KR20180129655A - Oxide target material and manufacturing method thereof - Google Patents

Oxide target material and manufacturing method thereof Download PDF

Info

Publication number
KR20180129655A
KR20180129655A KR1020180057614A KR20180057614A KR20180129655A KR 20180129655 A KR20180129655 A KR 20180129655A KR 1020180057614 A KR1020180057614 A KR 1020180057614A KR 20180057614 A KR20180057614 A KR 20180057614A KR 20180129655 A KR20180129655 A KR 20180129655A
Authority
KR
South Korea
Prior art keywords
area
zno
oxide
target material
oxide target
Prior art date
Application number
KR1020180057614A
Other languages
Korean (ko)
Other versions
KR102133636B1 (en
Inventor
슈지로 우에사카
히로유키 우치야마
도모마사 구마가이
유 다마다
Original Assignee
히타치 긴조쿠 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 히타치 긴조쿠 가부시키가이샤 filed Critical 히타치 긴조쿠 가부시키가이샤
Publication of KR20180129655A publication Critical patent/KR20180129655A/en
Application granted granted Critical
Publication of KR102133636B1 publication Critical patent/KR102133636B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • C04B35/457Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates based on tin oxides or stannates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02266Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by physical ablation of a target, e.g. sputtering, reactive sputtering, physical vapour deposition or pulsed laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6022Injection moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Thin Film Transistor (AREA)

Abstract

Provided are an oxide target material and a manufacturing method thereof, which can form a ZTO thin film forming a channel layer of a TFT driving a high precision display or the like to restrict instability of threshold voltage. The whole metal component comprises: 20.0-50.0 atom% of Sn; and the remainder consisting of Zn and inevitable impurities. In an area of 10000 μm^2, an area rate of ZnO is less than or equal to 10.5 area%, and in the whole metal component, the sum of at least one of Al, Ga, Mo and W is 0.005-4.000 atom%.

Description

산화물 타깃재 및 그 제조 방법 {OXIDE TARGET MATERIAL AND MANUFACTURING METHOD THEREOF}TECHNICAL FIELD [0001] The present invention relates to an oxide target material and an oxide target material,

본 발명은, 예를 들어 액정 디스플레이나 유기 EL 디스플레이 등을 구동시키는 박막 트랜지스터의 산화물 반도체층을 형성하기 위해 사용되는 산화물 타깃재 및 그 제조 방법에 관한 것이다.The present invention relates to an oxide target material used for forming an oxide semiconductor layer of a thin film transistor that drives, for example, a liquid crystal display, an organic EL display or the like, and a method for manufacturing the oxide target material.

종래, 박막 트랜지스터(이하, 「TFT」라고 함)로 구동하는 방식의 액정 디스플레이나 유기 EL 디스플레이 등의 표시 장치에서는, TFT의 채널층에 비정질 실리콘막이나 결정질 실리콘막을 채용한 것이 주류이다. 그리고, 디스플레이의 고정밀화의 요구에 수반하여, TFT의 채널층에 사용되는 재료로서 산화물 반도체가 주목받고 있다. 예를 들어, In, Ga, Zn, O(산소)를 포함하는 산화물 반도체막(이하, 「I-G-Z-O 박막」이라고 함)은, 우수한 TFT 특성을 갖는 것으로서 실용화가 개시되어 있다. 이 I-G-Z-O의 박막에 포함되는 In이나 Ga는, 일본에서는 레어 메탈 비축 대상 강종으로 지정된 희소하면서도 고가의 금속이다.2. Description of the Related Art In a display device such as a liquid crystal display or an organic EL display driven by a thin film transistor (hereinafter referred to as " TFT "), an amorphous silicon film or a crystalline silicon film is used as a channel layer of a TFT. Along with the demand for high definition display, oxide semiconductors have attracted attention as a material used for a channel layer of a TFT. For example, an oxide semiconductor film containing In, Ga, Zn, O (oxygen) (hereinafter referred to as "I-G-Z-O thin film") has excellent TFT characteristics and is put to practical use. In and Ga contained in the thin film of the I-G-Z-O are scarce and expensive metals designated in Japan as rare metal stocks.

그래서, 상기 I-G-Z-O 박막에 포함되는 In이나 Ga를 함유하지 않는 산화물 반도체막으로서, Zn-Sn-O계 산화물 반도체막(이하, 「ZTO 박막」이라고 함)이 주목받고 있다. 그리고, 이 ZTO 박막은 타깃을 사용한 스퍼터링법에 의해 성막된다. 이 스퍼터링법이란, 이온이나 원자 또는 클러스터를 타깃 표면에 충돌시켜, 그 물질의 표면을 깎음(혹은 날림)으로써, 그 물질을 구성하는 성분을 기판 등의 표면 상에 퇴적시켜 성막하는 방법이다.Therefore, a Zn-Sn-O-based oxide semiconductor film (hereinafter referred to as a "ZTO thin film") has attracted attention as an oxide semiconductor film containing no In or Ga contained in the I-G-Z-O thin film. The ZTO thin film is formed by a sputtering method using a target. The sputtering method is a method in which an ion, an atom or a cluster is collided with a target surface, and the surface of the material is shaved (or spun) to deposit a component constituting the substance on the surface of a substrate or the like.

여기서, ZTO 박막은 산소를 함유하는 박막이기 때문에, 스퍼터링법에 있어서는 산소를 함유한 분위기에서 성막하는 소위 반응성 스퍼터링법이 사용되고 있다. 이 반응성 스퍼터링법이란, 아르곤 가스와 산소 가스로 구성되는 혼합 가스의 분위기 하에서 스퍼터링하는 방법이며, 이온이나 원자 또는 클러스터를 산소와 반응시키면서 스퍼터링함으로써, 산화물계 박막을 형성한다고 하는 방법이다.Here, since the ZTO thin film is a thin film containing oxygen, the so-called reactive sputtering method in which the film is formed in an atmosphere containing oxygen is used in the sputtering method. This reactive sputtering method is a method of sputtering in an atmosphere of a mixed gas composed of an argon gas and an oxygen gas and sputtering while reacting ions, atoms or clusters with oxygen to form an oxide thin film.

그리고, 이 반응성 스퍼터링법에 사용하는 타깃재는, ZTO 박막의 성분 조성에 근사한 성분 조성을 갖는 ZTO계 산화물 소결체를 포함하는 타깃재가 사용된다. 이러한 타깃재는, 생산성의 관점에서 직류 스퍼터링법에 적용되고, 성막 속도를 향상시키기 위해, 고전력에서 사용될 것이 요구된다. 특허문헌 1에서는 아킹의 원인이 되는 산화주석(SnO2)의 결정상을 조직 중에 함유시키지 않음으로써, 고전력 스퍼터링에 있어서도 아킹의 발생을 억제하고, 성막 속도를 향상시킬 수 있는 타깃재용 소결체가 제안되어 있다.The target material used in this reactive sputtering method is a target material containing a ZTO-based oxide sintered body having a composition approximate to that of the ZTO thin film. Such a target material is applied to the DC sputtering method from the viewpoint of productivity and is required to be used at high power in order to improve the deposition rate. Patent Document 1 proposes a sintered body for a target material capable of suppressing the occurrence of arcing and improving the deposition rate even in high-power sputtering by not containing crystalline phase of tin oxide (SnO 2 ), which causes arcing, in the structure .

일본 특허 공개 제2007-277075호 공보Japanese Patent Application Laid-Open No. 2007-277075

본 발명자의 검토에 따르면, 상술한 특허문헌 1에서 개시되는 SnO2의 결정상이 억제된 소결체를 타깃재로 하여, 스퍼터링법으로 ZTO 박막을 성막하고, TFT를 형성하여, 그 TFT가 광 조사 하에 부 바이어스 인가 상태(Negative Bias under Illumination Stress 이하, NBIS:라고 함)에 노출되면, 역치 전압이 마이너스 방향으로 시프트된다고 하는 불안정성을 나타내는 경우가 있음을 확인하였다.According to the study of the present inventor, a ZTO thin film is formed by a sputtering method using the sintered body in which the crystal phase of SnO 2 is suppressed as disclosed in the above-mentioned Patent Document 1, and a TFT is formed, It has been confirmed that there is a case where the threshold voltage is shifted in the minus direction when exposed to a bias application state (Negative Bias under Illumination Stress (NBIS)).

