JP2005263591A - Protective film material for plasma display panel - Google Patents

Protective film material for plasma display panel Download PDF

Info

Publication number
JP2005263591A
JP2005263591A JP2004081746A JP2004081746A JP2005263591A JP 2005263591 A JP2005263591 A JP 2005263591A JP 2004081746 A JP2004081746 A JP 2004081746A JP 2004081746 A JP2004081746 A JP 2004081746A JP 2005263591 A JP2005263591 A JP 2005263591A
Authority
JP
Japan
Prior art keywords
protective film
plasma display
display panel
mgo
film material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004081746A
Other languages
Japanese (ja)
Other versions
JP4831452B2 (en
Inventor
Ari Ide
手 亜 里 井
Masaru Tojo
條 賢 東
Yoshikazu Tanaka
中 義 和 田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNOLOGY SEED INCUBATION CO
TECHNOLOGY SEED INCUBATION CO Ltd
Original Assignee
TECHNOLOGY SEED INCUBATION CO
TECHNOLOGY SEED INCUBATION CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNOLOGY SEED INCUBATION CO, TECHNOLOGY SEED INCUBATION CO Ltd filed Critical TECHNOLOGY SEED INCUBATION CO
Priority to JP2004081746A priority Critical patent/JP4831452B2/en
Publication of JP2005263591A publication Critical patent/JP2005263591A/en
Application granted granted Critical
Publication of JP4831452B2 publication Critical patent/JP4831452B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a protective film material for a plasma display panel by which a magnesium oxide sintered compact having ≥85% relative density is obtained by sintering at a low temperature (1,350-1,450°C). <P>SOLUTION: Tin oxide is mixed with magnesium oxide as an additive. The magnesium oxide sintered compact having 80-90% relative density is obtained by sintering at the low temperature (1,350-1,450°C) while controlling the concentration of tin oxide to be added to ≥0.05 mol% and ≤1.00 mol%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はプラズマディスプレイパネルの誘電体層を放電から保護するために用いる酸化マグネシウム(以下MgOと略す)膜の形成に適した蒸着用材料に関する。   The present invention relates to a deposition material suitable for forming a magnesium oxide (hereinafter abbreviated as MgO) film used for protecting a dielectric layer of a plasma display panel from electric discharge.

近年、プラズマディスプレイパネル(以下PDPと略す)は、自発光型薄型ディスプレイとして脚光を浴びている。PDPは2極真空管の一種である家庭用蛍光灯の原理に近い。透明電極を形成し近接した2枚のガラス板の間に、アルゴンやネオンなどの不活性ガスを封入し、プラズマ放電を起こしてガスを励起し蛍光体から可視光を発光させている。PDPはその構造上、他のディスプレイより大画面とすることが可能であり、応答速度が高く、視野角が広いなどの特徴を有する。   In recent years, plasma display panels (hereinafter abbreviated as PDPs) have been attracting attention as self-luminous thin displays. The PDP is close to the principle of a domestic fluorescent lamp which is a kind of bipolar tube. An inert gas such as argon or neon is sealed between two adjacent glass plates formed with a transparent electrode, and plasma discharge is caused to excite the gas to emit visible light from the phosphor. Due to its structure, the PDP can have a larger screen than other displays, and has characteristics such as a high response speed and a wide viewing angle.

PDPは、放電を起こす際の電圧のかけ方により分類するとAC型とDC型の2種類がある。どちらの種類も2枚のガラス板で放電空間を挟んだ構造になっているが、DC型は電極が放電空間に露出しており、AC型は電極が誘電体層で絶縁されている点が異なる。最近の製品の主流になりつつあるAC型は、開発初期は誘電体層が放電空間に露出していたため、イオン衝撃のスパッタリングにより誘電体層の表面が変化し、放電空間における放電開始電圧が上昇していた。この放電開始電圧の上昇を抑えるため、アルカリ金属或はアルカリ土類金属の酸化物、MgO等からなる保護膜を誘電体層表面に設けている。保護膜としてはMgOが最も優れており、これによりPDPを長寿命化することが可能になった。   There are two types of PDPs, AC type and DC type, classified according to how voltage is applied during discharge. Both types have a structure in which the discharge space is sandwiched between two glass plates. In the DC type, the electrode is exposed to the discharge space, and in the AC type, the electrode is insulated by a dielectric layer. Different. In the AC type, which is becoming the mainstream of recent products, since the dielectric layer was exposed to the discharge space in the early stages of development, the surface of the dielectric layer was changed by ion bombardment sputtering, and the discharge start voltage in the discharge space increased. Was. In order to suppress an increase in the discharge start voltage, a protective film made of an oxide of alkali metal or alkaline earth metal, MgO or the like is provided on the surface of the dielectric layer. As the protective film, MgO is the most excellent, which makes it possible to extend the life of the PDP.

PDPの製造においては、MgO保護膜をいかに安定に形成するかが大きなポイントになっている。一般的にMgO保護膜は誘電体層の上にイオンビーム蒸着法或は電子ビーム蒸着法で成膜されている。これらの蒸着法では、主に単結晶MgOが蒸着材として使用されている。この単結晶MgOは、電融法でMgOを溶かしたのち冷却させ、単結晶部分を取り出し粉砕している。この電融法はMgOを高温にするために高いエネルギーを必要とする。また、この単結晶MgOは融点が高いため、単結晶MgOによる焼結体を形成するためには、単結晶MgOを高温で焼結させる必要がある。   In manufacturing a PDP, how to stably form the MgO protective film is a major point. In general, the MgO protective film is formed on a dielectric layer by ion beam evaporation or electron beam evaporation. In these vapor deposition methods, single crystal MgO is mainly used as a vapor deposition material. This single crystal MgO is melted by electrofusion and then cooled, and the single crystal portion is taken out and pulverized. This electromelting method requires high energy to bring MgO to a high temperature. Further, since this single crystal MgO has a high melting point, it is necessary to sinter the single crystal MgO at a high temperature in order to form a sintered body made of single crystal MgO.

単結晶MgOの焼結体を作成するためには、高温に耐え得る炉の設備を必要とする問題や、焼結させるための膨大なエネルギーを必要とする問題があった。   In order to produce a sintered body of single crystal MgO, there are problems that require furnace equipment that can withstand high temperatures and problems that require enormous energy for sintering.

従来、単結晶MgOが持つ物性的な問題を解決する方法として、多結晶MgOを用いる方法を採用した特許がある(例えば特許文献1参照。)。この特許においては、単結晶MgOの採取方法によって製品の純度が極めて容易に変動してしまい、単結晶MgOの純度の安定性や信頼性を欠くという課題を解決するために、多結晶のMgOを用いるという手段を採用している。先ず、MgO粉末(純度99.98%、平均粒径0.2μm)に対してバインダとしてポリエチレングリコールを1.5重量%添加し、エタノールを分散媒とするスリラーを濃度53重量%(粘度100cps)に調製して、スリラーをボールミル(直径10mmの樹脂製ボール使用)にて24時間湿式混合した後、スプレードライヤにて造粒処理(乾燥塔温度 100°C)して、平均粒径100μmの造粒粉末を得て、ゴム型に充填して1000Kg/cmでCIP成型し、外形及び高さが10mm、5mmの円柱状成型体を得て、大気中で1650°Cで焼結して作成している。これを表2に実施例1として示し、その他に、実施例として表2には焼結温度を様々に変化させた場合の各例を示している。   Conventionally, there is a patent that employs a method using polycrystalline MgO as a method for solving the physical property problems of single crystal MgO (see, for example, Patent Document 1). In this patent, in order to solve the problem that the purity of the product fluctuates very easily by the method of collecting single crystal MgO, and the stability and reliability of the purity of single crystal MgO are not solved, polycrystalline MgO is used. The method of using is adopted. First, 1.5% by weight of polyethylene glycol as a binder is added to MgO powder (purity 99.98%, average particle size 0.2 μm), and a chiller having ethanol as a dispersion medium has a concentration of 53% by weight (viscosity 100 cps). The chiller was wet mixed in a ball mill (using a resin ball having a diameter of 10 mm) for 24 hours and then granulated with a spray dryer (drying tower temperature: 100 ° C.) to produce an average particle size of 100 μm. Grain powder is obtained, filled into a rubber mold and CIP molded at 1000 Kg / cm to obtain a cylindrical molded body having an outer shape and height of 10 mm and 5 mm, and sintered at 1650 ° C. in the atmosphere. ing. This is shown in Table 2 as Example 1, and in addition, as an Example, Table 2 shows examples when the sintering temperature is variously changed.

特許第3331584号公報Japanese Patent No. 3333184

上記特許文献1の発明においては、単結晶MgOの物性的な問題を解決するために多結晶のMgOを用いるという手段を採用しているが、焼結体の焼結温度は1650°C等であって焼結温度を低下させることを目的としていない。本発明の解決しようとする課題は、相対密度が85%を下回らないMgO焼結体を低温で焼結することである。相対密度を85%を下回らないようにする理由は、一般的に焼結体を蒸着材に用いる場合ある一定以上の高密度化することにより、安定的に蒸着することが可能になるからである。   In the invention of the above-mentioned Patent Document 1, a means of using polycrystalline MgO is adopted in order to solve the physical property problem of single crystal MgO, but the sintering temperature of the sintered body is 1650 ° C or the like. It is not intended to lower the sintering temperature. The problem to be solved by the present invention is to sinter an MgO sintered body whose relative density does not fall below 85% at a low temperature. The reason why the relative density is not lower than 85% is that, when a sintered body is generally used as a vapor deposition material, it is possible to stably deposit by increasing the density to a certain level or higher. .

前述の課題を解決するために、本発明はプラズマディスプレイパネルの放電特性を低下させず、且つ、相対密度が85%を下回らないMgO焼結体を低温(1350℃〜1450℃)で焼結させることができるMgO複合材料焼結体の蒸着材を検討し、本発明に至った。   In order to solve the above-described problems, the present invention sinters MgO sintered bodies at a low temperature (1350 ° C. to 1450 ° C.) without deteriorating the discharge characteristics of the plasma display panel and having a relative density of less than 85%. The present inventors have studied a vapor-deposited material of an MgO composite material sintered body that can be obtained, and have reached the present invention.

本発明はプラズマディスプレイパネルに用いる酸化マグネシウム保護膜を形成するための蒸着材であって、酸化マグネシウムに添加物を混入させた複合材料の相対密度(単結晶酸化マグネシウムに対する密度比)が、85%を下回らないことを特徴とする。   The present invention is a vapor deposition material for forming a magnesium oxide protective film used in a plasma display panel, and the relative density (density ratio with respect to single crystal magnesium oxide) of a composite material in which an additive is mixed in magnesium oxide is 85%. It is characterized by not falling below.

また、本発明は、酸化マグネシウムに混入する添加物が酸化錫であることを特徴とする。   Further, the present invention is characterized in that the additive mixed into the magnesium oxide is tin oxide.

また、本発明は、酸化マグネシウムに混入する酸化錫の添加濃度が0.05mol%以上1.00mol%以下であることを特徴とする。   In addition, the present invention is characterized in that the addition concentration of tin oxide mixed in magnesium oxide is 0.05 mol% or more and 1.00 mol% or less.

また、本発明は、酸化マグネシウムに混入する添加物が、In、もしくはEuであることを特徴とする。 Further, the present invention is characterized in that the additive mixed into the magnesium oxide is In 2 O 3 or Eu 2 O 3 .

本発明によれば、蒸着レート及び2次電子放出係数に悪影響を及ぼさずに、従来高温(1500℃以上)での焼成を必要としていたMgO焼成体を低温(1350℃〜1450℃)で焼成することを可能とした。よって、焼成炉の設備を容易なものとし、更に焼成に必要なエネルギーも少なくすることができる。   According to the present invention, an MgO fired body that has conventionally required firing at a high temperature (1500 ° C. or higher) is fired at a low temperature (1350 ° C. to 1450 ° C.) without adversely affecting the deposition rate and the secondary electron emission coefficient. Made it possible. Therefore, the equipment of the firing furnace can be simplified, and the energy required for firing can be reduced.

MgO焼成体の焼成温度を低下させる方法として、原料の表面活性の高い原料を用いること、及び、不純物を添加することが有効である。本発明では、前者に対してMg(OH)を加熱分解して作成した微粉末MgOを原料として用いる。また、後者に対して酸化錫、In、Euのいずれかを添加する。これらの不純物は、焼成体をPDPの保護膜形成の蒸着材に用いた場合、蒸着速度及び蒸着膜の2次電子放出係数に影響を及ぼさない物質として選ばれたものである。 As a method for lowering the firing temperature of the MgO fired body, it is effective to use a raw material having a high surface activity and to add impurities. In the present invention, fine powder MgO prepared by thermally decomposing Mg (OH) 2 with respect to the former is used as a raw material. Further, tin oxide, In 2 O 3 , or Eu 2 O 3 is added to the latter. These impurities are selected as substances that do not affect the deposition rate and the secondary electron emission coefficient of the deposited film when the fired body is used as a deposition material for forming a protective film of PDP.

図1は本発明に係るプラズマディスプレイパネル用保護膜材料の作成工程を示す流れ図である。
以下、図1の流れ図を参照して詳細に各工程を説明する。
本発明においては、酸化マグネシウムに添加物として酸化錫を混入する。その酸化錫の添加濃度は0.05mol%から1.00mol%の範囲内とする。
FIG. 1 is a flowchart showing a process for producing a protective film material for a plasma display panel according to the present invention.
Hereafter, each process is demonstrated in detail with reference to the flowchart of FIG.
In the present invention, tin oxide is mixed in magnesium oxide as an additive. The concentration of tin oxide added is in the range of 0.05 mol% to 1.00 mol%.

金属マグネシウムを純水中で水酸化させて得たMg(OH)を加熱分解し、純度99.9%以上のMgO粉末を作成する(S101)。このMgO粉末に0.05mol%から1.00mol%の酸化第二錫(SnO)を加える(S102)。
その混合物に有機バインダを2%〜8%重量比で加える。前記混合物に溶媒を加えて酸化物量が40〜60%重量比となるようにして、これらを混合分散してMgO平均粒径0.2〜0.3ミクロンの粉末径となるようにスラリーを作成する(S103)。バインダにはポリエチレングリコール等を使用し、溶媒にはエタノール等を用いる。
Mg (OH) 2 obtained by hydroxylating magnesium metal in pure water is decomposed by heating to produce MgO powder having a purity of 99.9% or more (S101). 0.05 mol% to 1.00 mol% of stannic oxide (SnO 2 ) is added to the MgO powder (S102).
An organic binder is added to the mixture in a 2% to 8% weight ratio. A solvent is added to the mixture so that the amount of oxide is 40 to 60% by weight, and these are mixed and dispersed to prepare a slurry having a MgO average particle size of 0.2 to 0.3 microns. (S103). Polyethylene glycol or the like is used for the binder, and ethanol or the like is used for the solvent.

上記工程ではボールミルポットと直径10〜30mmのボールを使用し、20時間程度混合する。   In the above process, a ball mill pot and balls having a diameter of 10 to 30 mm are used and mixed for about 20 hours.

混合後、噴霧乾燥するか、上面開放容器に上記スラリーを入れて乾燥させた後、粉砕分級し、40ミクロン〜300ミクロンの造粒粉末を作成する(S104)。   After mixing, the mixture is spray-dried, or the slurry is placed in an open top container and dried, and then pulverized and classified to prepare granulated powder of 40 to 300 microns (S104).

この造粒粉末を1軸プレス機で成型圧500〜3000kg/cmで成型し、直径6〜7mm、厚み2〜4mmの成型体を作成する(S105)。 This granulated powder is molded at a molding pressure of 500 to 3000 kg / cm 2 with a uniaxial press to produce a molded body having a diameter of 6 to 7 mm and a thickness of 2 to 4 mm (S105).

この成型体を大気圧で1350℃の焼成温度で2時間焼成することにより、MgO複合材料としての焼成体を作成する(S106)。   The molded body is fired at a firing temperature of 1350 ° C. for 2 hours at atmospheric pressure to produce a fired body as an MgO composite material (S106).

酸化錫の添加濃度と焼成する温度によって変化する焼成密度を表1に示す。この表1に示されるように、酸化錫の添加量を0.05mol%〜1.00mol%とすることにより、焼成体(単結晶MgOの密度に対する比)を相対密度85%を下回らないようにして、且つ、焼成温度を1350℃から1450℃とすることが可能であることが判る。酸化錫の添加量を1.00mol%以上としても、焼成温度の低下は得られない。   Table 1 shows the firing density that varies depending on the concentration of tin oxide added and the firing temperature. As shown in Table 1, by setting the amount of tin oxide added to be 0.05 mol% to 1.00 mol%, the fired body (ratio to the density of single crystal MgO) should not fall below 85% relative density. And it turns out that a calcination temperature can be made into 1350 to 1450 degreeC. Even if the addition amount of tin oxide is 1.00 mol% or more, the firing temperature cannot be lowered.

Figure 2005263591
Figure 2005263591

焼成体の相対密度は蒸着レートと密接に関係しており、85%以下となると低下する。蒸着レートの観点からは90±3%が好ましい。   The relative density of the fired body is closely related to the vapor deposition rate, and decreases when it is 85% or less. From the viewpoint of the deposition rate, 90 ± 3% is preferable.

添加物としてIn、Euを添加する場合の添加量は、いずれも0.05mol%〜0.50mol%が好ましい。 The amount of addition when In 2 O 3 and Eu 2 O 3 are added as additives is preferably 0.05 mol% to 0.50 mol%.

本発明によるプラズマディスプレイパネル用保護膜材料は電子ビーム蒸着だけでなく、イオンビーム蒸着に適用することも可能である。   The protective film material for a plasma display panel according to the present invention can be applied not only to electron beam evaporation but also to ion beam evaporation.

また、酸化錫の代わりに、添加物としてIn、もしくはEuを採用することにより、酸化錫と同程度の結果を得ることができる。 Further, by adopting In 2 O 3 or Eu 2 O 3 as an additive instead of tin oxide, the same result as that of tin oxide can be obtained.

本発明に係るプラズマディスプレイパネル用保護膜材料の形成工程を示す流れ図である。It is a flowchart which shows the formation process of the protective film material for plasma display panels which concerns on this invention.

Claims (4)

プラズマディスプレイパネルに用いる酸化マグネシウム保護膜材料であって、
酸化マグネシウムに添加物を混入させた複合材料の酸化マグネシウム単結晶に対する相対密度が、85%を下回らないことを特徴とするプラズマディスプレイパネル用保護膜材料。
A magnesium oxide protective film material used for a plasma display panel,
A protective film material for a plasma display panel, wherein a relative density of a composite material in which an additive is mixed with magnesium oxide with respect to a magnesium oxide single crystal does not fall below 85%.
前記添加物が酸化錫であることを特徴とする請求項1に記載のプラズマディスプレイパネル用保護膜材料。   The protective film material for a plasma display panel according to claim 1, wherein the additive is tin oxide. 前記酸化錫の添加濃度が0.05mol%以上1.00mol%以下であることを特徴とする請求項2に記載のプラズマディスプレイパネル用保護膜材料。   3. The protective film material for a plasma display panel according to claim 2, wherein an addition concentration of the tin oxide is 0.05 mol% or more and 1.00 mol% or less. 前記添加物がIn、もしくはEuであることを特徴とする請求項1に記載のプラズマディスプレイパネル用保護膜材料。
The protective film material for a plasma display panel according to claim 1, wherein the additive is In 2 O 3 or Eu 2 O 3 .
JP2004081746A 2004-03-19 2004-03-19 Method for producing protective film material for plasma display panel Expired - Fee Related JP4831452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004081746A JP4831452B2 (en) 2004-03-19 2004-03-19 Method for producing protective film material for plasma display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004081746A JP4831452B2 (en) 2004-03-19 2004-03-19 Method for producing protective film material for plasma display panel

Publications (2)

Publication Number Publication Date
JP2005263591A true JP2005263591A (en) 2005-09-29
JP4831452B2 JP4831452B2 (en) 2011-12-07

Family

ID=35088514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004081746A Expired - Fee Related JP4831452B2 (en) 2004-03-19 2004-03-19 Method for producing protective film material for plasma display panel

Country Status (1)

Country Link
JP (1) JP4831452B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330574A (en) * 2003-10-21 2005-12-02 Ube Material Industries Ltd Magnesium oxide vapor-deposition material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005330574A (en) * 2003-10-21 2005-12-02 Ube Material Industries Ltd Magnesium oxide vapor-deposition material

Also Published As

Publication number Publication date
JP4831452B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
JP2006169636A (en) Protective layer, composite for forming protective layer, method of forming protective layer, and plasma display panel including protective layer
JP3314728B2 (en) Polycrystalline MgO deposited material
JPWO2007066490A1 (en) Gallium oxide-zinc oxide sputtering target, method for forming transparent conductive film, and transparent conductive film
WO2006006627A1 (en) MgO DEPOSITION MATERIAL
KR100525426B1 (en) polycrystalline MgO deposition material having adjusted Si concentration
JP2006012844A (en) Protective film of gas discharge display device and its manufacturing method
JP3893793B2 (en) MgO vapor deposition material and method for producing the same
WO2006006633A1 (en) MgO DEPOSITION MATERIAL
JP2000103614A (en) Mgo material for plasma display, its production and plasma display
WO2011145265A1 (en) Sintered magnesium oxide material, and process for production thereof
JP3470633B2 (en) Deposition material containing MgO as a main component and method for producing the same
JP2008091074A (en) Vapor deposition material for plasma display panel protective film excellent in humidity-proofing
KR101342721B1 (en) ZnO VAPOR DEPOSITION MATERIAL, PROCESS FOR PRODUCING THE SAME, AND ZnO FILM
JPH10297955A (en) Material having evaporated magnesium oxide layer and its production
WO2007058318A1 (en) Fired material and process for producing the same
JP4831452B2 (en) Method for producing protective film material for plasma display panel
KR20070041440A (en) Single-ctystal magnesium oxide sinter, process for produsing the same, and protective film for plasma display panel
JP5979082B2 (en) Vapor deposition tablet and manufacturing method thereof
JPH11335824A (en) Target material essentially consisting of mgo and its production
JP4147988B2 (en) Deposition material for protective film of FPD and method for producing the same
JPH10130828A (en) Mgo target and its production
JP5115249B2 (en) Vapor deposition material and method for forming a vapor deposition film using the vapor deposition material
JP2005097724A (en) MgO VAPOR-DEPOSITING MATERIAL, MgO FILM AND MANUFACTURING METHOD THEREFOR
JP5417720B2 (en) Method for producing ZnO vapor deposition material and method for forming vapor deposition film using vapor deposition material produced by the method
JP2006002208A (en) Single crystal magnesium oxide sintered compact, its production method and protective film for plasma display panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees