JP2008294058A - Imaging device and manufacturing method thereof - Google Patents

Imaging device and manufacturing method thereof Download PDF

Info

Publication number
JP2008294058A
JP2008294058A JP2007135468A JP2007135468A JP2008294058A JP 2008294058 A JP2008294058 A JP 2008294058A JP 2007135468 A JP2007135468 A JP 2007135468A JP 2007135468 A JP2007135468 A JP 2007135468A JP 2008294058 A JP2008294058 A JP 2008294058A
Authority
JP
Japan
Prior art keywords
receiving layer
region
wavelength selective
light receiving
organic light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007135468A
Other languages
Japanese (ja)
Other versions
JP5207436B2 (en
Inventor
Norihiko Kamata
憲彦 鎌田
Yukiro Takahashi
幸郎 高橋
Takehiro Ishimaru
雄大 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saitama University NUC
Original Assignee
Saitama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saitama University NUC filed Critical Saitama University NUC
Priority to JP2007135468A priority Critical patent/JP5207436B2/en
Publication of JP2008294058A publication Critical patent/JP2008294058A/en
Application granted granted Critical
Publication of JP5207436B2 publication Critical patent/JP5207436B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an imaging device which has small restrictions on substances usable for a photodetection film and can easily be made low-cost and high in performance and have large area, and a manufacturing method thereof. <P>SOLUTION: The imaging device includes a laminate of an organic photodetection layer with wavelength selective absorptivity for the red (R) range provided between two electrodes, an organic photodetection layer for wavelength selective absorptivity for the green (G) range provided between the two electrodes, and an organic photodetection layer for wavelength selective absorptivity for the blue (B) range provided between the two electrodes in no special order. Also provided is the manufacturing method of the imaging device. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、撮像素子およびその製造方法に関する。さらに詳細には、本発明は、赤(R)または緑(G)または青(B)領域の波長選択吸収性に優れた有機分子のそれぞれを含む有機受光層を有する撮像素子およびその製造方法に関する。   The present invention relates to an image sensor and a method for manufacturing the same. More specifically, the present invention relates to an imaging device having an organic light receiving layer containing each of organic molecules excellent in wavelength selective absorption in the red (R), green (G), or blue (B) region, and a method for manufacturing the same. .

図10の(1)に示すように、普及型撮像素子では、撮像面の手前にR、G、Bのカラーフィルタを置いて3原色を空間的に分離して撮像する。図10の(2)に示すように、高解像度撮像カメラでは、プリズムでR、G、Bの像に分離後、3枚の素子で個別に撮像する。(非特許文献1)
イメージセンサの基礎と応用、木内雄二、日刊工業新聞社、1991
As shown in (1) of FIG. 10, in the popular imaging element, R, G, and B color filters are placed in front of the imaging surface, and the three primary colors are spatially separated and imaged. As shown in (2) of FIG. 10, in the high-resolution imaging camera, the R, G, and B images are separated by the prism and then individually imaged by three elements. (Non-Patent Document 1)
Image sensor basics and applications, Yuji Kiuchi, Nikkan Kogyo Shimbun, 1991

普及型撮像素子では、撮像面の手前にR、G、Bのカラーフィルタを置いて3原色を空間的に分離して撮像するため、各色ごとの撮像有効面積は1/3以下となってしまう。このため安価で軽量小型化は可能だが、感度、空間分解能が低下する。   In a widespread type imaging device, R, G, and B color filters are placed in front of the imaging surface and the three primary colors are spatially separated and imaged, so the effective imaging area for each color is less than 1/3 . For this reason, it is cheap and can be reduced in weight and size, but sensitivity and spatial resolution are reduced.

一方、高解像度撮像カメラでは、プリズムでR、G、Bの像に分離後、3枚の素子で個別に撮像する。空間分解能は優れているが、プリズム光回路を使用するため、高価で重く大型化するという欠点があった。   On the other hand, in a high-resolution imaging camera, after separating into R, G, and B images by a prism, images are individually captured by three elements. Although the spatial resolution is excellent, since the prism optical circuit is used, there is a drawback that it is expensive, heavy and large.

また有機薄膜を真空蒸着することによって受光膜とする試みはあるが、真空蒸着法では製膜可能な物質が限られる上、製造コストが高くなり、大面積化も容易でない。   In addition, there is an attempt to obtain a light-receiving film by vacuum-depositing an organic thin film. However, the vacuum deposition method limits the substances that can be formed, increases the manufacturing cost, and does not easily increase the area.

そこで本発明の目的は、受光膜に使用できる物質の制限が少なく、容易に低コストで高性能が得られ、大面積化も可能な、新たな撮像素子とその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a new imaging device and a method for manufacturing the same, in which there are few restrictions on substances that can be used for the light receiving film, high performance can be easily obtained at low cost, and the area can be increased. .

本発明は、2つの電極の間に設けられた赤(R)領域の波長選択吸収性の有機受光層、
2つの電極の間に設けられた緑(G)領域の波長選択吸収性の有機受光層および
2つの電極の間に設けられた青(B)領域の波長選択吸収性の有機受光層
の順不同積層体を含む撮像素子に関する。
The present invention provides a red (R) wavelength selective absorption organic light-receiving layer provided between two electrodes,
A wavelength selective absorptive organic light receiving layer in the green (G) region provided between the two electrodes, and
The present invention relates to an image pickup device including a non-ordered laminated body of wavelength selective absorptive organic light-receiving layers in a blue (B) region provided between two electrodes.

