JP2005268609A - Multilayer lamination multi-pixel imaging element and television camera - Google Patents

Multilayer lamination multi-pixel imaging element and television camera Download PDF

Info

Publication number
JP2005268609A
JP2005268609A JP2004080617A JP2004080617A JP2005268609A JP 2005268609 A JP2005268609 A JP 2005268609A JP 2004080617 A JP2004080617 A JP 2004080617A JP 2004080617 A JP2004080617 A JP 2004080617A JP 2005268609 A JP2005268609 A JP 2005268609A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
pixel
wave absorbing
imaging device
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004080617A
Other languages
Japanese (ja)
Inventor
Shunji Takada
俊二 高田
Masato Taniguchi
真人 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2004080617A priority Critical patent/JP2005268609A/en
Priority to US11/082,697 priority patent/US7411620B2/en
Publication of JP2005268609A publication Critical patent/JP2005268609A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • H01L27/14647Multicolour imagers having a stacked pixel-element structure, e.g. npn, npnpn or MQW elements

Abstract

<P>PROBLEM TO BE SOLVED: To provide an imaging element which has high sensitivity and high resolution, generates no shading has high photoelectric conversion efficiency, and is excellent in stability when repeatedy used. <P>SOLUTION: In a multilayer lamination multi-pixel imaging element, the imaging element has a pixel unit which is constituted at least of: a plurality of electromagnetic wave absorption layers which absorb electromagnetic waves of different wavelength and perform photoelectric conversion; a pair of electrodes by which each of the electromagnetic wave absorption layers is pinched; a charge transmission/charge read-out portion; and a plurality of contact part positions which link at least one of a pair of the electrodes and the charge transmission/charge read-out portion. Out of the electrodes which were arranged in the pixel unit, length between the outermost surfaces of the electrodes of both of outermost sides is smaller than a pixel size. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、デジタルカメラやカラーテレビ用撮像などに用いる多層積層型多画素撮像素子に関する。特に、高感度でしかも高画素数の多層積層型多画素撮像素子に関する。   The present invention relates to a multilayer stacked multi-pixel imaging device used for digital cameras, color television imaging, and the like. In particular, the present invention relates to a multi-layered multi-pixel imaging device with high sensitivity and high pixel count.

1982年の電子スチルカメラの市場導入予告以降、とりわけ1995年のディジタル・カメラ登場以降、各メーカーによる静止画用撮像素子の開発競争が進んでいる。開発の中心テーマは画素の微細化による高画素数化であり、21世紀にはいると画素サイズ3μmの撮像素子も実現されるようになった(非特許文献1、16ページ参照)。   Since the introduction of the market for electronic still cameras in 1982, especially since the appearance of digital cameras in 1995, the competition for development of image sensors for still images has been promoted by manufacturers. The main theme of development is to increase the number of pixels by miniaturization of pixels. In the 21st century, an image sensor with a pixel size of 3 μm has also been realized (see Non-Patent Document 1, page 16).

従来のカラー撮像素子の概念図が、特許文献3の「図7」に記載されている。この図に記載されている単板方式においては、光の一部がカラーフィルタで吸収されるために感度が落ちる。例えば赤のフィルタを通過することにより、青と緑をカラーフィルタ内で損失してしまい,最大で1/3の光しか利用されていない。画素の微細化についても、微細化は同じ図におけるカラーフィルタ701の面積を小さくすることに相当する為、感度と相反関係にある。そのため、単板方式では原理的に画素の微細化と必要な感度の確保との両立が困難である。   A conceptual diagram of a conventional color image sensor is described in “FIG. 7” of Patent Document 3. In the single plate system shown in this figure, the sensitivity is lowered because part of the light is absorbed by the color filter. For example, by passing through a red filter, blue and green are lost in the color filter, and only a maximum of 1/3 of the light is used. As for pixel miniaturization, miniaturization corresponds to reducing the area of the color filter 701 in the same figure, and is in a contradictory relationship with sensitivity. Therefore, in the single plate method, it is difficult in principle to achieve both pixel miniaturization and necessary sensitivity.

多層積層型多画素撮像素子の技術構想は、特許文献1に開示されているように古くから提案されている。積層型であれば、光のロスを伴うカラーフィルターが不要となり、かつマイクロレンズなど複雑な工程が不要となり、各色の光利用面積率も高くすることができるため、上記した画素の微細化と感度の相反関係を打開する手段となるというメリットは十分認識されていたが、それを具体化する技術の開発が伴わなかった。
その後、多層積層型の考えは特許文献2に開示されているようにSiの吸収係数の波長依存性を利用した積層受光部によって深さ方向で色の分離を行うというFoveon方式と通称される方法によって具体化された。しかしながら、特許文献2に開示された発明では、感度と色分離性とが背反関係にあっていずれかが不満足になる。
The technical concept of the multilayer stacked multi-pixel image sensor has been proposed for a long time as disclosed in Patent Document 1. The stacked type eliminates the need for color filters with light loss, eliminates the need for complicated processes such as microlenses, and increases the light utilization area ratio of each color. Although the merit of becoming a means to overcome the conflicting relationship was well recognized, it did not involve the development of technology to materialize it.
After that, the idea of the multilayer stack type is a method commonly called the Foveon method in which color separation is performed in the depth direction by a stacked light receiving section using the wavelength dependence of the absorption coefficient of Si as disclosed in Patent Document 2. Embodied by. However, in the invention disclosed in Patent Document 2, the sensitivity and the color separation are in a trade-off relationship, and either one is unsatisfactory.

この方式の色分離性を向上させた形態として、特許文献3には有機半導体の受光部とSi基板上の無機半導体感光層とを併用する方式が開示されている。すなわち、特許文献3の明細書の「図1」には、緑色光は第1の受光部で受光し、青色光は第1の受光部を透過した後に第2の受光部で受光し、赤色光は第1及び第2の受光部を通過した後に第3の受光部ににて受光する構成を有する撮像素子が開示されている。
さらに、特許文献4には互いに異なる色光を吸収する多層の有機半導体分子膜型受光エレメントをSi基板上に積層した多層積層型多画素撮像素子も開示されている。
As a form in which the color separation property of this method is improved, Patent Document 3 discloses a method in which an organic semiconductor light receiving portion and an inorganic semiconductor photosensitive layer on a Si substrate are used in combination. That is, in FIG. 1 of the specification of Patent Document 3, green light is received by the first light receiving unit, and blue light is received by the second light receiving unit after passing through the first light receiving unit, and red light is received. An image sensor having a configuration in which light is received by a third light receiving unit after passing through the first and second light receiving units is disclosed.
Further, Patent Document 4 also discloses a multilayer stacked multi-pixel imaging device in which multilayer organic semiconductor molecular film type light-receiving elements that absorb different color lights are stacked on a Si substrate.

しかしながら電磁波吸収・光電変換部位と電荷転送・読み出し部位と、両部位を連結する複数のコンタクト部位から構成される受光エレメントを積層した画素を基板上に配列して構成された積層型多画素撮像素子では、感度の点では積層しない画素が配列された単板方式に優るとはいえ、依然として高感度化が求められている。かつ光学フィルターによって色光の分離がなされる単版方式に比較すると色の分離が劣り、解像性が不満足になりがちである。また、積層構造なるが故にシェーディングも発生し易くなる。
精細な画像を得るために高画素数化が進行するのに伴って画素サイズは小さくなり、低感度になるので、高感度化に有利な積層型多画素撮像素子でも一層の高感度化と、積層化に伴う上記の画像品質の低下の改善が求められている。
However, a laminated multi-pixel imaging device constructed by arranging on a substrate a pixel in which an electromagnetic wave absorption / photoelectric conversion part, a charge transfer / reading part, and a light receiving element composed of a plurality of contact parts connecting both parts are arranged on the substrate. However, although it is superior to the single plate method in which pixels that are not stacked are arranged in terms of sensitivity, there is still a demand for higher sensitivity. In addition, color separation is inferior and resolution tends to be unsatisfactory compared to a single plate system in which color light is separated by an optical filter. Further, because of the laminated structure, shading is likely to occur.
As the number of pixels increases in order to obtain fine images, the pixel size becomes smaller and the sensitivity becomes lower, so even higher sensitivity can be achieved even in a stacked multi-pixel imaging device that is advantageous for higher sensitivity. There is a demand for improvement in the deterioration of the image quality due to the lamination.

この発明に関連する前記の先行技術と知見には、次の文献がある。
特開昭58−103165号公報 米国特許5965875号公報 特開2003−332551号公報 特許第3315213号公報 米本和也著 CCD/CMOSイメージ・センサの基礎と応用、CQ出版社刊行
The above-mentioned prior art and knowledge relating to the present invention include the following documents.
JP 58-103165 A US Pat. No. 5,965,875 JP 2003-332551 A Japanese Patent No. 3315213 Kazuya Yonemoto, Basics and Applications of CCD / CMOS Image Sensor, Published by CQ Publisher

本発明は、上記背景に基づいてなされたものであり、したがってその目的は、高感度で高解像力、かつシェーディングが発生しない撮像素子を提供することである。
本発明の更なる目的は、高い光電変換効率を持ち、繰り返し使用時の安定性に優れた撮像素子を提供することである。
The present invention has been made on the basis of the above-mentioned background. Therefore, an object of the present invention is to provide an image sensor having high sensitivity, high resolution, and no shading.
A further object of the present invention is to provide an imaging device having high photoelectric conversion efficiency and excellent stability during repeated use.

本発明は、上記の課題に対して多層の電磁波吸収・光電変換部位と電荷転送・電荷読み取り部位と、両部位を連結する複数のコンタクト部位から構成される多層積層多画素撮像素子において、画素サイズに対して多層の電磁波吸収・光電変換部位の厚みを薄くすることによって達成された。すなわち本発明は下記の構成による。
(1)異なる波長の電磁波を吸収し、光電変換しうる複数の電磁波吸収層、各電磁波吸収層を挟む一対の電極、電荷伝送・電荷読み出し部位、及び該一対の電極の少なくとも一方と電荷伝送・電荷読み出し部位とを連結する複数のコンタクト部位から少なくとも構成される画素ユニットを有する撮像素子であって、画素サイズ(多層の電磁波吸収層の内、最大の面積を与える電磁波吸収層と同じ面積の円相当直径)よりも上記画素ユニットが有する電極の中で両最外側にある電極の最外表面間の長さの方が小さいことを特徴とする多層積層多画素撮像素子。
In order to solve the above-mentioned problems, the present invention provides a multilayer stacked multi-pixel imaging device including a multilayer electromagnetic wave absorption / photoelectric conversion part, a charge transfer / charge reading part, and a plurality of contact parts connecting both parts. On the other hand, it was achieved by reducing the thickness of the multilayer electromagnetic wave absorption / photoelectric conversion site. That is, the present invention has the following configuration.
(1) A plurality of electromagnetic wave absorption layers capable of absorbing and electromagnetically converting electromagnetic waves of different wavelengths, a pair of electrodes sandwiching each electromagnetic wave absorption layer, a charge transmission / charge readout portion, and at least one of the pair of electrodes An image pickup device having a pixel unit composed of at least a plurality of contact parts connecting to a charge readout part, and having a pixel size (a circle having the same area as an electromagnetic wave absorption layer that gives a maximum area among multilayer electromagnetic wave absorption layers) A multilayer stacked multi-pixel imaging device characterized in that the length between the outermost surfaces of both outermost electrodes among the electrodes of the pixel unit is smaller than the equivalent diameter).

(2)上記複数の電磁波吸収層のうちの少なくとも一層が、青光、緑光、赤光、紫外光、赤外光、X線及びγ線のうちのいずれかを吸収し、光電変換することを特徴とする上記(1)に記載の多層積層多画素撮像素子。
(3)上記複数の電磁波吸収層が少なくとも3層の電磁波吸収層を有し、該3層がそれぞれ400〜500nmの青光、500〜600nmの緑光及び600〜700nmの赤光を吸収し、光電変換することを特徴とする上記(1)に記載の多層積層多画素撮像素子。
(4)上記電荷伝送・電荷読み出し部位が、電荷移動度100cm2/volt・sec以上の半導体であることを特徴とする上記(1)〜(3)のいずれかに記載の多層積層多画素撮像素子。
(5)上記電荷伝送・電荷読み出し部位が、CMOS構造又はCCD構造を有することを特徴とする上記(1)〜(4)のいずれかに記載の多層積層多画素撮像素子。
(2) At least one of the plurality of electromagnetic wave absorbing layers absorbs any one of blue light, green light, red light, ultraviolet light, infrared light, X-rays, and γ rays, and performs photoelectric conversion. The multilayer laminated multi-pixel imaging device as described in (1) above,
(3) The plurality of electromagnetic wave absorbing layers have at least three electromagnetic wave absorbing layers, and the three layers absorb 400 to 500 nm of blue light, 500 to 600 nm of green light, and 600 to 700 nm of red light, respectively. The multilayer stacked multi-pixel image pickup device according to (1), wherein conversion is performed.
(4) The multilayer stacked multi-pixel imaging as described in any one of (1) to (3) above, wherein the charge transfer / charge reading portion is a semiconductor having a charge mobility of 100 cm 2 / volt · sec or more. element.
(5) The multilayer stacked multi-pixel imaging element as described in any one of (1) to (4) above, wherein the charge transfer / charge reading portion has a CMOS structure or a CCD structure.

(6)複数のコンタクト部位が金属材料で構成されていることを特徴とする上記(1)〜(5)のいずれかに記載の多層積層多画素撮像素子。
(7)複数のコンタクト部位は、青光用取り出し電極と電荷転送・読み出し部位、緑光用取り出し電極と電荷転送・読み出し部位、及び赤光用取り出し電極と電荷転送・読み出し部位をそれぞれ連結する少なくとも3つのコンタクト部位を含んでいることを特徴とする上記(1)〜(6)のいずれかに記載の多層積層多画素撮像素子。
(8)画素サイズが、2〜20μmである上記(1)〜(7)のいずれかに記載の多層積層多画素撮像素子。
(9)撮像素子の画素数が1〜100Mピクセルである上記(1)〜(8)のいずれかに記載の多層積層多画素撮像素子。
(6) The multilayer stacked multi-pixel imaging device as described in any one of (1) to (5) above, wherein the plurality of contact parts are made of a metal material.
(7) The plurality of contact portions connect at least three of the blue light extraction electrode and the charge transfer / readout portion, the green light extraction electrode and the charge transfer / readout portion, and the red light extraction electrode and the charge transfer / readout portion, respectively. The multilayer laminated multi-pixel imaging device according to any one of (1) to (6), wherein the multilayer laminated multi-pixel imaging device includes one contact portion.
(8) The multilayer stacked multi-pixel imaging device according to any one of (1) to (7), wherein the pixel size is 2 to 20 μm.
(9) The multilayer stacked multi-pixel image sensor according to any one of (1) to (8), wherein the number of pixels of the image sensor is 1 to 100 M pixels.

