃で30分間焼結して、焼結体を得た。   Using the heat treatment product obtained above as a starting material, sintering was performed at 1200 ° C. for 30 minutes by the same electric current sintering method as in Example 1 to obtain a sintered body.

得られた焼結体を元素分析したところ、Sn/(In+Sn)=10.9%、F/(O+F)=18.5%であった。   Elemental analysis of the obtained sintered body revealed that Sn / (In + Sn) = 10.9% and F / (O + F) = 18.5%.

上記の焼結体をターゲット材料として、実施例1と同様の手法により、ガラス基板上に成膜を行った。得られた膜の特性は、表3に示す通りであった。   Using the sintered body as a target material, a film was formed on a glass substrate in the same manner as in Example 1. The properties of the obtained film were as shown in Table 3.

Figure 2005272272
[実施例3]
酸化インジウム粉末(約290g)とフッ化インジウム粉末(約25g)と酸化錫粉末(約46g)とを十分に混合した後、電気炉で500℃、2時間熱処理することにより、出発原料粉末を調製した。この原料粉末を実施例1と同様の通電焼結法により、1200℃で30分間焼結して、焼結体を得た。
Figure 2005272272
[Example 3]
After mixing indium oxide powder (approx. 290 g), indium fluoride powder (approx. 25 g) and tin oxide powder (approx. 46 g), heat treatment is performed in an electric furnace at 500 ° C. for 2 hours to prepare a starting material powder. did. This raw material powder was sintered at 1200 ° C. for 30 minutes by the same electric current sintering method as in Example 1 to obtain a sintered body.

焼結体の元素分析結果から、Sn/(In+Sn)=10.4%、F/(O+F)=8.4%であることが確認された。   From the elemental analysis results of the sintered body, it was confirmed that Sn / (In + Sn) = 10.4% and F / (O + F) = 8.4%.

上記の焼結体をターゲット材料として、実施例1と同様の手法により、ガラス基板上に成膜を行った。得られたの膜の特性は、表4に示す通りであった。   Using the sintered body as a target material, a film was formed on a glass substrate in the same manner as in Example 1. The properties of the obtained film were as shown in Table 4.

Figure 2005272272
[実施例4]
酸化インジウム粉末(約250g)とフッ化水素酸(市販の濃度47%の溶液を10倍希釈した溶液、約400mL)とを反応させた後、約80℃で蒸発乾固させて粉末を調製し、これを電気炉で500℃、2時間熱処理した。
Figure 2005272272
[Example 4]
After reacting indium oxide powder (approx. 250 g) with hydrofluoric acid (a solution obtained by diluting a commercially available 47% solution 10-fold, approx. 400 mL), the powder was prepared by evaporating to dryness at approx. 80 ° C. This was heat-treated in an electric furnace at 500 ° C. for 2 hours.

上記で得られた熱処理生成物を出発原料として、実施例1と同様の通電焼結法により、1200℃で30分間焼結して、焼結体を得た。   Using the heat treatment product obtained above as a starting material, sintering was performed at 1200 ° C. for 30 minutes by the same electric current sintering method as in Example 1 to obtain a sintered body.

得られた焼結体を元素分析したところ、Sn/(In+Sn)=0.0%、F/(O+F)=8.0%であった。   Elemental analysis of the obtained sintered body revealed that Sn / (In + Sn) = 0.0% and F / (O + F) = 8.0%.

上記の焼結体をターゲット材料として、実施例1と同様の手法により、ガラス基板上に成膜を行った。得られた膜の特性は、表5に示す通りであった。   Using the sintered body as a target material, a film was formed on a glass substrate in the same manner as in Example 1. The properties of the obtained film were as shown in Table 5.

Figure 2005272272
[比較例1]
In2O3約305gとSnO2約46gとの混合粉を1400℃で熱処理した後、HF水溶液(濃度約4.7%)に加え、蒸発乾固し、500℃で熱処理した原料混合物約350gを直径10cmの円筒型の治具に均一に入れて、約50MPaで加圧成型した後、成型体を治具から取り出し、通常の電気炉により1400℃で2時間焼結した。
Figure 2005272272
[Comparative Example 1]
A mixed powder of approximately 305 g of In 2 O 3 and approximately 46 g of SnO 2 is heat-treated at 1400 ° C, then added to an HF aqueous solution (concentration approximately 4.7%), evaporated to dryness, and approximately 350 g of the raw material mixture heat-treated at 500 ° C After uniformly putting it in a 10 cm cylindrical jig and press molding at about 50 MPa, the molded body was taken out from the jig and sintered at 1400 ° C. for 2 hours in a normal electric furnace.

得られた焼結体は、直径約10cm、厚さ約1.4cmの円盤状であり、その密度は、ITOの理論密度(約7.1g/cm3)の約45%に相当する3.2g/cm3という低い値であった。この焼結体は図2に示すX線回折パターンから明らかな様に、ITOのみから構成されていた。 The obtained sintered body has a disk shape with a diameter of about 10 cm and a thickness of about 1.4 cm, and the density is 3.2 g / cm corresponding to about 45% of the theoretical density of ITO (about 7.1 g / cm 3 ). It was a low value of 3 . As apparent from the X-ray diffraction pattern shown in FIG. 2, this sintered body was composed only of ITO.

また、焼結体の元素分析を行ったところ、前出の表1に示す通り、フッ素がほとんど含有されていないことが分かった。これは1400℃での燒結中にフッ素が脱離したことによるものと考えられる。   Further, when elemental analysis of the sintered body was performed, it was found that almost no fluorine was contained as shown in Table 1 above. This is thought to be due to the elimination of fluorine during sintering at 1400 ° C.

以上の結果から、通常の電気炉などによる燒結方法では、F-ITO焼結体を作製することができないことが明らかである。
[比較例2]
フッ素を含有しない通常のITOターゲット(密度6.7g/cm3、相対密度約94%)を用いて、実施例1と同様の条件下にガラス基板上に成膜を行った。得られた膜の特性を前出の表2に示す。
From the above results, it is clear that an F-ITO sintered body cannot be produced by a sintering method using an ordinary electric furnace or the like.
[Comparative Example 2]
Using a normal ITO target (density 6.7 g / cm 3 , relative density about 94%) containing no fluorine, a film was formed on a glass substrate under the same conditions as in Example 1. The properties of the obtained film are shown in Table 2 above.

膜の比抵抗および透光度は、実施例1による膜とほぼ同等の値を示したが、表面平滑度(ΔZ/d)は30%以上と、実施例1の場合に比べ3倍以上も低下しており、導電性、透光度および表面平滑性のいずれもが高い薄膜を得ることはできなかった。   The specific resistance and translucency of the film showed almost the same values as those of the film according to Example 1, but the surface smoothness (ΔZ / d) was 30% or more, more than 3 times that of Example 1. It was lowered and it was not possible to obtain a thin film having high conductivity, translucency and surface smoothness.

実施例1で通電焼結法により作製した焼結体において、密度の焼結温度依存性を示すグラフである。In the sintered compact produced by the electric current sintering method in Example 1, it is a graph which shows the sintering temperature dependence of a density. 実施例1および比較例1により得られた焼結体のX線回折パターンを示すチャートである。3 is a chart showing X-ray diffraction patterns of sintered bodies obtained in Example 1 and Comparative Example 1. FIG.

Claims (6)

インジウム、錫、酸素およびフッ素を含有する粉末原料に加圧下で直流パルス電流を印加することを特徴とするフッ素含有インジウム-錫酸化物焼結体の製造方法。 A method for producing a fluorine-containing indium-tin oxide sintered body, wherein a direct current pulse current is applied under pressure to a powder raw material containing indium, tin, oxygen and fluorine. 粉末原料が、(1)インジウム-錫酸化物とフッ化水素酸とを反応させて得られる粉末、(2)酸化インジウムとフッ化水素酸とを反応させて得られる粉末に酸化錫を混合した粉末、(3)酸化錫とフッ化水素酸とを反応させて得られる粉末に酸化インジウムを混合した粉末、(4)酸化インジウムとフッ化インジウムと酸化錫との混合粉末、(5)酸化インジウムと酸化錫とフッ化錫との混合粉末、(6)酸化インジウムとフッ化水素酸とを反応させて得られる粉末、(7)酸化インジウムとフッ化インジウムとの混合粉末、および(8)これら(1)〜(7)に示す混合粉末をさらに熱処理した粉末からなる群から選ばれた少なくとも1種である請求項1に記載のフッ素含有インジウム-錫酸化物焼結体の製造方法。 Powder raw materials were (1) powder obtained by reacting indium-tin oxide and hydrofluoric acid, and (2) tin oxide mixed with powder obtained by reacting indium oxide and hydrofluoric acid. Powder, (3) a powder obtained by reacting tin oxide and hydrofluoric acid, mixed with indium oxide, (4) mixed powder of indium oxide, indium fluoride and tin oxide, (5) indium oxide Mixed powder of tin oxide and tin fluoride, (6) powder obtained by reacting indium oxide and hydrofluoric acid, (7) mixed powder of indium oxide and indium fluoride, and (8) these The method for producing a fluorine-containing indium-tin oxide sintered body according to claim 1, which is at least one selected from the group consisting of powders obtained by further heat-treating the mixed powder shown in (1) to (7). 請求項1または2に記載の方法により得られたフッ素含有インジウム-錫酸化物焼結体。 A fluorine-containing indium-tin oxide sintered body obtained by the method according to claim 1 or 2. 請求項3に記載のフッ素含有インジウム-錫酸化物焼結体からなるスパッタリング用ターゲット材。 A sputtering target material comprising the fluorine-containing indium-tin oxide sintered body according to claim 3. 請求項4に記載のスパッタリング用ターゲット材を用いて作製した薄膜。 A thin film produced using the sputtering target material according to claim 4. 膜厚の平均値(d)に対する薄膜の凹凸による高低差(ΔZ;膜厚の最大値と最小値の差)の比(表面平滑度;ΔZ/d)が、10%を超えない請求項5に記載の薄膜。

The ratio (surface smoothness; ΔZ / d) of the height difference (ΔZ; difference between the maximum value and the minimum value of the film thickness) due to the unevenness of the thin film to the average value (d) of the film thickness does not exceed 10%. A thin film according to 1.

JP2004091739A 2004-03-26 2004-03-26 Fluorine-containing indium-tin oxide sintered body and method for producing the same Expired - Lifetime JP4437934B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004091739A JP4437934B2 (en) 2004-03-26 2004-03-26 Fluorine-containing indium-tin oxide sintered body and method for producing the same
TW094108371A TWI384523B (en) 2004-03-26 2005-03-18 Fluorine-containing indium-tin oxide sintered body and manufacturing method thereof
KR1020050024888A KR101135732B1 (en) 2004-03-26 2005-03-25 Fluorine-Containing Indium-Tin-Oxide Sintered Body and the Method of Preparation of the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004091739A JP4437934B2 (en) 2004-03-26 2004-03-26 Fluorine-containing indium-tin oxide sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005272272A true JP2005272272A (en) 2005-10-06
JP4437934B2 JP4437934B2 (en) 2010-03-24

Family

ID=35172324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004091739A Expired - Lifetime JP4437934B2 (en) 2004-03-26 2004-03-26 Fluorine-containing indium-tin oxide sintered body and method for producing the same

Country Status (3)

Country Link
JP (1) JP4437934B2 (en)
KR (1) KR101135732B1 (en)
TW (1) TWI384523B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224152A (en) * 2008-03-14 2009-10-01 Sumitomo Metal Mining Co Ltd Transparent electrode, transparent conductive substrate, and transparent touch panel
JP2011183797A (en) * 2010-02-09 2011-09-22 Showa Denko Kk Laminated material and method of producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01283369A (en) * 1988-05-11 1989-11-14 Nippon Mining Co Ltd Sputtering target for forming electrically conductive transparent ito film
JP2000128648A (en) 1998-10-23 2000-05-09 Asahi Optical Co Ltd Production of sintered body
JP2003081673A (en) * 2001-09-05 2003-03-19 National Institute Of Advanced Industrial & Technology Method for producing indium-tin oxide sintered compact

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224152A (en) * 2008-03-14 2009-10-01 Sumitomo Metal Mining Co Ltd Transparent electrode, transparent conductive substrate, and transparent touch panel
JP4687733B2 (en) * 2008-03-14 2011-05-25 住友金属鉱山株式会社 Transparent electrode, transparent conductive substrate and transparent touch panel
JP2011183797A (en) * 2010-02-09 2011-09-22 Showa Denko Kk Laminated material and method of producing the same

Also Published As

Publication number Publication date
KR20060044750A (en) 2006-05-16
JP4437934B2 (en) 2010-03-24
KR101135732B1 (en) 2012-04-16
TW200535970A (en) 2005-11-01
TWI384523B (en) 2013-02-01

Similar Documents

Publication Publication Date Title
JP4850378B2 (en) Sputtering target, transparent conductive oxide, and method for producing sputtering target
JP4489842B2 (en) Composite oxide sintered body, method for producing amorphous composite oxide film, amorphous composite oxide film, method for producing crystalline composite oxide film, and crystalline composite oxide film
JP2010070410A (en) Method for producing oxide sintered compact
TWI395826B (en) An amorphous composite oxide film, a crystal composite oxide film, an amorphous composite oxide film, a method for producing a crystalline composite oxide film, and a composite oxide sintered body
JP2012180247A (en) Sintered oxide and sputtering target
JP2007238375A (en) ZnO-Al2O3-BASED SINTERED COMPACT, SPUTTERING TARGET AND METHOD OF FORMING TRANSPARENT CONDUCTIVE FILM
KR101440712B1 (en) Sintered zinc oxide tablet and process for producing same
TW201245094A (en) Sintered material, and process for producing same
CN108698937B (en) Sn-Zn-O oxide sintered body and method for producing same
JP4437934B2 (en) Fluorine-containing indium-tin oxide sintered body and method for producing the same
JP2008260660A (en) Method for manufacturing high concentration tin oxide ito sintered article
TWI564247B (en) Tin oxide target and fabricating method thereof
JP2008214169A (en) ITiO SINTERED COMPACT FOR VACUUM VAPOR DEPOSITION AND ITS PRODUCTION METHOD
JP5907086B2 (en) Indium oxide-based oxide sintered body and method for producing the same
TW201910539A (en) Oxide sintered body and sputtering target
JP6233233B2 (en) Sputtering target and manufacturing method thereof
JP2005330158A (en) Method for manufacturing complex oxide sintered body, and sputtering target composed of its sintered body
KR20190135141A (en) Method for manufacturing indium-tin oxide nano powder using low temperature sintering
JP2794679B2 (en) Method for producing high-density ITO sintered body
JP2006002202A (en) Sputtering target for producing transparent electrically conductive thin film and its production method
JPH08260137A (en) Indium oxide/tin oxide sputter target and method of preparing it
JP2018199861A (en) Oxide target material and method for producing the same
JP4363168B2 (en) Titanium oxide sintered body and manufacturing method thereof
JP2012051747A (en) Sintered oxide and oxide semiconductor thin film
JPH06299344A (en) Production of ito target for sputtering

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091225

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160115

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350