그리고, 이 역치 전압의 불안정성의 문제가 발생하면, 고정밀 디스플레이용 구동 소자를 얻기가 곤란하게 된다고 하는 문제가 발생한다.If the problem of instability of the threshold voltage occurs, there arises a problem that it becomes difficult to obtain a driving element for a high-precision display.

본 발명의 목적은, 역치 전압의 불안정성을 억제한, 고정밀 디스플레이 등을 구동하는 TFT의 채널층을 구성하는 ZTO 박막을 형성하기 위한 산화물 타깃재, 및 그 제조 방법을 제공하는 것이다.An object of the present invention is to provide an oxide target material for forming a ZTO thin film constituting a channel layer of a TFT for driving a high-precision display or the like in which the instability of threshold voltage is suppressed, and a manufacturing method thereof.

본 발명자는, 상기 과제를 검토한 결과, 산화물 타깃재의 단위 면적당 ZnO상의 면적률을 소정의 범위 내로 함으로써, 역치 전압의 불안정성을 억제할 수 있음을 알아내어, 본 발명에 도달하였다.As a result of studying the above problems, the present inventors have found that the instability of the threshold voltage can be suppressed by setting the area ratio of the ZnO phase per unit area of the oxide target material within a predetermined range.

즉, 본 발명의 산화물 타깃재는, 금속 성분 전체에 대하여, Sn을 20.0원자% 내지 50.0원자% 함유하고, 잔부가 Zn 및 불가피적 불순물을 포함하고, 10000㎛2의 면적에 있어서의 ZnO상의 면적률이 10.5면적% 이하이다.That is, the oxide target material of the present invention contains Sn in an amount of 20.0 atom% to 50.0 atom% based on the entire metal component, the balance of Zn and inevitable impurities, the area ratio of ZnO phase in an area of 10000 탆 2 Is not more than 10.5% by area.

또한, 본 발명의 산화물 타깃재는, 금속 성분 전체에 대하여, Al, Ga, Mo 및 W 중 1종 이상을 합계로 0.005원자% 내지 4.000원자% 함유하는 것이 바람직하다.The oxide target of the present invention preferably contains at least 0.005 atom% to 4.000 atom% of at least one of Al, Ga, Mo, and W relative to the entire metal component.

또한, 본 발명의 산화물 타깃재는, 금속 성분 전체에 대하여, Sn을 20.0원자% 내지 50.0원자% 함유하고, 잔부가 Zn 및 불가피적 불순물로 되도록 ZnO 분말과 SnO2 분말을 순수 및 분산제와 혼합하여 슬러리로 하고, 해당 슬러리를 건조시켜 조립 분말을 제작하고, 해당 조립 분말을 하소하여 Zn2SnO4와 ZnO를 포함하는 하소 분말을 얻는 조립 공정과, 상기 하소 분말을 습식 해쇄한 후, 주입 성형에 의해 성형체를 제작하고, 해당 성형체를 탈지한 후, 대기 분위기에서 소성하여 산화물 소결체를 얻는 소결 공정과, 상기 산화물 소결체의 침식면으로 되는 면을 연마하여, 침식면으로 되는 면에 있어서의 10000㎛2의 면적에서 차지하는 ZnO상의 면적률이 10.5면적% 이하인 산화물 타깃재를 얻는 연마 공정을 갖는 제조 방법으로 얻을 수 있다.The oxide target of the present invention is obtained by mixing ZnO powder and SnO 2 powder with pure water and a dispersant such that the total amount of Sn is 20.0 atomic percent to 50.0 atomic percent and the remainder is Zn and inevitable impurities, , A step of drying the slurry to prepare a granulated powder, and calcining the granulated powder to obtain a calcined powder containing Zn 2 SnO 4 and ZnO; a step of wet-crushing the calcined powder; A sintering step of sintering the oxide sintered body to obtain an oxide sintered body; polishing the surface to be the erosion surface of the oxide sintered body to obtain a sintered body having a surface of 10000 m 2 And a polishing step of obtaining an oxide target material having an area ratio of ZnO phase occupying in an area of 10.5% or less by area.

그리고, 상기 연마 공정에서는 명도 L* 및 색도 b*를 확인하면서 침식면으로 되는 면을 연마하는 것이 바람직하다.In the polishing step, it is preferable to polish a surface to be an erosion surface while checking the lightness L * and chromaticity b * .

본 발명에 따르면, 역치 전압의 불안정성을 억제한 ZTO 박막을 얻을 수 있다. 이 역치 전압의 불안정성을 억제함으로써, 고정밀의 대형 액정 디스플레이나 유기 EL 디스플레이 등의 제조 공정에 있어서의 TFT의 채널층의 형성에 유용한 기술로 된다.According to the present invention, a ZTO thin film suppressing the instability of the threshold voltage can be obtained. By suppressing the instability of the threshold voltage, it is a technology useful for forming a channel layer of a TFT in a manufacturing process of a high-precision large-size liquid crystal display, an organic EL display, and the like.

도 1은, 본 발명예 1의 산화물 타깃재의 주사형 전자 현미경의 반사 전자상이다.
도 2는, 본 발명예 2의 산화물 타깃재의 주사형 전자 현미경의 반사 전자상이다.
도 3은, 비교예의 산화물 타깃재의 주사형 전자 현미경의 반사 전자상이다.
도 4는, TFT 구조의 개략도이다.
도 5는, 본 발명예 3의 시야 1에 있어서의 주사형 전자 현미경의 반사 전자상이다.
도 6은, 본 발명예 3의 시야 2에 있어서의 주사형 전자 현미경의 반사 전자상이다.
도 7은, 본 발명예 3의 시야 3에 있어서의 주사형 전자 현미경의 반사 전자상이다.
도 8은, 본 발명예 4의 시야 1에 있어서의 주사형 전자 현미경의 반사 전자상이다.
도 9는, 본 발명예 4의 시야 2에 있어서의 주사형 전자 현미경의 반사 전자상이다.
도 10은, 본 발명예 4의 시야 3에 있어서의 주사형 전자 현미경의 반사 전자상이다.
도 11은, 본 발명예 5의 시야 1에 있어서의 주사형 전자 현미경의 반사 전자상이다.
도 12는, 본 발명예 5의 시야 2에 있어서의 주사형 전자 현미경의 반사 전자상이다.
도 13은, 본 발명예 5의 시야 3에 있어서의 주사형 전자 현미경의 반사 전자상이다.
도 14는, 본 발명예 6의 시야 1에 있어서의 주사형 전자 현미경의 반사 전자상이다.
도 15는, 본 발명예 6의 시야 2에 있어서의 주사형 전자 현미경의 반사 전자상이다.
도 16은, 본 발명예 6의 시야 3에 있어서의 주사형 전자 현미경의 반사 전자상이다.
도 17은, 본 발명예 7의 시야 1에 있어서의 주사형 전자 현미경의 반사 전자상이다.
도 18은, 본 발명예 7의 시야 2에 있어서의 주사형 전자 현미경의 반사 전자상이다.
도 19는, 본 발명예 7의 시야 3에 있어서의 주사형 전자 현미경의 반사 전자상이다.
Fig. 1 is a reflection electron image of a scanning electron microscope of an oxide target material of Inventive Example 1. Fig.
2 is a reflection electron image of a scanning electron microscope of an oxide target material of the second embodiment of the present invention.
3 is a reflection electron image of a scanning electron microscope of an oxide target material of a comparative example.
4 is a schematic view of a TFT structure.
5 is a reflection electron image of a scanning electron microscope in visual field 1 of Example 3 of the present invention.
6 is a reflection electron image of a scanning electron microscope in the field of view 2 of Example 3 of the present invention.
7 is a reflection electron image of a scanning electron microscope in visual field 3 of Example 3 of the present invention.
8 is a reflection electron image of a scanning electron microscope in visual field 1 of Example 4 of the present invention.
Fig. 9 is a reflection electron image of a scanning electron microscope in the field of view 2 of Example 4 of the present invention. Fig.
10 is a reflection electron image of a scanning electron microscope in visual field 3 of Example 4 of the present invention.
11 is a reflection electron image of a scanning electron microscope in visual field 1 of Example 5. Fig.
12 is a reflection electron image of a scanning electron microscope in the field of view 2 of the present invention 5. Fig.
Fig. 13 is a reflection electron image of a scanning electron microscope in visual field 3 of Inventive Example 5. Fig.
Fig. 14 is a reflection electron image of a scanning electron microscope in visual field 1 of Inventive Example 6. Fig.
15 is a reflection electron image of a scanning electron microscope in the field of view 2 of Example 6 of the present invention.
16 is a reflection electron image of a scanning electron microscope in the visual field 3 of Example 6 of the present invention.
Fig. 17 is a reflection electron image of a scanning electron microscope in visual field 1 of Example 7 of the present invention. Fig.
18 is a reflection electron image of the scanning electron microscope in the field of view 2 of the present invention.
19 is a reflection electron image of the scanning electron microscope in the visual field 3 of the present invention 7. Fig.

본 발명의 산화물 타깃재는, 침식면으로 되는 면에 있어서의 단위 면적당, 즉 10000㎛2의 면적에서 차지하는 ZnO상의 면적률이 10.5면적% 이하인 것에 특징을 갖는다. 이에 의해, 본 발명의 산화물 타깃재는, 균일한 ZTO 박막을 형성할 수 있어, TFT에 있어서의 역치 전압의 불안정성을 억제할 수 있다. 또한, 상기와 마찬가지의 이유로부터, ZnO상의 면적률은 10000㎛2의 면적당 10.3면적% 이하인 것이 바람직하고, 10.2면적% 이하인 것이 보다 바람직하다.The oxide target material of the present invention is characterized in that the area ratio of the ZnO phase occupied per unit area, that is, in the area of 10000 占 퐉 2 , on the surface to be the erosion surface is 10.5% or less. Thus, the oxide target material of the present invention can form a uniform ZTO thin film, and it is possible to suppress the instability of the threshold voltage in the TFT. Further, from the reasons similar to those of the above, the area ratio on the ZnO coating is preferably 10.3% or less of the area 10000㎛ 2, more preferably not more than 10.2 area%.

여기서, 본 발명에서 말하는 ZnO상의 면적률은, 산화물 타깃재의 침식면의 임의의 시야에 있어서, 주사형 전자 현미경에 의해 반사 전자상에서 Zn2SnO4상과 ZnO상을 고콘트라스트로 촬영하고, 그 화상을 화상 해석 소프트웨어(예를 들어, OLYMPUS SOFT IMAGING SOLUTIONS GMBH사제의 「Scandium」)를 사용하여 측정할 수 있다.Here, the area ratio of the ZnO phase in the present invention is such that the Zn 2 SnO 4 phase and the ZnO phase are photographed at high contrast on the reflected electron by a scanning electron microscope in an arbitrary field of view of the erosion surface of the oxide target material, Can be measured using image analysis software (for example, "Scandium" manufactured by OLYMPUS SOFT IMAGING SOLUTIONS GMBH).

또한, 원하는 패턴으로 채널층을 형성할 때의 에칭성을 향상시키기 위해서는, ZnO상의 면적률은 10000㎛2의 면적당 2.0면적% 이상인 것이 바람직하고, 5.0면적% 이상인 것이 보다 바람직하다.Further, in order to improve the etching property when the channel layer is formed in a desired pattern, the area ratio of the ZnO phase is preferably 2.0 area% or more per 10000 mu m 2 area, more preferably 5.0 area% or more.

본 발명의 산화물 타깃재는, 금속 성분 전체에 대하여, Sn을 20.0원자% 내지 50.0원자% 함유하고, 잔부가 Zn 및 불가피적 불순물을 포함하는 조성을 갖는다.The oxide target material of the present invention has a composition containing Sn in an amount of 20.0 atom% to 50.0 atom% based on the entire metal component, and the balance of Zn and inevitable impurities.

그리고, 본 발명의 산화물 타깃재는, Sn양을 20.0원자% 이상으로 함으로써, ZnO상이 조대화되는 것, 혹은 복수의 ZnO상이 연결되는 것을 억제할 수 있다. 또한, 상기와 마찬가지의 이유로부터, Sn양은 25.0원자% 이상이 바람직하고, 29.0원자% 이상이 보다 바람직하다.The oxide target of the present invention can suppress the ZnO phase to be coarsened or the plurality of ZnO phases to be connected by setting the amount of Sn to 20.0 atomic% or more. For the same reason as described above, the amount of Sn is preferably 25.0 atomic% or more, more preferably 29.0 atomic% or more.

또한, 본 발명의 산화물 타깃재는, Sn양을 50.0원자% 이하로 함으로써, 원하는 패턴으로 채널층을 형성할 때의 에칭성을 향상시킬 수 있다. 또한, 상기와 마찬가지의 이유로부터, Sn양은 40.0원자% 이하가 바람직하고, 35.0원자% 이하가 보다 바람직하다.In addition, the oxide target of the present invention can improve the etching property when a channel layer is formed in a desired pattern by setting the amount of Sn to 50.0 atomic% or less. For the same reason as described above, the amount of Sn is preferably 40.0 atomic percent or less, more preferably 35.0 atomic percent or less.

그리고, 본 발명의 산화물 타깃재는, Zn양을 50.0원자% 이상으로 함으로써, 원하는 패턴으로 채널층을 형성할 때의 에칭성을 향상시킬 수 있다. 또한, 상기와 마찬가지의 이유로부터, Zn양은 60.0원자% 이상이 바람직하고, 65.0원자% 이상이 보다 바람직하다.The oxide target of the present invention can improve the etching property when a channel layer is formed in a desired pattern by setting the amount of Zn to 50.0 atomic% or more. For the same reason as described above, the Zn content is preferably 60.0 atomic% or more, more preferably 65.0 atomic% or more.

또한, 본 발명의 산화물 타깃재는, Zn양을 80.0원자% 이하로 함으로써, ZnO상이 조대화되는 것, 혹은 복수의 ZnO상이 연결되는 것을 억제할 수 있다. 또한, 상기와 마찬가지의 이유로부터, Zn양은 75.0원자% 이하가 바람직하고, 71.0원자% 이하가 보다 바람직하다.In addition, the oxide target of the present invention can suppress the ZnO phase to be coarsened or the plurality of ZnO phases to be connected by setting the amount of Zn to 80.0 atomic% or less. For the same reason as described above, the amount of Zn is preferably 75.0 atomic percent or less, and more preferably 71.0 atomic percent or less.

본 발명의 산화물 타깃재는, 금속 성분 전체에 대하여, 상기한 Sn 및 Zn 중 1종 이상의 일부를, Al, Ga, Mo 및 W 중 1종 이상에 의해, 합계가 0.005원자% 내지 4.000원자%로 되는 범위에서 치환하는 것이 바람직하다. 이들 원소는 캐리어의 이동도의 제어나 광 열화를 억제하는 데 유용한 원소이다.The oxide target material of the present invention contains 0.005 atom% to 4.000 atom% of a total of at least one of Sn and Zn described above by at least one of Al, Ga, Mo, and W relative to the entire metal component Preferably in the range of < RTI ID = 0.0 > These elements are useful elements for controlling the mobility of carriers and suppressing photo deterioration.

그리고, 본 발명의 산화물 타깃재는, 이들 원소를 합계로 0.050원자% 이상 함유시키는 것이 보다 바람직하고, 0.100원자% 이상 함유시키는 것이 더욱 바람직하다. 또한, 본 발명의 산화물 타깃재는, 이들 원소를 합계로 3.000원자% 이하 함유시키는 것이 보다 바람직하고, 2.000원자% 이하 함유시키는 것이 더욱 바람직하다.In the oxide target material of the present invention, it is more preferable that the total amount of these elements is 0.050 atomic% or more, more preferably 0.100 atomic% or more. Further, the oxide target of the present invention more preferably contains 3.000 at% or less of these elements in total, more preferably 2.000 at% or less.

이하에, 본 발명의 산화물 타깃재의 제조 방법을 설명한다.Hereinafter, a method for producing the oxide target material of the present invention will be described.

본 발명의 산화물 타깃재의 제조 방법에서는, 조립 공정에 있어서, 금속 성분 전체에 대하여, Sn을 20.0원자% 내지 50.0원자% 함유하고, 잔부가 Zn 및 불가피적 불순물로 되도록 ZnO 분말과 SnO2 분말을 순수, 분산제와 혼합하여 슬러리로 하고, 이 슬러리를 건조시킨 후, 조립 분말을 제작하고, 그 조립 분말을 하소하여 Zn2SnO4와 ZnO를 포함하는 하소 분말을 제작한다.In the method for producing an oxide target material of the present invention, ZnO powder and SnO 2 powder are mixed with pure water in an amount of 20.0 atomic% to 50.0 atomic% of Sn relative to the entire metal component, and the remainder is Zn and inevitable impurities, And a dispersant to prepare a slurry. After drying the slurry, a granulated powder is prepared, and the granulated powder is calcined to prepare a calcined powder containing Zn 2 SnO 4 and ZnO.

상기 하소 분말을 제작하기 위한 조립 분말의 하소 온도는 1000℃ 내지 1200℃로 설정하는 것이 바람직하다. 하소 온도는 1000℃ 이상으로 함으로써, ZnO 분말과 SnO2 분말의 반응을 충분히 진행시킬 수 있다는 점에서 바람직하며, 1050℃ 이상이 보다 바람직하다.The calcining temperature of the granulated powder for preparing the calcined powder is preferably set to 1000 ° C to 1200 ° C. The calcination temperature is preferable in that it can sufficiently proceed the reaction, ZnO powder and SnO 2 powder, by more than 1000 ℃, more preferably more than 1050 ℃.

또한, 하소 온도는 1200℃ 이하로 함으로써, ZnO 분말과 SnO2 분말의 과도한 반응을 억제할 수 있음과 함께, 0.5㎛ 내지 1.5㎛라고 하는 소성에 적합한 분말 입경을 유지할 수 있고, 이에 의해 치밀한 산화물 타깃재를 얻을 수 있다는 점에서 바람직하며, 1120℃ 이하가 보다 바람직하다.Further, the calcination temperature is below 1200 ℃, can be suppressed with an excessive reaction of the ZnO powder and the SnO 2 powder, and can maintain a powder particle size suitable for sintering that 0.5㎛ to 1.5㎛, this dense oxide target by And it is more preferable that the temperature is 1120 DEG C or less.

그리고, 하소 온도에서의 유지 시간은 1시간 내지 10시간의 범위로 하는 것이 바람직하다. 하소 온도에서의 유지 시간은, 1시간 이상으로 함으로써, ZnO 분말과 SnO2 분말의 반응을 촉진할 수 있다는 점에서 바람직하며, 2시간 이상이 보다 바람직하다.The holding time at the calcination temperature is preferably in the range of 1 hour to 10 hours. The holding time at the calcination temperature is preferably 1 hour or more, because it can accelerate the reaction between the ZnO powder and the SnO 2 powder, and more preferably 2 hours or more.

또한, 하소 온도에서의 유지 시간은, 10시간 이하로 함으로써, ZnO 분말과 SnO2 분말의 소결을 억제할 수 있다는 점에서 바람직하며, 7시간 이하가 보다 바람직하다.The holding time at the calcining temperature is preferably 10 hours or less in that sintering of the ZnO powder and the SnO 2 powder can be suppressed, more preferably 7 hours or less.

본 발명의 산화물 타깃재의 제조 방법에서는, 소성 공정에 있어서, 상기 조립 공정에서 얻은 하소 분말을 습식 해쇄한 후, 주입 성형에 의해 성형체를 제작하고, 탈지를 거쳐, 대기 분위기에서 소성하여 산화물 소결체를 얻는다.In the method for producing an oxide target material according to the present invention, in the calcination step, the calcined powder obtained in the above-mentioned granulation step is wet-cracked, and then a formed body is formed by injection molding, followed by degreasing and firing in an air atmosphere to obtain an oxide sintered body .

대기 분위기에 있어서의 소성 온도는 1300℃ 내지 1450℃로 설정하는 것이 바람직하다. 소성 온도는, 1300℃ 이상으로 함으로써, 소결을 촉진시킬 수 있고, 치밀한 산화물 타깃재를 얻을 수 있다는 점에서 바람직하다. 그리고, 상기와 마찬가지의 이유로, 소성 온도는 1350℃ 이상이 보다 바람직하다.The firing temperature in the air atmosphere is preferably set at 1300 ° C to 1450 ° C. The sintering temperature is preferably 1300 占 폚 or higher because sintering can be promoted and a dense oxide target material can be obtained. For the same reason as above, the firing temperature is more preferably 1350 DEG C or more.

또한, 소성 온도는, 1450℃ 이하로 함으로써, ZnO가 증발함으로써 발생되는 공공을 억제하여, 고밀도의 산화물 타깃재로 할 수 있다는 점에서 바람직하다. 그리고, 상기와 마찬가지의 이유로, 소성 온도는 1420℃ 이하로 하는 것이 보다 바람직하다.The firing temperature is preferably 1450 占 폚 or less in that the void generated by evaporation of ZnO can be suppressed and a high-density oxide target material can be obtained. For the same reason as described above, the firing temperature is more preferably 1420 DEG C or lower.

그리고, 소성 온도에서의 유지 시간은, 4시간 이상으로 함으로써, 소성에 의한 치밀화를 촉진할 수 있다는 점에서 바람직하다. 그리고, 상기와 마찬가지의 이유로, 소성 온도에서의 유지 시간은 8시간 이상으로 하는 것이 보다 바람직하다.The holding time at the firing temperature is preferably 4 hours or more in that densification due to firing can be promoted. For the same reason as described above, the holding time at the firing temperature is more preferably 8 hours or more.

또한, 소성 온도에서의 유지 시간이 15시간을 초과하면, ZnO상의 성장이 조장되어, 단위 면적당 ZnO상의 면적률을 작게 하기가 곤란하게 된다. 이 때문에, 본 발명의 산화물 타깃재를 얻기 위해서는, 소성 온도에서의 유지 시간을 15시간 이하로 하는 것이 바람직하다. 그리고, 상기와 마찬가지의 이유로, 소성 온도에서의 유지 시간은 12시간 이하로 하는 것이 보다 바람직하다.If the holding time at the firing temperature exceeds 15 hours, the growth of the ZnO phase is promoted, making it difficult to reduce the area ratio of the ZnO phase per unit area. Therefore, in order to obtain the oxide target material of the present invention, the holding time at the firing temperature is preferably 15 hours or less. For the same reason as described above, the holding time at the firing temperature is more preferably 12 hours or less.

본 발명에서는, 상기 소성 공정에서 얻은 산화물 소결체를, 비산화성 분위기에서 환원 열처리함으로써, 산화물 소결체의 전기 저항률을 저하시켜, 직류 스퍼터링에 의한 ZTO 박막의 성막이 가능하게 된다는 점에서 바람직하다. 산화물 소결체의 전기 저항률은, 산화물 소결체 중의 산소 결손 밀도와 관련되어 있다. 이 때문에, 환원 열처리는 1300℃ 이상에서 행함으로써, 산소 결손 밀도를 증가시켜, 전기 저항률을 저하시킬 수 있다는 점에서 바람직하다. 그리고, 상기와 마찬가지의 이유로, 환원 열처리는 1350℃ 이상에서 행하는 것이 보다 바람직하다.In the present invention, it is preferable that the oxide sintered body obtained in the sintering step is subjected to a reduction heat treatment in a non-oxidizing atmosphere to lower the electric resistivity of the oxide sintered body to enable the ZTO thin film to be formed by DC sputtering. The electrical resistivity of the oxide sintered body is related to the density of oxygen defects in the oxide sintered body. For this reason, the reduction heat treatment is preferably performed at 1300 DEG C or higher in that the oxygen defect density can be increased and the electrical resistivity can be lowered. For the same reason as above, the reduction heat treatment is more preferably performed at 1350 占 폚 or higher.