本発明の撮像素子においては、以下の態様が好ましい。
(1)6つの電極の全て、または、光の入射側から5つの電極は、可視光透過性の電極である。
(2)各受光層の2つの電極は、略直交するストライプ状の電極である。
(3)赤(R)領域の波長選択吸収性の有機受光層が590nm以上、750nm以下の範囲に吸収ピークを有し、
緑(G)領域の波長選択吸収性の有機受光層が500 nm以上、590nm未満の範囲に吸収ピークを有し、
青(B)領域の波長選択吸収性の有機受光層が380 nm以上、500nm未満の範囲に吸収ピークを有する。
(4)赤(R)領域の波長選択吸収性の有機受光層が、赤(R)領域に波長選択吸収性を有する有機物質としてZnTPC(Zinc(II)-tetranitrophthalocyanine)、 Zinc-tetraaminophthalocyanine、これらのアルキル誘導体、およびこれらのアミド誘導体から成る群から選ばれる少なくとも1種を含有する。赤(R)領域に波長選択吸収性を有する有機物質の含有量と受光層の層厚は、赤領域の受光層の吸光度が0.6以上になるように設定される。
(5)緑(G)領域の波長選択吸収性の有機受光層が、緑(G)領域に波長選択吸収性を有する有機物質としてR6G(ローダミン6G)、キナクリドン誘導体(DEQ)、およびルブレンから成る群から選ばれる少なくとも1種を含有する。緑(G)領域に波長選択吸収性を有する有機物質の含有量と受光層の層厚は、緑領域の受光層の吸光度が0.6以上になるように設定される。
(6)青(B)領域の波長選択吸収性の有機受光層が、青(B)領域に波長選択吸収性を有する有機物質としてpoly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-[2,1',3]-thiadiazole)](F8BT)、クマリン6、およびジアミン誘導体(TPB)から成る群から選ばれる少なくとも1種を含有する。青(B)領域に波長選択吸収性を有する有機物質の含有量と受光層の層厚は、青領域の受光層の吸光度が0.6以上になるように設定される。
(7)有機受光層が、さらに導電性高分子を含有する。導電性高分子が、Poly[methylphenyl]silane(PMPS)、ポリフルオレンpoly[(9,9- dioctylfluorene] (PFO)、ポリフルオレン誘導体、poly[(9,9-dioctylfluorenyl-2,7-diyl)- co-(1,4-benzo-[2,1',3]-thiadiazole)](F8BT)、ポリパラフェニレンビニレン(PPV)、PPV誘導体、ポリチオフェン、ポリアニリン、ビニル高分子、カルバゾール、およびポリビニルカルバゾール(PVK)から成る群から選ばれる少なくとも1種である。
(8)光の入射側にガラス基板を有する。ガラス基板に、青(B)領域の波長選択吸収性の有機受光層、緑(G)領域の波長選択吸収性の有機受光層および赤(R)領域の波長選択吸収性の有機受光層をこの順に有する。
In the imaging device of the present invention, the following modes are preferable.
(1) All six electrodes or five electrodes from the light incident side are visible light transmissive electrodes.
(2) The two electrodes of each light receiving layer are striped electrodes that are substantially orthogonal to each other.
(3) The wavelength selective absorption organic light-receiving layer in the red (R) region has an absorption peak in the range of 590 nm to 750 nm,
The wavelength selective absorption organic light-receiving layer in the green (G) region has an absorption peak in the range of 500 nm or more and less than 590 nm,
The wavelength selective absorption organic light-receiving layer in the blue (B) region has an absorption peak in the range of 380 nm or more and less than 500 nm.
(4) The wavelength selective absorption organic light-receiving layer in the red (R) region includes ZnTPC (Zinc (II) -tetranitrophthalocyanine), Zinc-tetraaminophthalocyanine, and other organic substances having wavelength selective absorption in the red (R) region. It contains at least one selected from the group consisting of alkyl derivatives and amide derivatives thereof. The content of the organic substance having wavelength selective absorption in the red (R) region and the layer thickness of the light receiving layer are set so that the absorbance of the light receiving layer in the red region is 0.6 or more.
(5) The wavelength selective absorption organic light-receiving layer in the green (G) region is composed of R6G (rhodamine 6G), quinacridone derivative (DEQ), and rubrene as organic materials having wavelength selective absorption in the green (G) region. Contains at least one selected from the group. The content of the organic substance having wavelength selective absorption in the green (G) region and the thickness of the light receiving layer are set so that the absorbance of the light receiving layer in the green region is 0.6 or more.
(6) Blue (B) wavelength selective absorption organic light-receiving layer is a poly [(9,9-dioctylfluorenyl-2,7-diyl)-as an organic substance having wavelength selective absorption in the blue (B) region. co- (1,4-benzo- [2,1 ′, 3] -thiadiazole)] (F8BT), coumarin 6, and at least one selected from the group consisting of diamine derivatives (TPB). The content of the organic substance having wavelength selective absorption in the blue (B) region and the thickness of the light receiving layer are set so that the absorbance of the light receiving layer in the blue region is 0.6 or more.
(7) The organic light receiving layer further contains a conductive polymer. Conductive polymers are Poly [methylphenyl] silane (PMPS), polyfluorene poly [(9,9-dioctylfluorene] (PFO), polyfluorene derivatives, poly [(9,9-dioctylfluorenyl-2,7-diyl)- co- (1,4-benzo- [2,1 ', 3] -thiadiazole)] (F8BT), polyparaphenylene vinylene (PPV), PPV derivatives, polythiophene, polyaniline, vinyl polymer, carbazole, and polyvinyl carbazole ( At least one selected from the group consisting of PVK).
(8) A glass substrate is provided on the light incident side. A blue (B) wavelength selective absorption organic light receiving layer, a green (G) wavelength selective absorption organic light receiving layer, and a red (R) wavelength selective absorption organic light receiving layer are formed on a glass substrate. Have in order.

本発明は、さらに、赤(R)領域に波長選択吸収性を有する有機物質を含む溶液を、一方の電極表面に塗布して、赤(R)領域の波長選択吸収性の有機受光層を形成し、次いで有機受光層の上に他方の電極を形成する工程、
緑(G)領域に波長選択吸収性を有する有機物質を含む溶液を、一方の電極表面に塗布して、緑(G)領域の波長選択吸収性の有機受光層を形成し、次いで有機受光層の上に他方の電極を形成する工程、
青(B)領域に波長選択吸収性を有する有機物質を含む溶液を、一方の電極表面に塗布して、青(B)領域波長選択吸収性の有機受光層を形成し、次いで有機受光層の上に他方の電極を形成する工程、および
上記3つの有機受光層を積層する工程
を含む撮像素子の製造方法にも関する。
The present invention further forms a wavelength selective absorption organic light-receiving layer in the red (R) region by applying a solution containing an organic substance having wavelength selective absorption in the red (R) region to one electrode surface. And then forming the other electrode on the organic light-receiving layer,
A solution containing an organic substance having wavelength selective absorption in the green (G) region is applied to one electrode surface to form a wavelength selective absorption organic light receiving layer in the green (G) region, and then the organic light receiving layer Forming the other electrode on the substrate,
A solution containing an organic substance having wavelength selective absorption in the blue (B) region is applied to one electrode surface to form an organic light receiving layer of blue (B) region wavelength selective absorption. The present invention also relates to a method of manufacturing an image pickup device including a step of forming the other electrode on the top and a step of laminating the three organic light receiving layers.

本発明によれば、受光膜に使用できる物質の制限が少なく、容易に低コストで高性能が得られ、大面積化も可能な、新たな撮像素子が提供できる。本発明の撮像素子は、可溶性有機分子のウエットプロセスを主体とする方法で製造できるため、容易に低コストで高性能が得られる。   According to the present invention, it is possible to provide a new imaging device that has few restrictions on substances that can be used for the light receiving film, can easily obtain high performance at low cost, and can have a large area. Since the imaging device of the present invention can be manufactured by a method mainly including a wet process of soluble organic molecules, high performance can be easily obtained at low cost.

[撮像素子]
本発明の撮像素子は、
2つの電極の間に設けられた赤(R)領域の波長選択吸収性の有機受光層、
2つの電極の間に設けられた緑(G)領域の波長選択吸収性の有機受光層および
2つの電極の間に設けられた青(B)領域の波長選択吸収性の有機受光層
の順不同積層体を含む。
[Image sensor]
The image sensor of the present invention is
A wavelength selective absorptive organic light receiving layer in the red (R) region provided between the two electrodes,
A wavelength selective absorptive organic light receiving layer in the green (G) region provided between the two electrodes, and
It includes an unordered stack of wavelength selective absorptive organic light-receiving layers in the blue (B) region provided between two electrodes.

赤(R)領域の波長選択吸収性の有機受光層は、好ましくは590nm以上、750nm以下の範囲に吸収ピークを有し、緑(G)領域の波長選択吸収性の有機受光層は、好ましくは500nm以上、590nm未満の範囲に吸収ピークを有し、青(B)領域の波長選択吸収性の有機受光層は、好ましくは380 nm以上、500nm未満の範囲に吸収ピークを有するものである。   The wavelength selective absorption organic light-receiving layer in the red (R) region preferably has an absorption peak in the range of 590 nm to 750 nm, and the wavelength selective absorption organic light-receiving layer in the green (G) region is preferably An organic light-receiving layer having an absorption peak in the range of 500 nm or more and less than 590 nm and having a wavelength selective absorption in the blue (B) region preferably has an absorption peak in the range of 380 nm or more and less than 500 nm.

赤(R)領域の波長選択吸収性の有機受光層は、赤(R)領域に波長選択吸収性を有する有機物質として、例えば、ZnTPC(Zinc(II)-tetranitrophthalocyanine)、 Zinc-tetraaminophthalocyanine、これらのアルキル誘導体、およびこれらのアミド誘導体から成る群から選ばれる少なくとも1種を含有することができる。   The organic light-receiving layer with wavelength selective absorption in the red (R) region is an organic substance having wavelength selective absorption in the red (R) region, such as ZnTPC (Zinc (II) -tetranitrophthalocyanine), Zinc-tetraaminophthalocyanine, these It can contain at least one selected from the group consisting of alkyl derivatives and amide derivatives thereof.