(10)複数の電磁波吸収層が、全体で、入射する400〜700nmの可視光の40%以上を吸収し、光電変換することを特徴とする上記(1)〜(9)のいずれかに記載の多層積層多画素撮像素子。
(11)複数の電磁波吸収層のうち最大の開口率を有する電磁波吸収層の開口率が70%以上である上記(1)〜(10)のいずれかに記載の多層積層多画素撮像素子。
(12)複数の電磁波吸収層が、少なくとも青光、青緑光、緑光及び赤光を吸収する4層の電磁波吸収層を含有することを特徴とする上記(1)〜(11)のいずれかに記載の多層積層多画素撮像素子。
(13)青光吸収用電磁波吸収層、緑光吸収用電磁波吸収層及び赤光吸収用電磁波吸収層の少なくともいずれか一つの電磁波吸収層が、二層以上の電磁波吸収層から構成されていることを特徴とする上記(1)〜(12)のいずれかに記載の多層積層多画素撮像素子。
(14)少なくとも一つの電磁波吸収層が、有機化合物膜を有することを特徴とする上記(1)〜(13)のいずれかに記載の多層積層多画素撮像素子。
(15)少なくとも一つの電磁波吸収層が、複数の有機化合物膜を有することを特徴とする上記(14)に記載の多層積層多画素撮像素子。
(16)少なくとも一つの電磁波吸収層が、酸化物又はカルコゲナイド半導体と分光増感色素を含有することを特徴とする上記(1)〜(15)のいずれかに記載の多層積層多画素撮像素子。
(17)少なくとも一つの電磁波吸収層が、無機化合物粒子、無機化合物薄膜、又はそれらの複合体を含有することを特徴とする上記(1)〜(16)のいずれかに記載の多層積層多画素撮像素子。
(10) A plurality of electromagnetic wave absorption layers absorb 40% or more of incident visible light of 400 to 700 nm as a whole, and perform photoelectric conversion, according to any one of (1) to (9) above Multilayer image sensor with multiple layers.
(11) The multilayer stacked multi-pixel imaging device according to any one of (1) to (10), wherein an aperture ratio of an electromagnetic wave absorption layer having the maximum aperture ratio among the plurality of electromagnetic wave absorption layers is 70% or more.
(12) The electromagnetic wave absorbing layer includes at least four electromagnetic wave absorbing layers that absorb at least blue light, blue green light, green light, and red light. The multilayer laminated multi-pixel imaging device described.
(13) The electromagnetic wave absorbing layer for absorbing blue light, the electromagnetic wave absorbing layer for absorbing green light, and the electromagnetic wave absorbing layer for absorbing red light are made up of two or more electromagnetic wave absorbing layers. The multilayer laminated multi-pixel imaging device as described in any one of (1) to (12) above.
(14) The multilayer stacked multi-pixel imaging device as described in any one of (1) to (13) above, wherein at least one electromagnetic wave absorbing layer has an organic compound film.
(15) The multilayer stacked multi-pixel imaging device as described in (14) above, wherein at least one electromagnetic wave absorbing layer has a plurality of organic compound films.
(16) The multilayer laminated multi-pixel imaging device as described in any one of (1) to (15) above, wherein the at least one electromagnetic wave absorbing layer contains an oxide or a chalcogenide semiconductor and a spectral sensitizing dye.
(17) The multilayer multi-pixel according to any one of (1) to (16) above, wherein the at least one electromagnetic wave absorbing layer contains inorganic compound particles, an inorganic compound thin film, or a composite thereof. Image sensor.

(18)上記(1)〜(17)のいずれかに記載の撮像素子を用いることを特徴とする放送用テレビカメラ。
(19)光学ローパスフィルタを用いないことを特徴とする上記(18)に記載の放送用テレビカメラ。
(20) 前記撮像素子が交換可能であることを特徴とする上記(18)又は(19)に記載の放送用テレビカメラ。
(21) 前記放送用テレビカメラがハイビジョン放送用であることを特徴とする上記(18)〜(20)のいずれかに記載の放送用テレビカメラ。
(22)上記(1)〜(17)のいずれかに記載の撮像素子を用いることを特徴とするデジタルカメラ。
(18) A broadcast television camera using the imaging device according to any one of (1) to (17).
(19) The broadcast television camera according to (18), wherein an optical low-pass filter is not used.
(20) The broadcast television camera according to (18) or (19), wherein the image sensor is replaceable.
(21) The broadcast television camera according to any one of (18) to (20), wherein the broadcast television camera is for high-definition broadcasting.
(22) A digital camera using the imaging device according to any one of (1) to (17).

本発明の特徴は、多層の電磁波吸収・光電変換部位を積層するにも拘らず、該積層厚み(正確には画素ユニットの複数電極中で両最外側にある電極の最外表面間の長さ)を画素サイズよりも薄くしたことであり、このような厚み条件を実現させることによって画素密度が高くても高感度で高解像力、かつシェーディングが発生しない撮像素子が実現できることを見出したことである。
また、画素密度が高密度化されても高い光電変換効率が維持されて、繰り返し使用時の安定性に優れた撮像素子を実現できたことである。
したがって、本発明の優位性は、画素が高密度・小サイズ化されるとともに顕著となり、画素サイズが2−20ミクロンであれば、高感度で高解像力、かつシェーディングが発生しない撮像素子としてさらに好ましい。また、画素サイズがこの範囲にあれば、高い光電変換効率を持ち、繰り返し使用時の安定性に優れた撮像素子としても更に好ましい。
The feature of the present invention is that the multilayer thickness (exactly the length between the outermost surfaces of the electrodes on the outermost sides in the plurality of electrodes of the pixel unit) despite the lamination of the multilayer electromagnetic wave absorption / photoelectric conversion sites. ) Is made thinner than the pixel size, and by realizing such a thickness condition, it has been found that an image pickup device having high sensitivity, high resolution, and no shading can be realized even if the pixel density is high. .
In addition, even when the pixel density is increased, high photoelectric conversion efficiency is maintained, and an imaging device having excellent stability during repeated use can be realized.
Therefore, the superiority of the present invention becomes remarkable as the pixels become dense and small in size, and if the pixel size is 2 to 20 microns, it is more preferable as an imaging device with high sensitivity, high resolution, and no shading. . Further, if the pixel size is within this range, it is more preferable as an imaging device having high photoelectric conversion efficiency and excellent stability during repeated use.

画素サイズよりも複数層の電磁波吸収・光電変換部位の厚みが薄いことを特徴とする本発明の多層積層多画素撮像素子では、高感度で高解像力、かつシェーディングが発生しない撮像素子を実現することができる。また、高い光電変換効率を持ち、繰り返し使用時の安定性に優れた撮像素子を得ることができる。本発明の上記効果は、撮像素子の画素サイズが2〜20ミクロンという高密度のときにとくに顕著に発揮される。   The multilayer laminated multi-pixel image sensor of the present invention, characterized in that the thickness of the electromagnetic wave absorption / photoelectric conversion part of multiple layers is thinner than the pixel size, to realize an image sensor with high sensitivity, high resolution, and no shading. Can do. In addition, an image sensor having high photoelectric conversion efficiency and excellent stability during repeated use can be obtained. The above-described effect of the present invention is particularly remarkable when the pixel size of the image sensor is a high density of 2 to 20 microns.

本発明において、画素サイズとは、出力画像の構成単位(出力画像の画素)に対応する撮像素子のサイズすなわち一組の積層された電磁波吸収・光電変換部位と電荷読み出し部位とこれらを挟む電極の組で構成された単位素子のサイズを指している。単位素子は多層の電磁波吸収層で構成されているので正確には、それらの電磁波吸収層のうち最大面積の層と同じ面積の円相当直径を指している。また、複数層の電磁波吸収・光電変換部位の厚みとは、正確には画素ユニットの複数電極中で両最外側にある電極の最外表面間の長さを指す。   In the present invention, the pixel size refers to the size of the image sensor corresponding to the structural unit of the output image (the pixel of the output image), that is, a set of stacked electromagnetic wave absorption / photoelectric conversion parts, charge readout parts, and electrodes sandwiching them. It refers to the size of the unit element composed of a set. Since the unit element is composed of a plurality of electromagnetic wave absorbing layers, it accurately indicates a circle-equivalent diameter having the same area as that of the largest area among the electromagnetic wave absorbing layers. In addition, the thickness of the electromagnetic wave absorption / photoelectric conversion site of the plurality of layers accurately refers to the length between the outermost surfaces of the electrodes on the outermost sides in the plurality of electrodes of the pixel unit.

以下、本発明の態様の説明の便宜のために、典型的なCCD,背景技術の項で触れた特許文献2(米国特許5965875号公報)の撮像素子、特許文献3(特開2003−332551号公報)の撮像素子を簡単に説明して、それらとの比較の形で本発明の多層積層多画素撮像素子の態様を述べる。   In the following, for convenience of description of embodiments of the present invention, a typical CCD, the image sensor of Patent Document 2 (US Pat. No. 5,965,875) mentioned in the background art, Patent Document 3 (Japanese Patent Laid-Open No. 2003-332551). The image pickup device in Japanese Patent Laid-Open Publication No. 1993) will be briefly described, and the aspect of the multilayer stacked multipixel image pickup device of the present invention will be described in comparison with them.

はじめに、汎用CCDの水平方向の構造を図1に示す。図1の各構成部材名は図の中に記載した。図1において、入射光はCCDの各画素ごとにその最上部に形成されたマイクロレンズによって集光されてカラーフィルターを透して電磁波吸収・光電変換部位(P+と書かれたクロスハッチとその下部の縦縞部分であり、ホトダイオードと書かれた矢印がそのサイズを示す)に入射する。入射光はカラーフィルターを透過することによって、色分離が行われて、各色光がホトダイオードに吸収・励起・光電変換されて信号電荷としてホトダイオードに蓄えられる。画素サイズは、図1の下端に1pixelと書かれた矢印で示した範囲である。図1から判るようにこのCCDの構造では、利用できる光は、遮光膜の開口部を通過した光に限られるのでマイクロレンズが集光作用を発揮しても画素サイズよりも狭い範囲の光しか利用されないことになる。
フォトダイオードに信号電荷はVCCDと書かれた電荷読出し・転送部位のn+と書かれた斜線部に一旦蓄えられたのち、電気画像信号として読み出されて転送される。電荷読出し・転送部位は、光の影響を受けないように遮光膜で覆われている。
ここに示した汎用CCDの問題点は、(1)構造が複雑で製造負荷が大きいこと、(2)光の有効利用率が低く高感度化が困難であること、(3)モザイク構造のため、モアレの発生・ローパスフイルタ・偽信号が出易いこと及び(3)マイクロレンズのため、シェーディングが発生、パッケージ化の負荷が大きいころである。
First, a horizontal structure of a general-purpose CCD is shown in FIG. Each component name in FIG. 1 is shown in the figure. In FIG. 1, incident light is collected by a microlens formed on the top of each pixel of the CCD and passes through a color filter to absorb and absorb electromagnetic waves (a cross hatch written as P + and its lower part). And an arrow written as a photodiode indicates its size). Incident light passes through a color filter to be color-separated, and each color light is absorbed, excited, and photoelectrically converted into a photodiode and stored as a signal charge in the photodiode. The pixel size is a range indicated by an arrow written as 1 pixel at the lower end of FIG. As can be seen from FIG. 1, in this CCD structure, the light that can be used is limited to the light that has passed through the opening of the light-shielding film. It will not be used.
The signal charge is temporarily stored in the hatched portion of n + of the charge reading / transfer site written as VCCD and then read out and transferred as an electric image signal. The charge readout / transfer site is covered with a light shielding film so as not to be affected by light.
The problems of the general-purpose CCD shown here are (1) the structure is complicated and the manufacturing load is large, (2) the effective utilization rate of light is low and it is difficult to achieve high sensitivity, and (3) the mosaic structure. Generation of moire, low-pass filter, easy generation of false signals, and (3) Shading occurs due to the micro lens, and the packaging load is large.

汎用CCDの上記の問題点の改良のために積層型の画像素子が特許文献1で提案され、その構想を具体化した1つが特許文献2であるので、次に特許文献2のFoveon型積層型画像素子の構造を図2によって説明する。
図2は、Foveon型の無機半導体の積層型画像素子の画素構造を示す断面図である。図2は、1個の画素を示したもので、Si基板上に表面側からn,p−well,n−well,p−subと書かれた多層の電磁波(一般に光波)吸収領域の重層構造となっている。この領域に入射した電磁波は、そのエネルギーの高いものから、すなわち光であれば短波長の青光から順次吸収され、赤光が深部側で吸収される。吸収された電磁波は光電変換されて蓄積される。電磁波が光の場合、n領域で吸収された青光に由来する電子は図2右下端の蓄積ダイオードに、p−well領域で吸収された緑光に由来する電子は図2下端中央部の蓄積ダイオードに、n−well領域で吸収された赤光に由来する電子は図2左下端の蓄積ダイオードに蓄積されたのち電気画像信号として転送される。
図2の積層型素子は,積層化によって1画素で多重の電磁波を吸収できる点で高感度化できたが、その反面、電磁波のスペクトル分離が困難であり、そのため再生画像の色が濁っていて画質低下を招く点が問題である。
In order to improve the above-mentioned problems of the general-purpose CCD, a multilayer image element has been proposed in Patent Document 1, and one of the specifics of the concept is Patent Document 2. The structure of the image element will be described with reference to FIG.
FIG. 2 is a cross-sectional view showing a pixel structure of a laminated image element of a Foveon type inorganic semiconductor. FIG. 2 shows one pixel. A multilayer structure of a multilayer electromagnetic wave (generally light wave) absorption region written as n, p-well, n-well, and p-sub from the surface side on the Si substrate. It has become. The electromagnetic waves incident on this region are absorbed sequentially from the high energy energy, that is, from the short wavelength blue light if it is light, and the red light is absorbed on the deep side. The absorbed electromagnetic wave is photoelectrically converted and accumulated. When the electromagnetic wave is light, electrons derived from blue light absorbed in the n region are stored in the storage diode at the lower right of FIG. 2, and electrons derived from green light absorbed in the p-well region are stored in the center of the lower end of FIG. In addition, the electrons derived from the red light absorbed in the n-well region are transferred to the storage diode at the lower left of FIG. 2 and then transferred as an electric image signal.
The layered element of FIG. 2 can be highly sensitive in that it can absorb multiple electromagnetic waves in one pixel by layering, but on the other hand, it is difficult to separate the spectrum of the electromagnetic wave, so the color of the reproduced image is cloudy. The problem is that the image quality is degraded.

上記図2の素子の混色を改善したものが特許文献に提案されている。
図3は、無機半導体と有機光電変換体とを用いた本明細書でハイブリッド型と呼ぶ積層型画像素子の画素構造を示す断面図である。図3では、図2に示したSi半導体の積層構造の中の緑光吸収層を省いてSi半導体の表面上に緑吸収性の光電変換性有機色素による感光エレメントに置き換えた構成を取っている。この感光エレメントは、表面側から透明表面保護層、透明導電膜、緑吸収性の光電変換性有機色素分子膜、対抗電極から構成されており、緑光を吸収して、光電変換によって緑光の電気画像信号を発生する。したがって、無機半導体による受光部は、青と赤光を吸収する光電変換層となるので、赤,緑,青の色分離が改善される。
しかしながら、ハイブリッド型の改善効果は認められるが、なおその効果は不十分である。また、有機色素積分子膜を含む電磁波吸収・光電変換部位が設けられているので、素子が有する感光エレメントの総厚みは大きくなっている。
An improvement in the color mixture of the element shown in FIG. 2 has been proposed in the patent literature.
FIG. 3 is a cross-sectional view illustrating a pixel structure of a stacked image element called a hybrid type in this specification using an inorganic semiconductor and an organic photoelectric conversion body. In FIG. 3, the green light absorption layer in the stacked structure of the Si semiconductor shown in FIG. 2 is omitted and replaced with a photosensitive element made of a green absorbing photoelectric conversion organic dye on the surface of the Si semiconductor. This photosensitive element is composed of a transparent surface protective layer, a transparent conductive film, a green-absorbing photoelectric conversion organic dye molecule film, and a counter electrode from the surface side, and absorbs green light and produces an electrical image of green light by photoelectric conversion. Generate a signal. Therefore, since the light receiving portion made of an inorganic semiconductor becomes a photoelectric conversion layer that absorbs blue and red light, color separation of red, green, and blue is improved.
However, although the improvement effect of the hybrid type is recognized, the effect is still insufficient. In addition, since the electromagnetic wave absorption / photoelectric conversion site including the organic dye product molecular film is provided, the total thickness of the photosensitive element included in the element is increased.

本発明の多層積層多画素撮像素子について説明する。図4は本発明の典型的な多層積層多画素撮像素子の断面図である。図4に示されるように、本発明の多層積層多画素撮像素子は、表面側から透明対向電極、緑,青,赤の各感光ユニット、各ユニット間の絶縁層、下地電極、電荷蓄積ダイオードと電荷転送路を配した信号読出し・転送層から構成されており、この積層構造が図4にN−subと記されたSi下地上に設けられている。上記緑,青,赤の各感光ユニットは、それぞれ異なる色光を吸収して光電変換を行なう感光層及び透明電極層の対から構成されている。また、緑,青,赤の各感光ユニットのそれぞれと下地電極の間は電極間コンタクトによって導通可能となっている。各感光層は、有機色素分子の薄膜や、有機色素で分光増感された無機Si層などを好ましく用いることができる。また、電荷転送路はCCDやCMOSの方式が好ましく用いられる。   The multilayer laminated multi-pixel image sensor of the present invention will be described. FIG. 4 is a cross-sectional view of a typical multilayer stacked multi-pixel image sensor of the present invention. As shown in FIG. 4, the multilayer stacked multi-pixel imaging device of the present invention includes a transparent counter electrode, green, blue, and red photosensitive units from the front side, an insulating layer between the units, a base electrode, a charge storage diode, The signal read / transfer layer is provided with a charge transfer path, and this laminated structure is provided on a Si base indicated as N-sub in FIG. Each of the green, blue, and red photosensitive units includes a pair of a photosensitive layer and a transparent electrode layer that absorbs different color light and performs photoelectric conversion. Further, each of the green, blue, and red photosensitive units and the base electrode can be electrically connected by interelectrode contact. For each photosensitive layer, a thin film of organic dye molecules or an inorganic Si layer spectrally sensitized with an organic dye can be preferably used. The charge transfer path is preferably a CCD or CMOS system.

ここで、電磁波吸収・光電変換部位の厚みとは、前記定義により上記画素ユニットが有する複数の電極の中で両最外側の電極の最外表面間の長さを指しており、図4では最表面の対抗電極の表面から赤感光ユニットの下の下地透明電極までの長さである。また、画素サイズとは図4の緑、赤、青感光層が重層されて画素ユニットの両側仕切り間の距離であり、より正確には多層の電磁波吸収・光電変換部位の内、最大の面積を与える層の面積が同じな円相当直径で表したサイズである。   Here, the thickness of the electromagnetic wave absorption / photoelectric conversion part refers to the length between the outermost surfaces of both outermost electrodes among the plurality of electrodes of the pixel unit according to the above definition. This is the length from the surface of the counter electrode on the surface to the base transparent electrode under the red photosensitive unit. Also, the pixel size is the distance between the two side partitions of the pixel unit where the green, red and blue photosensitive layers in FIG. 4 are overlaid. More precisely, the maximum area of the multilayer electromagnetic wave absorption / photoelectric conversion sites is shown. The size of the layer to be given is the size represented by the equivalent circle diameter.

図5は、上記の本発明の多層積層多画素撮像素子の画素の光電変換部位と信号読み取り・転送部位の構成をさらに具体的に示す斜視図である。図5中の各部材名及びそれぞれの機能はすでに図4などで説明したものと同じである。
本発明の多層積層多画素撮像素子が具備する高感度で高解像力、かつシェーディングが発生しないという特徴は、画素サイズに対して複数層の電磁波吸収・光電変換部位の厚みが薄いことによっていることが判った。
本発明で言う電磁波とは青光・緑光・赤光およびその中間色を含む可視光、極端紫外および紫外光、赤外光および遠赤外光、X線およびγ線を指す。撮像素子の応用として特に重要なのは、可視光である。この場合、400-500nmの青光・500-600 nmの緑光・600-700 nmの赤光の三色に対する応答が重要であるが、さらに4−6種の波長光(又は電磁波)に応答させることも目的に応じて重要となる。特に好ましいのは、青光・青緑光・緑光・赤光に対して吸収し光電変換させる方式であり、これが忠実な色再現荷とって特に効果が大きい。また少なくとも青光・緑光・赤光のいずれかが二層以上の電磁波吸収・光電変換部位を持つことは、ダイナミックレンジ(撮影ラチチュード)を広げる点で好ましい効果を生み出すことができる。
FIG. 5 is a perspective view more specifically showing the configuration of the photoelectric conversion part and the signal reading / transfer part of the pixel of the multilayer stacked multi-pixel imaging device of the present invention. Each member name and each function in FIG. 5 are the same as those already described with reference to FIG.
The characteristics of the multilayer laminated multi-pixel imaging device of the present invention, which are high sensitivity, high resolution, and no shading, are due to the fact that the thickness of the electromagnetic wave absorption / photoelectric conversion site of multiple layers is thin relative to the pixel size. understood.
The electromagnetic wave referred to in the present invention means visible light including blue light, green light, red light and intermediate colors thereof, extreme ultraviolet light and ultraviolet light, infrared light and far infrared light, X-rays and γ-rays. Visible light is particularly important as an application of the image sensor. In this case, the response to the three colors of 400-500nm blue light, 500-600nm green light, and 600-700nm red light is important, but it also responds to 4-6 kinds of wavelength light (or electromagnetic waves). This is also important depending on the purpose. Particularly preferred is a method in which blue light, blue green light, green light, and red light are absorbed and subjected to photoelectric conversion, and this is particularly effective as a faithful color reproduction load. In addition, at least one of blue light, green light, and red light having two or more layers of electromagnetic wave absorption / photoelectric conversion sites can produce a favorable effect in terms of widening the dynamic range (photographing latitude).

電荷転送・読み出し部位は電荷の移動度が100cm2/volt・sec以上であることが必要であり、この移動度は、材料をIV族、III−V族、II−VI族の半導体から選択することによって得ることができる。その中でも微細化技術が進んでいることと、低コストであることからシリコン半導体(Si半導体共記す)が好ましい。電荷転送・電荷読み出しの方式は数多く提案されているが、何れの方式でも良い。特に好ましい方式はCMOS型あるいはCCD型のデバイスである。更に本発明の場合、CMOS型の方が高速読み出し、画素加算、部分読み出し、消費電力などの点で好ましいことが多い。デバイスのチップサイズは、ブローニーサイズ、135サイズ、APSサイズ、1/1.8インチ、さらに小型のサイズでも選択することができる。 The charge transfer / readout site needs to have a charge mobility of 100 cm 2 / volt · sec or more, and this mobility is selected from a group IV, III-V, or II-VI group semiconductor. Can be obtained. Of these, silicon semiconductors (also referred to as Si semiconductors) are preferable because miniaturization technology is advanced and the cost is low. Many methods of charge transfer and charge reading have been proposed, but any method may be used. A particularly preferable method is a CMOS type or CCD type device. Furthermore, in the case of the present invention, the CMOS type is often preferable in terms of high-speed readout, pixel addition, partial readout, power consumption, and the like. The chip size of the device can be selected from brownie size, 135 size, APS size, 1 / 1.8 inch, and even smaller size.

電磁波吸収・光電変換部位と電荷転送・読み出し部位を連結する複数のコンタクト部位はいずれの金属で連結してもよいが、銅、アルミ、銀、金、クロムの中から選択するのが好ましく、特に銅が好ましい。図4及び図5に示されるように、複数の電磁波吸収・光電変換部位に応じて、それぞれのコンタクト部位を電荷転送・読み出し部位との間に設置する必要がある。青・緑・赤光の複数感光ユニットの積層構造を採る場合、青光用取り出し電極と電荷転送・読み出し部位の間、緑光用取り出し電極と電荷転送・読み出し部位の間および赤光用取り出し電極と電荷転送・読み出し部位の間をそれぞれ連結する必要がある。   A plurality of contact parts that connect the electromagnetic wave absorption / photoelectric conversion part and the charge transfer / reading part may be connected by any metal, but are preferably selected from copper, aluminum, silver, gold, and chrome. Copper is preferred. As shown in FIG. 4 and FIG. 5, it is necessary to install each contact part between the charge transfer / readout part according to a plurality of electromagnetic wave absorption / photoelectric conversion parts. When adopting a laminated structure of multiple photosensitive units of blue, green, and red light, between the blue light extraction electrode and the charge transfer / readout region, between the green light extraction electrode and the charge transfer / readout region, and the red light extraction electrode It is necessary to connect between the charge transfer / readout portions.

すでに前記したように、本発明の多層積層多画素撮像素子の画素サイズは複数の電磁波吸収・光電変換部位の最大面積に相当する円相当直径で表す。本発明で規定した画素サイズと電磁波吸収・光電変換部位の上下電極間の厚み関係が満たされる限り、いずれの画素サイズであっても本発明の効果が発現されるが、2−20ミクロンの画素サイズが好ましい。さらに好ましくは2−10ミクロンであるが、3−8ミクロンが特に好ましい。
画素サイズが20ミクロンを超えると発明の効果が減少し、画素サイズが2ミクロンよりも小さければサイズ間の電波干渉のためか解像力が低下する。
電磁波吸収・光電変換部位の厚みは、好ましくは1−19ミクロンである。
As described above, the pixel size of the multilayer stacked multi-pixel imaging device of the present invention is represented by a circle-equivalent diameter corresponding to the maximum area of a plurality of electromagnetic wave absorption / photoelectric conversion sites. As long as the pixel size defined in the present invention and the thickness relationship between the upper and lower electrodes of the electromagnetic wave absorption / photoelectric conversion site are satisfied, the effect of the present invention is exhibited regardless of the pixel size. Size is preferred. More preferably, it is 2-10 microns, but 3-8 microns is particularly preferable.
When the pixel size exceeds 20 microns, the effect of the invention is reduced, and when the pixel size is smaller than 2 microns, the resolution is lowered due to radio wave interference between the sizes.
The thickness of the electromagnetic wave absorption / photoelectric conversion site is preferably 1-19 microns.

本発明の画素サイズ対電磁波吸収・光電変換部位の上下電極間厚み比の要件が満たされることによる効果はチップサイズにも依存するが、1−100Mピクセルの高解像力撮像素子に応用する場合に効果を発現しやすい。さらに実用的には3−30Mピクセルが好ましく、5−10Mピクセルが特に好ましい。   The effect of satisfying the requirements of the pixel size to electromagnetic wave absorption / thickness ratio between the upper and lower electrodes of the photoelectric conversion part of the present invention depends on the chip size, but is effective when applied to a high-resolution imaging device having 1-100 M pixels. It is easy to express. Furthermore, practically, 3-30M pixels are preferable, and 5-10M pixels are particularly preferable.

電磁波吸収・光電変換部位は400-700nmの入射する可視光を効果的に吸収することが必要であり、4800Kの色温度の光を入射させた場合、積分吸収として40%以上吸収することが好ましく、更に60%以上、特には70%以上吸収することが好ましい。
電磁波吸収・光電変換部位は開口率が70%以上、更には80%以上、特には90%以上であることが好ましい。
The electromagnetic wave absorption / photoelectric conversion part needs to effectively absorb the incident visible light of 400-700 nm, and when light of 4800K color temperature is incident, it preferably absorbs 40% or more as integral absorption. Further, it is preferable to absorb 60% or more, particularly 70% or more.
The opening ratio of the electromagnetic wave absorption / photoelectric conversion site is preferably 70% or more, more preferably 80% or more, and particularly preferably 90% or more.

本発明の電磁波吸収・光電変換部位には種々の材料及び方式を採用することが出来る。好ましい材料及び方式としては、i)有機薄膜方式、ii)有機・無機ハイブリッド方式およびiii)無機粒子・薄膜方式から選択することができる。
これらの方式では、上記材料の電磁波吸収・光電変換層を少なくとも一つの光透過性電極で挟んだ形態であり、更に光電変換を促進するために光透過性電極に電場を加えることは特に好ましい。光透過性電極として、ITO、ATOなどのインジウム・錫・アンチモンなどの酸化物、銀・銅・金・アルミなどの非常に薄い金属薄膜、あるいは金属のメッシュ電極などから選択することが出来る。
Various materials and systems can be adopted for the electromagnetic wave absorption / photoelectric conversion site of the present invention. Preferred materials and systems can be selected from i) organic thin film system, ii) organic / inorganic hybrid system, and iii) inorganic particle / thin film system.
In these systems, the electromagnetic wave absorption / photoelectric conversion layer of the above material is sandwiched between at least one light transmissive electrode, and it is particularly preferable to apply an electric field to the light transmissive electrode in order to further promote photoelectric conversion. The light-transmitting electrode can be selected from oxides such as indium, tin, and antimony such as ITO and ATO, a very thin metal thin film such as silver, copper, gold, and aluminum, or a metal mesh electrode.

i)有機薄膜方式
有機薄膜方式は、可視光に吸収を持ち、かつ光電変換性(光励起して電子・正孔対を生じる)の有機半導体の中から選択することが好ましい。有機薄膜の厚みは、化合物の吸収係数に依存するが、30分子層から300分子層程度が、光吸収と光電変換効率の観点から好ましい。また有機薄膜の電荷の移動度は10−5cm2/v・s以上でかつ暗電導度が少ないものから選択するのが好ましい、特に10−4cm2/v・s以上のものが好ましい。
i) Organic thin film method The organic thin film method is preferably selected from organic semiconductors that absorb visible light and are photoelectrically convertible (photoexcited to generate electron-hole pairs). Although the thickness of the organic thin film depends on the absorption coefficient of the compound, about 30 to 300 molecular layers are preferable from the viewpoint of light absorption and photoelectric conversion efficiency. Further, the mobility of the organic thin film is preferably selected from those having 10 −5 cm 2 / v · s or more and low dark conductivity, and more preferably 10 −4 cm 2 / v · s or more.

電磁波吸収・光電変換部位の動作原理について説明する。図6は、有機薄膜方式の電磁波吸収・光電変換部位の中でも典型的な有機色素分子薄膜・アクセプター層(又はドナー層)型の感光ユニットの動作原理を模式的に示す図である。感光ユニットに用いられている各部材などは図中に記載した。   The operation principle of the electromagnetic wave absorption / photoelectric conversion site will be described. FIG. 6 is a diagram schematically showing the operation principle of a typical organic dye molecule thin film / acceptor layer (or donor layer) type photosensitive unit among the electromagnetic thin film type electromagnetic wave absorption / photoelectric conversion sites. Each member used in the photosensitive unit is shown in the figure.

感光ユニットは、図6左側に示すように感光性分子膜(図6のP型層)と、アクセプタ性分子膜(図6のn型層)とから構成される素子構造をとり、図6の右側のバンド構造図で示すように画素中の感光性分子膜に光が照射されると、感光性分子が光励起されて感光性分子膜中に電子正孔対(キャリア対)を生じさせることができる。この時、励起された電子はアクセプタ性分子膜に遷移する。遷移した光電子は、電子又は電位の画像信号として読取り・転送回路に転送される。   As shown on the left side of FIG. 6, the photosensitive unit has an element structure composed of a photosensitive molecular film (P-type layer in FIG. 6) and an acceptor molecular film (n-type layer in FIG. 6). As shown in the band structure diagram on the right side, when light is irradiated to the photosensitive molecular film in the pixel, the photosensitive molecule is photoexcited to generate electron-hole pairs (carrier pairs) in the photosensitive molecular film. it can. At this time, the excited electrons transition to the acceptor molecular film. The transitioned photoelectrons are transferred to the read / transfer circuit as an image signal of electrons or potential.

また、受光エレメントの構成がアクセプター性分子膜の代わりにドナー性分子膜(図6のp型層)である場合は、画素中の感光性分子(図6のn型層)に光を照射することによって、正孔はドナー性分子に遷移する。図6の感光層・アクセプター層の電子移動関係が、感光層・ドナー層では逆になるが、その点を別にすれば作用機構は同じである。   Further, when the light receiving element has a donor molecular film (p-type layer in FIG. 6) instead of an acceptor molecular film, light is irradiated to the photosensitive molecule (n-type layer in FIG. 6) in the pixel. As a result, the holes transition to donor molecules. The electron transfer relationship between the photosensitive layer and the acceptor layer in FIG. 6 is reversed between the photosensitive layer and the donor layer, but the working mechanism is the same except for this point.

各感光ユニットを構成する好ましい感光性分子膜は、青光吸収性分子膜としては、例えばクマリン6をバインダーポリマーのPHPPSに分散させた分子膜であり、その内部量子効率は約1%である。緑光吸収性分子膜としては、例えばローダミン6GをバインダーポリマーのPMPSに分散させた分子膜であり、その内部量子効率も約1%である。また、赤感光性分子膜としては例えば赤光励起性の有機色素と電子輸送層又は正孔輸送層の組み合わせであり、電子輸送層としてはAlQ,正孔輸送層としてはZnフタロシアニンによって構成されて、その内部量子効率は約20%である。 A preferable photosensitive molecular film constituting each photosensitive unit is, for example, a molecular film in which coumarin 6 is dispersed in a binder polymer PHPPS as a blue light absorbing molecular film, and the internal quantum efficiency thereof is about 1%. The green light absorbing molecular film is, for example, a molecular film in which rhodamine 6G is dispersed in the binder polymer PMPS, and its internal quantum efficiency is about 1%. The red photosensitive molecular film is, for example, a combination of a red-light-excitable organic dye and an electron transport layer or a hole transport layer, the electron transport layer is composed of AlQ 3 , and the hole transport layer is composed of Zn phthalocyanine. The internal quantum efficiency is about 20%.

電磁波吸収のスペクトルの調整および電荷分離の促進のため、複数の有機化合物からなる電磁波吸収・光電変換部位を構成させることは好ましい。代表的な例は、p−型の有機化合物とn−型の有機化合物を二層以上の複合多層化する方法、あるいは両者の混合層を設ける方式があるが、目的に応じて選択することが出来る。さらに有機化合物の多層膜を作成する場合、有機化合物の自己組織化を伴う配列の秩序化が本発明に対して大変好ましい。   In order to adjust the spectrum of electromagnetic wave absorption and promote charge separation, it is preferable to configure an electromagnetic wave absorption / photoelectric conversion site composed of a plurality of organic compounds. A typical example is a method of forming a composite multilayer of two or more layers of a p-type organic compound and an n-type organic compound, or a method of providing a mixed layer of both, but can be selected according to the purpose. I can do it. Furthermore, when forming a multilayer film of an organic compound, the ordering of the arrangement accompanying the self-organization of the organic compound is very preferable for the present invention.

ii)有機・無機ハイブリッド方式
有機・無機ハイブリッド方式の電磁波吸収・光電変換部位は、TiO、ZnO、SnO、ZnS、CdS、ZnSe、CdSeなどの酸化物、硫化物、およびそれらの混晶から基板を選択することができる。基板はナノ粒子の集合体、焼結体、薄膜、細孔を施した薄膜、それらの混合体から出来るだけ被表面積が大きい材料を選択することが好ましい。これらの表面を利用して分光増感型の色素を吸着させる必要がある。分光増感型の色素として、写真工業、電子写真、色増感太陽電池などで知られている種々の色素を選択することが出来る。
好ましい色素としては、シアニン色素、スチリル色素、ヘミシアニン色素、メロシアニン色素(ゼロメチンメロシアニン(シンプルメロシアニン)を含む)、3核メロシアニン色素、4核メロシアニン色素、ロダシアニン色素、コンプレックスシアニン色素、コンプレックスメロシアニン色素、アロポーラー色素、オキソノール色素、ヘミオキソノール色素、スクアリウム色素、クロコニウム色素、アザメチン色素、クマリン色素、アリーリデン色素、アントラキノン色素、トリフェニルメタン色素、アゾ色素、アゾメチン色素、スピロ化合物、メタロセン色素、フルオレノン色素、フルギド色素、ペリレン色素、フェナジン色素、フェノチアジン色素、キノン色素、インジゴ色素、ジフェニルメタン色素、ポリエン色素、アクリジン色素、アクリジノン色素、ジフェニルアミン色素、キナクリドン色素、キノフタロン色素、フェノキサジン色素、フタロペリレン色素、ポルフィリン色素、クロロフィル色素、フタロシアニン色素、金属錯体色素、シアニン色素、スチリル色素、ヘミシアニン色素、メロシアニン色素、3核メロシアニン色素、4核メロシアニン色素、ロダシアニン色素、コンプレックスシアニン色素、コンプレックスメロシアニン色素、アロポーラー色素、オキソノール色素、ヘミオキソノール色素、スクアリウム色素、クロコニウム色素及びアザメチン色素などのメチン色素が挙げられる。
ii) Organic-inorganic hybrid type electromagnetic absorption and photoelectric conversion part of the organic-inorganic hybrid scheme, TiO 2, ZnO, SnO 2 , ZnS, CdS, ZnSe, oxides such as CdSe, sulfides, and their mixed crystals A substrate can be selected. For the substrate, it is preferable to select a material having as large a surface area as possible from an aggregate of nanoparticles, a sintered body, a thin film, a thin film with pores, or a mixture thereof. It is necessary to adsorb spectral sensitizing dyes using these surfaces. Various dyes known in the photographic industry, electrophotography, color sensitized solar cells and the like can be selected as spectral sensitizing dyes.
Preferred dyes include cyanine dyes, styryl dyes, hemicyanine dyes, merocyanine dyes (including zero methine merocyanine (simple merocyanine)), trinuclear merocyanine dyes, tetranuclear merocyanine dyes, rhodacyanine dyes, complex cyanine dyes, complex merocyanine dyes, and allopolar dyes. Dye, oxonol dye, hemioxonol dye, squalium dye, croconium dye, azamethine dye, coumarin dye, arylidene dye, anthraquinone dye, triphenylmethane dye, azo dye, azomethine dye, spiro compound, metallocene dye, fluorenone dye, fulgide dye Perylene dye, phenazine dye, phenothiazine dye, quinone dye, indigo dye, diphenylmethane dye, polyene dye, acridine dye, Cridinone dye, diphenylamine dye, quinacridone dye, quinophthalone dye, phenoxazine dye, phthaloperylene dye, porphyrin dye, chlorophyll dye, phthalocyanine dye, metal complex dye, cyanine dye, styryl dye, hemicyanine dye, merocyanine dye, trinuclear merocyanine dye, 4 Examples thereof include methine dyes such as nuclear merocyanine dyes, rhodacyanine dyes, complex cyanine dyes, complex merocyanine dyes, allopolar dyes, oxonol dyes, hemioxonol dyes, squalium dyes, croconium dyes, and azamethine dyes.

感光性ユニットは、単層色素/無機基板分光増感型の構成であってもよい。図7は、単層色素/無機基板分光増感型の感光ユニットの構成と動作原理を模式的に示した図である。各構成部材名とそれぞれの作用・機能は図中に記載した。
図7左側の感光性ユニットの構成概略図において、感光性色素を粒子表面に吸着したチタニア(酸化チタン)が導電性膜上に配されて感光層を形成している。透明ガラス板を透して光の照射が行われると感光性色素は分光増感波長域の光を吸収して励起されて電子とホールの組を形成し、次いで励起電子はチタニア粒子に受容される。電子はさらに導電膜へ読み出されて画像電気信号の形で転送される。
電荷分離を促進するために、正孔輸送を促進するメディエーターを併用してもよいしい。メディエーターとしては水溶性レドックス、ゲル状のレドックス、あるいは固体レドックスが選択できるが、本発明に対して固体レドックスが好ましく、特にCuI系のレドックスは好ましい。
The photosensitive unit may be of a single layer dye / inorganic substrate spectral sensitization type. FIG. 7 is a diagram schematically showing the configuration and operation principle of a single layer dye / inorganic substrate spectral sensitization type photosensitive unit. Each component name and each action / function are shown in the figure.
In the schematic configuration diagram of the photosensitive unit on the left side of FIG. 7, titania (titanium oxide) in which a photosensitive dye is adsorbed on the particle surface is disposed on the conductive film to form a photosensitive layer. When light is irradiated through a transparent glass plate, the photosensitive dye is excited by absorbing light in the spectral sensitization wavelength region to form a pair of electrons and holes, and then the excited electrons are received by the titania particles. The The electrons are further read out to the conductive film and transferred in the form of an image electrical signal.
In order to promote charge separation, a mediator that promotes hole transport may be used in combination. As the mediator, water-soluble redox, gel-like redox, or solid redox can be selected, but solid redox is preferable for the present invention, and CuI-based redox is particularly preferable.

iii)無機粒子・薄膜方式
無機粒子・薄膜方式の電磁波吸収・光電変換部位は、可視光を吸収する無機化合物を選択する必要がある。それらの例として、カルコゲナイド元素及びその化合物、酸化物、III−V族元素とその酸化物などがある。代表的なものとしてCdSe、CdSなどがある。無機化合物の微粒子の集合体、焼結体、薄膜は電磁波吸収・光電変換部位として好ましい。また目的の可視吸収を持つ無機化合物と持たない化合物を複合化した材料も有用であり、可視吸収微粒子を他方で分散した形態、あるいは両者が層状をなす形態など種々のものから選択できる。無機微粒子化合物のサイズとサイズ分布を制御することにより、ナノ粒子の量子ドット効果を利用した吸収スペクトルの調整法は本発明に対して非常に好ましい。その一例として、CdSeのナノサイズ粒子は粒子サイズにより吸収スペクトルが調整でき、例えば、2nm前後で青光吸収を、5nm前後で緑光吸収を、8nm前後で赤光吸収を持たせることが出来る。従って、サイズとサイズ分を調整することにより、好ましいスペクトル作成することが可能となり本発明に対して好ましい。
iii) Inorganic particle / thin film method For the electromagnetic wave absorption / photoelectric conversion site of the inorganic particle / thin film method, it is necessary to select an inorganic compound that absorbs visible light. Examples thereof include chalcogenide elements and compounds thereof, oxides, III-V group elements and oxides thereof. Typical examples include CdSe and CdS. Aggregates, sintered bodies, and thin films of fine particles of inorganic compounds are preferable as electromagnetic wave absorption / photoelectric conversion sites. A composite material of a target inorganic compound having visible absorption and a compound having no visible absorption is also useful, and can be selected from various forms such as a form in which visible absorption fine particles are dispersed on the other side, or a form in which both form a layer. The method for adjusting the absorption spectrum using the quantum dot effect of the nanoparticles by controlling the size and size distribution of the inorganic fine particle compound is very preferable for the present invention. As an example, the absorption spectrum of nano-sized particles of CdSe can be adjusted depending on the particle size. For example, blue light absorption can be adjusted around 2 nm, green light absorption around 5 nm, and red light absorption around 8 nm. Therefore, it is possible to create a preferable spectrum by adjusting the size and size, which is preferable for the present invention.

<多画素画像素子の製造と使用素材>
上記の複数層の電磁波吸収・光電変換部位が積層された多画素撮像素子の各層構成材料及び製造プロセスについてさらに説明する。
多画素撮像素子は、例えば図8を用いて後述する製造プロセスにて、作成したい画像素子の画素サイズに対して、塗設する各感色性層、電極層に使用する各要素の塗設量を調節し、その厚みを画素サイズよりも小さくする事により本発明の撮像素子を得ることが出来る。その各要素および各要素の作成方法について、以下に説明する。
<Manufacture of multi-pixel image elements and materials used>
Each layer constituent material and manufacturing process of the multi-pixel imaging device in which the plurality of layers of electromagnetic wave absorption / photoelectric conversion parts are laminated will be further described.
The multi-pixel image sensor is applied to each color-sensitive layer to be applied and the amount of each element to be used for the electrode layer with respect to the pixel size of the image element to be created, for example, in the manufacturing process described later with reference to FIG. The image pickup device of the present invention can be obtained by adjusting the thickness and making the thickness smaller than the pixel size. Each element and a method for creating each element will be described below.

本発明においては、多層の電磁波吸収・光電変換部位に光透過性電極を用いることが好ましく、その例としてはITO、ATOなどのインジウム・錫・アンチモンなどの酸化物、銀・銅・金・アルミなどの非常に薄い金属薄膜、あるいは金属のメッシュ電極などから選択することが出来る。
その形成方法としては、レーザアブレ-ジョン法,スパッタ法などで形成できる。
In the present invention, it is preferable to use a light-transmitting electrode in a multilayer electromagnetic wave absorption / photoelectric conversion site, and examples thereof include oxides such as ITO, ATO, such as indium, tin, and antimony, silver, copper, gold, and aluminum. It is possible to select from a very thin metal thin film such as a metal mesh electrode.
As the formation method, it can be formed by a laser ablation method, a sputtering method or the like.

有機薄膜方式において可視光に吸収を有する化合物としては、いかなるものを用いても良いが、好ましくは、シアニン色素、スチリル色素、ヘミシアニン色素、メロシアニン色素(ゼロメチンメロシアニン(シンプルメロシアニン)を含む)、3核メロシアニン色素、4核メロシアニン色素、ロダシアニン色素、コンプレックスシアニン色素、コンプレックスメロシアニン色素、アロポーラー色素、オキソノール色素、ヘミオキソノール色素、スクアリウム色素、クロコニウム色素、アザメチン色素、クマリン色素、アリーリデン色素、アントラキノン色素、トリフェニルメタン色素、アゾ色素、アゾメチン色素、スピロ化合物、メタロセン色素、フルオレノン色素、フルギド色素、ペリレン色素、フェナジン色素、フェノチアジン色素、キノン色素、インジゴ色素、ジフェニルメタン色素、ポリエン色素、アクリジン色素、アクリジノン色素、ジフェニルアミン色素、キナクリドン色素、キノフタロン色素、フェノキサジン色素、フタロペリレン色素、ポルフィリン色素、クロロフィル色素、フタロシアニン色素、金属錯体色素が挙げられる。   As the compound that absorbs visible light in the organic thin film system, any compound may be used, but preferably a cyanine dye, a styryl dye, a hemicyanine dye, a merocyanine dye (including zero methine merocyanine (simple merocyanine)), 3 Nuclear merocyanine dye, 4-nuclear merocyanine dye, rhodacyanine dye, complex cyanine dye, complex merocyanine dye, allopolar dye, oxonol dye, hemioxonol dye, squalium dye, croconium dye, azamethine dye, coumarin dye, arylidene dye, anthraquinone dye, tri Phenylmethane dye, azo dye, azomethine dye, spiro compound, metallocene dye, fluorenone dye, fulgide dye, perylene dye, phenazine dye, phenothiazine dye, key Emissions dyes, indigo dyes, diphenylmethane dyes, polyene dyes, acridine dyes, acridinone dyes, diphenylamine dyes, quinacridone dyes, quinophthalone dyes, phenoxazine dyes, phthaloperylene dyes, porphyrin dyes, chlorophyll dyes, phthalocyanine dyes and metal complex dyes.

本発明の目的の一つである、カラーイメージセンサーとして用いるためには、吸収波長の調整の自由度の高い、シアニン色素、スチリル色素、ヘミシアニン色素、メロシアニン色素、3核メロシアニン色素、4核メロシアニン色素、ロダシアニン色素、コンプレックスシアニン色素、コンプレックスメロシアニン色素、アロポーラー色素、オキソノール色素、ヘミオキソノール色素、スクアリウム色素、クロコニウム色素、アザメチン色素などのメチン色素を好ましく用いることができる。さらに好ましくはメロシアニン色素、3核メロシアニン色素、4核メロシアニン色素であり、さらに好ましくはメロシアニン色素である。   Cyanine dye, styryl dye, hemicyanine dye, merocyanine dye, trinuclear merocyanine dye, tetranuclear merocyanine dye having a high degree of freedom in adjusting the absorption wavelength for use as a color image sensor, which is one of the objects of the present invention A methine dye such as rhodacyanine dye, complex cyanine dye, complex merocyanine dye, allopolar dye, oxonol dye, hemioxonol dye, squalium dye, croconium dye or azamethine dye can be preferably used. More preferred are merocyanine dyes, trinuclear merocyanine dyes, and tetranuclear merocyanine dyes, and more preferred are merocyanine dyes.

これらのメチン色素の詳細については、下記の色素文献に記載されている。
エフ・エム・ハーマー(F.M.Harmer)著「ヘテロサイクリック・コンパウンズーシアニンダイズ・アンド・リレィティド・コンパウンズ(Heterocyclic Compounds-Cyanine Dyes and Related Compounds)」、ジョン・ウィリー・アンド・サンズ(John Wiley & Sons)社、ニューヨーク、ロンドン、1964年刊、
デー・エム・スターマー(D.M.Sturmer)著「ヘテロサイクリック・コンパウンズースペシャル・トピックス・イン・ヘテロサイクリック・ケミストリー(Heterocyclic Compounds-Special topics in heterocyclic chemistry)」、第18章、第14節、第482から515頁、ジョン・ウィリー・アンド・サンズ(John Wiley & Sons) 社、ニューヨーク、ロンドン、1977年刊、
「ロッズ・ケミストリー・オブ・カーボン・コンパウンズ(Rodd's Chemistry of Carbon Compounds)」2nd.Ed.vol.IV,partB,1977刊、第15章、第369から422頁、エルセビア・サイエンス・パブリック・カンパニー・インク(Elsevier Science Publishing Company Inc.)社刊、ニューヨーク、など。
Details of these methine dyes are described in the following dye literature.
FMHarmer, `` Heterocyclic Compounds-Cyanine Dyes and Related Compounds, '' John Wiley & Sons New York, London, 1964,
From DMSturmer, "Heterocyclic Compounds-Special topics in cyclic chemistry", Chapter 18, Section 14, 482 515, John Wiley & Sons, New York, London, 1977,
"Rodd's Chemistry of Carbon Compounds" 2nd. Ed. Vol. IV, part B, 1977, Chapter 15, pages 369-422, Elsevier Science Public Company, Inc. (Elsevier Science Publishing Company Inc.), New York, etc.

さらに、リサーチ・ディスクロージャ(RD)17643の23〜24頁、RD18716の648頁右欄〜649頁右欄、RD308119の996頁右欄〜998頁右欄、欧州特許第0565096A1号の第65頁7〜10行、に記載されているものを好ましく用いることができる。また、米国特許第5,747,236号(特に第30〜39頁)、米国特許第5,994,051号(特に第32〜43頁)、米国特許第5、340、694号(特に第21〜58頁、但し、(XI)、(XII)、(XIII)に示されている色素において、n12、n15、n17、n18の数は限定せず、0以上の整数(好ましくは4以下)とする。)に記載されている、一般式及び具体例で示された部分構造、又は構造を持つ色素も好ましく用いることができる。 Further, Research Disclosure (RD) 17643, pages 23-24, RD18716, page 648, right column to page 649, right column, RD308119, page 996, right column to page 998, right column, European Patent No. 0565096A1, page 65, 7- Those described in line 10, can be preferably used. Also, U.S. Pat. No. 5,747,236 (especially pages 30-39), U.S. Pat. No. 5,994,051 (especially pages 32-43), U.S. Pat. No. 5,340,694 (especially 21-58, provided that the number of n 12 , n 15 , n 17 , n 18 is not limited in the dyes shown in (XI), (XII), (XIII), and is an integer of 0 or more (preferably 4 or less), and a dye having a partial structure or structure shown in the general formula and specific examples can also be preferably used.

これらの有機化合物層は、乾式成膜法あるいは湿式成膜法により成膜される。乾式成膜法の具体的な例としては、真空蒸着法、イオンプレーティング法,MBE法等の物理気相成長法あるいはプラズマ重合等のCVD法が挙げられる。湿式成膜法としては、キャスト法、スピンコート法、ディッピング法、LB法等が用いられる。
可視光に吸収を有する化合物として高分子化合物を用いる場合は、作成の容易な湿式成膜法により成膜することが好ましい。蒸着等の乾式成膜法を用いた場合、高分子を用いることは分解のおそれがあるため難しく、代わりとしてそのオリゴマーを好ましく用いることができる。
一方、低分子を用いた場合、共蒸着等の乾式成膜法により成膜することが好ましい。
These organic compound layers are formed by a dry film forming method or a wet film forming method. Specific examples of the dry film forming method include a physical vapor deposition method such as a vacuum deposition method, an ion plating method, and an MBE method, or a CVD method such as plasma polymerization. As the wet film forming method, a casting method, a spin coating method, a dipping method, an LB method, or the like is used.
When a polymer compound is used as the compound having absorption in visible light, it is preferable to form a film by a wet film forming method that is easy to create. When a dry film formation method such as vapor deposition is used, it is difficult to use a polymer because it may be decomposed, and an oligomer thereof can be preferably used instead.
On the other hand, when a low molecule is used, it is preferable to form a film by a dry film forming method such as co-evaporation.

有機・無機ハイブリッド方式は、TiO2、ZnO、SnO2、ZnS、CdS、ZnSe、CdSeなどの酸化物、硫化物、およびそれらの混晶から基板を選択することができる。基板はナノ粒子の集合体、焼結体、薄膜、細孔を施した薄膜、それらの混合体から出来るだけ被表面積が大きい材料を選択することが好ましい。これらの表面を利用して分光増感型の色素を吸着させる必要がある。分光増感型の色素として、写真工業、電子写真、色増感太陽電池などで知られている種々の色素を選択することが出来る。 In the organic / inorganic hybrid system, a substrate can be selected from oxides such as TiO 2 , ZnO, SnO 2 , ZnS, CdS, ZnSe, and CdSe, sulfides, and mixed crystals thereof. For the substrate, it is preferable to select a material having as large a surface area as possible from an aggregate of nanoparticles, a sintered body, a thin film, a thin film with pores, or a mixture thereof. It is necessary to adsorb spectral sensitizing dyes using these surfaces. Various dyes known in the photographic industry, electrophotography, color sensitized solar cells and the like can be selected as spectral sensitizing dyes.

基板の粒径は、一般にnmからμmのレベルであるが、投影面積を円に換算したときの直径から求めた一次粒子の平均粒径は1〜200nmであるのが好ましく、1〜10nmがより好ましい。
種類の異なる2種以上の基板を混合して用いてもよい。
基板の作製法としては、作花済夫の「ゾル−ゲル法の科学」アグネ承風社(1998年)、技術情報協会の「ゾル−ゲル法による薄膜コーティング技術」(1995年)等に記載のゾル−ゲル法、杉本忠夫の「新合成法ゲル−ゾル法による単分散粒子の合成とサイズ形態制御」、まてりあ,第35巻,第9号,1012〜1018頁(1996年)に記載のゲル−ゾル法が好ましい。またDegussa社が開発した塩化物を酸水素塩中で高温加水分解により酸化物を作製する方法も好ましい。
The particle size of the substrate is generally on the level of nm to μm, but the average particle size of the primary particles obtained from the diameter when the projected area is converted to a circle is preferably 1 to 200 nm, more preferably 1 to 10 nm. preferable.
Two or more different types of substrates may be mixed and used.
The substrate fabrication method is described in Sakuo Sakuo's "Sol-Gel Method Science" Agne Jofusha (1998), Technical Information Association's "Sol-Gel Method for Thin Film Coating" (1995), etc. Sol-gel method, Tadao Sugimoto's "Synthesis and size control of monodisperse particles by new synthesis gel-sol method", Materia, Vol. 35, No. 9, pp. 1012-1018 (1996) The gel-sol method described is preferred. Also preferred is a method developed by Degussa to produce an oxide by high-temperature hydrolysis of chloride in an oxyhydrogen salt.

基板が酸化チタンの場合、上記ゾル−ゲル法、ゲル−ゾル法、塩化物の水素塩中での高温加水分解法はいずれも好ましいが、さらに清野学の「酸化チタン物性と応用技術」技報堂出版(1997年)に記載の硫酸法及び塩素法を用いることもできる。さらにゾル−ゲル法として、Barbeらのジャーナル・オブ・アメリカン・セラミック・ソサエティー,第80巻,第12号,3157〜3171頁(1997年)に記載の方法や、Burnsideらのケミストリー・オブ・マテリアルズ,第10巻,第9号,24 19〜2425頁に記載の方法も好ましい。   When the substrate is titanium oxide, the sol-gel method, the gel-sol method, and the high-temperature hydrolysis method in the hydrogen chloride salt are all preferred, but Kiyoshi Manabu's “Titanium Oxide Properties and Applied Technology”, Gihodo Publishing The sulfuric acid method and chlorine method described in (1997) can also be used. Further, as the sol-gel method, the method described in Journal of American Ceramic Society of Barbe et al., Vol. 80, No. 12, pp. 3157-3171 (1997), and the chemistry of Burnside et al. , Vol. 10, No. 9, 24 19-2425 are also preferred.

半導体微粒子を塗布するには、半導体微粒子の分散液又はコロイド溶液を塗布する方法の他に、ゾル−ゲル法等を使用することもできる。また、金属を酸化する方法、金属溶液から配位子交換等で液相にて析出させる方法(LPD法)、スパッタ等で蒸着する方法、CVD法、あるいは加温した基板上に熱分解する金属酸化物プレカーサーを吹き付けて金属酸化物を形成するSPD法を利用することもできる。
半導体微粒子の分散液を作製する方法としては、前述のゾル−ゲル法の他に、乳鉢ですり潰す方法、ミルを使って粉砕しながら分散する方法、又は半導体を合成する際に溶媒中で微粒子として析出させそのまま使用する方法等が挙げられる。
In order to apply semiconductor fine particles, a sol-gel method or the like can be used in addition to a method of applying a dispersion or colloidal solution of semiconductor fine particles. Also, a method of oxidizing metal, a method of depositing in a liquid phase from a metal solution by ligand exchange, etc. (LPD method), a method of vapor deposition by sputtering, a CVD method, or a metal that thermally decomposes on a heated substrate An SPD method in which a metal oxide is formed by spraying an oxide precursor can also be used.
In addition to the sol-gel method described above, a method of preparing a dispersion of semiconductor fine particles includes a method of grinding with a mortar, a method of dispersing while grinding using a mill, or a fine particle in a solvent when synthesizing a semiconductor. The method of depositing and using as it is is mentioned.

塗布方法としては、アプリケーション系としてローラ法、ディップ法等、メータリング系としてエアーナイフ法、ブレード法、アプリケーションとメータリングを同一部分にできるものとして、特公昭58-4589号に開示されているワイヤーバー法、米国特許2681294号、同2761419号、同2761791号等に記載のスライドホッパー法、エクストルージョン法、カーテン法等が好ましい。また汎用機としてスピン法又はスプレー法も好ましい。湿式印刷方法としては、凸版、オフセット及びグラビアの3大印刷法をはじめ、凹版、ゴム版、スクリーン印刷等が好ましい。これらの中から、液粘度やウェット厚さに応じて、好ましい製膜方法を選択する。   As the application method, roller method, dipping method, etc. as application system, air knife method, blade method as metering system, wire that is disclosed in Japanese Patent Publication No. 58-4589 as application and metering can be made the same part The bar method, the slide hopper method, the extrusion method, the curtain method and the like described in U.S. Pat. Nos. 2,681,294, 2,714,419 and 2,767,911, are preferred. A spin method or a spray method is also preferred as a general purpose machine. As the wet printing method, intaglio, rubber plate, screen printing and the like are preferred, including the three major printing methods of letterpress, offset and gravure. From these, a preferred film forming method is selected according to the liquid viscosity and the wet thickness.

基板を電極上に塗布した後で基板微粒子同士を電子的に接触させるとともに、塗膜強度の向上や支持体との密着性を向上させるために、これを加熱処理するのが好ましい。好ましい加熱温度の範囲は40〜700℃であり、より好ましくは100〜600℃である。また加熱時間は10分〜10時間程度である。   After the substrate is applied on the electrode, the substrate fine particles are brought into electronic contact with each other, and in order to improve the coating film strength and the adhesion to the support, it is preferably heat-treated. The range of preferable heating temperature is 40-700 degreeC, More preferably, it is 100-600 degreeC. The heating time is about 10 minutes to 10 hours.

基板は、多くの色素を吸着することができるように大きい表面積を有することが好ましい。半導体微粒子の層を支持体上に塗布した状態での表面積は、投影面積に対して10倍以上であるのが好ましく、さらに100倍以上であるのが好ましい。この上限は特に制限はないが、通常1000倍程度である。   The substrate preferably has a large surface area so that a large amount of dye can be adsorbed. The surface area of the semiconductor fine particle layer coated on the support is preferably at least 10 times, more preferably at least 100 times the projected area. The upper limit is not particularly limited, but is usually about 1000 times.

感光層に用いる増感色素は、可視域や近赤外域に吸収を有し、半導体を増感しうる化合物なら任意に用いることができ、有機金属錯体色素、メチン色素、ポルフィリン系色素又はフタロシアニン系色素が好ましく、メチン色素が好ましい。
本発明に使用する色素の好ましいメチン色素は、シアニン色素、メロシアニン色素、スクワリリウム色素等のポリメチン色素である。本発明で好ましく用いられるポリメチン色素の例としては、特開平11-35836号、特開平11-67285号、特開平11-86916号、特開平11-97725号、特開平11-158395号、特開平11-163378号、特開平11-214730号、特開平11-214731号、特開平11-238905号、特開2000-26487号、欧州特許892411号、同911841号及び同991092号の各明細書に記載の色素が挙げられる。
The sensitizing dye used in the photosensitive layer can be arbitrarily used as long as it is a compound that has absorption in the visible region and near infrared region and can sensitize a semiconductor. An organometallic complex dye, a methine dye, a porphyrin dye, or a phthalocyanine dye A dye is preferred, and a methine dye is preferred.
Preferred methine dyes for use in the present invention are polymethine dyes such as cyanine dyes, merocyanine dyes, and squarylium dyes. Examples of polymethine dyes preferably used in the present invention include JP-A-11-35836, JP-A-11-67285, JP-A-11-86916, JP-A-11-97725, JP-A-11-158395, and JP-A-11-158395. 11-163378, JP-A-11-214730, JP-A-11-214731, JP-A-11-238905, JP-A-2000-26487, European Patents 892411, 918441 and 991092 And the described dyes.

無機粒子・薄膜方式は、可視光を吸収する無機化合物を選択する必要がある。それらの例として、カルコゲナイド、酸化物、III−V族などがある。代表的なものとしてCdSe・CdSなどがある。無機化合物の微粒子の集合体、焼結体、薄膜は電磁波吸収・光電変換部位として好ましい。また目的の可視吸収を持つ無機化合物と持たない化合物を複合化した材料も有用であり、可視吸収微粒子を他方で分散した形態、あるいは両者が層状をなす形態など種々のものから選択できる。無機微粒子化合物のサイズとサイズ分布を制御することにより、ナノ粒子の量子ドット効果を利用した吸収スペクトルの調整法は本発明に対して非常に好ましい。その一例として、CdSeのナノサイズ粒子は粒子サイズにより吸収スペクトルが調整でき、例えば、2nm前後で青光吸収を、5nm前後で緑光吸収を、8nm前後で赤光吸収を持たせることが出来る。従って、サイズとサイズ分を調整することにより、好ましいスペクトル作成することが可能となり本発明に対して好ましい。   In the inorganic particle / thin film method, it is necessary to select an inorganic compound that absorbs visible light. Examples include chalcogenides, oxides, III-V groups and the like. Typical examples include CdSe and CdS. Aggregates, sintered bodies, and thin films of fine particles of inorganic compounds are preferable as electromagnetic wave absorption / photoelectric conversion sites. A composite material of a target inorganic compound having visible absorption and a compound having no visible absorption is also useful, and can be selected from various forms such as a form in which visible absorption fine particles are dispersed on the other side, or a form in which both form a layer. The method of adjusting the absorption spectrum using the quantum dot effect of nanoparticles by controlling the size and size distribution of the inorganic fine particle compound is very preferable for the present invention. As an example, the absorption spectrum of nano-sized particles of CdSe can be adjusted depending on the particle size. For example, blue light absorption can be adjusted around 2 nm, green light absorption around 5 nm, and red light absorption around 8 nm. Therefore, it is possible to create a preferable spectrum by adjusting the size and size, which is preferable for the present invention.

カルコゲン化カドミウム半導体超微粒子を内核(コア;Core)としカルコゲン化亜鉛半導体を外殻(シェル;Shell)としたコア−シェル型と通称されている半導体超微粒子の製法はB.O.Dabbousi他J.Phys.Chem.B vol.101,(1997)9463-9475に記載されている。硫化亜鉛(ZnS)やCdS等の硫化物シェルを逆ミセル法や水溶液反応等の半導体超微粒子が水と接触する反応方法により形成する例が報告されている。即ち、B.S.Zouら;InternationalJournal of Quantum Chemistry,72巻,439−450(1999)にはCdSコアへのZnSシェルの形成について(他にCd(OH)2とCdOをシェル材料として検討)、L.Xuら;J.Mater.Sci.,35巻,1375−1378(2000)にはCdSeコアへのCdSシェルの形成について報告されている。
これらの半導体超微粒子を電極上に塗設する手段としては、公知の手段を利用することが出来、例えば、有機溶媒の分散液を作成してスピンコートにより塗設することが出来る。
A method of producing a semiconductor ultrafine particle called a core-shell type in which a calcium cadmium semiconductor ultrafine particle is an inner core (core) and a zinc chalcogenide semiconductor is a shell is described in BODabbousi et al., J. Phys. .B vol.101, (1997) 9463-9475. Examples have been reported in which sulfide shells such as zinc sulfide (ZnS) and CdS are formed by a reaction method in which semiconductor ultrafine particles are brought into contact with water, such as a reverse micelle method or an aqueous solution reaction. That is, B.I. S. Zou et al .; International Journal of Quantum Chemistry, Vol. 72, 439-450 (1999) on the formation of a ZnS shell on a CdS core (in addition, Cd (OH) 2 and CdO are considered as shell materials). Xu et al. Mater. Sci. 35, 1375-1378 (2000) report the formation of a CdS shell on a CdSe core.
As a means for coating these semiconductor ultrafine particles on the electrode, a known means can be used. For example, a dispersion of an organic solvent can be prepared and applied by spin coating.

本発明の多層積層多画素撮像素子は、公知の集積回路などの製造に用いるいわゆるミクロファブリケーションプロセスにしたがって製造することができる。
基本的には、この方法は活性光や電子線などによるパターン露光(水銀のi,g輝線、エキシマレーザー、さらにはX線、電子線)、現像及び/又はバーニングによるパターン形成、素子形成材料の配置(塗設、蒸着、スパッタ、CVなど)、非パターン部の材料の除去(熱処理、溶解処理など)の反復操作による。
典型例を図4と図8を参照しながら説明する。図8は、製造プロセスの説明のためにそのごく一部を示したものであり、図8aは出発素材である下地の平面図と率面図である。図4に示すN-subと記された下地の表面にソース用,ドレイン用の不純物領域と、ゲート絶縁膜8を介して形成されたゲート電極とが形成され、ゲート絶縁膜8及びゲート電極の上部にはさらに絶縁膜が積層されて平坦化され、その上に、図示しない遮光膜が積層される。遮光膜は、多くの場合、金属薄膜で形成されるため、更にその上に絶縁膜が形成されて図8bに平面図と立面図によって示された半導体基板が作られる(図4の2本の矢印の絶縁層より下側)。
The multilayer laminated multi-pixel imaging device of the present invention can be manufactured according to a so-called microfabrication process used for manufacturing a known integrated circuit or the like.
Basically, this method uses pattern exposure by active light or electron beam (mercury i, g emission line, excimer laser, X-ray, electron beam), pattern formation by development and / or burning, element formation material By repeated operations of placement (coating, vapor deposition, sputtering, CV, etc.) and removal of non-patterned material (heat treatment, dissolution treatment, etc.).
A typical example will be described with reference to FIGS. FIG. 8 shows a small part for explaining the manufacturing process, and FIG. 8a is a plan view and a ratio view of the base material as a starting material. Impurity regions for the source and drain and a gate electrode formed through the gate insulating film 8 are formed on the surface of the base denoted as N-sub shown in FIG. 4, and the gate insulating film 8 and the gate electrode are formed. An insulating film is further laminated on the upper portion to be flattened, and a light shielding film (not shown) is laminated thereon. Since the light-shielding film is often formed of a metal thin film, an insulating film is further formed thereon to form a semiconductor substrate shown in a plan view and an elevation view in FIG. (Below the insulation layer of the arrow).

このような構成の半導体基板上に、受光部となる光電変換膜を積層する。先ず、基板の絶縁膜上に、画素毎に区分けした対向電極膜を形成する。それには、この対向電極膜上にレジスト膜を塗設し、電極穴を作る(図8c)。次いで柱状の電極が蒸着又は塗設が行われたのち、図8dに示すようにレジスト膜は除去されて電極穴に電極が設けられる。この電極によって、下地の高濃度不純物領域と導通させる。この柱状の電極は、対向電極膜及び高濃度不純物領域以外とは電気的に絶縁される。
このようなレジスト塗設と塗膜上へのパターン描画(又は電子線やX線の直接描画)、レジスト除去、バ−ニングの反復がなされて画像素子が製造される。
A photoelectric conversion film serving as a light receiving portion is stacked on the semiconductor substrate having such a configuration. First, a counter electrode film divided for each pixel is formed on an insulating film of a substrate. For this purpose, a resist film is applied on the counter electrode film to form an electrode hole (FIG. 8c). Next, after columnar electrodes are deposited or coated, the resist film is removed and electrodes are provided in the electrode holes as shown in FIG. 8d. This electrode is connected to the underlying high concentration impurity region. This columnar electrode is electrically insulated from areas other than the counter electrode film and the high concentration impurity region.
An image element is manufactured by repeating such resist coating and pattern drawing on the coating film (or direct drawing of an electron beam or X-ray), resist removal, and burning.

図8bの基板上に図8c,dによってコンタクトホールが設けられると同様のプロセスの反復により、対向電極膜の上に、例えば赤色検出用の光電変換膜を画素毎に区分けして積層し、更にその上部に、同様に透明の共通電極膜を積層する。   When contact holes are provided according to FIGS. 8c and 8d on the substrate of FIG. 8b, a similar process is repeated to stack, for example, a red detection photoelectric conversion film for each pixel on the counter electrode film. Similarly, a transparent common electrode film is laminated on the upper portion.

この共通電極膜の上に、画素毎に区分けした緑色検出用の光電変換膜を積層し、その上部に、画素毎に区分けした透明の対向電極膜を積層する。この対向電極膜は、柱状の電極によって、対応画素の高濃度不純物領域に導通される。この柱状の電極は、対向電極膜及び高濃度不純物領域以外とは電気的に絶縁される。   On the common electrode film, a photoelectric conversion film for detecting green color divided for each pixel is laminated, and a transparent counter electrode film divided for each pixel is laminated thereon. The counter electrode film is electrically connected to the high concentration impurity region of the corresponding pixel by the columnar electrode. This columnar electrode is electrically insulated from areas other than the counter electrode film and the high concentration impurity region.

対向電極膜の上には、透明の絶縁膜が積層され、その上に、画素毎に区分けされた透明の対向電極膜が積層される。各対向電極膜は、夫々柱状の電極によって、対応画素の高濃度不純物領域に導通される。この柱状の電極は、対向電極膜及び高濃度不純物領域以外とは電気的に絶縁される。   A transparent insulating film is laminated on the counter electrode film, and a transparent counter electrode film divided for each pixel is laminated thereon. Each counter electrode film is electrically connected to the high concentration impurity region of the corresponding pixel by a columnar electrode. This columnar electrode is electrically insulated from areas other than the counter electrode film and the high concentration impurity region.

対向電極膜の上には、画素毎に区分けした青色検出用の光電変換膜が積層され、その上に、透明の共通電極膜が積層され、最上層に透明の保護膜が積層される。   On the counter electrode film, a photoelectric conversion film for detecting blue color divided for each pixel is laminated, a transparent common electrode film is laminated thereon, and a transparent protective film is laminated on the uppermost layer.

このような構成の光電変換膜積層型固体撮像素子では、被写体からの光が入射すると、青色光の入射光量に応じた光電荷が光電変換膜で発生し、共通電極膜と対向電極膜との間に電圧が印加されると青色光の光電荷が高濃度不純物領域に流れる。   In the photoelectric conversion film stacked solid-state imaging device having such a configuration, when light from a subject is incident, a photoelectric charge corresponding to the amount of incident blue light is generated in the photoelectric conversion film, and the common electrode film and the counter electrode film are When a voltage is applied between them, blue light photocharge flows into the high concentration impurity region.

同様に、入射光のうちの緑色光の光量に応じた光電荷が光電変換膜で発生し、共通電極膜と対向電極膜との間に電圧が印加されると緑色光の光電荷が高濃度不純物領域に流れる。   Similarly, a photoelectric charge corresponding to the amount of green light in the incident light is generated in the photoelectric conversion film, and when a voltage is applied between the common electrode film and the counter electrode film, the green light photoelectric charge has a high concentration. It flows into the impurity region.

同様に、入射光のうちの赤色光の光量に応じた光電荷が光電変換膜で発生し、共通電極膜と対向電極膜との間に電圧が印加されると緑色光の光電荷が高濃度不純物領域に流れる。そして、各高濃度不純物領域の信号電荷に応じた信号が、例えばMOS回路によって外部に読み出される。   Similarly, a photoelectric charge corresponding to the amount of red light of the incident light is generated in the photoelectric conversion film, and when a voltage is applied between the common electrode film and the counter electrode film, the green light photoelectric charge has a high concentration. It flows into the impurity region. Then, a signal corresponding to the signal charge in each high concentration impurity region is read to the outside by, for example, a MOS circuit.

上記説明では、光吸収・光電変換層が、赤、緑及び青の3感光層の場合について述べたが、青緑層(GB中間色:エメラルド色)など更なる光吸収・光電変換層が付加された画素ユニットの場合も上記と同様に重層することができて、入射光の吸収・光電変換過程も上記同様に進行する。   In the above description, the case where the light absorption / photoelectric conversion layer is three photosensitive layers of red, green and blue has been described. However, a further light absorption / photoelectric conversion layer such as a blue-green layer (GB intermediate color: emerald color) is added. In the case of the pixel unit, the layers can be stacked in the same manner as described above, and the incident light absorption / photoelectric conversion process also proceeds in the same manner as described above.

なお、この実施形態は、半導体基板に形成したMOS回路で信号を読み出す構成としたが、色信号蓄積用の高濃度不純物領域の蓄積電荷を、従来のCCD型イメージセンサと同様に、垂直転送路に沿って移動させ、水平転送路に沿って外部に読み出す構成とすることもできる。   In this embodiment, a signal is read out by a MOS circuit formed on a semiconductor substrate. However, the charge stored in the high-concentration impurity region for storing the color signal is transferred to the vertical transfer path as in the conventional CCD image sensor. It is also possible to adopt a configuration in which the data is read along the horizontal transfer path and read out to the outside.

<撮像素子の利用の態様>
本発明の撮像素子は、デジタルスチルカメラに利用することが出来る。また、TVカメラに用いることも好ましい。その他の用途として、デジタルビデオカメラ、下記用途などでの監視カメラ(オフィスビル、駐車場、金融機関・無人契約機、ショッピングセンター、コンビニエンスストア、アウトレットモール、百貨店、パチンコホール、カラオケボックス、ゲームセンター、病院)、その他各種のセンサー(テレビドアホン、個人認証用センサー、ファクトリーオートメーション用センサー、家庭用ロボット、産業用ロボット、配管検査システム)、医療用センサー(内視鏡、眼底カメラ)、テレビ会議システム、テレビ電話、カメラつきケータイ、自動車安全走行システム(バックガイドモニタ、衝突予測、車線維持システム)、テレビゲーム用センサーなどの用途に用いることが出来る。
<Aspect of use of image sensor>
The image sensor of the present invention can be used for a digital still camera. It is also preferable to use it for a TV camera. Other applications include digital video cameras, surveillance cameras for the following applications (office buildings, parking lots, financial institutions and unmanned contractors, shopping centers, convenience stores, outlet malls, department stores, pachinko halls, karaoke boxes, game centers, Hospital), various other sensors (TV door phone, personal authentication sensor, factory automation sensor, home robot, industrial robot, piping inspection system), medical sensor (endoscope, fundus camera), video conference system, It can be used for applications such as videophones, mobile phones with cameras, safe driving systems for vehicles (back guide monitors, collision prediction, lane keeping systems), and video game sensors.

中でも、本発明の撮像素子は、テレビカメラ用途としても適するものである。その理由は、色分解光学系を必要としないためにテレビカメラの小型軽量化を達成することが出来るためである。また、交換度で高解像力を有することから、ハイビジョン放送用テレビカメラに特に好ましい。この場合のハイビジョン放送用テレビカメラとは、デジタルハイビジョン放送用カメラを含むものである。
更に、本発明の撮像素子においては電磁波吸収・光電変換部位を実質的に赤外光に対して感度を持たないように作成することができる為、光学ローパスフィルターを不要とすることが出来、更なる高感度、高解像力が期待できる点で好ましい。
Among these, the image sensor of the present invention is suitable for TV camera applications. This is because a television camera can be reduced in size and weight because no color separation optical system is required. Moreover, since it has a high resolution in terms of the degree of exchange, it is particularly preferable for a television camera for high-definition broadcasting. In this case, the high-definition broadcast television camera includes a digital high-definition broadcast camera.
Furthermore, in the imaging device of the present invention, the electromagnetic wave absorption / photoelectric conversion site can be created so as not to be substantially sensitive to infrared light, so that an optical low-pass filter can be eliminated. It is preferable in that high sensitivity and high resolution can be expected.

更に、本発明の撮像素子においては厚みを薄くすることが可能であり、かつ色分解光学系が不要となる為、「日中と夜間のように異なる明るさの環境」、「静止している被写体と動いている被写体」など、異なる感度が要求される撮影シーン、その他分光感度、色再現性に対する要求が異なる撮影シーンに対して、本発明の撮像素子を交換して撮影する事により1台のカメラにて多様な撮影のニーズにこたえることが出来、同時に複数台のカメラを持ち歩く必要がない為、撮影者の負担も軽減する。交換の対象となる撮像素子としては、上記の他に赤外光撮影用、白黒撮影用、ダイナミックレンジの変更を目的に交換撮像素子を用意することが出来る。   Furthermore, the imaging device of the present invention can be made thin and no color separation optical system is required, so that “an environment with different brightness such as daytime and nighttime”, “still is stationary. For shooting scenes that require different sensitivities, such as `` subjects and moving subjects '', and other shooting scenes that require different spectral sensitivity and color reproducibility, replace the image sensor of the present invention and shoot. This camera can meet a variety of shooting needs and eliminates the need to carry multiple cameras at the same time, reducing the burden on the photographer. As an image sensor to be exchanged, an exchange image sensor can be prepared for infrared light photography, black-and-white photography, and dynamic range change in addition to the above.

本発明のTVカメラは、映像情報メディア学会編、テレビジョンカメラの設計技術(1999年8月20日、コロナ社発行、ISBN 4-339-00714-5)第2章の記述を参考にし、例えば図2.1テレビカメラの基本的な構成の色分解光学系及び撮像デバイスの部分を、本発明の撮像素子と置き換えることにより作製することができる。   The TV camera of the present invention can be obtained by referring to the description in Chapter 2 of the Video Information Media Society, Television Camera Design Technology (August 20, 1999, issued by Corona, ISBN 4-339-00714-5). Fig. 2.1 The television camera can be manufactured by replacing the color separation optical system and the image pickup device in the basic configuration with the image pickup device of the present invention.

本発明の説明のために参考として示す汎用CCDの水平方向の断面構造図である。FIG. 2 is a horizontal sectional view of a general-purpose CCD shown as a reference for explaining the present invention. 参考として示すFoveon型の無機半導体の積層型画像素子の画素構造を示す断面図である。It is sectional drawing which shows the pixel structure of the laminated image element of a Foveon type inorganic semiconductor shown as reference. 参考として示すハイブリッド型積層型画像素子の画素構造を示す断面図である。It is sectional drawing which shows the pixel structure of the hybrid type | mold laminated image element shown as reference. 本発明の典型的な多層積層多画素撮像素子の断面図である。1 is a cross-sectional view of a typical multilayer stacked multi-pixel image sensor of the present invention. 本発明の多層積層多画素撮像素子の光電変換部位と信号読み取り・転送部位の構成をさらに具体的に示す斜視図である。It is a perspective view which shows more specifically the structure of the photoelectric conversion site | part and signal reading / transfer site | part of the multilayer lamination | stacking multi-pixel image pick-up element of this invention. 典型的な有機薄膜型の電磁波吸収・光電変換部位の動作原理を模式的に示す図である。It is a figure which shows typically the operating principle of a typical organic thin film type electromagnetic wave absorption and photoelectric conversion site | part. 単層色素/無機基板分光増感型の感光ユニットの構成と動作原理を模式的に示した図である。It is the figure which showed typically the structure and operating principle of a single layer dye / inorganic substrate spectral sensitization type photosensitive unit. 本発明の多層積層多画素撮像素子の製造初期プロセスa〜dを説明のために模式的に示した図である。It is the figure which showed typically the manufacture initial process ad of the multilayer lamination multi-pixel image sensor of this invention for description.

Claims (21)

異なる波長の電磁波を吸収し、光電変換しうる複数の電磁波吸収層、各電磁波吸収層を挟む一対の電極、電荷伝送・電荷読み出し部位、及び該一対の電極の少なくとも一方と電荷伝送・電荷読み出し部位とを連結する複数のコンタクト部位から少なくとも構成される画素ユニットを有する撮像素子であって、画素サイズ(多層の電磁波吸収層の内、最大の面積を与える電磁波吸収層と同じ面積の円相当直径)よりも上記画素ユニットが有する電極の中で両最外側にある電極の最外表面間の長さの方が小さいことを特徴とする多層積層多画素撮像素子。   A plurality of electromagnetic wave absorbing layers capable of absorbing and electromagnetically converting electromagnetic waves of different wavelengths, a pair of electrodes sandwiching each electromagnetic wave absorbing layer, a charge transmission / charge reading portion, and a charge transmission / charge reading portion with at least one of the pair of electrodes An image sensor having a pixel unit composed of at least a plurality of contact portions that connect to each other, and having a pixel size (a circle equivalent diameter of the same area as the electromagnetic wave absorbing layer that gives the largest area among the multilayered electromagnetic wave absorbing layers) A multilayer stacked multi-pixel imaging device characterized in that the length between the outermost surfaces of both outermost electrodes among the electrodes of the pixel unit is smaller. 上記複数の電磁波吸収層のうちの少なくとも一層が、青光、緑光、赤光、紫外光、赤外光、X線及びγ線のうちのいずれかを吸収し、光電変換することを特徴とする請求項1記載の多層積層多画素撮像素子。   At least one of the plurality of electromagnetic wave absorbing layers absorbs any one of blue light, green light, red light, ultraviolet light, infrared light, X-rays, and γ-rays, and performs photoelectric conversion. The multilayer laminated multi-pixel imaging device according to claim 1. 上記複数の電磁波吸収層が少なくとも3層の電磁波吸収層を有し、該3層がそれぞれ400〜500nmの青光、500〜600nmの緑光及び600〜700nmの赤光を吸収し、光電変換することを特徴とする請求項1記載の多層積層多画素撮像素子。   The plurality of electromagnetic wave absorbing layers have at least three electromagnetic wave absorbing layers, and the three layers absorb 400 to 500 nm of blue light, 500 to 600 nm of green light and 600 to 700 nm of red light, respectively, and perform photoelectric conversion. The multilayer laminated multi-pixel imaging device according to claim 1. 上記電荷伝送・電荷読み出し部位が、電荷移動度100cm2/volt・sec以上の半導体であることを特徴とする請求項1〜3のいずれかに記載の多層積層多画素撮像素子。 The multilayer stacked multi-pixel imaging device according to any one of claims 1 to 3, wherein the charge transfer / charge reading portion is a semiconductor having a charge mobility of 100 cm 2 / volt · sec or more. 上記電荷伝送・電荷読み出し部位が、CMOS構造又はCCD構造を有することを特徴とする請求項1〜4のいずれかに記載の多層積層多画素撮像素子。   The multilayer stacked multi-pixel imaging device according to claim 1, wherein the charge transfer / charge reading portion has a CMOS structure or a CCD structure. 複数のコンタクト部位が金属材料で構成されていることを特徴とする請求項1〜5のいずれかに記載の多層積層多画素撮像素子。   The multilayer stacked multi-pixel imaging device according to claim 1, wherein the plurality of contact portions are made of a metal material. 複数のコンタクト部位は、青光用取り出し電極と電荷転送・読み出し部位、緑光用取り出し電極と電荷転送・読み出し部位、及び赤光用取り出し電極と電荷転送・読み出し部位をそれぞれ連結する少なくとも3つのコンタクト部位を含んでいることを特徴とする請求項1〜6のいずれかに記載の多層積層多画素撮像素子。   The plurality of contact parts include at least three contact parts for connecting the blue light extraction electrode and the charge transfer / reading part, the green light extraction electrode and the charge transfer / reading part, and the red light extraction electrode and the charge transfer / reading part, respectively. The multilayer multilayer multi-pixel imaging device according to claim 1, wherein 画素サイズが、2〜20μmである請求項1〜7のいずれかに記載の多層積層多画素撮像素子。   The multilayer stacked multi-pixel imaging device according to claim 1, wherein the pixel size is 2 to 20 μm. 撮像素子の画素数が1〜100Mピクセルである請求項1〜8のいずれかに記載の多層積層多画素撮像素子。   The multilayer stacked multi-pixel imaging device according to claim 1, wherein the number of pixels of the imaging device is 1 to 100 M pixels. 複数の電磁波吸収層が、全体で、入射する400〜700nmの可視光の40%以上を吸収し、光電変換することを特徴とする請求項1〜9のいずれかに記載の多層積層多画素撮像素子。   The multilayered multi-pixel imaging according to any one of claims 1 to 9, wherein a plurality of electromagnetic wave absorbing layers absorb 40% or more of incident visible light of 400 to 700 nm as a whole and perform photoelectric conversion. element. 複数の電磁波吸収層のうち最大の開口率を有する電磁波吸収層の開口率が70%以上である請求項1〜10のいずれかに記載の多層積層多画素撮像素子。   The multilayer laminated multi-pixel image pickup device according to any one of claims 1 to 10, wherein the electromagnetic wave absorbing layer having the largest opening ratio among the plurality of electromagnetic wave absorbing layers has an opening ratio of 70% or more. 複数の電磁波吸収層が、少なくとも青光、青緑光、緑光及び赤光を吸収する4層の電磁波吸収層を含有することを特徴とする請求項1〜11のいずれかに記載の多層積層多画素撮像素子。   The multilayered multi-pixel according to any one of claims 1 to 11, wherein the plurality of electromagnetic wave absorbing layers include four electromagnetic wave absorbing layers that absorb at least blue light, blue green light, green light, and red light. Image sensor. 青光吸収用電磁波吸収層、緑光吸収用電磁波吸収層及び赤光吸収用電磁波吸収層の少なくともいずれか一つの電磁波吸収層が、二層以上の電磁波吸収層から構成されていることを特徴とする請求項3〜12のいずれかに記載の多層積層多画素撮像素子。   At least one of the electromagnetic wave absorbing layer for absorbing blue light, the electromagnetic wave absorbing layer for absorbing green light, and the electromagnetic wave absorbing layer for absorbing red light is composed of two or more electromagnetic wave absorbing layers. The multilayer laminated multi-pixel imaging device according to claim 3. 少なくとも一つの電磁波吸収層が、有機化合物膜を有することを特徴とする請求項1〜13のいずれかに記載の多層積層多画素撮像素子。   The multilayer laminated multi-pixel imaging device according to claim 1, wherein at least one electromagnetic wave absorbing layer has an organic compound film. 少なくとも一つの電磁波吸収層が、複数の有機化合物膜を有することを特徴とする請求項14に記載の多層積層多画素撮像素子。   The multilayer stacked multi-pixel imaging device according to claim 14, wherein at least one electromagnetic wave absorbing layer has a plurality of organic compound films. 少なくとも一つの電磁波吸収層が、酸化物又はカルコゲナイド半導体と分光増感色素を含有することを特徴とする請求項1〜15のいずれかに記載の多層積層多画素撮像素子。   The multilayer stacked multi-pixel imaging device according to claim 1, wherein at least one electromagnetic wave absorbing layer contains an oxide or a chalcogenide semiconductor and a spectral sensitizing dye. 少なくとも一つの電磁波吸収層が、無機化合物粒子、無機化合物薄膜、又はそれらの複合体を含有することを特徴とする請求項1〜15のいずれかに記載の多層積層多画素撮像素子。   The multilayer stacked multi-pixel imaging device according to claim 1, wherein the at least one electromagnetic wave absorbing layer contains inorganic compound particles, an inorganic compound thin film, or a composite thereof. 請求項1〜17のいずれかに記載の撮像素子を用いることを特徴とする放送用テレビカメラ。   A broadcast television camera using the image pickup device according to claim 1. 光学ローパスフィルタを用いないことを特徴とする請求項18に記載の放送用テレビカメラ。   19. The broadcast television camera according to claim 18, wherein an optical low-pass filter is not used. 前記撮像素子が交換可能であることを特徴とする請求項18又は19に記載の放送用テレビカメラ。   The broadcast television camera according to claim 18 or 19, wherein the image pickup device is replaceable. 前記放送用テレビカメラがハイビジョン放送用であることを特徴とする請求項18〜20のいずれかに記載の放送用テレビカメラ。   The broadcast television camera according to any one of claims 18 to 20, wherein the broadcast television camera is for high-definition broadcasting.
JP2004080617A 2004-03-19 2004-03-19 Multilayer lamination multi-pixel imaging element and television camera Pending JP2005268609A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004080617A JP2005268609A (en) 2004-03-19 2004-03-19 Multilayer lamination multi-pixel imaging element and television camera
US11/082,697 US7411620B2 (en) 2004-03-19 2005-03-18 Multilayer deposition multipixel image pickup device and television camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004080617A JP2005268609A (en) 2004-03-19 2004-03-19 Multilayer lamination multi-pixel imaging element and television camera

Publications (1)

Publication Number Publication Date
JP2005268609A true JP2005268609A (en) 2005-09-29

Family

ID=34985349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004080617A Pending JP2005268609A (en) 2004-03-19 2004-03-19 Multilayer lamination multi-pixel imaging element and television camera

Country Status (2)

Country Link
US (1) US7411620B2 (en)
JP (1) JP2005268609A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227574A (en) * 2006-02-22 2007-09-06 Fujifilm Corp Photoelectric conversion element, and solid-state imaging element
JP2007336362A (en) * 2006-06-16 2007-12-27 Fujifilm Corp Information reader
JP2008227091A (en) * 2007-03-12 2008-09-25 Fujifilm Corp Photoelectric converting element and solid-state image pickup device
JP2008294058A (en) * 2007-05-22 2008-12-04 Saitama Univ Imaging device and manufacturing method thereof
JP2009049278A (en) * 2007-08-22 2009-03-05 Fujifilm Corp Photoelectric conversion element, manufacturing method of photoelectric conversion element, and solid-state imaging element
WO2009034971A1 (en) 2007-09-12 2009-03-19 Fujifilm Corporation Process for production of desubstituted compounds, organic semiconductor film and process for production of the film
JP2009099866A (en) * 2007-10-18 2009-05-07 Fujifilm Corp Photoelectric conversion element and solid-state imaging device
US7626156B2 (en) 2007-09-13 2009-12-01 Fujifilm Corporation Image sensor having plural pixels adjacent to each other in a thickness direction and method for manufacturing the same
US7847362B2 (en) 2007-07-06 2010-12-07 Canon Kabushiki Kaisha Photo detector, image sensor, photo-detection method, and imaging method
US8168781B2 (en) 2007-08-23 2012-05-01 Fujifilm Corporation Organic semiconducting material, and film, organic electronic device and infrared dye composition each including said material
US8319090B2 (en) 2008-05-30 2012-11-27 Fujifilm Corporation Organic photoelectric conversion material and organic thin-film photoelectric conversion device
JP2014526136A (en) * 2011-06-24 2014-10-02 ボリーメディアコミュニケーションズ(シンチェン)カンパニーリミテッド Mixed multispectral photosensitive pixel group
US9012761B2 (en) 2008-03-12 2015-04-21 Fujifilm Corporation Organic photoelectric conversion material and photoelectric conversion element using the same
US9331125B2 (en) 2014-03-19 2016-05-03 Kabushiki Kaisha Toshiba Solid-state imaging device using plasmon resonator filter

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7591783B2 (en) * 2003-04-01 2009-09-22 Boston Scientific Scimed, Inc. Articulation joint for video endoscope
US20050245789A1 (en) 2003-04-01 2005-11-03 Boston Scientific Scimed, Inc. Fluid manifold for endoscope system
US7578786B2 (en) 2003-04-01 2009-08-25 Boston Scientific Scimed, Inc. Video endoscope
US20040199052A1 (en) 2003-04-01 2004-10-07 Scimed Life Systems, Inc. Endoscopic imaging system
US8118732B2 (en) 2003-04-01 2012-02-21 Boston Scientific Scimed, Inc. Force feedback control system for video endoscope
US7479106B2 (en) * 2004-09-30 2009-01-20 Boston Scientific Scimed, Inc. Automated control of irrigation and aspiration in a single-use endoscope
CA2581124A1 (en) 2004-09-30 2006-04-13 Boston Scientific Scimed, Inc. Adapter for use with digital imaging medical device
US8083671B2 (en) 2004-09-30 2011-12-27 Boston Scientific Scimed, Inc. Fluid delivery system for use with an endoscope
JP4843951B2 (en) * 2005-01-27 2011-12-21 ソニー株式会社 Solid-state imaging device manufacturing method, solid-state imaging device, and camera
JP2006270021A (en) * 2005-02-28 2006-10-05 Fuji Photo Film Co Ltd Laminated photoelectric conversion element
JP4839008B2 (en) * 2005-03-28 2011-12-14 富士フイルム株式会社 Single-plate color solid-state image sensor
DE102005039365B4 (en) * 2005-08-19 2022-02-10 Infineon Technologies Ag Gate-controlled fin resistive element operating as a pinch - resistor for use as an ESD protection element in an electrical circuit and a device for protecting against electrostatic discharges in an electrical circuit
KR100653848B1 (en) * 2005-09-13 2006-12-05 (주)한비젼 Three dimensional multi-layer image sensor and it's fabrication method
JP2007081137A (en) * 2005-09-14 2007-03-29 Fujifilm Corp Photoelectric conversion device and solid-state imaging device
JP4669768B2 (en) * 2005-09-30 2011-04-13 富士フイルム株式会社 Variable resolution X-ray imaging apparatus and X-ray CT apparatus
US7955255B2 (en) 2006-04-20 2011-06-07 Boston Scientific Scimed, Inc. Imaging assembly with transparent distal cap
US8202265B2 (en) 2006-04-20 2012-06-19 Boston Scientific Scimed, Inc. Multiple lumen assembly for use in endoscopes or other medical devices
JP2008072090A (en) * 2006-08-14 2008-03-27 Fujifilm Corp Photoelectric conversion element, and solid-state imaging element
JP2008066402A (en) * 2006-09-05 2008-03-21 Fujifilm Corp Imaging device and imaging apparatus
JP4349456B2 (en) 2006-10-23 2009-10-21 ソニー株式会社 Solid-state image sensor
DE102007008756A1 (en) * 2007-02-22 2008-08-28 Siemens Ag Measuring head i.e. micromechanical measuring head, for optical endoscope, has image sensor formed for producing electrical image signals of image, where optics and image sensor form micro-lens system
EP2750191A1 (en) * 2007-03-12 2014-07-02 Fujifilm Corporation Photoelectric conversion element and solid-state imaging device
CN102017147B (en) * 2007-04-18 2014-01-29 因维萨热技术公司 Materials, systems and methods for optoelectronic devices
CN101345248B (en) * 2007-07-09 2010-07-14 博立码杰通讯(深圳)有限公司 Multi-optical spectrum light-sensitive device and preparation thereof
US8581933B2 (en) * 2007-09-04 2013-11-12 Lg Electronics Inc. System and method for displaying a rotated image in a display device
US8022493B2 (en) * 2007-09-27 2011-09-20 Dongbu Hitek Co., Ltd. Image sensor and manufacturing method thereof
JP5521312B2 (en) * 2008-10-31 2014-06-11 ソニー株式会社 SOLID-STATE IMAGING DEVICE, MANUFACTURING METHOD THEREOF, AND ELECTRONIC DEVICE
JP5353200B2 (en) * 2008-11-20 2013-11-27 ソニー株式会社 Solid-state imaging device and imaging device
KR20100057302A (en) * 2008-11-21 2010-05-31 삼성전자주식회사 Image sensor and method for manufacturing thereof
JP5005113B2 (en) * 2009-04-15 2012-08-22 オリンパスメディカルシステムズ株式会社 Semiconductor device and endoscope
FR2947952B1 (en) 2009-07-07 2011-11-25 Commissariat Energie Atomique PHOTO-DETECTOR DEVICE AND METHOD FOR PRODUCING A PHOTO-DETECTOR DEVICE
US20110094557A1 (en) 2009-10-27 2011-04-28 International Business Machines Corporation Method of forming semiconductor film and photovoltaic device including the film
US10147604B2 (en) * 2009-10-27 2018-12-04 International Business Machines Corporation Aqueous-based method of forming semiconductor film and photovoltaic device including the film
JP5117523B2 (en) * 2010-03-09 2013-01-16 株式会社東芝 Solid-state imaging device
JP5534927B2 (en) * 2010-05-06 2014-07-02 株式会社東芝 Solid-state imaging device
CN102893400B (en) * 2010-05-14 2015-04-22 松下电器产业株式会社 Solid-state image pickup device and method for manufacturing same
JP4882027B2 (en) * 2010-05-28 2012-02-22 信越ポリマー株式会社 Transparent conductive film and conductive substrate using the same
WO2012028847A1 (en) 2010-09-03 2012-03-08 Isis Innovation Limited Image sensor
JP6081694B2 (en) 2010-10-07 2017-02-15 株式会社半導体エネルギー研究所 Photodetector
JP2012238648A (en) * 2011-05-10 2012-12-06 Sony Corp Solid state image pickup device and electronic apparatus
US9369641B2 (en) 2011-06-24 2016-06-14 Boly Media Communications (Shenzhen) Co., Ltd Multi-depth-of-field light-sensing device, and system and method for use thereof having plural light-sensing pixel layers sense light signals with different wavelength bands from different distances
TWI575494B (en) 2011-08-19 2017-03-21 半導體能源研究所股份有限公司 Method for driving semiconductor device
WO2013099537A1 (en) 2011-12-26 2013-07-04 Semiconductor Energy Laboratory Co., Ltd. Motion recognition device
CN107340509B (en) 2012-03-09 2020-04-14 株式会社半导体能源研究所 Method for driving semiconductor device
US9541386B2 (en) 2012-03-21 2017-01-10 Semiconductor Energy Laboratory Co., Ltd. Distance measurement device and distance measurement system
WO2014097899A1 (en) * 2012-12-21 2014-06-26 富士フイルム株式会社 Solid-state image pickup device
KR20140111758A (en) 2013-03-12 2014-09-22 삼성전자주식회사 Image processing device and computing system having the same
US9729809B2 (en) 2014-07-11 2017-08-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method of semiconductor device or electronic device
US9871067B2 (en) 2015-11-17 2018-01-16 Taiwan Semiconductor Manufacturing Co., Ltd. Infrared image sensor component
US20180315788A1 (en) * 2017-05-01 2018-11-01 Visera Technologies Company Limited Image sensor
US10930709B2 (en) * 2017-10-03 2021-02-23 Lockheed Martin Corporation Stacked transparent pixel structures for image sensors
US10510812B2 (en) 2017-11-09 2019-12-17 Lockheed Martin Corporation Display-integrated infrared emitter and sensor structures
US11616941B2 (en) 2018-02-07 2023-03-28 Lockheed Martin Corporation Direct camera-to-display system
US10979699B2 (en) 2018-02-07 2021-04-13 Lockheed Martin Corporation Plenoptic cellular imaging system
US10690910B2 (en) 2018-02-07 2020-06-23 Lockheed Martin Corporation Plenoptic cellular vision correction
US10594951B2 (en) 2018-02-07 2020-03-17 Lockheed Martin Corporation Distributed multi-aperture camera array
US10838250B2 (en) 2018-02-07 2020-11-17 Lockheed Martin Corporation Display assemblies with electronically emulated transparency
US10652529B2 (en) 2018-02-07 2020-05-12 Lockheed Martin Corporation In-layer Signal processing
US10951883B2 (en) 2018-02-07 2021-03-16 Lockheed Martin Corporation Distributed multi-screen array for high density display
CN108805055B (en) * 2018-05-29 2021-03-23 武汉天马微电子有限公司 Display panel and display device
US10866413B2 (en) 2018-12-03 2020-12-15 Lockheed Martin Corporation Eccentric incident luminance pupil tracking
FR3093376B1 (en) * 2019-03-01 2022-09-02 Isorg COLOR AND INFRARED IMAGE SENSOR
FR3093377B1 (en) * 2019-03-01 2021-02-26 Isorg COLOR AND INFRARED IMAGE SENSOR
US10698201B1 (en) 2019-04-02 2020-06-30 Lockheed Martin Corporation Plenoptic cellular axis redirection
CN110491892A (en) * 2019-08-19 2019-11-22 德淮半导体有限公司 Imaging sensor and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193479A (en) * 1985-02-22 1986-08-27 Fuji Photo Film Co Ltd Solid state color image pickup device
JPS61204967A (en) * 1985-03-08 1986-09-11 Fuji Photo Film Co Ltd Solid color image sensor device
JP2002083946A (en) * 2000-09-07 2002-03-22 Nippon Hoso Kyokai <Nhk> Image sensor
JP2002353432A (en) * 2001-05-24 2002-12-06 Fuji Photo Film Co Ltd Functional nanostructure and optical element using the same
JP2003158254A (en) * 2001-11-22 2003-05-30 Nippon Hoso Kyokai <Nhk> Photoconductive film and solid-state image pickup device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58103165A (en) 1981-12-15 1983-06-20 Fuji Photo Film Co Ltd Solid-state color image pickup device of tripple-layer four-story structure
JP3315213B2 (en) 1993-09-21 2002-08-19 株式会社東芝 Image sensor
US5965875A (en) * 1998-04-24 1999-10-12 Foveon, Inc. Color separation in an active pixel cell imaging array using a triple-well structure
US6727521B2 (en) * 2000-09-25 2004-04-27 Foveon, Inc. Vertical color filter detector group and array
US7129466B2 (en) * 2002-05-08 2006-10-31 Canon Kabushiki Kaisha Color image pickup device and color light-receiving device
US7541627B2 (en) * 2004-03-08 2009-06-02 Foveon, Inc. Method and apparatus for improving sensitivity in vertical color CMOS image sensors
JP2006100766A (en) * 2004-08-31 2006-04-13 Fuji Photo Film Co Ltd Photoelectric conversion element and image pickup element, and method of applying electric field to those

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193479A (en) * 1985-02-22 1986-08-27 Fuji Photo Film Co Ltd Solid state color image pickup device
JPS61204967A (en) * 1985-03-08 1986-09-11 Fuji Photo Film Co Ltd Solid color image sensor device
JP2002083946A (en) * 2000-09-07 2002-03-22 Nippon Hoso Kyokai <Nhk> Image sensor
JP2002353432A (en) * 2001-05-24 2002-12-06 Fuji Photo Film Co Ltd Functional nanostructure and optical element using the same
JP2003158254A (en) * 2001-11-22 2003-05-30 Nippon Hoso Kyokai <Nhk> Photoconductive film and solid-state image pickup device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007227574A (en) * 2006-02-22 2007-09-06 Fujifilm Corp Photoelectric conversion element, and solid-state imaging element
US7999339B2 (en) 2006-02-22 2011-08-16 Fujifilm Corporation Photoelectric conversion device and solid-state imaging device
JP2007336362A (en) * 2006-06-16 2007-12-27 Fujifilm Corp Information reader
JP2008227091A (en) * 2007-03-12 2008-09-25 Fujifilm Corp Photoelectric converting element and solid-state image pickup device
JP2008294058A (en) * 2007-05-22 2008-12-04 Saitama Univ Imaging device and manufacturing method thereof
US7847362B2 (en) 2007-07-06 2010-12-07 Canon Kabushiki Kaisha Photo detector, image sensor, photo-detection method, and imaging method
JP2009049278A (en) * 2007-08-22 2009-03-05 Fujifilm Corp Photoelectric conversion element, manufacturing method of photoelectric conversion element, and solid-state imaging element
US8288939B2 (en) 2007-08-22 2012-10-16 Fujifilm Corporation Photoelectric conversion element, method for producing photoelectric conversion element, and solid-state imaging device
US8168781B2 (en) 2007-08-23 2012-05-01 Fujifilm Corporation Organic semiconducting material, and film, organic electronic device and infrared dye composition each including said material
US8568965B2 (en) 2007-08-23 2013-10-29 Fujifilm Corporation Organic semiconducting material, and film, organic electronic device and infrared dye composition each including said material
WO2009034971A1 (en) 2007-09-12 2009-03-19 Fujifilm Corporation Process for production of desubstituted compounds, organic semiconductor film and process for production of the film
US7626156B2 (en) 2007-09-13 2009-12-01 Fujifilm Corporation Image sensor having plural pixels adjacent to each other in a thickness direction and method for manufacturing the same
JP2009099866A (en) * 2007-10-18 2009-05-07 Fujifilm Corp Photoelectric conversion element and solid-state imaging device
US9012761B2 (en) 2008-03-12 2015-04-21 Fujifilm Corporation Organic photoelectric conversion material and photoelectric conversion element using the same
US8319090B2 (en) 2008-05-30 2012-11-27 Fujifilm Corporation Organic photoelectric conversion material and organic thin-film photoelectric conversion device
JP2014526136A (en) * 2011-06-24 2014-10-02 ボリーメディアコミュニケーションズ(シンチェン)カンパニーリミテッド Mixed multispectral photosensitive pixel group
US9331125B2 (en) 2014-03-19 2016-05-03 Kabushiki Kaisha Toshiba Solid-state imaging device using plasmon resonator filter

Also Published As

Publication number Publication date
US20050205958A1 (en) 2005-09-22
US7411620B2 (en) 2008-08-12

Similar Documents

Publication Publication Date Title
JP2005268609A (en) Multilayer lamination multi-pixel imaging element and television camera
JP4911445B2 (en) Organic and inorganic hybrid photoelectric conversion elements
JP4961111B2 (en) Photoelectric conversion film laminated solid-state imaging device and method for manufacturing the same
JP4905762B2 (en) Photoelectric conversion element, imaging element, and method for manufacturing the photoelectric conversion element
JP4972288B2 (en) Image sensor
JP4719597B2 (en) Photoelectric conversion device and solid-state imaging device
JP5244287B2 (en) Image sensor and method for applying electric field to image sensor
JP2007067194A (en) Organic photoelectric conversion device and stacked photoelectric conversion device
JP2005303266A (en) Imaging element, method of applying electric field thereto and electric field-applied element
JP2006100766A (en) Photoelectric conversion element and image pickup element, and method of applying electric field to those
JP2006270021A (en) Laminated photoelectric conversion element
JP2007324405A (en) Solid state imaging element
JP2011233908A (en) Photoelectric conversion element and imaging device
JP2009088292A (en) Photoelectric conversion element, imaging element, and optical sensor
JP5492939B2 (en) Manufacturing method of solid-state imaging device
JP4719531B2 (en) Photoelectric conversion element and imaging element
JP4695849B2 (en) Imaging sensor
JP2006237351A (en) Photoelectric conversion film, photoelectric conversion element, and process for producing photoelectric conversion film
JP2007059483A (en) Photoelectric conversion element, imaging device and method of applying electric field thereto
JP2008004899A (en) Solid-state imaging apparatus
JP2009054605A (en) Photoelectric conversion element, and imaging element
JP2007073742A (en) Photoelectric conversion element and solid-state image sensing element
JP2007080936A (en) Photoelectric conversion element and solid state imaging element
JP2007088440A (en) Photoelectric conversion device and imaging device
JP2007059487A (en) Photoelectric conversion film stacked type solid-state imaging device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060525

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061124

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071108

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071115

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100511