또한, 환원 열처리는, 1450℃ 이하에서 행함으로써, ZnO의 증발을 억제할 수 있음에 추가하여, ZnO상의 조대화도 억제할 수 있다는 점에서 바람직하다. 그리고, 상기와 마찬가지의 이유로, 환원 열처리는 1420℃ 이하에서 행하는 것이 보다 바람직하다.Further, the reduction heat treatment is preferably performed at a temperature of 1450 占 폚 or lower in that evaporation of ZnO can be suppressed and coarsening of ZnO can be suppressed. For the same reason as described above, the reduction heat treatment is more preferably performed at 1420 占 폚 or lower.

그리고, 환원 열처리의 유지 시간은 3시간 이상으로 하는 것이 바람직하다. 이에 의해, 산화물 소결체 중의 산소 결손 상태를 균일하게 할 수 있다. 그리고, 상기와 마찬가지의 이유로, 환원 열처리의 유지 시간은 4시간 이상으로 하는 것이 보다 바람직하다.The holding time of the reduction heat treatment is preferably 3 hours or longer. Thereby, the oxygen deficiency state in the oxide sintered body can be made uniform. For the same reason as described above, the holding time of the reduction heat treatment is more preferably 4 hours or more.

또한, 환원 열처리의 유지 시간은 15시간 이하로 하는 것이 바람직하다. 이에 의해, ZnO의 증발 억제와 ZnO상의 조대화를 억제할 수 있다. 그리고, 상기와 마찬가지의 이유로, 환원 열처리의 유지 시간은 10시간 이하로 하는 것이 보다 바람직하다.The holding time of the reduction heat treatment is preferably 15 hours or less. As a result, the evaporation of ZnO and the coarsening of ZnO can be suppressed. For the same reason as described above, the holding time of the reduction heat treatment is more preferably 10 hours or less.

그리고, 본 발명의 산화물 타깃재는, 연마 공정에 있어서, 상기 소성 공정에서 얻은 산화물 소결체의 침식면으로 되는 면에 있어서의 10000㎛2의 면적에서 차지하는 ZnO상의 면적률이 10.5면적% 이하로 되도록, 산화물 소결체의 침식면으로 되는 면을 연마함으로써 얻을 수 있다. 여기서, ZnO상의 면적률을 10.5면적% 이하로 하기 위해서는, 실제로 산화물 소결체의 침식면으로 되는 면에 있어서의 조직을 관찰하여 ZnO상의 면적률을 산출하고, 그 산출과 연마를 교대로 행함으로써 가능하다.The oxide target material of the present invention is characterized in that, in the polishing step, the area ratio of the ZnO phase occupying in the area of 10000 占 퐉 2 on the surface which becomes the erosion surface of the oxide-sintered body obtained in the above- And polishing the surface to be the erosion surface of the sintered body. Here, in order to make the area ratio of the ZnO phase 10.5% or less, it is possible to actually observe the structure of the surface which becomes the erosion surface of the oxide-sintered body to calculate the area ratio of the ZnO phase, and to perform the calculation and polishing alternately .

또한, ZnO상의 면적률을 10.5면적% 이하로 하기 위해서는, 실제로 산화물 소결체의 침식면으로 되는 면에 있어서의, JIS Z8781-4:2013에서 규정되는 명도 L* 및 색도 b*를 지표로 하여, L*가 60.3 이하, 또한 b*가 -0.3 이하로 되도록 L* 및 b*를 측정하고, 그 측정과 연마를 교대로 행함으로써도 가능하다. 그리고, L* 및 b*는, 예를 들어 코니카 미놀타 가부시키가이샤제의 분광 측색계(CM2500d)를 사용하여 측정할 수 있다.In order to make the area ratio of the ZnO phase to 10.5 area% or less, it is preferable that the lightness L * and the chromaticity b * defined in JIS Z8781-4: 2013 on the surface which actually becomes the erosion surface of the oxide- * it is possible also by carrying a 60.3 or less, b * is L * and b * measurement, a shift of the measurement and the grinding to be equal to or less than -0.3. L * and b * can be measured using, for example, a spectroscopic colorimeter (CM2500d) manufactured by Konica Minolta K.K.

<실시예 1>&Lt; Example 1 >

먼저, 금속 성분 전체에 대하여 Sn이 30.0원자%, 잔부가 Zn 및 불가피적 불순물로 되도록, 평균 입경(누적 입도 분포의 D50)이 0.70㎛인 ZnO 분말과, 평균 입경(누적 입도 분포의 D50)이 1.85㎛인 SnO2 분말을 칭량하여, 소정량의 순수와 분산제가 들어간 교반 용기 내에 투입한 후, 혼합하여 슬러리를 얻었다. 이 슬러리를 건조, 조립시킨 후, 1090℃, 4시간 하소하여, Zn2SnO4와 ZnO를 포함하는 하소 분말을 얻었다. 하소 분말은, 습식 해쇄에 의해 평균 입경(누적 입도 분포의 D50)이 1㎛로 되도록 입도 조정하였다. First, a ZnO powder having an average particle diameter (D50 of cumulative particle size distribution) of 0.70 占 퐉 and an average particle size (D50 of cumulative particle size distribution) of 30.0 atomic% of Sn and the balance of Zn and inevitable impurities SnO 2 powder having a particle diameter of 1.85 μm was weighed and placed in a stirring vessel containing a predetermined amount of pure water and a dispersing agent, followed by mixing to obtain a slurry. After drying and assembly, this slurry, 1090 ℃, calcined for 4 hours to obtain a calcined powder containing Zn 2 SnO 4 and ZnO. The calcined powder was adjusted in particle size so that the average particle size (D50 of the cumulative particle size distribution) became 1 占 퐉 by wet cracking.

그리고, 상기 하소 분말을 습식 해쇄한 후, 주입 성형에 의해, 두께 10mm×직경 125mm의 성형체를 3매 얻었다.Then, the calcined powder was subjected to wet-cracking, and three molded bodies each having a thickness of 10 mm and a diameter of 125 mm were obtained by injection molding.

이어서, 얻어진 성형체 중 1매를, 1400℃, 10시간, 대기 분위기에서 소성하고, 이어서 1400℃, 4시간, 질소 분위기에서 상압의 환원 열처리를 행하여 산화물 소결체를 얻었다. 그리고, 이 산화물 소결체에 기계 가공을 행하여 두께 5mm×직경 50mm로 하고, 침식면으로 될 산화물 소결체의 표면을, 10000㎛2의 면적에 있어서의 ZnO상의 면적률이 10.5면적% 이하로 되도록, 구체적으로는 L*가 60.3 이하, 또한 b*가 -0.3 이하로 되도록 L* 및 b*를 측정하고, 이 측정과 연마를 교대로 행하여, 본 발명예 1로 되는 산화물 타깃재를 얻었다. 또한, L* 및 b*의 측정은, 코니카 미놀타 가부시키가이샤제의 분광 측색계(CM2500d)를 사용하였다.Subsequently, one of the obtained compacts was fired at 1400 DEG C for 10 hours in an atmospheric environment, followed by a reduction heat treatment at 1400 DEG C for 4 hours in a nitrogen atmosphere, thereby obtaining an oxide sintered body. Then, the surface of the oxide-sintered body be in the oxide machining carried out with a thickness of 5mm × 50mm in diameter in the sintered body, and eroded surface, the area ratio on the ZnO in the area of the 10000㎛ 2 to be equal to or less than 10.5 area%, specifically L * and b * were measured so that L * was 60.3 or less and b * was -0.3 or less, and this measurement and polishing were carried out alternately to obtain an oxide target material of Inventive Example 1. [ The measurement of L * and b * was performed using a spectroscopic colorimeter (CM2500d) manufactured by Konica Minolta Corporation.

또한, 얻어진 성형체 중 다른 1매를, 1400℃, 10시간, 대기 분위기에서 소성하고, 이어서 1400℃, 4시간, 질소 분위기에서 상압의 환원 열처리를 행하여 산화물 소결체를 얻었다. 그리고, 이 산화물 소결체에 기계 가공을 행하여 두께 5mm×직경 50mm로 하고, 침식면으로 될 산화물 소결체의 표면을, 10000㎛2의 면적에 있어서의 ZnO상의 면적률이 10.5면적% 이하로 되도록, 구체적으로는 L*가 60.3 이하, 또한 b*가 -0.3 이하로 되도록 L* 및 b*를 측정하고, 이 측정과 연마를 교대로 행하여, 본 발명예 2로 되는 산화물 타깃재를 얻었다.Further, another piece of the obtained molded body was fired at 1400 DEG C for 10 hours in an atmospheric atmosphere, and then subjected to reduction heat treatment at normal pressure in a nitrogen atmosphere at 1400 DEG C for 4 hours to obtain an oxide sintered body. Then, the surface of the oxide-sintered body be in the oxide machining carried out with a thickness of 5mm × 50mm in diameter in the sintered body, and eroded surface, the area ratio on the ZnO in the area of the 10000㎛ 2 to be equal to or less than 10.5 area%, specifically L * and b * were measured so that L * was 60.3 or less and b * was -0.3 or less, and this measurement and polishing were carried out alternately to obtain an oxide target material of Inventive Example 2. [

또한, 얻어진 성형체 중 또 다른 1매를, 1400℃, 10시간, 대기 분위기에서 소성하고, 이어서 1400℃, 4시간, 질소 분위기에서 상압의 환원 열처리를 행하여 산화물 소결체를 얻었다. 그리고, 이 산화물 소결체에 기계 가공을 행하여 두께 5mm×직경 50mm로 하고, 침식면으로 될 산화물 소결체의 표면을, 10000㎛2의 면적에 있어서의 ZnO상의 면적률이 10.5면적%를 초과하도록, 구체적으로는 L*가 60.3 초과, 또한 b*가 -0.3 초과로 되도록 L* 및 b*를 측정하고, 이 측정과 연마를 교대로 행하여, 비교예로 되는 산화물 타깃재를 얻었다.Further, another piece of the obtained molded body was fired at 1400 DEG C for 10 hours in an atmospheric atmosphere, and then subjected to reduction heat treatment at normal pressure in a nitrogen atmosphere at 1400 DEG C for 4 hours to obtain an oxide sintered body. The oxide-sintered body was machined to have a thickness of 5 mm and a diameter of 50 mm, and the surface of the oxide-sintered body to be an erosion surface was so designed that the area ratio of the ZnO phase in an area of 10000 占 퐉 2 exceeded 10.5 area% the L * is greater than 60.3, and b * is -0.3 so that the excess and measuring the L * and b *, subjected to the measurement and grinding alternately, to obtain a target material to be an oxide in the comparative example.

상기에서 얻은 본 발명예 1, 본 발명예 2 및 비교예의 산화물 타깃재의 침식면으로 될 면의 주사형 전자 현미경의 반사 전자상을 도 1 내지 도 3에 도시한다. 이 주사형 전자 현미경의 반사 전자상에서, 임의의 세로: 94.6㎛×가로: 130.6㎛(면적: 12355㎛2)의 시야 중, 10000㎛2로 되는 1시야를 관찰하고, 시야 내에 존재하는 ZnO상의 면적을 측정하였다. 여기서, 측정은, 주사형 전자 현미경에 의해 반사 전자상에서 Zn2SnO4상과 ZnO상을 고콘트라스트로 촬영하고, 그 화상을 화상 해석 소프트웨어(OLYMPUS SOFT IMAGING SOLUTIONS GMBH사제의 「Scandium」)를 사용하여, ZnO상의 면적률을 얻었다. 그 결과를 표 1에 나타낸다. 또한, 참고로, 각 산화물 타깃재의 침식면으로 될 면의 임의의 위치에 있어서의 L* 및 b*의 값도 병기하였다.1 to 3 show reflection electron images of a scanning electron microscope of a surface to be an erosion surface of the oxide target material of Inventive Example 1, Inventive Example 2 and Comparative Example obtained above. On the reflected electrons of the scanning electron microscope, any vertical: 94.6㎛ × width: 130.6㎛ (area: 12355㎛ 2) of the field of view, and the first field of view to be observed in 10000㎛ 2, an area on the ZnO present in the field of view Were measured. Here, the measurement was made by taking a Zn 2 SnO 4 phase and a ZnO phase on a reflected electron image at high contrast by a scanning electron microscope and then analyzing the image using image analysis software ("Scandium" manufactured by OLYMPUS SOFT IMAGING SOLUTIONS GMBH) , And the area ratio of ZnO phase was obtained. The results are shown in Table 1. For reference, the values of L * and b * at arbitrary positions on the surface to be etched surfaces of the respective oxide target materials are also shown.

표 1의 결과로부터, 본 발명의 산화물 타깃재는, 10000㎛2의 면적에 있어서의 ZnO상의 면적률이 10.5면적% 이하임을 확인할 수 있었다.From the results shown in Table 1, it was confirmed that the oxide target of the present invention had an area ratio of ZnO phase of 10.5 area% or less at an area of 10000 占 퐉 2 .

한편, 비교예의 산화물 타깃재는, 10000㎛2의 면적에 있어서의 ZnO상의 면적률이 10.5면적%를 초과하였으며, 본 발명의 범위 밖이었다.On the other hand, the oxide target of the comparative example had an area ratio of ZnO phase exceeding 10.5 area% at an area of 10000 占 퐉 2 and was outside the scope of the present invention.

Figure pat00001
Figure pat00001

이어서, ZTO 박막에 의한 TFT 특성에 대한 영향을 확인하기 위해, 도 4에 도시하는 간이 TFT를 제작하여 평가를 실시하였다.Then, in order to confirm the influence of the ZTO thin film on the TFT characteristics, the simple TFT shown in Fig. 4 was fabricated and evaluated.

먼저, 유리 기판(1) 상에, 게이트 전극(2)으로 될 Mo의 금속 박막을 형성하였다. 그 후, 포토레지스트로 게이트 패턴의 마스크를 형성하였다. 이 마스크를 개재시켜 에칭 가공하여, 두께 70nm의 게이트 전극(2)을 형성하였다. 그 후, 게이트 절연막(3)으로 되는 SiO2막을 전체면에 100nm의 두께로 형성하였다. 그리고, 상기에서 제작한 각 산화물 타깃재를 사용하여 스퍼터링에 의해 두께 30nm의 채널층(4)을 형성하였다.First, on the glass substrate 1, a metal thin film of Mo to be the gate electrode 2 was formed. Thereafter, a mask of a gate pattern was formed with a photoresist. The gate electrode 2 having a thickness of 70 nm was formed by etching through this mask. Thereafter, an SiO 2 film serving as the gate insulating film 3 was formed to have a thickness of 100 nm on the entire surface. Then, a channel layer 4 having a thickness of 30 nm was formed by sputtering using each oxide target produced above.

이어서, 채널층(4) 상에, 후속으로 채널 패턴으로 될 포토레지스트층을 형성하였다. 여기서, 채널 영역을 가공하기 위해, 포토레지스트층에 채널 패턴을 묘화, 노광, 현상하여 마스크를 형성하였다. 그리고, 이 마스크를 사용하여 에칭 가공하여, 채널 영역을 형성하였다.Subsequently, on the channel layer 4, a photoresist layer to be a channel pattern was formed subsequently. Here, in order to process the channel region, a channel pattern was drawn on the photoresist layer, exposed and developed to form a mask. Then, etching was performed using this mask to form a channel region.

또한, 소스 전극(5) 및 드레인 전극(6)으로 될 Mo의 금속 박막을 두께 140nm로 형성하고, 포토레지스트를 마스크로 하여 에칭 가공하여, 소스 전극(5) 및 드레인 전극(6)을 형성하였다. 그리고, 보호막으로 피복하여 간이 TFT를 제작하였다.A metal thin film of Mo to be the source electrode 5 and the drain electrode 6 was formed to a thickness of 140 nm and etched using the photoresist as a mask to form a source electrode 5 and a drain electrode 6 . Then, a simple TFT was fabricated by covering with a protective film.

상기에서 제작한 각 간이 TFT를 사용하여 NBIS에 의한 신뢰성 평가를 행하였다. 실온(25℃)에서, 0 내지 1000초의 NBIS(게이트 전압 Vg=-15V, 드레인 전압 Vd=0V, 조도=1000lx)를 제공하고, 1000초 경과 후의 역치 전압(Vth)을 시험 전과 비교하여, 그 차분을 ΔVth로서 산출하였다. 그 결과를 표 2에 나타낸다.Reliability evaluation by NBIS was performed using each of the simple TFTs prepared above. The threshold voltage (Vth) after the lapse of 1000 seconds was compared with that before the test, and the NBIS (gate voltage Vg = -15 V, drain voltage Vd = 0 V, And the difference was calculated as? Vth. The results are shown in Table 2.

그 결과, 본 발명의 산화물 타깃재로 ZTO 박막을 형성한 간이 TFT는, ΔVth가 -10.0V 미만이고, 안정성이 확보된 TFT임이 확인되었다.As a result, it was confirmed that the simple TFT in which the ZTO thin film was formed of the oxide target material of the present invention was a TFT having? Vth of less than -10.0 V and ensuring stability.

한편, 비교예의 산화물 타깃재로 ZTO 박막을 형성한 간이 TFT는, ΔVth가 -10.0V를 하회하였으며, TFT로서 부적합하였다.On the other hand, the simple TFT having the ZTO thin film formed of the oxide target of the comparative example had a? Vth of less than -10.0 V and was unsuitable as a TFT.

Figure pat00002
Figure pat00002

<실시예 2>&Lt; Example 2 >

먼저, 금속 성분 전체에 대하여 Sn이 33.3원자%, 잔부가 Zn 및 불가피적 불순물로 되도록, 평균 입경(누적 입도 분포의 D50)이 0.70㎛인 ZnO 분말과, 평균 입경(누적 입도 분포의 D50)이 1.85㎛인 SnO2 분말을 칭량하여, 소정량의 순수와 분산제가 들어간 교반 용기 내에 투입한 후, 혼합하여 슬러리를 얻었다. 이 슬러리를 건조, 조립시킨 후, 1090℃, 4시간 하소하여, Zn2SnO4와 ZnO를 포함하는 하소 분말을 얻었다. 하소 분말은, 습식 해쇄 시에 Sn이 29.5 내지 31.0원자%, Al이 0.132원자%로 되도록, 평균 입경(누적 입도 분포의 D50)이 0.70㎛인 ZnO 분말과, 평균 입경(누적 입도 분포의 D50)이 0.1 내지 0.4㎛인 Al2O3 분말을 추가한 후, 전체의 평균 입경(누적 입도 분포의 D50)이 0.7㎛ 내지 1.0㎛로 되도록 입도 조정하였다.First, a ZnO powder having an average particle diameter (D50 of cumulative particle size distribution) of 0.70 占 퐉 and an average particle size (D50 of cumulative particle size distribution) of 33.3 atomic% of Sn and an inevitable impurity of Sn SnO 2 powder having a particle diameter of 1.85 μm was weighed and placed in a stirring vessel containing a predetermined amount of pure water and a dispersing agent, followed by mixing to obtain a slurry. After drying and assembly, this slurry, 1090 ℃, calcined for 4 hours to obtain a calcined powder containing Zn 2 SnO 4 and ZnO. The calcined powder had a mean particle size (D50 of the cumulative particle size distribution) of ZnO powder having an average particle diameter (D50 of the cumulative particle size distribution) of 0.70 탆 and a mean particle size (D50 of the cumulative particle size distribution) of 29.5 to 31.0 atomic% Al 2 O 3 powder of 0.1 to 0.4 탆 was added, and then the particle size was adjusted so that the total average particle size (D50 of the cumulative particle size distribution) was 0.7 탆 to 1.0 탆.

상기 하소 분말을 습식 해쇄한 후, 주입 성형에 의해, 두께 10mm×폭 235mm×길이 310mm의 성형체를 5매 얻었다.The calcined powder was wet-laid and then subjected to injection molding to obtain five molded articles each having a thickness of 10 mm, a width of 235 mm and a length of 310 mm.

이어서, 얻어진 성형체를, 1400℃, 10시간, 대기 분위기에서 소성하고, 이어서 1400℃, 4시간, 질소 분위기에서 상압의 환원 열처리를 행하여 산화물 소결체를 얻었다. 그리고, 이 산화물 소결체에 기계 가공을 행하여 두께 5mm×직경 50mm로 하고, 주사형 전자 현미경의 반사 전자상에서, 임의의 세로: 94.6㎛×가로: 130.6㎛(면적: 12355㎛2)의 3시야 중, 각 시야의 10000㎛2 되는 시야를 관찰하고, 그 시야 내에 존재하는 ZnO상의 면적을 측정하였다. 그리고, 이 측정과 연마를 교대로 행함으로써, 본 발명예 3 내지 본 발명예 7로 되는 산화물 타깃재를 얻었다.Subsequently, the obtained molded body was fired at 1400 DEG C for 10 hours in an air atmosphere, and then subjected to reduction heat treatment at 1400 DEG C for 4 hours in a nitrogen atmosphere at normal pressure to obtain an oxide sintered body. This oxide-sintered body was machined to have a thickness of 5 mm and a diameter of 50 mm. On the reflection electron of a scanning electron microscope, in the three fields of arbitrary length: 94.6 占 퐉 占 width: 130.6 占 퐉 (area: 12355 占 퐉 2 ) With each field of view 10000 μm 2 And the area of the ZnO phase present in the field of view was measured. Then, this measurement and polishing were carried out alternately to obtain an oxide target material of Inventive Example 3 to Inventive Example 7.

여기서, 측정은, 주사형 전자 현미경에 의해 반사 전자상에서 Zn2SnO4상과 ZnO상을 고콘트라스트로 촬영하고, 그 화상을 화상 해석 소프트웨어(OLYMPUS SOFT IMAGING SOLUTIONS GMBH사제의 「Scandium」)를 사용하여, 각 시야의 ZnO상의 면적률과 3시야의 평균값을 얻었다. 그 결과를 표 3에 나타낸다.Here, the measurement was made by taking a Zn 2 SnO 4 phase and a ZnO phase on a reflected electron image at high contrast by a scanning electron microscope and then analyzing the image using image analysis software ("Scandium" manufactured by OLYMPUS SOFT IMAGING SOLUTIONS GMBH) , The area ratio of the ZnO phase of each field and the average value of the three fields of view were obtained. The results are shown in Table 3.

상기에서 얻은 본 발명예 3 내지 본 발명예 7의 산화물 타깃재의 침식면으로 되는 면에 있어서의 시야 1 내지 시야 3의 주사형 전자 현미경의 반사 전자상을 도 5 내지 도 19에 도시한다.5 to 19 show the reflected electron images of the scanning electron microscope of Scanning field 1 to Scanning field 3 on the surface of the oxide target material of the present invention of the present invention 3 obtained as described above as the erosion surface.

표 3 및 도 5 내지 도 19의 결과로부터, 본 발명의 산화물 타깃재는, 10000㎛2의 면적에 있어서의 ZnO상의 면적률이 10.5면적% 이하임이 확인되었다.Table 3 and from the results of Figs. 5 to 19, the area percent on the oxide ZnO in the target material, the 10000㎛ area 2 of the present invention was confirmed to be less than 10.5 area%.

Figure pat00003
Figure pat00003

1: 유리 기판
2: 게이트 전극
3: 게이트 절연막
4: 채널층
5: 소스 전극
6: 드레인 전극
1: glass substrate
2: gate electrode
3: Gate insulating film
4: channel layer
5: source electrode
6: drain electrode

Claims (4)

금속 성분 전체에 대하여, Sn을 20.0원자% 내지 50.0원자% 함유하고, 잔부가 Zn 및 불가피적 불순물을 포함하고, 침식면으로 되는 면에 있어서의 10000㎛2의 면적에서 차지하는 ZnO상의 면적률이 10.5면적% 이하인 것을 특징으로 하는 산화물 타깃재.The area ratio of the ZnO phase occupying an area of 10000 占 퐉 2 in a surface containing Sn of 20.0 atomic% to 50.0 atomic%, the remainder containing Zn and inevitable impurities, Area% or less. 제1항에 있어서, 금속 성분 전체에 대하여, Al, Ga, Mo 및 W 중 1종 이상을 합계로 0.005원자% 내지 4.000원자% 함유하는 것을 특징으로 하는 산화물 타깃재.The oxide target according to any one of claims 1 to 4, which contains at least 0.005 atom% to 4.000 atom% of at least one of Al, Ga, Mo and W relative to the entire metal component. 금속 성분 전체에 대하여, Sn을 20.0원자% 내지 50.0원자% 함유하고, 잔부가 Zn 및 불가피적 불순물로 되도록 ZnO 분말과 SnO2 분말을 순수 및 분산제와 혼합하여 슬러리로 하고, 해당 슬러리를 건조시켜 조립 분말을 제작하고, 해당 조립 분말을 하소하여 Zn2SnO4와 ZnO를 포함하는 하소 분말을 얻는 조립 공정과,
상기 하소 분말을 습식 해쇄한 후, 주입 성형에 의해 성형체를 제작하고, 해당 성형체를 탈지한 후, 대기 분위기에서 소성하여 산화물 소결체를 얻는 소결 공정과,
상기 산화물 소결체의 침식면으로 되는 면을 연마하여, 침식면으로 되는 면에 있어서의 10000㎛2의 면적에서 차지하는 ZnO상의 면적률이 10.5면적% 이하인 산화물 타깃재를 얻는 연마 공정
을 갖는 산화물 타깃재의 제조 방법.
ZnO powder and SnO 2 powder are mixed with pure water and a dispersing agent to make a slurry containing Sn at 20.0 atomic% to 50.0 atomic% with respect to the whole metal component and the balance of Zn and inevitable impurities to form a slurry, A granulation step of preparing a powder and calcining the granulated powder to obtain a calcined powder containing Zn 2 SnO 4 and ZnO,
A sintering step of wet-cracking the calcined powder, preparing a compact by injection molding, degreasing the compact, and firing in an air atmosphere to obtain an oxide sintered compact;
By polishing a surface where the erosion surface of the oxide-sintered body, the abrasive to obtain the area ratio is 10.5 area% or less oxide target material on the ZnO occupied in the area of the 10000㎛ 2 of the surface on which the surface erosion process
Of the oxide target material.
제3항에 있어서, 상기 연마 공정에 있어서, 명도 L* 및 색도 b*를 확인하면서 침식면으로 되는 면을 연마하는 것을 특징으로 하는 산화물 타깃재의 제조 방법.
4. The method of manufacturing an oxide target material according to claim 3, wherein in the polishing step, the surface to be the erosion surface is polished while confirming the lightness L * and chromaticity b * .
KR1020180057614A 2017-05-25 2018-05-21 Oxide target material and manufacturing method thereof KR102133636B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2017-103631 2017-05-25
JP2017103631 2017-05-25

Publications (2)

Publication Number Publication Date
KR20180129655A true KR20180129655A (en) 2018-12-05
KR102133636B1 KR102133636B1 (en) 2020-07-13

Family

ID=64492109

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180057614A KR102133636B1 (en) 2017-05-25 2018-05-21 Oxide target material and manufacturing method thereof

Country Status (4)

Country Link
JP (1) JP2018199861A (en)
KR (1) KR102133636B1 (en)
CN (1) CN108950490B (en)
TW (1) TWI668197B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116332623A (en) * 2023-03-27 2023-06-27 深圳市众诚达应用材料科技有限公司 NMO oxide semiconductor material, and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277075A (en) 2006-03-15 2007-10-25 Sumitomo Metal Mining Co Ltd Oxide sintered compact, method for producing the same, method for producing transparent electroconductive film using the same, and resultant transparent electroconductive film
JP2008063214A (en) * 2006-08-11 2008-03-21 Hitachi Metals Ltd Zinc oxide sintered compact, process for producing the same, and sputtering target
JP5024226B2 (en) * 2008-08-06 2012-09-12 日立金属株式会社 Oxide sintered body and manufacturing method thereof, sputtering target, semiconductor thin film
JP2013224259A (en) * 2006-08-11 2013-10-31 Hitachi Metals Ltd Zinc oxide sintered body, and method for producing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101880859B (en) * 2005-01-12 2013-03-27 出光兴产株式会社 Sputtering target
JP2010034032A (en) * 2008-06-25 2010-02-12 Sumitomo Chemical Co Ltd Method of manufacturing transparent conductive film
JP2012066968A (en) * 2010-09-24 2012-04-05 Kobelco Kaken:Kk Oxide sintered compact and sputtering target
JP6677095B2 (en) * 2015-11-20 2020-04-08 住友金属鉱山株式会社 Sn-Zn-O-based oxide sintered body and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277075A (en) 2006-03-15 2007-10-25 Sumitomo Metal Mining Co Ltd Oxide sintered compact, method for producing the same, method for producing transparent electroconductive film using the same, and resultant transparent electroconductive film
JP2008063214A (en) * 2006-08-11 2008-03-21 Hitachi Metals Ltd Zinc oxide sintered compact, process for producing the same, and sputtering target
JP2013224259A (en) * 2006-08-11 2013-10-31 Hitachi Metals Ltd Zinc oxide sintered body, and method for producing the same
JP5024226B2 (en) * 2008-08-06 2012-09-12 日立金属株式会社 Oxide sintered body and manufacturing method thereof, sputtering target, semiconductor thin film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116332623A (en) * 2023-03-27 2023-06-27 深圳市众诚达应用材料科技有限公司 NMO oxide semiconductor material, and preparation method and application thereof
CN116332623B (en) * 2023-03-27 2024-06-11 深圳众诚达应用材料股份有限公司 NMO oxide semiconductor material, and preparation method and application thereof

Also Published As

Publication number Publication date
CN108950490B (en) 2020-06-30
CN108950490A (en) 2018-12-07
JP2018199861A (en) 2018-12-20
TW201900582A (en) 2019-01-01
KR102133636B1 (en) 2020-07-13
TWI668197B (en) 2019-08-11

Similar Documents

Publication Publication Date Title
US9214519B2 (en) In2O3—SnO2—ZnO sputtering target
WO2009142289A1 (en) Sputtering target, method for forming amorphous oxide thin film using the same, and method for manufacturing thin film transistor
US20140102892A1 (en) In2o3-zno sputtering target
JPWO2009142289A6 (en) Sputtering target, method for forming amorphous oxide thin film using the same, and method for manufacturing thin film transistor
KR102003077B1 (en) Electrically conductive oxide and method for producing same, and oxide semiconductor film
US20230307549A1 (en) Sputtering target material and oxide semiconductor
KR20160033145A (en) Oxide semiconductor thin film and thin film transistor
US20210355033A1 (en) Oxide sintered body, sputtering target and oxide semiconductor film
CN106435490B (en) Sputtering target and oxide semiconductor film with and preparation method thereof
KR20180129655A (en) Oxide target material and manufacturing method thereof
TW201638013A (en) Oxide sintered body, sputtering target, and oxide semiconductor thin film obtained therefrom
KR102380914B1 (en) Oxide sintered body, sputtering target and manufacturing method of oxide thin film
TWI805567B (en) Oxide semiconductor film, thin film transistor, oxide sintered body, and sputtering target
JP2019064859A (en) Oxide sintered body, sputtering target, amorphous oxide semiconductor thin film, and thin film transistor
US20190062900A1 (en) Oxide sintered body and sputtering target
JP2011199108A (en) Conductive oxide and method for manufacturing the same
JP2011195923A (en) Conductive oxide, and method for manufacturing the same
JP2008288428A (en) Electrostatic chuck
WO2023189870A1 (en) Sputtering target, method for producing sputtering target, oxide thin film, thin film transistor, and electronic device
TW201821388A (en) Oxide sintered body and sputtering target
TWI755648B (en) Sintered oxide body, sputtering target and method for producing oxide thin film
JP2018199841A (en) Oxide target material
Itose et al. In 2 O 3—SnO 2—ZnO sputtering target
TW202421815A (en) Sputtering target, method for manufacturing sputtering target, oxide thin film, thin film transistor and electronic device
JP2017179595A (en) Sputtering target material, and its production method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant