JP2018199861A - Oxide target material and method for producing the same - Google Patents

Oxide target material and method for producing the same Download PDF

Info

Publication number
JP2018199861A
JP2018199861A JP2018025559A JP2018025559A JP2018199861A JP 2018199861 A JP2018199861 A JP 2018199861A JP 2018025559 A JP2018025559 A JP 2018025559A JP 2018025559 A JP2018025559 A JP 2018025559A JP 2018199861 A JP2018199861 A JP 2018199861A
Authority
JP
Japan
Prior art keywords
target material
oxide target
area
atomic
zno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018025559A
Other languages
Japanese (ja)
Inventor
上坂 修治郎
Shujiro Kamisaka
修治郎 上坂
内山 博幸
Hiroyuki Uchiyama
博幸 内山
友正 熊谷
Tomomasa Kumagai
友正 熊谷
悠 玉田
Yu Tamada
悠 玉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Publication of JP2018199861A publication Critical patent/JP2018199861A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6022Injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Thin Film Transistor (AREA)

Abstract

To provide an oxide target material that resolves instability of threshold voltage, and is for forming a ZTO thin film constituting a channel layer of a TFT that drives a high-definition display or the like, and a method of producing the same.SOLUTION: An oxide target material contains Sn of 20.0 atom%-50.0 atom% relative to the total content of metal components, with the balance being Zn and inevitable impurities. In the area of 10000 μm, the area ratio of a ZnO phase is 10.5 area% or less. Relative to the total content of metal components, more preferably, at least one of Al, Ga, Mo and W may be contained by 0.005 atom%-4.000 atom% in total.SELECTED DRAWING: Figure 1

Description

本発明は、例えば、液晶ディスプレイや有機ELディスプレイなどを駆動する薄膜トランジスタの酸化物半導体層を形成するために使用される酸化物ターゲット材およびその製造方法に関するものである。   The present invention relates to an oxide target material used for forming an oxide semiconductor layer of a thin film transistor for driving, for example, a liquid crystal display or an organic EL display, and a manufacturing method thereof.

従来、薄膜トランジスタ(以下、「TFT」という。)で駆動する方式の液晶ディスプレイや有機ELディスプレイなどの表示装置では、TFTのチャネル層に非晶質シリコン膜や結晶質シリコン膜を採用したものが主流である。そして、ディスプレイの高精細化の要求に伴い、TFTのチャネル層に使用される材料として酸化物半導体が注目されている。例えば、In、Ga、Zn、O(酸素)を含む酸化物半導体膜(以下、「I−G−Z−O薄膜」という。)は、優れたTFT特性を有するとして実用化が開始されている。このI−G−Z−Oの薄膜に含まれるInやGaは、日本ではレアメタル備蓄対象鋼種に指定される希少かつ高価な金属である。   Conventionally, in a display device such as a liquid crystal display or an organic EL display driven by a thin film transistor (hereinafter referred to as “TFT”), an amorphous silicon film or a crystalline silicon film is mainly used as a TFT channel layer. It is. With the demand for higher definition of displays, oxide semiconductors have attracted attention as materials used for TFT channel layers. For example, an oxide semiconductor film containing In, Ga, Zn, and O (oxygen) (hereinafter referred to as “IGZO thin film”) has been put into practical use as having excellent TFT characteristics. . In and Ga contained in the I-G-Z-O thin film are rare and expensive metals designated as rare metal stockpiling target steel types in Japan.

そこで、上記I−G−Z−O薄膜に含まれるInやGaを含有しない酸化物半導体膜として、Zn−Sn−O系酸化物半導体膜(以下、「ZTO薄膜」という。)が注目されつつある。そして、このZTO薄膜は、ターゲットを用いたスパッタリング法によって成膜される。このスパッタリング法とは、イオンや原子またはクラスターをターゲット表面に衝突させて、その物質の表面を削る(あるいは飛ばす)ことにより、その物質を構成する成分を基板などの表面上に堆積させて成膜する方法である。   Therefore, a Zn—Sn—O-based oxide semiconductor film (hereinafter referred to as “ZTO thin film”) is attracting attention as an oxide semiconductor film containing no In or Ga contained in the IGZO thin film. is there. The ZTO thin film is formed by sputtering using a target. In this sputtering method, ions, atoms, or clusters collide with the target surface, and the surface of the material is scraped (or skipped), thereby depositing components constituting the material on the surface of the substrate or the like. It is a method to do.

ここで、ZTO薄膜は、酸素を含有する薄膜であるため、スパッタリング法においては酸素を含有した雰囲気で成膜するいわゆる反応性スパッタリング法が用いられている。この反応性スパッタリング法とは、アルゴンガスと酸素ガスで構成される混合ガスの雰囲気下でスパッタリングする方法で、イオンや原子またはクラスターを酸素と反応させながらスパッタリングすることで、酸化物系の薄膜を形成するという手法である。   Here, since the ZTO thin film is a thin film containing oxygen, a so-called reactive sputtering method in which the film is formed in an atmosphere containing oxygen is used in the sputtering method. This reactive sputtering method is a method of sputtering in an atmosphere of a mixed gas composed of argon gas and oxygen gas. Sputtering while reacting ions, atoms or clusters with oxygen makes it possible to form an oxide-based thin film. It is a technique of forming.

そして、この反応性スパッタリング法に用いるターゲット材は、ZTO薄膜の成分組成に近似した成分組成を有するZTO系酸化物焼結体からなるターゲット材が用いられる。このようなターゲット材は、生産性の観点から直流スパッタリング法に適用され、成膜速度を向上させるために、高電力で使用されることが要求される。特許文献1では、アーキングの原因となる酸化スズ(SnO)の結晶相を組織中に含有させないことで、高電力スパッタにおいてもアーキングの発生を抑制し、成膜速度が向上できるターゲット材用の焼結体が提案されている。 And the target material used for this reactive sputtering method uses the target material which consists of a ZTO type oxide sintered compact which has the component composition approximated to the component composition of the ZTO thin film. Such a target material is applied to the direct current sputtering method from the viewpoint of productivity, and is required to be used with high power in order to improve the film formation rate. In Patent Document 1, for a target material that does not contain a tin oxide (SnO 2 ) crystal phase that causes arcing in the structure, the generation of arcing can be suppressed even in high-power sputtering, and the film formation rate can be improved. Sintered bodies have been proposed.

特開2007−277075号公報JP 2007-277075 A

本発明者の検討によると、上述した特許文献1で開示されるSnOの結晶相が抑制された焼結体をターゲット材として、スパッタリング法でZTO薄膜を成膜し、TFTを形成して、そのTFTが光照射下負バイアス印加状態(Negative Bias under Illumination Stress 以下、NBIS:という。)に曝されると、閾値電圧がマイナス方向にシフトするという不安定性を示す場合があることを確認した。
そして、この閾値電圧の不安定性の問題が発生すると、高精細ディスプレイ用の駆動素子を得ることが困難になるという問題が生じる。
According to the study of the present inventor, a ZTO thin film is formed by a sputtering method using a sintered body in which the crystal phase of SnO 2 disclosed in Patent Document 1 described above is suppressed, and a TFT is formed. It was confirmed that when the TFT is exposed to a negative bias applied state under light irradiation (hereinafter referred to as NBIS :), the threshold voltage may be unstable in a negative direction.
When this threshold voltage instability problem occurs, it becomes difficult to obtain a driving element for a high-definition display.

本発明の目的は、閾値電圧の不安定性を抑制した、高精細ディスプレイなどを駆動するTFTのチャネル層を構成するZTO薄膜を形成するための酸化物ターゲット材、およびその製造方法を提供することである。   An object of the present invention is to provide an oxide target material for forming a ZTO thin film constituting a channel layer of a TFT for driving a high-definition display or the like, in which threshold voltage instability is suppressed, and a manufacturing method thereof. is there.

本発明者は、上記の課題を検討した結果、酸化物ターゲット材の単位面積当たりのZnO相の面積率を所定の範囲内にすることで、閾値電圧の不安定性を抑制できることを見出し、本発明に到達した。   As a result of examining the above problems, the present inventor has found that the instability of the threshold voltage can be suppressed by making the area ratio of the ZnO phase per unit area of the oxide target material within a predetermined range. Reached.

すなわち、本発明の酸化物ターゲット材は、金属成分全体に対して、Snを20.0原子%〜50.0原子%含有し、残部がZnおよび不可避的不純物からなり、10000μmの面積におけるZnO相の面積率が10.5面積%以下である。
また、本発明の酸化物ターゲット材は、金属成分全体に対して、Al、Ga、MoおよびWのうち1種以上を合計で0.005原子%〜4.000原子%含有することが好ましい。
That is, the oxide target material of the present invention contains 20.0 atomic% to 50.0 atomic% of Sn with respect to the entire metal component, and the balance is made of Zn and inevitable impurities, and ZnO in an area of 10,000 μm 2. The area ratio of the phase is 10.5 area% or less.
Moreover, it is preferable that the oxide target material of this invention contains 0.005 atomic%-4.0000 atomic% of 1 or more types in total among Al, Ga, Mo, and W with respect to the whole metal component.

また、本発明の酸化物ターゲット材は、金属成分全体に対して、Snを20.0原子%〜50.0原子%含有し、残部がZnおよび不可避的不純物となるようにZnO粉末とSnO粉末を純水および分散剤と混合してスラリーとし、該スラリーを乾燥させて造粒粉を作製して、該造粒粉を仮焼してZnSnOとZnOからなる仮焼粉末を得る造粒工程と、前記仮焼粉末を湿式解砕した後、鋳込み成形により成形体を作製し、該成形体を脱脂した後、大気雰囲気で焼成して酸化物焼結体を得る焼結工程と、前記酸化物焼結体のエロージョン面となる面を研磨して、エロージョン面となる面における10000μmの面積に占めるZnO相の面積率が10.5面積%以下の酸化物ターゲット材を得る研磨工程を有する製造方法で得ることができる。
そして、前記研磨工程では、明度Lおよび色度bを確認しながらエロージョン面となる面を研磨することが好ましい。
The oxide target material of the present invention contains 20.0 atomic% to 50.0 atomic% of Sn with respect to the entire metal component, and the ZnO powder and SnO 2 so that the balance is Zn and inevitable impurities. The powder is mixed with pure water and a dispersant to form a slurry, and the slurry is dried to produce granulated powder. The granulated powder is calcined to obtain a calcined powder composed of Zn 2 SnO 4 and ZnO. A granulation step, a sintering step in which the calcined powder is crushed wet, a molded body is produced by casting, the molded body is degreased, and then fired in an air atmosphere to obtain an oxide sintered body. Polishing to obtain an oxide target material having a ZnO phase area ratio of 10.5 area% or less in an area of 10,000 μm 2 on the surface to be an erosion surface by polishing the surface to be an erosion surface of the oxide sintered body Obtained by a manufacturing method having a process You can.
And in the said grinding | polishing process, it is preferable to grind | polish the surface used as an erosion surface, confirming the lightness L * and chromaticity b * .

本発明によれば、閾値電圧の不安定性を抑制したZTO薄膜を得ることができる。この閾値電圧の不安定性を抑制することにより、高精細の大型液晶ディスプレイや有機ELディスプレイなどの製造工程におけるTFTのチャネル層の形成に有用な技術となる。   According to the present invention, a ZTO thin film in which instability of threshold voltage is suppressed can be obtained. By suppressing the instability of the threshold voltage, it becomes a useful technique for forming a TFT channel layer in a manufacturing process of a high-definition large-sized liquid crystal display or an organic EL display.

本発明例1の酸化物ターゲット材の走査型電子顕微鏡の反射電子像。The reflection electron image of the scanning electron microscope of the oxide target material of Example 1 of the present invention. 本発明例2の酸化物ターゲット材の走査型電子顕微鏡の反射電子像。The reflection electron image of the scanning electron microscope of the oxide target material of the example 2 of this invention. 比較例の酸化物ターゲット材の走査型電子顕微鏡の反射電子像。The reflection electron image of the scanning electron microscope of the oxide target material of a comparative example. TFT構造の概略図。Schematic of TFT structure. 本発明例3の視野1における走査型電子顕微鏡の反射電子像。The reflection electron image of the scanning electron microscope in the visual field 1 of the example 3 of this invention. 本発明例3の視野2における走査型電子顕微鏡の反射電子像。The reflection electron image of the scanning electron microscope in the visual field 2 of Example 3 of this invention. 本発明例3の視野3における走査型電子顕微鏡の反射電子像。The reflection electron image of the scanning electron microscope in the visual field 3 of the example 3 of this invention. 本発明例4の視野1における走査型電子顕微鏡の反射電子像。The reflection electron image of the scanning electron microscope in the visual field 1 of the example 4 of this invention. 本発明例4の視野2における走査型電子顕微鏡の反射電子像。The reflection electron image of the scanning electron microscope in the visual field 2 of the example 4 of this invention. 本発明例4の視野3における走査型電子顕微鏡の反射電子像。The reflection electron image of the scanning electron microscope in the visual field 3 of the example 4 of this invention. 本発明例5の視野1における走査型電子顕微鏡の反射電子像。The reflection electron image of the scanning electron microscope in the visual field 1 of the example 5 of this invention. 本発明例5の視野2における走査型電子顕微鏡の反射電子像。The reflection electron image of the scanning electron microscope in the visual field 2 of Example 5 of this invention. 本発明例5の視野3における走査型電子顕微鏡の反射電子像。The reflection electron image of the scanning electron microscope in the visual field 3 of the example 5 of this invention. 本発明例6の視野1における走査型電子顕微鏡の反射電子像。The reflection electron image of the scanning electron microscope in the visual field 1 of the example 6 of this invention. 本発明例6の視野2における走査型電子顕微鏡の反射電子像。The reflection electron image of the scanning electron microscope in the visual field 2 of Example 6 of this invention. 本発明例6の視野3における走査型電子顕微鏡の反射電子像。The reflection electron image of the scanning electron microscope in the visual field 3 of Example 6 of this invention. 本発明例7の視野1における走査型電子顕微鏡の反射電子像。The reflection electron image of the scanning electron microscope in the visual field 1 of the example 7 of this invention. 本発明例7の視野2における走査型電子顕微鏡の反射電子像。The reflection electron image of the scanning electron microscope in the visual field 2 of Example 7 of this invention. 本発明例7の視野3における走査型電子顕微鏡の反射電子像。The reflection electron image of the scanning electron microscope in the visual field 3 of Example 7 of this invention.

本発明の酸化物ターゲット材は、エロージョン面となる面における単位面積当たり、すなわち10000μmの面積に占めるZnO相の面積率が10.5面積%以下であることに特徴を有する。これにより、本発明の酸化物ターゲット材は、均一なZTO薄膜を形成することができ、TFTにおける閾値電圧の不安定性を抑制することができる。また、上記と同様の理由から、ZnO相の面積率は、10000μmの面積当たりで10.3面積%以下であることが好ましく、10.2面積%以下であることがより好ましい。
ここで、本発明でいうZnO相の面積率は、酸化物ターゲット材のエロージョン面の任意の視野において、走査型電子顕微鏡により反射電子像でZnSnO相とZnO相を高コントラストで撮影し、その画像を画像解析ソフト(例えば、OLYMPUS SOFT IMAGING SOLUTIONS GMBH社製の「Scandium」)を用いて測定することができる。
尚、所望のパターンでチャネル層を形成するときのエッチング性を向上させるためには、ZnO相の面積率は、10000μmの面積当たりで2.0面積%以上であることが好ましく、5.0面積%以上であることがより好ましい。
The oxide target material of the present invention is characterized in that the area ratio of the ZnO phase per unit area on the surface serving as the erosion surface, that is, the area of 10,000 μm 2 is 10.5 area% or less. Thereby, the oxide target material of this invention can form a uniform ZTO thin film, and can suppress the instability of the threshold voltage in TFT. For the same reason as described above, the area ratio of the ZnO phase is preferably 10.3 area% or less and more preferably 10.2 area% or less per 10,000 μm 2 area.
Here, the area ratio of the ZnO phase referred to in the present invention is a high-contrast image of the Zn 2 SnO 4 phase and the ZnO phase as reflected electron images by a scanning electron microscope in an arbitrary field of view on the erosion surface of the oxide target material. The image can be measured using image analysis software (for example, “Scandium” manufactured by OLYMPUS SOFT IMAGEING SOLUTIONS GMBH).
In order to improve the etching property when forming the channel layer with a desired pattern, the area ratio of the ZnO phase is preferably 2.0 area% or more per 10,000 μm 2 area. More preferably, it is area% or more.

本発明の酸化物ターゲット材は、金属成分全体に対して、Snを20.0原子%〜50.0原子%含有し、残部がZnおよび不可避的不純物からなる組成を有する。
そして、本発明の酸化物ターゲット材は、Sn量を20.0原子%以上とすることにより、ZnO相が粗大化すること、あるいは複数のZnO相が連結することを抑制することができる。また、上記と同様の理由から、Sn量は、25.0原子%以上が好ましく、29.0原子%以上がより好ましい。
また、本発明の酸化物ターゲット材は、Sn量を50.0原子%以下とすることにより、所望のパターンでチャネル層を形成するときのエッチング性を向上させることができる。また、上記と同様の理由から、Sn量は、40.0原子%以下が好ましく、35.0原子%以下がより好ましい。
そして、本発明の酸化物ターゲット材は、Zn量を50.0原子%以上とすることにより、所望のパターンでチャネル層を形成するときのエッチング性を向上させることができる。また、上記と同様の理由から、Zn量は、60.0原子%以上が好ましく、65.0原子%以上がより好ましい。
また、本発明の酸化物ターゲット材は、Zn量を80.0原子%以下とすることにより、ZnO相が粗大化すること、あるいは複数のZnO相が連結することを抑制することができる。また、上記と同様の理由から、Zn量は、75.0原子%以下が好ましく、71.0原子%以下がより好ましい。
本発明の酸化物ターゲット材は、金属成分全体に対して、上記したSnおよびZnのうち1種以上の一部を、Al、Ga、MoおよびWのうち1種以上により、合計が0.005原子%〜4.000原子%となる範囲で置換することが好ましい。これらの元素は、キャリアの移動度の制御や光劣化を抑制するのに有用な元素である。
そして、本発明の酸化物ターゲット材は、これらの元素を合計で0.050原子%以上含有させることがより好ましく、0.100原子%以上含有させることがさらに好ましい。また、本発明の酸化物ターゲット材は、これらの元素を合計で3.000原子%以下含有させることがより好ましく、2.000原子%以下含有させることがさらに好ましい。
The oxide target material of the present invention contains 20.0 atomic% to 50.0 atomic% of Sn with respect to the entire metal component, and the balance is composed of Zn and inevitable impurities.
And the oxide target material of this invention can suppress that a ZnO phase coarsens or a several ZnO phase connects by making Sn amount into 20.0 atomic% or more. For the same reason as described above, the Sn content is preferably 25.0 atomic% or more, and more preferably 29.0 atomic% or more.
Moreover, the oxide target material of this invention can improve the etching property when forming a channel layer with a desired pattern by making Sn amount into 50.0 atomic% or less. For the same reason as described above, the Sn content is preferably 40.0 atomic% or less, and more preferably 35.0 atomic% or less.
And the oxide target material of this invention can improve the etching property when forming a channel layer by a desired pattern by making Zn amount into 50.0 atomic% or more. For the same reason as described above, the Zn content is preferably 60.0 atomic% or more, and more preferably 65.0 atomic% or more.
Moreover, the oxide target material of this invention can suppress that a ZnO phase coarsens or a several ZnO phase connects by making Zn amount into 80.0 atomic% or less. For the same reason as described above, the Zn content is preferably 75.0 atomic% or less, and more preferably 71.0 atomic% or less.
In the oxide target material of the present invention, a total of 0.005 part of one or more of the above-described Sn and Zn is contained in one or more of Al, Ga, Mo, and W with respect to the entire metal component. Substitution is preferably performed within a range of atomic% to 4.0000 atomic%. These elements are useful for controlling carrier mobility and suppressing photodegradation.
And it is more preferable that the oxide target material of this invention contains these elements 0.050 atomic% or more in total, and it is further more preferable to contain 0.100 atomic% or more. Further, the oxide target material of the present invention preferably contains these elements in total of 3.000 atomic% or less, and more preferably 2.000 atomic% or less.

以下に、本発明の酸化物ターゲット材の製造方法を説明する。
本発明の酸化物ターゲット材の製造方法では、造粒工程において、金属成分全体に対して、Snを20.0原子%〜50.0原子%含有し、残部がZnおよび不可避的不純物となるようにZnO粉末とSnO粉末を純水、分散剤と混合してスラリーとし、このスラリーを乾燥させた後、造粒粉を作製し、その造粒粉を仮焼してZnSnOとZnOからなる仮焼粉末を作製する。
上記の仮焼粉末を作製するための造粒粉の仮焼温度は、1000℃〜1200℃に設定することが好ましい。仮焼温度は、1000℃以上にすることで、ZnO粉末とSnO粉末の反応を十分に進行させることができる点で好ましく、1050℃以上がより好ましい。
また、仮焼温度は、1200℃以下にすることで、ZnO粉末とSnO粉末の過度な反応を抑制できるとともに、0.5μm〜1.5μmという焼成に好適な粉末粒径を維持することができ、これにより緻密な酸化物ターゲット材を得ることができる点で好ましく、1120℃以下がより好ましい。
そして、仮焼温度での保持時間は、1時間〜10時間の範囲にすることが好ましい。仮焼温度での保持時間は、1時間以上にすることで、ZnO粉末とSnO粉末の反応を促進することができる点で好ましく、2時間以上がより好ましい。
また、仮焼温度での保持時間は、10時間以下にすることで、ZnO粉末とSnO粉末の焼結を抑制することができる点で好ましく、7時間以下がより好ましい。
Below, the manufacturing method of the oxide target material of this invention is demonstrated.
In the method for producing an oxide target material of the present invention, in the granulation step, Sn is contained in an amount of 20.0 atomic% to 50.0 atomic% with respect to the entire metal component, with the balance being Zn and inevitable impurities. ZnO powder and SnO 2 powder were mixed with pure water and a dispersant to form a slurry. After drying the slurry, granulated powder was prepared, and the granulated powder was calcined to obtain Zn 2 SnO 4 and ZnO. A calcined powder consisting of
The calcining temperature of the granulated powder for producing the calcined powder is preferably set to 1000 ° C to 1200 ° C. The calcination temperature is preferably 1000 ° C. or more, and is preferably in a point that the reaction between the ZnO powder and the SnO 2 powder can sufficiently proceed, and more preferably 1050 ° C. or more.
Further, by setting the calcining temperature to 1200 ° C. or less, excessive reaction between the ZnO powder and the SnO 2 powder can be suppressed, and a powder particle size suitable for firing of 0.5 μm to 1.5 μm can be maintained. This is preferable in that a dense oxide target material can be obtained, and 1120 ° C. or lower is more preferable.
The holding time at the calcining temperature is preferably in the range of 1 hour to 10 hours. The holding time at the calcination temperature is preferably 1 hour or longer, and is preferably from the point that the reaction between the ZnO powder and the SnO 2 powder can be promoted, and more preferably 2 hours or longer.
In addition, the holding time at the calcining temperature is preferably 10 hours or less, so that sintering of the ZnO powder and the SnO 2 powder can be suppressed, and more preferably 7 hours or less.

本発明の酸化物ターゲット材の製造方法では、焼成工程において、上記の造粒工程で得た仮焼粉末を湿式解砕した後、鋳込み成形により成形体を作製し、脱脂を経て、大気雰囲気で焼成して酸化物焼結体を得る。
大気雰囲気における焼成温度は、1300℃〜1450℃に設定することが好ましい。焼成温度は、1300℃以上にすることで、焼結を促進させることができ、緻密な酸化物ターゲット材を得ることができる点で好ましい。そして、上記と同様の理由から、焼成温度は、1350℃以上がより好ましい。
また、焼成温度は、1450℃以下にすることで、ZnOが蒸発することにより発生する空孔を抑制し、高密度の酸化物ターゲット材にすることができる点で好ましい。そして、上記と同様の理由から、焼成温度は、1420℃以下にすることがより好ましい。
そして、焼成温度での保持時間は、4時間以上にすることで、焼成による緻密化を促進できる点で好ましい。そして、上記と同様の理由から、焼成温度での保持時間は、8時間以上にすることがより好ましい。
また、焼成温度での保持時間が15時間を超えると、ZnO相の成長が助長され、単位面積当たりのZnO相の面積率を小さくすることが困難になる。このため、本発明の酸化物ターゲット材を得るためには、焼成温度での保持時間を15時間以下にすることが好ましい。そして、上記と同様の理由から、焼成温度での保持時間は、12時間以下にすることがより好ましい。
In the method for producing an oxide target material of the present invention, in the firing step, the calcined powder obtained in the above granulation step is wet pulverized, then a molded body is produced by casting, degreased, and in an air atmosphere. Firing to obtain an oxide sintered body.
The firing temperature in the air atmosphere is preferably set to 1300 ° C to 1450 ° C. The firing temperature is preferably 1300 ° C. or higher because sintering can be promoted and a dense oxide target material can be obtained. For the same reason as described above, the firing temperature is more preferably 1350 ° C. or higher.
In addition, the firing temperature is preferably 1450 ° C. or less, in that vacancies generated by evaporation of ZnO can be suppressed and a high-density oxide target material can be obtained. For the same reason as described above, the firing temperature is more preferably set to 1420 ° C. or lower.
The holding time at the firing temperature is preferably 4 hours or more, from the viewpoint that densification by firing can be promoted. For the same reason as described above, the holding time at the firing temperature is more preferably 8 hours or longer.
If the holding time at the firing temperature exceeds 15 hours, the growth of the ZnO phase is promoted, and it becomes difficult to reduce the area ratio of the ZnO phase per unit area. For this reason, in order to obtain the oxide target material of this invention, it is preferable to make holding time in a calcination temperature into 15 hours or less. For the same reason as described above, the holding time at the firing temperature is more preferably 12 hours or less.

本発明では、上記の焼成工程で得た酸化物焼結体を、非酸化性雰囲気で還元熱処理することにより、酸化物焼結体の電気抵抗率を低下させ、直流スパッタリングによるZTO薄膜の成膜が可能となる点で好ましい。酸化物焼結体の電気抵抗率は、酸化物焼結体中の酸素欠損密度と関係している。このため、還元熱処理は、1300℃以上で行なうことで、酸素欠損密度を増加させ、電気抵抗率を低下できる点で好ましい。そして、上記と同様の理由から、還元熱処理は、1350℃以上で行なうことがより好ましい。
また、還元熱処理は、1450℃以下で行なうことで、ZnOの蒸発を抑制できることに加え、ZnO相の粗大化も抑制できる点で好ましい。そして、上記と同様の理由から、還元熱処理は、1420℃以下で行なうことがより好ましい。
そして、還元熱処理の保持時間は、3時間以上にすることが好ましい。これにより、酸化物焼結体中の酸素欠損状態を均一にすることができる。そして、上記と同様の理由から、還元熱処理の保持時間は、4時間以上にすることがより好ましい。
また、還元熱処理の保持時間は、15時間以下にすることが好ましい。これにより、ZnOの蒸発抑制とZnO相の粗大化を抑制することができる。そして、上記と同様の理由から、還元熱処理の保持時間は、10時間以下にすることがより好ましい。
In the present invention, the oxide sintered body obtained in the above firing step is subjected to a reduction heat treatment in a non-oxidizing atmosphere, thereby reducing the electrical resistivity of the oxide sintered body and forming a ZTO thin film by direct current sputtering. Is preferable in that it becomes possible. The electrical resistivity of the oxide sintered body is related to the oxygen deficiency density in the oxide sintered body. For this reason, it is preferable that the reduction heat treatment is performed at 1300 ° C. or higher because the oxygen deficiency density can be increased and the electrical resistivity can be lowered. For the same reason as described above, the reduction heat treatment is more preferably performed at 1350 ° C. or higher.
Further, the reduction heat treatment is preferably performed at 1450 ° C. or less in that it can suppress the evaporation of ZnO and also suppress the coarsening of the ZnO phase. For the same reason as described above, the reduction heat treatment is more preferably performed at 1420 ° C. or lower.
The holding time for the reduction heat treatment is preferably 3 hours or longer. Thereby, the oxygen deficient state in the oxide sintered body can be made uniform. And, for the same reason as described above, it is more preferable that the holding time of the reduction heat treatment is 4 hours or longer.
Further, the holding time of the reduction heat treatment is preferably 15 hours or less. Thereby, suppression of evaporation of ZnO and coarsening of the ZnO phase can be suppressed. And, for the same reason as described above, the holding time of the reduction heat treatment is more preferably 10 hours or less.

そして、本発明の酸化物ターゲット材は、研磨工程において、上記の焼成工程で得た酸化物焼結体のエロージョン面となる面における10000μmの面積に占めるZnO相の面積率が10.5面積%以下になるように、酸化物焼結体のエロージョン面となる面を研磨することで得ることができる。ここで、ZnO相の面積率を10.5面積%以下にするには、実際に酸化物焼結体のエロージョン面となる面における組織を観察してZnO相の面積率を算出して、その算出と研磨を交互に行なうことでできる。
また、ZnO相の面積率を10.5面積%以下にするには、実際に酸化物焼結体のエロージョン面となる面における、JIS Z8781−4:2013で規定される明度Lおよび色度bを指標として、Lが60.3以下、且つbが−0.3以下になるように、Lおよびbを測定し、その測定と研磨を交互に行なうことでもできる。そして、Lおよびbは、例えば、コニカミノルタ株式会社製の分光測色計(CM2500d)を用いて測定することができる。
The oxide target material of the present invention has a ZnO phase area ratio of 10.5 area in the area of 10,000 μm 2 in the surface serving as the erosion surface of the oxide sintered body obtained in the firing step in the polishing step. % Or less, it can be obtained by polishing the surface to be the erosion surface of the oxide sintered body. Here, in order to reduce the area ratio of the ZnO phase to 10.5 area% or less, the structure of the surface that becomes the erosion surface of the oxide sintered body is actually observed to calculate the area ratio of the ZnO phase, Calculation and polishing can be performed alternately.
In order to make the area ratio of the ZnO phase 10.5 area% or less, the lightness L * and chromaticity defined by JIS Z8781-4: 2013 on the surface that actually becomes the erosion surface of the oxide sintered body Using b * as an index, L * and b * may be measured so that L * is 60.3 or less and b * is −0.3 or less, and the measurement and polishing are alternately performed. L * and b * can be measured using, for example, a spectrocolorimeter (CM2500d) manufactured by Konica Minolta.

先ず、金属成分全体に対してSnが30.0原子%、残部がZnおよび不可避的不純物となるように、平均粒径(累積粒度分布のD50)が0.70μmのZnO粉末と、平均粒径(累積粒度分布のD50)が1.85μmのSnO粉末を秤量して、所定量の純水と分散剤の入った撹拌容器内に投入後、混合してスラリーを得た。このスラリーを乾燥、造粒させた後、1090℃、4時間で仮焼して、ZnSnOとZnOからなる仮焼粉末を得た。仮焼粉末は、湿式解砕により平均粒径(累積粒度分布のD50)が1μmになるように粒度調整した。
そして、上記の仮焼粉末を湿式解砕した後、鋳込み成形により、厚さ10mm×直径125mmの成形体を3枚得た。
First, a ZnO powder having an average particle size (D50 of cumulative particle size distribution) of 0.70 μm and an average particle size so that Sn is 30.0 atomic% with respect to the entire metal component, and the balance is Zn and inevitable impurities. SnO 2 powder having a cumulative particle size distribution (D50) of 1.85 μm was weighed, put into a stirring vessel containing a predetermined amount of pure water and a dispersant, and then mixed to obtain a slurry. The slurry was dried and granulated and then calcined at 1090 ° C. for 4 hours to obtain a calcined powder composed of Zn 2 SnO 4 and ZnO. The calcined powder was adjusted in particle size by wet crushing so that the average particle size (D50 of cumulative particle size distribution) was 1 μm.
And after carrying out wet crushing of said calcined powder, three compacts 10 mm in thickness x 125 mm in diameter were obtained by casting.

次に、得られた成形体の1枚を、1400℃、10時間、大気雰囲気で焼成し、次いで、1400℃、4時間、窒素雰囲気で常圧の還元熱処理を行ない、酸化物焼結体を得た。そして、この酸化物焼結体に機械加工をして、厚さ5mm×直径50mmとし、エロージョン面となる酸化物焼結体の表面を、10000μmの面積におけるZnO相の面積率が10.5面積%以下となるように、具体的にはLが60.3以下、且つbが−0.3以下になるように、Lおよびbを測定し、この測定と研磨を交互に行ない、本発明例1となる酸化物ターゲット材を得た。尚、Lおよびbの測定は、コニカミノルタ株式会社製の分光測色計(CM2500d)を用いた。 Next, one of the obtained compacts was fired at 1400 ° C. for 10 hours in an air atmosphere, and then subjected to a reduction heat treatment at 1400 ° C. for 4 hours in a nitrogen atmosphere to obtain an oxide sintered body. Obtained. Then, the oxide sintered body is machined to have a thickness of 5 mm × a diameter of 50 mm. The surface of the oxide sintered body serving as an erosion surface has a ZnO phase area ratio of 10.5 in an area of 10,000 μm 2. L * and b * are measured so that L * is 60.3 or less and b * is −0.3 or less so that the area% or less, and this measurement and polishing are alternately performed. Then, an oxide target material to be Inventive Example 1 was obtained. The measurement of L * and b * was performed using a spectrocolorimeter (CM2500d) manufactured by Konica Minolta.

また、得られた成形体の別の1枚を、1400℃、10時間、大気雰囲気で焼成し、次いで、1400℃、4時間、窒素雰囲気で常圧の還元熱処理を行ない、酸化物焼結体を得た。そして、この酸化物焼結体に機械加工をして、厚さ5mm×直径50mmとし、エロージョン面となる酸化物焼結体の表面を、10000μmの面積におけるZnO相の面積率が10.5面積%以下となるように、具体的にはLが60.3以下、且つbが−0.3以下になるように、Lおよびbを測定し、この測定と研磨を交互に行ない、本発明例2となる酸化物ターゲット材を得た。 Further, another piece of the obtained molded body was fired in an air atmosphere at 1400 ° C. for 10 hours, and then subjected to a reduction heat treatment at 1400 ° C. for 4 hours in a nitrogen atmosphere to obtain an oxide sintered body. Got. Then, the oxide sintered body is machined to have a thickness of 5 mm × a diameter of 50 mm. The surface of the oxide sintered body serving as an erosion surface has a ZnO phase area ratio of 10.5 in an area of 10,000 μm 2. L * and b * are measured so that L * is 60.3 or less and b * is −0.3 or less so that the area% or less, and this measurement and polishing are alternately performed. Then, an oxide target material to be Inventive Example 2 was obtained.

また、得られた成形体のさらに別の1枚を、1400℃、10時間、大気雰囲気で焼成し、次いで、1400℃、4時間、窒素雰囲気で常圧の還元熱処理を行ない、酸化物焼結体を得た。そして、この酸化物焼結体に機械加工をして、厚さ5mm×直径50mmとし、エロージョン面となる酸化物焼結体の表面を、10000μmの面積におけるZnO相の面積率が10.5面積%を超えるように、具体的にはLが60.3超、且つbが−0.3超になるように、Lおよびbを測定し、この測定と研磨を交互に行ない、比較例となる酸化物ターゲット材を得た。 Further, another obtained sheet was fired at 1400 ° C. for 10 hours in an air atmosphere, and then subjected to a reduction heat treatment at 1400 ° C. for 4 hours in a nitrogen atmosphere at a normal pressure to sinter oxide. Got the body. Then, the oxide sintered body is machined to have a thickness of 5 mm × a diameter of 50 mm. The surface of the oxide sintered body serving as an erosion surface has a ZnO phase area ratio of 10.5 in an area of 10,000 μm 2. L * and b * are measured so that L * exceeds 60.3, and specifically, L * exceeds 60.3 and b * exceeds −0.3, and this measurement and polishing are performed alternately. The oxide target material used as a comparative example was obtained.

上記で得た本発明例1、本発明例2および比較例の酸化物ターゲット材のエロージョン面となる面の走査型電子顕微鏡の反射電子像を図1〜図3に示す。この走査型電子顕微鏡の反射電子像で、任意の縦:94.6μm×横:130.6μm(面積:12355μm)の視野のうち、10000μmとなる1視野を観察し、視野内に存在するZnO相の面積を測定した。ここで、測定は、走査型電子顕微鏡により反射電子像でZnSnO相とZnO相を高コントラストで撮影し、その画像を画像解析ソフト(OLYMPUS SOFT IMAGING SOLUTIONS GMBH社製の「Scandium」)を用いて、ZnO相の面積率を得た。その結果を表1に示す。また、参考までに、各酸化物ターゲット材のエロージョン面となる面の任意の位置におけるLおよびbの値も併記した。
表1の結果から、本発明の酸化物ターゲット材は、10000μmの面積におけるZnO相の面積率が10.5面積%以下であることが確認できた。
一方、比較例の酸化物ターゲット材は、10000μmの面積におけるZnO相の面積率が10.5面積%を超えており、本発明の範囲外であった。
The reflected electron images of the scanning electron microscope of the surface used as the erosion surface of the oxide target material of this invention example 1, this invention example 2, and the comparative example obtained above are shown in FIGS. In the reflection electron image of the scanning electron microscope, any vertical: 94.6μm × Horizontal: 130.6μm (area: 12355μm 2) of the field of view to observe the one visual field as the 10000 2, present in the field of view The area of the ZnO phase was measured. Here, the measurement is performed by taking a reflected electron image of the Zn 2 SnO 4 phase and the ZnO phase with high contrast using a scanning electron microscope, and using the image analysis software (“Scandium” manufactured by OLYMPUS SOFT IMAGES SOLITIONS GMBH). The ZnO phase area ratio was obtained. The results are shown in Table 1. For reference, the values of L * and b * at arbitrary positions on the surface serving as the erosion surface of each oxide target material are also shown.
From the results of Table 1, it was confirmed that the oxide target material of the present invention had an area ratio of ZnO phase in an area of 10,000 μm 2 of 10.5 area% or less.
On the other hand, in the oxide target material of the comparative example, the area ratio of the ZnO phase in the area of 10,000 μm 2 exceeded 10.5 area%, and was outside the scope of the present invention.

次に、ZTO薄膜によるTFT特性への影響を確認するために、図4に示す簡易TFTを作製して評価を実施した。
先ず、ガラス基板1上に、ゲート電極2となるMoの金属薄膜を形成した。その後、ホトレジストでゲートパターンのマスクを形成した。このマスクを介してエッチング加工し、厚さ70nmのゲート電極2を形成した。その後、ゲート絶縁膜3となるSiO膜を全面に100nmの厚さで形成した。そして、上記で作製した各酸化物ターゲット材を用いてスパッタリングにより、厚さ30nmのチャネル層4を形成した。
次に、チャネル層4の上に、後にチャネルパターンとなるホトレジスト層を形成した。ここで、チャネル領域を加工するために、ホトレジスト層にチャネルパターンを描画、露光、現像してマスクを形成した。そして、このマスクを用いてエッチング加工し、チャネル領域を形成した。
さらに、ソース電極5およびドレイン電極6となるMoの金属薄膜を厚さ140nmで形成し、ホトレジストをマスクとしてエッチング加工し、ソース電極5およびドレイン電極6を形成した。そして、保護膜で被覆し、簡易TFTを作製した。
Next, in order to confirm the influence of the ZTO thin film on the TFT characteristics, a simple TFT shown in FIG. 4 was produced and evaluated.
First, a Mo metal thin film to be the gate electrode 2 was formed on the glass substrate 1. Thereafter, a gate pattern mask was formed with a photoresist. Etching was performed through this mask to form a gate electrode 2 having a thickness of 70 nm. Thereafter, a SiO 2 film to be the gate insulating film 3 was formed to a thickness of 100 nm on the entire surface. And the channel layer 4 of thickness 30nm was formed by sputtering using each oxide target material produced above.
Next, a photoresist layer to be a channel pattern later was formed on the channel layer 4. Here, in order to process the channel region, a mask was formed by drawing, exposing and developing a channel pattern on the photoresist layer. Then, etching was performed using this mask to form a channel region.
Further, a Mo metal thin film to be the source electrode 5 and the drain electrode 6 was formed with a thickness of 140 nm and etched using the photoresist as a mask to form the source electrode 5 and the drain electrode 6. And it covered with the protective film and produced the simple TFT.

上記で作製した各簡易TFTを用いて、NBISによる信頼性評価を行なった。室温(25℃)で、0〜1000秒のNBIS(ゲート電圧Vg=−15V、ドレイン電圧Vd=0V、照度=1000lx)を与え、1000秒経過後の閾値電圧(Vth)を試験前と比較して、その差分をΔVthとして算出した。その結果を表2に示す。
その結果、本発明の酸化物ターゲット材でZTO薄膜を形成した簡易TFTは、ΔVthが−10.0V未満であり、安定性が確保されたTFTであることが確認できた。
一方、比較例の酸化物ターゲット材でZTO薄膜を形成した簡易TFTは、ΔVthが−10.0Vを下回っており、TFTとして不適であった。
Reliability evaluation by NBIS was performed using each simple TFT produced above. NBIS (gate voltage Vg = -15V, drain voltage Vd = 0V, illuminance = 1000lx) was applied at room temperature (25 ° C) for 0 to 1000 seconds, and the threshold voltage (Vth) after 1000 seconds was compared with that before the test. The difference was calculated as ΔVth. The results are shown in Table 2.
As a result, it was confirmed that the simple TFT in which the ZTO thin film was formed with the oxide target material of the present invention had a ΔVth of less than −10.0 V and the stability was ensured.
On the other hand, the simple TFT in which the ZTO thin film is formed of the oxide target material of the comparative example has ΔVth lower than −10.0 V, and is not suitable as a TFT.

先ず、金属成分全体に対してSnが33.3原子%、残部がZnおよび不可避的不純物となるように、平均粒径(累積粒度分布のD50)が0.70μmのZnO粉末と、平均粒径(累積粒度分布のD50)が1.85μmのSnO粉末を秤量して、所定量の純水と分散剤の入った撹拌容器内に投入後、混合してスラリーを得た。このスラリーを乾燥、造粒させた後、1090℃、4時間で仮焼して、ZnSnOとZnOからなる仮焼粉末を得た。仮焼粉末は、湿式解砕時にSnが29.5〜31.0原子%、Alが0.132原子%となるように、平均粒径(累積粒度分布のD50)が0.70μmのZnO粉末と、平均粒径(累積粒度分布のD50)が0.1〜0.4μmのAl粉末を追加した後、全体の平均粒径(累積粒度分布のD50)が0.7μm〜1.0μmになるように粒度調整した。
上記の仮焼粉末を湿式解砕した後、鋳込み成形により、厚さ10mm×幅235mm×長さ310mmの成形体を5枚得た。
First, ZnO powder having an average particle diameter (D50 of cumulative particle size distribution) of 0.70 μm and an average particle diameter so that Sn is 33.3 atomic% with respect to the entire metal component, and the balance is Zn and inevitable impurities. SnO 2 powder having a cumulative particle size distribution (D50) of 1.85 μm was weighed, put into a stirring vessel containing a predetermined amount of pure water and a dispersant, and then mixed to obtain a slurry. The slurry was dried and granulated and then calcined at 1090 ° C. for 4 hours to obtain a calcined powder composed of Zn 2 SnO 4 and ZnO. The calcined powder is ZnO powder having an average particle diameter (D50 of cumulative particle size distribution) of 0.70 μm so that Sn is 29.5 to 31.0 atomic% and Al is 0.132 atomic% during wet crushing. After adding Al 2 O 3 powder having an average particle size (D50 of cumulative particle size distribution) of 0.1 to 0.4 μm, the total average particle size (D50 of cumulative particle size distribution) is 0.7 μm to 1. The particle size was adjusted to 0 μm.
After wet pulverizing the calcined powder, five molded bodies having a thickness of 10 mm, a width of 235 mm, and a length of 310 mm were obtained by casting.

次に、得られた成形体を、1400℃、10時間、大気雰囲気で焼成し、次いで、1400℃、4時間、窒素雰囲気で常圧の還元熱処理を行ない、酸化物焼結体を得た。そして、この酸化物焼結体に機械加工をして、厚さ5mm×直径50mmとし、走査型電子顕微鏡の反射電子像で、任意の縦:94.6μm×横:130.6μm(面積:12355μm)の3視野のうち、各視野の10000μmとなる視野を観察し、その視野内に存在するZnO相の面積を測定した。そして、この測定と研磨を交互に行なうことで、本発明例3〜本発明例7となる酸化物ターゲット材を得た。
ここで、測定は、走査型電子顕微鏡により反射電子像でZnSnO相とZnO相を高コントラストで撮影し、その画像を画像解析ソフト(OLYMPUS SOFT IMAGING SOLUTIONS GMBH社製の「Scandium」)を用いて、各視野のZnO相の面積率と、3視野の平均値を得た。その結果を表3に示す。
Next, the obtained molded body was fired in an air atmosphere at 1400 ° C. for 10 hours, and then subjected to a reduction heat treatment at 1400 ° C. for 4 hours in a nitrogen atmosphere to obtain an oxide sintered body. Then, this oxide sintered body is machined to have a thickness of 5 mm × a diameter of 50 mm, and in a reflected electron image of a scanning electron microscope, arbitrary length: 94.6 μm × width: 130.6 μm (area: 12355 μm) Among the three visual fields of 2 ), a visual field of 10,000 μm 2 in each visual field was observed, and the area of the ZnO phase existing in the visual field was measured. And the oxide target material used as this invention example 3-this invention example 7 was obtained by performing this measurement and grinding | polishing alternately.
Here, the measurement is performed by taking a reflected electron image of the Zn 2 SnO 4 phase and the ZnO phase with high contrast using a scanning electron microscope, and using the image analysis software (“Scandium” manufactured by OLYMPUS SOFT IMAGES SOLITIONS GMBH). Using, the area ratio of the ZnO phase of each visual field and the average value of three visual fields were obtained. The results are shown in Table 3.

上記で得た本発明例3〜本発明例7の酸化物ターゲット材のエロージョン面となる面における視野1〜視野3の走査型電子顕微鏡の反射電子像を図5〜図19に示す。
表3および図5〜図19の結果から、本発明の酸化物ターゲット材は、10000μmの面積におけるZnO相の面積率が10.5面積%以下であることが確認できた。
The reflected electron images of the scanning electron microscope of the visual field 1 to the visual field 3 in the surface used as the erosion surface of the oxide target material of this invention example 3-this invention example 7 obtained above are shown in FIGS.
From the results of Table 3 and FIGS. 5 to 19, it was confirmed that the oxide target material of the present invention had an area ratio of ZnO phase of 10.5 area% or less in an area of 10,000 μm 2 .

1.ガラス基板
2.ゲート電極
3.ゲート絶縁膜
4.チャネル層
5.ソース電極
6.ドレイン電極

1. 1. Glass substrate 2. Gate electrode Gate insulating film 4. Channel layer 5. Source electrode 6. Drain electrode

Claims (4)

金属成分全体に対して、Snを20.0原子%〜50.0原子%含有し、残部がZnおよび不可避的不純物からなり、エロージョン面となる面における10000μmの面積に占めるZnO相の面積率が10.5面積%以下であることを特徴とする酸化物ターゲット材。 The area ratio of the ZnO phase occupying 10,000 μm 2 on the surface of the erosion surface, containing 20.0 atomic percent to 50.0 atomic percent of Sn with respect to the entire metal component, the balance being Zn and inevitable impurities. Is 10.5 area% or less, The oxide target material characterized by the above-mentioned. 金属成分全体に対して、Al、Ga、MoおよびWのうち1種以上を合計で0.005原子%〜4.000原子%含有することを特徴とする請求項1に記載の酸化物ターゲット材。   2. The oxide target material according to claim 1, comprising 0.005 atomic% to 4.000 atomic% in total of at least one of Al, Ga, Mo, and W with respect to the entire metal component. . 金属成分全体に対して、Snを20.0原子%〜50.0原子%含有し、残部がZnおよび不可避的不純物となるようにZnO粉末とSnO粉末を純水および分散剤と混合してスラリーとし、該スラリーを乾燥させて造粒粉を作製して、該造粒粉を仮焼してZnSnOとZnOからなる仮焼粉末を得る造粒工程と、
前記仮焼粉末を湿式解砕した後、鋳込み成形により成形体を作製し、該成形体を脱脂した後、大気雰囲気で焼成して酸化物焼結体を得る焼結工程と、
前記酸化物焼結体のエロージョン面となる面を研磨して、エロージョン面となる面における10000μmの面積に占めるZnO相の面積率が10.5面積%以下の酸化物ターゲット材を得る研磨工程と
を有する酸化物ターゲット材の製造方法。
ZnO powder and SnO 2 powder are mixed with pure water and a dispersant so that Sn is contained in 20.0 atomic% to 50.0 atomic% with respect to the whole metal component, and the balance is Zn and inevitable impurities. A granulation step of obtaining a calcined powder composed of Zn 2 SnO 4 and ZnO by slurrying, producing the granulated powder by drying the slurry, and calcining the granulated powder;
After wet crushing the calcined powder, a molded body is produced by casting, and after degreasing the molded body, a sintering step of firing in an air atmosphere to obtain an oxide sintered body,
Polishing step of polishing the surface that becomes the erosion surface of the oxide sintered body to obtain an oxide target material in which the area ratio of the ZnO phase in the area of 10000 μm 2 in the surface that becomes the erosion surface is 10.5 area% or less The manufacturing method of the oxide target material which has these.
前記研磨工程において、明度Lおよび色度bを確認しながらエロージョン面となる面を研磨することを特徴とする請求項3に記載の酸化物ターゲット材の製造方法。

4. The method for producing an oxide target material according to claim 3, wherein in the polishing step, a surface that becomes an erosion surface is polished while confirming lightness L * and chromaticity b * . 5.

JP2018025559A 2017-05-25 2018-02-16 Oxide target material and method for producing the same Pending JP2018199861A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017103631 2017-05-25
JP2017103631 2017-05-25

Publications (1)

Publication Number Publication Date
JP2018199861A true JP2018199861A (en) 2018-12-20

Family

ID=64492109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018025559A Pending JP2018199861A (en) 2017-05-25 2018-02-16 Oxide target material and method for producing the same

Country Status (4)

Country Link
JP (1) JP2018199861A (en)
KR (1) KR102133636B1 (en)
CN (1) CN108950490B (en)
TW (1) TWI668197B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116332623B (en) * 2023-03-27 2024-06-11 深圳众诚达应用材料股份有限公司 NMO oxide semiconductor material, and preparation method and application thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101351198B1 (en) * 2005-01-12 2014-01-14 이데미쓰 고산 가부시키가이샤 TRANSPARENT CONDUCTIVE FILM LAMINATE CIRCUIT BOARD PROVIDED WITH Al WIRING AND PRODUCTION METHOD THEREFOR, AND OXIDE TRANSPARENT CONDUCTIVE FILM MATERIAL
JP4552950B2 (en) * 2006-03-15 2010-09-29 住友金属鉱山株式会社 Oxide sintered body for target, manufacturing method thereof, manufacturing method of transparent conductive film using the same, and transparent conductive film obtained
JP5720726B2 (en) 2006-08-11 2015-05-20 日立金属株式会社 Zinc oxide sintered body and method for producing the same
JP5358891B2 (en) * 2006-08-11 2013-12-04 日立金属株式会社 Method for producing sintered zinc oxide
JP2010034032A (en) * 2008-06-25 2010-02-12 Sumitomo Chemical Co Ltd Method of manufacturing transparent conductive film
JP5024226B2 (en) 2008-08-06 2012-09-12 日立金属株式会社 Oxide sintered body and manufacturing method thereof, sputtering target, semiconductor thin film
JP2012066968A (en) * 2010-09-24 2012-04-05 Kobelco Kaken:Kk Oxide sintered compact and sputtering target
JP6677095B2 (en) * 2015-11-20 2020-04-08 住友金属鉱山株式会社 Sn-Zn-O-based oxide sintered body and method for producing the same

Also Published As

Publication number Publication date
TW201900582A (en) 2019-01-01
TWI668197B (en) 2019-08-11
KR20180129655A (en) 2018-12-05
KR102133636B1 (en) 2020-07-13
CN108950490A (en) 2018-12-07
CN108950490B (en) 2020-06-30

Similar Documents

Publication Publication Date Title
JP6424892B2 (en) Oxide sintered body, target for sputtering, and oxide semiconductor thin film obtained using the same
TWI574935B (en) Oxide sintered body, target for sputtering, and oxide semiconductor film using the same
JP6256592B2 (en) Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using the same
JP2019038735A (en) Oxide sintered compact, method for producing oxide sintered compact, target for sputtering, and amorphous oxide semiconductor thin film
JP6277977B2 (en) Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using the same
JP6387823B2 (en) Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using the same
TWI591195B (en) Oxide sintered body, target for sputtering, and oxide semiconductor film obtained using the same
JP6358083B2 (en) Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained using the same
JP2018199861A (en) Oxide target material and method for producing the same
TWI622568B (en) Oxide sintered body and sputtering target
JP2018199841A (en) Oxide target material