赤(R)領域に波長選択吸収性を有する有機物質の含有量と受光層の層厚は、赤領域の受光層の吸光度が0.6以上になる(入射光の3/4以上が吸収される)ように設定されることが好ましい。赤(R)領域の波長選択吸収性の有機受光層の層厚は、例えば、0.1 〜 2.0μmの範囲であることができる。   The content of the organic substance having wavelength selective absorption in the red (R) region and the layer thickness of the light receiving layer make the light absorption layer of the red region have an absorbance of 0.6 or more (more than 3/4 of the incident light is absorbed) It is preferable to set as follows. The layer thickness of the wavelength selective absorption organic light receiving layer in the red (R) region can be, for example, in the range of 0.1 to 2.0 μm.

緑(G)領域の波長選択吸収性の有機受光層は、緑(G)領域に波長選択吸収性を有する有機物質として、例えば、R6G(ローダミン6G)、キナクリドン誘導体(DEQ)、およびルブレンから成る群から選ばれる少なくとも1種を含有することができる。   The wavelength selective absorption organic light-receiving layer in the green (G) region is composed of, for example, R6G (rhodamine 6G), quinacridone derivative (DEQ), and rubrene as an organic substance having wavelength selective absorption in the green (G) region. It may contain at least one selected from the group.

緑(G)領域に波長選択吸収性を有する有機物質の含有量と受光層の層厚は、緑領域の受光層の吸光度が0.6以上になる(入射光の3/4以上が吸収される)ように設定されることが好ましい。緑(G)領域の波長選択吸収性に受光層の層厚は、例えば、0.1 〜 2.0 μmの範囲であることができる。   The content of the organic substance having wavelength selective absorption in the green (G) region and the thickness of the light receiving layer make the light absorption layer of the green region have an absorbance of 0.6 or more (more than 3/4 of the incident light is absorbed) It is preferable to set as follows. The layer thickness of the light receiving layer in the wavelength selective absorptivity in the green (G) region can be, for example, in the range of 0.1 to 2.0 μm.

青(B)領域の波長選択吸収性の有機受光層は、青(B)領域に波長選択吸収性を有する有機物質として、例えば、poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-[2,1',3]- thiadiazole)](F8BT)、クマリン6、およびジアミン誘導体(TPB)から成る群から選ばれる少なくとも1種を含有することができる。F8BTは導電性高分子であるが、それ自体が青領域に選択的波長感度を持つので、青(B)領域に波長選択吸収性を有する有機物質として利用できる。   The blue (B) region wavelength selective absorptive organic light-receiving layer is an organic substance having wavelength selective absorptivity in the blue (B) region, for example, poly [(9,9-dioctylfluorenyl-2,7-diyl)- co- (1,4-benzo- [2,1 ′, 3] -thiadiazole)] (F8BT), coumarin 6 and diamine derivative (TPB). Although F8BT is a conductive polymer, it itself has selective wavelength sensitivity in the blue region, so it can be used as an organic substance having wavelength selective absorption in the blue (B) region.

青(B)領域に波長選択吸収性を有する有機物質の含有量と受光層の層厚は、青領域の受光層の吸光度が0.6以上になる(入射光の3/4以上が吸収される)ように設定されることが好ましい。青(B)領域の波長選択吸収性の有機受光層の層厚は、例えば、0.1 〜 2.0 μmの範囲であることができる。   The content of the organic substance having wavelength selective absorption in the blue (B) region and the layer thickness of the light receiving layer are such that the absorbance of the light receiving layer in the blue region is 0.6 or more (more than 3/4 of the incident light is absorbed) It is preferable to set as follows. The layer thickness of the wavelength selective absorption organic light-receiving layer in the blue (B) region can be, for example, in the range of 0.1 to 2.0 μm.

有機受光層は、さらに導電性高分子を含有することができる。導電性高分子を含有することで、電荷分離をより迅速に行うことができるという利点がある。導電性高分子は、例えば、Poly[methylphenyl]silane(PMPS)、ポリフルオレンpoly[(9,9-dioctylfluorene] (PFO)、poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-[2,1',3]-thiadiazole)](F8BT)、ポリパラフェニレンビニレン(PPV)、PPV誘導体、ポリチオフェン、ポリアニリン、ビニル高分子、カルバゾール、およびポリシランビニルカルバゾール(PVK)から成る群から選ばれる少なくとも1種であることができる。   The organic light receiving layer can further contain a conductive polymer. By containing a conductive polymer, there is an advantage that charge separation can be performed more rapidly. Examples of conductive polymers include poly [methylphenyl] silane (PMPS), polyfluorene poly [(9,9-dioctylfluorene] (PFO), poly [(9,9-dioctylfluorenyl-2,7-diyl) -co- (1,4-benzo- [2,1 ', 3] -thiadiazole)] (F8BT), polyparaphenylene vinylene (PPV), PPV derivatives, polythiophene, polyaniline, vinyl polymer, carbazole, and polysilane vinyl carbazole (PVK) ) At least one selected from the group consisting of:

有機受光層への導電性高分子の含有量は、有機受光層が必要とする導電性と吸光度(光吸収性を有する有機物質の濃度等)を考慮して、適宜決定でき、有機受光層の質量に対して、光吸収性を有する有機物質の含有量を、例えば、0.1質量%から99質量%の範囲、好ましくは0.5〜50質量%の範囲とすることができる。尚、光吸収性を有する有機物質自身が光吸収性に加えて導電性を有する場合には、導電性高分子を別途添加せず、有機受光層を形成でき、必要により、例えば、導電性の調整を目的として、導電性高分子を別途添加しても良い。   The content of the conductive polymer in the organic light-receiving layer can be determined as appropriate in consideration of the conductivity and absorbance required by the organic light-receiving layer (e.g., the concentration of the organic substance having a light absorption property). The content of the organic substance having a light absorptivity with respect to the mass can be, for example, in the range of 0.1 mass% to 99 mass%, preferably in the range of 0.5 to 50 mass%. In addition, when the organic substance itself having light absorption has conductivity in addition to light absorption, an organic light-receiving layer can be formed without adding a conductive polymer separately. For the purpose of adjustment, a conductive polymer may be added separately.

本発明の撮像素子の6つの電極の全て、または、光の入射側から5つの電極は、可視光透過性の電極である。光の入射側から少なくとも5つの電極が可視光透過性の電極であることで、積層した3つの有機受光層のいずれにも入射した光が到達することができる。可視光透過性の電極としては、公知の透明電極を適宜使用できる。   All of the six electrodes of the imaging device of the present invention or five electrodes from the light incident side are visible light transmissive electrodes. Since at least five electrodes from the light incident side are visible light transmissive electrodes, the incident light can reach any of the three stacked organic light receiving layers. As the visible light transmissive electrode, a known transparent electrode can be appropriately used.

各受光層の2つの電極は、略直交するストライプ状の電極であることができる。さらに、各受光層は、受光層の上下に、それぞれ複数のストライプ状の電極を有することが好ましい。複数のストライプ状の電極で挟み込んだ受光層では、ストライプ状の電極の各交差位置に光検出素子が形成される。例えば、受光層の上下に10×10のストライプ状の電極を用いれば、100個の光検出素子が形成される。1つの受光層に形成される光検出素子の数には制限はないが、例えば、2nx2m個、nおよびmは、独立に1〜14の範囲、好ましくは8〜13である。2の8乗は256であり、10乗は1024(100万画素)であり、12乗は4096(16.8メガ画素)であり、13乗は8192(67メガ画素)であり、14乗は16384(268メガ画素)である。但し、これらの範囲に制限される意図ではない。nおよびmは、本発明の撮像素子の用途に応じて、適宜、設定できる。 The two electrodes of each light receiving layer can be striped electrodes that are substantially orthogonal. Furthermore, it is preferable that each light receiving layer has a plurality of striped electrodes above and below the light receiving layer. In the light receiving layer sandwiched between the plurality of stripe-shaped electrodes, a light detection element is formed at each crossing position of the stripe-shaped electrodes. For example, if 10 × 10 stripe electrodes are used above and below the light receiving layer, 100 photodetecting elements are formed. Although one no limit to the number of the light detecting element formed on the light receiving layer, for example, 2 n x2 m pieces, n and m is in the range of independently 1 to 14, preferably 8 to 13. The power of 2 is 256, the power of 10 is 1024 (1 million pixels), the power of 12 is 4096 (16.8 megapixels), the power of 13 is 8192 (67 megapixels), and the power of 14 is 16384 ( 268 megapixels). However, it is not intended to be limited to these ranges. n and m can be appropriately set according to the use of the image sensor of the present invention.

本発明の撮像素子は、光の入射側にガラス基板等の可視光透過性の基板を有することが好ましく、より好ましくは、ガラス基板に、青(B)領域の波長選択吸収性の有機受光層、緑(G)領域の波長選択吸収性の有機受光層および赤(R)領域の波長選択吸収性の有機受光層をこの順に有するものであることができる。但し、この順番に限定する意図ではない。各有機受光層に含まれる有機物質の吸光特性に応じて、この順番は、適宜、選択できる。   The imaging device of the present invention preferably has a visible light transmissive substrate such as a glass substrate on the light incident side, and more preferably a blue (B) region wavelength selective absorption organic light-receiving layer on the glass substrate. The wavelength selective absorption organic light-receiving layer in the green (G) region and the wavelength selective absorption organic light-receiving layer in the red (R) region can be provided in this order. However, it is not intended to limit to this order. This order can be appropriately selected according to the light absorption characteristics of the organic substance contained in each organic light receiving layer.

本発明の撮像素子は、
赤(R)領域に波長選択吸収性を有する有機物質を含む溶液を、一方の電極表面に塗布し、必要に応じて乾燥した後、赤(R)領域の波長選択吸収性の有機受光層を形成し、次いで有機受光層の上に他方の電極を形成する工程、
緑(G)領域に波長選択吸収性を有する有機物質を含む溶液を、一方の電極表面に塗布し、必要に応じて乾燥した後、緑(G)領域の波長選択吸収性の有機受光層を形成し、次いで有機受光層の上に他方の電極を形成する工程、
青(B)領域に波長選択吸収性を有する有機物質を含む溶液を、一方の電極表面に塗布し、必要に応じて乾燥した後、青(B)領域波長選択吸収性の有機受光層を形成し、次いで有機受光層の上に他方の電極を形成する工程、および
上記3つの有機受光層を積層する工程
を含む方法により製造される。
The image sensor of the present invention is
After applying a solution containing an organic substance having wavelength selective absorption in the red (R) region to one electrode surface and drying as necessary, the wavelength selective absorption organic light-receiving layer in the red (R) region is applied. Forming, and then forming the other electrode on the organic light-receiving layer,
A solution containing an organic substance having wavelength selective absorption in the green (G) region is applied to one electrode surface, dried as necessary, and then a wavelength selective absorption organic light-receiving layer in the green (G) region is formed. Forming, and then forming the other electrode on the organic light-receiving layer,
A solution containing an organic substance with wavelength selective absorption in the blue (B) region is applied to one electrode surface, dried as necessary, and then a blue (B) region wavelength selective absorption organic light-receiving layer is formed. Then, it is manufactured by a method including a step of forming the other electrode on the organic light receiving layer and a step of laminating the three organic light receiving layers.

本発明の撮像素子について、図面に従って、より具体的に説明する。   The image sensor of the present invention will be described more specifically with reference to the drawings.

図1に示すように、ガラス基板上に透明電極(ITO電極等)をスパッタ法、蒸着法等によってストライプ状に形成する。次にその上に有機導電(光電変換)薄膜をスピンコート法等のウエットプロセスで塗布成膜して有機受光層を形成する。さらにその上に、下地の透明電極とは直交する方向に上部電極を蒸着法、スパッタ法または塗布法によりストライプ状に形成する。上部電極としては不透明な金属電極、または透明電極を用いる。光が入射した位置の有機受光層では電子と正孔が生じ、それらは最も近い下地の透明電極と上部電極を通して外部に電流として取り出される。このため両電極の作るマトリックスの交点を1画素として、有機受光層の座標を定めることができる。   As shown in FIG. 1, a transparent electrode (ITO electrode or the like) is formed in a stripe shape on a glass substrate by sputtering or vapor deposition. Next, an organic conductive (photoelectric conversion) thin film is coated thereon by a wet process such as a spin coating method to form an organic light receiving layer. Further thereon, an upper electrode is formed in a stripe shape by a vapor deposition method, a sputtering method or a coating method in a direction orthogonal to the underlying transparent electrode. An opaque metal electrode or a transparent electrode is used as the upper electrode. Electrons and holes are generated in the organic light receiving layer at the position where the light is incident, and they are taken out as current through the nearest transparent electrode and upper electrode. Therefore, the coordinates of the organic light-receiving layer can be determined with the intersection of the matrix formed by both electrodes as one pixel.

図2に示すように、一方の電極にアナログスイッチを介して電圧を印加し、もう一方の電極にはI/Vコンバーターを接続する。ある特定のアナログスイッチをオンしたとき、電圧がそのスイッチで選択された電極にかかり、その電極に沿った各画素の有機受光層の抵抗値で定まる電流がI/Vコンバーターに流れ、電圧に変換される。それらの信号はデマルチプレクサを通して外部で読み出すことができる。このうちある画素に光が入射した場合は、その画素の有機受光層の抵抗値が下がり、光電流が増すため、I/Vコンバーター、デマルチプレクサを通して、入射画像情報を読み出すことができる。   As shown in FIG. 2, a voltage is applied to one electrode via an analog switch, and an I / V converter is connected to the other electrode. When a certain analog switch is turned on, a voltage is applied to the electrode selected by that switch, and a current determined by the resistance value of the organic light-receiving layer of each pixel along that electrode flows to the I / V converter and converts it to a voltage. Is done. These signals can be read externally through a demultiplexer. When light enters one of the pixels, the resistance value of the organic light receiving layer of the pixel decreases and the photocurrent increases. Therefore, incident image information can be read out through the I / V converter and the demultiplexer.

図1の上部電極の上に、さらに封止膜を形成し、またその封止膜の上端を平坦化することができる。   A sealing film can be further formed on the upper electrode in FIG. 1, and the upper end of the sealing film can be planarized.

またR、G、B領域に波長感度を持つ有機受光層(有機薄膜)を用いた、図1の構造の受光素子を3枚用意し、それらのうち2枚は上部電極も透明電極とする。上部電極も透明電極である2枚を下から1層目、2層目とし、残りを3層目として積層した構造に下部(1層目のガラス基板側)からカラー画像を入射すると、各層はR、G、B領域の1つを選択的に受光し、その結果3原色を積層構造で分離撮像できる。   In addition, three light receiving elements having the structure shown in FIG. 1 using an organic light receiving layer (organic thin film) having wavelength sensitivity in the R, G, and B regions are prepared, and the upper electrode is also a transparent electrode in two of them. When a color image is incident from the bottom (first glass substrate side) into the structure where the upper electrode is also a transparent electrode with the first and second layers from the bottom, and the rest is the third layer. One of the R, G, and B regions is selectively received, and as a result, the three primary colors can be separated and imaged in a stacked structure.

本発明の撮像素子は、ウエットプロセスで製造できるため製造コストが低く、大面積化、任意形状曲面、フレキシブル基板等への成膜が容易。またドットプリンタの原理で、受光膜のマスクレスパターニングが可能となる。   Since the image pickup device of the present invention can be manufactured by a wet process, the manufacturing cost is low, and the film can be easily formed on a large area, a curved surface of an arbitrary shape, a flexible substrate, and the like. Further, the maskless patterning of the light receiving film can be performed by the principle of a dot printer.

特にマトリックス構造については、塗布のため、導電性高分子と吸収性を有する有機物質(感光性色素)の混合割合に自由度が大きい。このため十分な吸光度を得て、かつ適度な抵抗率を持った薄膜(有機受光層)を成膜可能である。このため簡単なマトリックス電極構造でも、蒸着法より優れた画素間の電気的分離を得ることができる。   In particular, the matrix structure has a high degree of freedom in the mixing ratio of the conductive polymer and the organic substance having absorption (photosensitive dye) for coating. Therefore, it is possible to form a thin film (organic light receiving layer) having sufficient absorbance and having an appropriate resistivity. Therefore, even with a simple matrix electrode structure, it is possible to obtain electrical isolation between pixels superior to the vapor deposition method.

図3に示すように、各画素にMOSトランジスタスイッチを設置することもできる。このスイッチをゲート信号でオン/オフすることにより、さらに画素分離、高感度・高速応答が可能となる。図4に平面略図を示す。有機受光層(有機薄膜)はトランジスタスイッチのドレイン電極と接続されており、有機薄膜の上面は全面に透明電極が形成されている。図5に1画素分の回路図を示す。トランジスタスイッチがオン状態のとき、ソース電極の印加電圧がドレイン電極上部の有機薄膜に加わる。有機薄膜の等価回路は抵抗とコンデンサであり、入射光量に比例して電子、正孔が発生するため抵抗値が減少する。この電流変化をI/Vコンバーターで電圧信号として検出する。   As shown in FIG. 3, a MOS transistor switch can be installed in each pixel. By turning this switch on / off with a gate signal, further pixel separation, high sensitivity and high speed response are possible. FIG. 4 shows a schematic plan view. The organic light receiving layer (organic thin film) is connected to the drain electrode of the transistor switch, and a transparent electrode is formed on the entire upper surface of the organic thin film. FIG. 5 shows a circuit diagram for one pixel. When the transistor switch is on, the voltage applied to the source electrode is applied to the organic thin film on the drain electrode. The equivalent circuit of the organic thin film is a resistor and a capacitor, and the resistance value decreases because electrons and holes are generated in proportion to the amount of incident light. This current change is detected as a voltage signal by the I / V converter.

このトランジスタスイッチは下記のプロセスで作製される。
(1)Si基板(p-Si),上に窒化膜(Si3N4)をCVDでパターン形成し、それをマスクと してn+拡散を行う。
(2)拡散部分に酸化膜(SiO2)を形成する。
(3)ゲート部分に酸化膜(30nm)、ポリシリコン膜(500nm)を形成し、それをマスクと してp+(ソース、ドレイン)拡散を行う。
(4)全体に酸化膜(500nm)を形成し、ソース、ドレイン電極取り出し用のコンタクトホ ールを開ける。
(5)電極金属を蒸着してコンタクトをとる。
(6)ソース電極の上部に酸化膜を形成する。
(7)有機光電変換薄膜(有機受光層)を塗布してドレイン電極と接触させる。
(8)全面に透明電極(ITOまたは極薄金属膜または塗布型導電物質膜)を形成する。
(9)全面電極上に封止膜を形成し、その最上部を平坦化する。(図示せず)
This transistor switch is manufactured by the following process.
(1) A nitride film (Si 3 N 4 ) is patterned on the Si substrate (p-Si) by CVD and n + diffusion is performed using it as a mask.
(2) An oxide film (SiO 2 ) is formed in the diffusion portion.
(3) An oxide film (30 nm) and a polysilicon film (500 nm) are formed on the gate portion, and p + (source and drain) diffusion is performed using the oxide film as a mask.
(4) An oxide film (500 nm) is formed on the entire surface, and contact holes for taking out the source and drain electrodes are opened.
(5) Evaporate electrode metal to make contact.
(6) An oxide film is formed on the source electrode.
(7) An organic photoelectric conversion thin film (organic light receiving layer) is applied and brought into contact with the drain electrode.
(8) A transparent electrode (ITO or ultra-thin metal film or coated conductive film) is formed on the entire surface.
(9) A sealing film is formed on the entire surface electrode, and the uppermost portion thereof is flattened. (Not shown)

特に画素トランジスタ構造については、導電性高分子と感光性色素の混合割合に自由度が大きい。十分な吸光度を得て、かつ適度な抵抗率を持った薄膜を成膜可能なため、MOSスイッチの回路設計が容易となり、優れた撮像特性を得ることができる。   In particular, the pixel transistor structure has a large degree of freedom in the mixing ratio of the conductive polymer and the photosensitive dye. Since a thin film having a sufficient absorbance and an appropriate resistivity can be formed, the circuit design of the MOS switch is facilitated, and excellent imaging characteristics can be obtained.

図7に示すように、ガラス基板上にアモルファスSiの薄膜トランジスタ(TFT)スイッチを形成し、同じ動作原理での有機光電変換薄膜を用いた撮像素子を作製できる。この構造を積層して、図8の3原色撮像が可能となる。なおこの場合、全てがガラス基板の必要はなく、図9に示すように1層目、2層目(ガラス基板)を3層目(Si基板)の上に積層し、1層目、2層目からの読み出し信号処理回路を3層目の周辺部に設けて、上部2層とボンディングにより接続することができる。   As shown in FIG. 7, an amorphous Si thin film transistor (TFT) switch is formed on a glass substrate, and an image sensor using an organic photoelectric conversion thin film with the same operation principle can be manufactured. By stacking these structures, the three primary colors shown in FIG. 8 can be captured. In this case, all of the glass substrates are not necessary, and the first layer, the second layer (glass substrate) are laminated on the third layer (Si substrate) as shown in FIG. A readout signal processing circuit from the eye can be provided in the periphery of the third layer and connected to the upper two layers by bonding.

図10の(1)、(2)に示すように、従来技術では、横方向のカラーフィルタ、またはプリズムによる色分離を行っていた。この場合、カラーフィルタでは開口面積が1/3以下で低効率、低空間分解能であり、プリズム型では重く大型化するという問題点があった。それに対して、本発明では、プリズムを用いず、有機分子の波長選択性によって積層方向に色分離撮像する。そのため、吸収層までは透過率が高いため、開口率が増して高効率、高空間分解能、かつ小型軽量という利点を持つ(図10の(3))。   As shown in (1) and (2) of FIG. 10, in the prior art, color separation is performed by a horizontal color filter or prism. In this case, the color filter has a problem that the aperture area is 1/3 or less, low efficiency and low spatial resolution, and the prism type is heavy and large. On the other hand, in the present invention, color separation imaging is performed in the stacking direction by wavelength selectivity of organic molecules without using a prism. For this reason, since the transmittance is high up to the absorption layer, the aperture ratio is increased, which has the advantages of high efficiency, high spatial resolution, and small size and light weight ((3) in FIG. 10).

以下本発明を実施例によりさらに詳細に説明する。但し、本発明は実施例に限定される意図ではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not intended to be limited to the examples.

実施例1
(1)PMPS/クマリン6青色受光素子
ポリシランとしてポリメチルフェニルシラン(クロロフォルム溶液20g/l)、有機色素としてクマリン6(20mol%)を混合し、ガラス基板上のITO透明電極の上にスピンコートした(1,000rpm、60s、300nm)。真空乾燥後、その上部にLiF(5nm)/Al(100nm)電極を真空蒸着し青受光素子を作製した。
Example 1
(1) PMPS / coumarin 6 blue light-receiving element Polymethylphenylsilane (chloroform solution 20 g / l) as polysilane and coumarin 6 (20 mol%) as organic dye were mixed and spin-coated on an ITO transparent electrode on a glass substrate. (1,000rpm, 60s, 300nm). After vacuum drying, a LiF (5 nm) / Al (100 nm) electrode was vacuum-deposited on the top to produce a blue light receiving element.

(2)PMPS/ZnTNPc赤色受光素子
ポリシランとしてポリメチルフェニルシラン(クロロフォルム溶液20g/l)、有機色素としてZinc(II) tetranitrophthalocyanine ( ZnTNPc)(アセトン溶液2mol%)を1:1で混合した。この結果混合溶液ではPMPSが10g/l、ZnTNPcが1mol%となった。この混合溶液をガラス基板上のITO透明電極の上にスピンコートした(800rpm、60s、200nm)。真空乾燥後、その上部にLiF(5nm)/Al(100nm)電極を真空蒸着し赤色受光素子を作製した。
(2) PMPS / ZnTNPc red light receiving element Polymethylphenylsilane (chloroform solution 20 g / l) as polysilane and Zinc (II) tetranitrophthalocyanine (ZnTNPc) (acetone solution 2 mol%) as an organic dye were mixed at a ratio of 1: 1. As a result, in the mixed solution, PMPS was 10 g / l and ZnTNPc was 1 mol%. This mixed solution was spin-coated on an ITO transparent electrode on a glass substrate (800 rpm, 60 s, 200 nm). After vacuum drying, a LiF (5 nm) / Al (100 nm) electrode was vacuum-deposited on the top to produce a red light receiving element.

(3)F8BT青色受光素子
青色領域に吸収帯をもつ導電性高分子であるpoly[(9,9-dioctylfluorenyl- 2,7-diyl)-co-(1,4-benzo-[2,1',3]-thiadiazole)](F8BT)(クロロフォルム溶液15g/l)を、ガラス基板上のITO透明電極の上にスピンコートした(1,000rpm、60s)。真空脱気後、125℃10分間加熱処理し、その上部にLiF(5nm)/Al(100nm)電極を真空蒸着し青受光素子を作製した。
(3) F8BT blue light-receiving element poly [(9,9-dioctylfluorenyl-2,7-diyl) -co- (1,4-benzo- [2,1 '), a conductive polymer with an absorption band in the blue region , 3] -thiadiazole)] (F8BT) (chloroform solution 15 g / l) was spin-coated on an ITO transparent electrode on a glass substrate (1,000 rpm, 60 s). After vacuum degassing, heat treatment was performed at 125 ° C. for 10 minutes, and a LiF (5 nm) / Al (100 nm) electrode was vacuum deposited on the top to produce a blue light receiving element.

各受光素子について可視域吸収特性を測定した。結果を図11に示す。   Visible region absorption characteristics were measured for each light receiving element. The results are shown in FIG.

実施例2
亜鉛テトラアミノフタロシアニン(Zinc-tetraaminophthalocyanine)の合成
Example 2
Synthesis of Zinc-tetraaminophthalocyanine

2口フラスコに市販の亜鉛テトラニトロフタロシアニン(0.01g)と過剰量の硫化ナトリウム・9水和物(0.7g)を入れ、容器をアルゴン置換した。その後、水15mlを加え超音波処理を10分行った後、懸濁状態で50℃約20時間加熱攪拌を行った。反応終了後、室温までさました後、反応溶液を吸引濾過し、得られた生成物を0.5M塩酸溶液と1M水酸化ナトリウム溶液で洗浄し、最後に水で中性になるまで洗浄した。真空乾燥を行った後、テトラヒドロフラン(THF)に溶かして溶けた溶液を集めTHFを留去することで目的化合物を得た。目的化合物であることは、以下のように決定した。溶液中での吸収スペクトルを測定したところ、図12の変化が得られた。さらに、マススペクトルを図13に示す。マススペクトル測定は、ファブマススペクトルでマトリックスはm-ニトロベンジルアルコールで亜鉛(II)テトラアミノフタロシアニンの分子式はC32H20N12Zn=636.12で、図中のスペクトルと一致していることから化合物が合成できていることが確認できた。   A commercially available zinc tetranitrophthalocyanine (0.01 g) and an excess amount of sodium sulfide nonahydrate (0.7 g) were placed in a two-necked flask, and the container was purged with argon. Thereafter, 15 ml of water was added and sonication was performed for 10 minutes, followed by heating and stirring in a suspended state at 50 ° C. for about 20 hours. After completion of the reaction, the reaction solution was suction filtered after cooling to room temperature, and the resulting product was washed with 0.5 M hydrochloric acid solution and 1 M sodium hydroxide solution, and finally washed with water until neutral. After vacuum drying, a solution obtained by dissolving in tetrahydrofuran (THF) was collected, and THF was distilled off to obtain a target compound. The target compound was determined as follows. When the absorption spectrum in the solution was measured, the change of FIG. 12 was obtained. Further, the mass spectrum is shown in FIG. Mass spectrum measurement is fab mass spectrum, matrix is m-nitrobenzyl alcohol and molecular formula of zinc (II) tetraaminophthalocyanine is C32H20N12Zn = 636.12, which is consistent with the spectrum in the figure, and that the compound can be synthesized Was confirmed.

実施例1におけるZinc(II) tetranitrophthalocyanine ( ZnTNPc)(アセトン溶液2mol%)に代えて、上記で得られた亜鉛テトラアミノフタロシアニン(アセトン溶液4mol%)を用いて、PMPS/ZnTNPc赤色受光素子と同様に、PMPS/ZnTAPc (Zinc(II) tetraaminophthalocyanine)赤色受光素子を作製した。   In place of Zinc (II) tetranitrophthalocyanine (ZnTNPc) (acetone solution 2 mol%) in Example 1, using the zinc tetraaminophthalocyanine obtained above (acetone solution 4 mol%), the same as in the PMPS / ZnTNPc red light receiving element PMPS / ZnTAPc (Zinc (II) tetraaminophthalocyanine) red light receiving element was fabricated.

本発明は、新しい機構による撮像素子に関するものであり、あらゆる映像関連分野において有用である。   The present invention relates to an image sensor with a new mechanism, and is useful in all image-related fields.

マトリックス型光検出素子の構造図Structure diagram of matrix type photo detector マトリックス型光検出素子の回路図Circuit diagram of matrix-type photodetector MOS型マトリックス光検出素子の回路図Circuit diagram of MOS type matrix photodetector トランジスタスイッチ構造の平面略図Schematic plan view of transistor switch structure トランジスタスイッチ構造での1画素分の回路略図Circuit schematic for one pixel in transistor switch structure 集積化有機光電膜撮像デバイスプロセスIntegrated organic photoelectric film imaging device process 集積化有機光電膜撮像デバイスプロセスIntegrated organic photoelectric film imaging device process ガラス基板上のTFTスイッチ構造TFT switch structure on glass substrate 積層型TFTスイッチ構造撮像板素子の概念図Conceptual diagram of multilayer TFT switch structure imaging device 積層型有機膜撮像素子の概念図Conceptual diagram of stacked organic film image sensor 積層型有機膜撮像素子の有効性の説明図Explanatory diagram of effectiveness of multilayer organic film image sensor 実施例1の結果を示す規格化吸収スペクトルNormalized absorption spectrum showing the results of Example 1 実施例2で得られた化合物の規格化吸収スペクトルNormalized absorption spectrum of the compound obtained in Example 2 実施例2で得られた化合物のマススペクトルMass spectrum of the compound obtained in Example 2

Claims (15)

2つの電極の間に設けられた赤(R)領域の波長選択吸収性の有機受光層、
2つの電極の間に設けられた緑(G)領域の波長選択吸収性の有機受光層および
2つの電極の間に設けられた青(B)領域の波長選択吸収性の有機受光層
の順不同積層体を含む撮像素子。
A wavelength selective absorptive organic light receiving layer in the red (R) region provided between the two electrodes,
A wavelength selective absorptive organic light receiving layer in the green (G) region provided between the two electrodes, and
An image pickup device including an unordered laminated body of wavelength selective absorption organic light-receiving layers in a blue (B) region provided between two electrodes.
6つの電極の全て、または、光の入射側から5つの電極は、可視光透過性の電極である請求項1に記載の撮像素子。 2. The imaging device according to claim 1, wherein all of the six electrodes or five electrodes from the light incident side are visible light transmissive electrodes. 各受光層の2つの電極は、略直交するストライプ状の電極である請求項1または2に記載の撮像素子。 3. The image pickup device according to claim 1, wherein the two electrodes of each light receiving layer are stripe-like electrodes substantially orthogonal to each other. 赤(R)領域の波長選択吸収性の有機受光層が590nm以上、750nm以下の範囲に吸収ピークを有し、
緑(G)領域の波長選択吸収性の有機受光層が500 nm以上、590nm未満の範囲に吸収ピークを有し、
青(B)領域の波長選択吸収性の有機受光層が380 nm以上、500nm未満の範囲に吸収ピークを有する
請求項1〜3のいずれかに記載の撮像素子。
The wavelength selective absorption organic light-receiving layer in the red (R) region has an absorption peak in the range of 590 nm to 750 nm,
The wavelength selective absorption organic light-receiving layer in the green (G) region has an absorption peak in the range of 500 nm or more and less than 590 nm,
4. The image pickup device according to claim 1, wherein the wavelength selective absorption organic light-receiving layer in the blue (B) region has an absorption peak in a range of 380 nm or more and less than 500 nm.
赤(R)領域の波長選択吸収性の有機受光層が、赤(R)領域に波長選択吸収性を有する有機物質としてZnTPC(Zinc(II)-tetranitrophthalocyanine)、 Zinc-tetraaminophthalocyanine、これらのアルキル誘導体、およびこれらのアミド誘導体から成る群から選ばれる少なくとも1種を含有する請求項1〜4のいずれかに記載の撮像素子。 The organic light-receiving layer with wavelength selective absorption in the red (R) region is composed of ZnTPC (Zinc (II) -tetranitrophthalocyanine), Zinc-tetraaminophthalocyanine, alkyl derivatives thereof, as organic substances having wavelength selective absorption in the red (R) region, 5. The image pickup device according to claim 1, further comprising at least one selected from the group consisting of amide derivatives thereof. 赤(R)領域に波長選択吸収性を有する有機物質の含有量と受光層の層厚は、赤領域の受光層の吸光度が0.6以上になるように設定される請求項5に記載の撮像素子。 6. The imaging device according to claim 5, wherein the content of the organic substance having wavelength selective absorption in the red (R) region and the thickness of the light receiving layer are set such that the absorbance of the light receiving layer in the red region is 0.6 or more. . 緑(G)領域の波長選択吸収性の有機受光層が、緑(G)領域に波長選択吸収性を有する有機物質としてR6G(ローダミン6G)、キナクリドン誘導体(DEQ)、およびルブレンから成る群から選ばれる少なくとも1種を含有する請求項1〜6のいずれかに記載の撮像素子。 The organic light-receiving layer with wavelength selective absorption in the green (G) region is selected from the group consisting of R6G (rhodamine 6G), quinacridone derivative (DEQ), and rubrene as an organic material having wavelength selective absorption in the green (G) region. The imaging device according to claim 1, comprising at least one selected from the group consisting of: 緑(G)領域に波長選択吸収性を有する有機物質の含有量と受光層の層厚は、緑領域の受光層の吸光度が0.6以上になるように設定される請求項7に記載の撮像素子。 8. The imaging device according to claim 7, wherein the content of the organic substance having wavelength selective absorption in the green (G) region and the thickness of the light receiving layer are set so that the absorbance of the light receiving layer in the green region is 0.6 or more. . 青(B)領域の波長選択吸収性の有機受光層が、青(B)領域に波長選択吸収性を有する有機物質としてpoly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-[2,1',3]-thiadiazole)](F8BT)、クマリン6、およびジアミン誘導体(TPB)から成る群から選ばれる少なくとも1種を含有する請求項1〜8のいずれかに記載の撮像素子。 The blue (B) region wavelength-selective absorptive organic light-receiving layer is a poly [(9,9-dioctylfluorenyl-2,7-diyl) -co- ( Any one of claims 1 to 8, comprising at least one selected from the group consisting of 1,4-benzo- [2,1 ', 3] -thiadiazole)] (F8BT), coumarin 6 and diamine derivative (TPB) An imaging device according to claim 1. 青(B)領域に波長選択吸収性を有する有機物質の含有量と受光層の層厚は、青領域の受光層の吸光度が0.6以上になるように設定される請求項9に記載の撮像素子。 10. The imaging device according to claim 9, wherein the content of the organic substance having wavelength selective absorption in the blue (B) region and the thickness of the light receiving layer are set so that the absorbance of the light receiving layer in the blue region is 0.6 or more. . 有機受光層が、さらに導電性高分子を含有する請求項1〜10のいずれかに記載の撮像素子。 The imaging device according to claim 1, wherein the organic light receiving layer further contains a conductive polymer. 導電性高分子が、Poly[methylphenyl]silane(PMPS)、ポリフルオレンpoly[(9,9- dioctylfluorene] (PFO)、ポリフルオレン誘導体、poly[(9,9-dioctylfluorenyl-2,7-diyl)- co-(1,4-benzo-[2,1',3]-thiadiazole)](F8BT)、ポリパラフェニレンビニレン(PPV)、PPV誘導体、ポリチオフェン、ポリアニリン、ビニル高分子、カルバゾール、およびポリビニルカルバゾール(PVK)から成る群から選ばれる少なくとも1種である請求項11に記載の撮像素子。 Conductive polymers are poly [methylphenyl] silane (PMPS), polyfluorene poly [(9,9-dioctylfluorene] (PFO), polyfluorene derivatives, poly [(9,9-dioctylfluorenyl-2,7-diyl)- co- (1,4-benzo- [2,1 ', 3] -thiadiazole)] (F8BT), polyparaphenylene vinylene (PPV), PPV derivatives, polythiophene, polyaniline, vinyl polymer, carbazole, and polyvinyl carbazole ( 12. The imaging device according to claim 11, wherein the imaging device is at least one selected from the group consisting of PVK). 光の入射側にガラス基板を有する請求項1〜12のいずれかに記載の撮像素子。 The imaging device according to claim 1, further comprising a glass substrate on a light incident side. ガラス基板に、青(B)領域の波長選択吸収性の有機受光層、緑(G)領域の波長選択吸収性の有機受光層および赤(R)領域の波長選択吸収性の有機受光層をこの順に有する、請求項13に記載の撮像素子。 A blue (B) wavelength selective absorption organic light receiving layer, a green (G) wavelength selective absorption organic light receiving layer, and a red (R) wavelength selective absorption organic light receiving layer are formed on a glass substrate. 14. The imaging device according to claim 13, which is provided in order. 赤(R)領域に波長選択吸収性を有する有機物質を含む溶液を、一方の電極表面に塗布して、赤(R)領域の波長選択吸収性の有機受光層を形成し、次いで有機受光層の上に他方の電極を形成する工程、
緑(G)領域に波長選択吸収性を有する有機物質を含む溶液を、一方の電極表面に塗布して、緑(G)領域の波長選択吸収性の有機受光層を形成し、次いで有機受光層の上に他方の電極を形成する工程、
青(B)領域に波長選択吸収性を有する有機物質を含む溶液を、一方の電極表面に塗布して、青(B)領域波長選択吸収性の有機受光層を形成し、次いで有機受光層の上に他方の電極を形成する工程、および
上記3つの有機受光層を積層する工程
を含む撮像素子の製造方法。
A solution containing an organic substance having wavelength selective absorption in the red (R) region is applied to one electrode surface to form a wavelength selective absorption organic light receiving layer in the red (R) region, and then the organic light receiving layer Forming the other electrode on the substrate,
A solution containing an organic substance having wavelength selective absorption in the green (G) region is applied to one electrode surface to form a wavelength selective absorption organic light receiving layer in the green (G) region, and then the organic light receiving layer Forming the other electrode on the substrate,
A solution containing an organic substance having wavelength selective absorption in the blue (B) region is applied to one electrode surface to form an organic light receiving layer of blue (B) region wavelength selective absorption. A method for manufacturing an image pickup device, comprising: a step of forming the other electrode thereon; and a step of laminating the three organic light receiving layers.
JP2007135468A 2007-05-22 2007-05-22 Image sensor and manufacturing method thereof Expired - Fee Related JP5207436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007135468A JP5207436B2 (en) 2007-05-22 2007-05-22 Image sensor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007135468A JP5207436B2 (en) 2007-05-22 2007-05-22 Image sensor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008294058A true JP2008294058A (en) 2008-12-04
JP5207436B2 JP5207436B2 (en) 2013-06-12

Family

ID=40168507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007135468A Expired - Fee Related JP5207436B2 (en) 2007-05-22 2007-05-22 Image sensor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5207436B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120007200A1 (en) * 2009-04-09 2012-01-12 Cheil Industries Inc. Image Sensor and Method for Manufacturing the Same
US8487030B2 (en) 2009-07-09 2013-07-16 Cheil Industries Inc. Organic-inorganic hybrid composition and image sensor
JP2015031648A (en) * 2013-08-06 2015-02-16 株式会社東京精密 Laser tracker
JP2016158154A (en) * 2015-02-25 2016-09-01 株式会社リコー Photoelectric conversion element, image reading device, and image forming apparatus
JP2017527995A (en) * 2014-08-19 2017-09-21 イソルグ Devices for detecting electromagnetic radiation composed of organic materials
JP2018148220A (en) * 2018-04-20 2018-09-20 ソニー株式会社 Imaging element and imaging device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04226919A (en) * 1990-05-15 1992-08-17 New York Blood Center Inc Photodynamic inactivation of virus in cell containing composition
WO1999039372A2 (en) * 1998-02-02 1999-08-05 Uniax Corporation Image sensors made from organic semiconductors
JP2002217474A (en) * 2001-01-16 2002-08-02 Nippon Hoso Kyokai <Nhk> Photoelectric conversion film and solid-state image sensor equipped with the same
WO2003043013A1 (en) * 2001-11-16 2003-05-22 Thin Film Electronics Asa A matrix-addressable optoelectronic apparatus and electrode means in the same
JP2005268609A (en) * 2004-03-19 2005-09-29 Fuji Photo Film Co Ltd Multilayer lamination multi-pixel imaging element and television camera

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04226919A (en) * 1990-05-15 1992-08-17 New York Blood Center Inc Photodynamic inactivation of virus in cell containing composition
WO1999039372A2 (en) * 1998-02-02 1999-08-05 Uniax Corporation Image sensors made from organic semiconductors
JP2002502120A (en) * 1998-02-02 2002-01-22 ユニアックス コーポレイション Organic semiconductor image sensor
JP2002217474A (en) * 2001-01-16 2002-08-02 Nippon Hoso Kyokai <Nhk> Photoelectric conversion film and solid-state image sensor equipped with the same
WO2003043013A1 (en) * 2001-11-16 2003-05-22 Thin Film Electronics Asa A matrix-addressable optoelectronic apparatus and electrode means in the same
JP2005509909A (en) * 2001-11-16 2005-04-14 シン フイルム エレクトロニクス エイエスエイ Matrix addressable optoelectronic device and its electrode means
JP2005268609A (en) * 2004-03-19 2005-09-29 Fuji Photo Film Co Ltd Multilayer lamination multi-pixel imaging element and television camera

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120007200A1 (en) * 2009-04-09 2012-01-12 Cheil Industries Inc. Image Sensor and Method for Manufacturing the Same
KR101107003B1 (en) * 2009-04-09 2012-01-25 제일모직주식회사 Image sensor and method for manufacturing the same
US8502334B2 (en) 2009-04-09 2013-08-06 Cheil Industries Inc. Image sensor and method for manufacturing the same
TWI406405B (en) * 2009-04-09 2013-08-21 Cheil Ind Inc Image sensor and method for manufacturing the same
US8487030B2 (en) 2009-07-09 2013-07-16 Cheil Industries Inc. Organic-inorganic hybrid composition and image sensor
JP2015031648A (en) * 2013-08-06 2015-02-16 株式会社東京精密 Laser tracker
JP2017527995A (en) * 2014-08-19 2017-09-21 イソルグ Devices for detecting electromagnetic radiation composed of organic materials
JP2016158154A (en) * 2015-02-25 2016-09-01 株式会社リコー Photoelectric conversion element, image reading device, and image forming apparatus
JP2018148220A (en) * 2018-04-20 2018-09-20 ソニー株式会社 Imaging element and imaging device

Also Published As

Publication number Publication date
JP5207436B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
JP5171178B2 (en) Image sensor and manufacturing method thereof
KR101944114B1 (en) Solid-state imaging device and electronic apparatus
JP5207436B2 (en) Image sensor and manufacturing method thereof
JP4817584B2 (en) Color image sensor
JP5244287B2 (en) Image sensor and method for applying electric field to image sensor
JP5032954B2 (en) Color imaging device
JP2006270021A (en) Laminated photoelectric conversion element
JP2002502120A (en) Organic semiconductor image sensor
JPWO2008146602A1 (en) Radiation detector, method for manufacturing radiation detector, and method for manufacturing support substrate
WO2018186389A1 (en) Photoelectric conversion element, photosensor and imaging element
JP2016157744A (en) Solid state image sensor
WO2015115229A1 (en) Photoelectric conversion element, imaging element and photosensor
JP2007067075A (en) Color imaging device
WO2017090438A1 (en) Photoelectric conversion element, method for producing same, solid-state imaging element, electronic device and solar cell
JP2007059483A (en) Photoelectric conversion element, imaging device and method of applying electric field thereto
JP2011014815A (en) Photoelectric conversion device, method of manufacturing photoelectric conversion device, and electronic apparatus mounted with photoelectric conversion device
JP5102692B2 (en) Color imaging device
JP2010141140A (en) Color image sensor
TW201029167A (en) Ultraviolet light filter layer in image sensors
JP2013084647A (en) Multilayer type imaging element
JP2018195683A (en) Sold state imaging device
JP2002217474A (en) Photoelectric conversion film and solid-state image sensor equipped with the same
JP5352495B2 (en) Photoelectric conversion element, optical sensor, and imaging element manufacturing method
JP2005311315A (en) Organic information reading sensor, method of manufacturing same, and information reader using same
JP2009272395A (en) Imaging element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121015

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees