JP2005257655A - Auxiliary system and method for the same at recognizing of low contrast image with naked eyes - Google Patents

Auxiliary system and method for the same at recognizing of low contrast image with naked eyes Download PDF

Info

Publication number
JP2005257655A
JP2005257655A JP2004104300A JP2004104300A JP2005257655A JP 2005257655 A JP2005257655 A JP 2005257655A JP 2004104300 A JP2004104300 A JP 2004104300A JP 2004104300 A JP2004104300 A JP 2004104300A JP 2005257655 A JP2005257655 A JP 2005257655A
Authority
JP
Japan
Prior art keywords
image
naked eye
low
measured
contrast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004104300A
Other languages
Japanese (ja)
Other versions
JP4210618B2 (en
Inventor
文▲キン▼ ▲セン▼
Bunkin Sen
Kokuchu Ko
國忠 黄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industrial Technology Research Institute ITRI
Original Assignee
Industrial Technology Research Institute ITRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industrial Technology Research Institute ITRI filed Critical Industrial Technology Research Institute ITRI
Publication of JP2005257655A publication Critical patent/JP2005257655A/en
Application granted granted Critical
Publication of JP4210618B2 publication Critical patent/JP4210618B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/10Railings; Protectors against smoke or gases, e.g. of locomotives; Maintenance travellers; Fastening of pipes or cables to bridges
    • E01D19/103Parapets, railings ; Guard barriers or road-bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01FADDITIONAL WORK, SUCH AS EQUIPPING ROADS OR THE CONSTRUCTION OF PLATFORMS, HELICOPTER LANDING STAGES, SIGNS, SNOW FENCES, OR THE LIKE
    • E01F15/00Safety arrangements for slowing, redirecting or stopping errant vehicles, e.g. guard posts or bollards; Arrangements for reducing damage to roadside structures due to vehicular impact
    • E01F15/02Continuous barriers extending along roads or between traffic lanes
    • E01F15/04Continuous barriers extending along roads or between traffic lanes essentially made of longitudinal beams or rigid strips supported above ground at spaced points
    • E01F15/0407Metal rails
    • E01F15/0438Spacers between rails and posts, e.g. energy-absorbing means
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01FADDITIONAL WORK, SUCH AS EQUIPPING ROADS OR THE CONSTRUCTION OF PLATFORMS, HELICOPTER LANDING STAGES, SIGNS, SNOW FENCES, OR THE LIKE
    • E01F15/00Safety arrangements for slowing, redirecting or stopping errant vehicles, e.g. guard posts or bollards; Arrangements for reducing damage to roadside structures due to vehicular impact
    • E01F15/02Continuous barriers extending along roads or between traffic lanes
    • E01F15/04Continuous barriers extending along roads or between traffic lanes essentially made of longitudinal beams or rigid strips supported above ground at spaced points
    • E01F15/0461Supports, e.g. posts
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01FADDITIONAL WORK, SUCH AS EQUIPPING ROADS OR THE CONSTRUCTION OF PLATFORMS, HELICOPTER LANDING STAGES, SIGNS, SNOW FENCES, OR THE LIKE
    • E01F15/00Safety arrangements for slowing, redirecting or stopping errant vehicles, e.g. guard posts or bollards; Arrangements for reducing damage to roadside structures due to vehicular impact
    • E01F15/02Continuous barriers extending along roads or between traffic lanes
    • E01F15/04Continuous barriers extending along roads or between traffic lanes essentially made of longitudinal beams or rigid strips supported above ground at spaced points
    • E01F15/0476Foundations

Abstract

<P>PROBLEM TO BE SOLVED: To provide an auxiliary system for utilizing the relation between the contrast sensitivity and the spatial frequency of naked eyes and the intensity and/or the color of a light source, and easily recognizing the state and defects of images and/or graphics by naked eyes, when a low contrast image is recognized by naked eyes, and to provide a method for the auxiliary system. <P>SOLUTION: The naked eye of a measuring person is positioned at a fixed distance from the image and/or the graphic of a measured object. The auxiliary system optimizes the size of the image and/or the graphic of the measured object viewed by the naked eye. A recognition ability of the naked eye of the measuring person to the low contrast image of the measured object is enhanced by utilizing the relation of the spatial frequency of naked eye to the low contrast image, and adjusting the contrast sensitivity of naked eye to an optimal state. At the same time, the recognition accuracy of the measuring person to the low contrast image is enhanced, by adjusting an intensity and/or a color tone of a backlight of the image and/or the graphic. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、特に肉眼のコントラスト感度と空間周波数と光源の輝度及び/又は色との関係を利用して、肉眼により画像及び/又は図形の状態、欠陥を認識し易くする、肉眼による低コントラスト画像認識時の補助システム及びその方法に関するものである。   The present invention is a low-contrast image with the naked eye that makes it easy to recognize the state and defects of images and / or figures with the naked eye, particularly utilizing the relationship between the contrast sensitivity and spatial frequency of the naked eye and the brightness and / or color of the light source. The present invention relates to an auxiliary system and method for recognition.

近年、市場の発展や歩留まり、生産量などの向上により、液晶ディスプレイやプラズマディスプレイなどの平面ディスプレイが、ブラウン管ディスプレイに代わって広<使用されるようになってきている。
しかし、一般に、平面ディスプレイの製造コストは高く、出荷前には高い品質管理が要求され、平面ディスプレイにおいて、例えば、黒点、白点、シミ・ムラ欠陥、線欠陥及び画面上における不均一の現象などを有する場合は、全て不良品とされる。
また、このようなムラは、面像におけるコントラストが低くなり過ぎたり、方向性を有するなどの間題に係わることから、自動的に検出することは困難であるので、人間の肉眼により検出を行なう必要がある。
In recent years, flat displays such as liquid crystal displays and plasma displays have been widely used in place of CRT displays due to market development, yield, and improvement in production volume.
However, in general, the manufacturing cost of a flat display is high, and high quality control is required before shipping. In a flat display, for example, black spots, white spots, spot / mura defects, line defects, and non-uniform phenomena on the screen. Are all defective products.
Further, such unevenness is difficult to detect automatically because the contrast in the surface image becomes too low or has a directionality, so it is difficult to detect it automatically. There is a need.

しかしながら、人間の肉眼により検出を行なう場合には、例えば、被測定物の画像におけるコントラストが低すぎると、肉眼では画像の瑕疵を検出することが容易ではない。又、肉眼での検出には客観的な基準がないため、検出結果の信頼性に欠けるなどの問題を有する。要するに、低コントラストの画像に対する、肉眼による認識の限界は、視神経細胞の、画像の感知方式に開係しているので、肉眼が物体の空間周波数を認識する感度は異なっている(空間周波数は、目標物のサイズの逆数であり、物体が大きいほど、対応する空間周波数が小さくなり、また、物体が小さいほど、対応する空間周波数が大きくなる)。   However, when detection is performed with the human naked eye, for example, if the contrast in the image of the object to be measured is too low, it is not easy to detect wrinkles in the image with the naked eye. Moreover, since there is no objective standard for detection with the naked eye, there is a problem that the reliability of the detection result is lacking. In short, the limit of recognition by the naked eye for low-contrast images is open to the image sensing method of the optic nerve cell, so the sensitivity with which the naked eye recognizes the spatial frequency of the object is different (the spatial frequency is The reciprocal of the size of the target, the larger the object, the smaller the corresponding spatial frequency, and the smaller the object, the larger the corresponding spatial frequency).

図5は視覚心理学においてよく用いられる図であり、水平座標は空間周波数で、1度あたりのサイクルを1単位として捉えたものであり、垂直座標はコントラスト感度である。図5において、ある特定の空間周波数における特定の範囲(通常は、1度あたり5〜10サイクル)では、肉眼のコントラスト感度が最も高いことを示しており、その特定の周波数は目標物、例えばディスプレイの輝度や色彩波長と関係している。
即ち、例えば、物体が肉眼に形成する映像を前記のサイズに調整すれば、低コントラストの画像に対する認識度が最も高いので、画像に瑕疵を有するディスプレイを容易に確認することができる。
FIG. 5 is a diagram often used in visual psychology. The horizontal coordinate is a spatial frequency and the cycle per degree is regarded as one unit, and the vertical coordinate is contrast sensitivity. In FIG. 5, a specific range at a specific spatial frequency (usually 5-10 cycles per degree) shows the highest contrast sensitivity of the naked eye, which is the target frequency, eg a display Is related to the brightness and color wavelength.
That is, for example, if the image formed by the object with the naked eye is adjusted to the above-mentioned size, the recognition degree for the low-contrast image is the highest, so that a display having a wrinkle in the image can be easily confirmed.

図6A,Bは、視神経細胞により感知した画像の強弱を示す図であり、図6Aでは、その中央は強化領域70で、その周囲は抑制領域71であり、該強化領域70と抑制領域71の感度は、図6Bの曲線に対応している。   6A and 6B are diagrams showing the strength of an image sensed by the optic nerve cell. In FIG. 6A, the center is the reinforcement region 70 and the periphery thereof is the suppression region 71. The sensitivity corresponds to the curve in FIG. 6B.

また、肉眼により1本の線を見た時、視神経細胞が感知したものは、図7に示すように、一列に並んだ感知領域であり、中央は線状の強化領域70'で、その両側は線状の抑制領域71'であり、強化領域70と抑制領域71の幅は視神経細胞が感知した範囲と関係しているので、一定の幅を有する。この状況において、肉眼により画像の輝度コントラストを認識した時、有効に認識できるかどうかは、空間周波数に大きな関係がある。   In addition, when a single line is seen with the naked eye, what the optic nerve cell senses is a sensing area arranged in a line as shown in FIG. 7, and the center is a linear reinforcement area 70 ′, on both sides of the sensing area. Is a linear suppression region 71 ′, and the widths of the enhancement region 70 and the suppression region 71 are related to the range sensed by the optic nerve cell, and thus have a certain width. In this situation, when the luminance contrast of an image is recognized by the naked eye, whether or not it can be recognized effectively has a great relationship with the spatial frequency.

図8はそれぞれ、画像が異なる空間周波数(異なる大きさ)である時の、視神経細胞の感知領域との対応関係を示したものであり、図8Aでは、画像の空間周波数と視神経細胞の感知周波数とが同一である時、感知領域における強化領域70'は画像の、明るい縞パターン上に位置すると共に、抑制領域71'も画像の暗い縞パターン上に位置することを示し、この状況が、その画像に対する視神経細胞の感度が最も高い場合である。   FIG. 8 shows the correspondence relationship between the optic nerve cell sensing areas when the images have different spatial frequencies (different sizes). In FIG. 8A, the image spatial frequency and the optic nerve cell sensing frequency are shown. And the enhancement region 70 'in the sensing region is located on the bright stripe pattern of the image, and the suppression region 71' is also located on the dark stripe pattern of the image. This is the case when the sensitivity of the optic nerve cell to the image is the highest.

又、図8B,Cはそれぞれ、画像の空間周波数が視神経細胞の最も高い感知周波数より大きい又は小さい時の関係を示し、この場合、感知領域の強化領域、抑制領域は、画像における明るい縞パターン及び暗い縞パターンからずれたり或いは重なったりするので、肉眼のコントラスト感度が低くなる。   8B and 8C show the relationship when the spatial frequency of the image is larger or smaller than the highest sensing frequency of the optic nerve cell, in which case the enhancement region and the suppression region of the sensing region are the bright stripe pattern and Since it deviates from or overlaps with the dark stripe pattern, the contrast sensitivity of the naked eye is lowered.

上述したように、肉眼のコントラスト感度と画像の空間周波数には密接な関係があることから、低コントラストの状態において、肉眼の、画像に対する認識力を向上させるためには、画像の空間周波数を重要なポイントとして考慮する必要があった。   As described above, since the contrast sensitivity of the naked eye and the spatial frequency of the image are closely related, the spatial frequency of the image is important in order to improve the recognition ability of the naked eye to the image in a low contrast state. It was necessary to consider as an important point.

本発明は、測定者の肉眼と被測定物100の画像との間に位置する光学素子30と、前記光学素手30と被測定物100の画像との距離を調整することにより、光学素子30の、被測定物100に対する拡大・縮小倍率を調節する駆動構構60と、を含み、前記被測定物100の画像の空間周波数を調整することにより、測定者の肉眼の、低コントラストの被測定物100の画像に対する認識能力を高めることを特徴とする肉眼による低コントラスト画像認識時の補助システム、及び、測定者の肉眼を、被測定物100の画像に対し所定の距離をおいて位置させるステップと、前記の距離で、測定者の、被測定物100の画像に対する空間周波数を測定するステップと、測定した空間周波数が最適ではない時、測定者の、被測定物100の画像に対する空間周波数を調節して、肉眼のコントラスト感度を最適な状態とするステップと、を順次行なうことにより、測定者の肉眼で被測定物100の画像にムラ或いはその他の品質の問題が発生しているか否かを判断することを特徴とする肉眼による低コントラスト画像認識時の補助方法を提供する。   The present invention adjusts the distance between the optical element 30 located between the naked eye of the measurer and the image of the object to be measured 100 and the distance between the optical hand 30 and the image of the object to be measured 100. And a driving mechanism 60 for adjusting an enlargement / reduction ratio with respect to the device under test 100, and adjusting the spatial frequency of the image of the device under test 100 to measure the object 100 with a low contrast with the naked eye of the measurer. An auxiliary system for low-contrast image recognition by the naked eye, characterized by enhancing the recognition ability of the image of the human eye, and a step of positioning the naked eye of the measurer at a predetermined distance from the image of the measurement object 100; Measuring the spatial frequency of the image of the measurement object 100 by the measurer at the distance, and when the measured spatial frequency is not optimal, the image of the measurement object 100 by the measurer. The step of adjusting the spatial frequency with respect to the image to optimize the contrast sensitivity of the naked eye sequentially causes irregularities or other quality problems to occur in the image of the measurement object 100 with the naked eye of the measurer. There is provided an auxiliary method for low-contrast image recognition by the naked eye, characterized by determining whether or not there is.

本発明は、肉眼のコントラスト感度と画像の空間周波数との関係を利用して、肉眼で測定すべき画像及び/又は図形を見た時の空間周波数を調節することにより、低コントラストの画像及び/又は図形の状態及び欠陥を認識し易くするものである。   The present invention uses the relationship between the contrast sensitivity of the naked eye and the spatial frequency of the image to adjust the spatial frequency when viewing the image and / or figure to be measured with the naked eye, thereby reducing the low contrast image and / or Alternatively, it is easy to recognize the state of the graphic and the defect.

前記の目的を達成するために、本発明は、測定者の肉眼と被測定物の画像との間に位置する光学素子と、前記光学素子と被測定物の画像との距離を調整することにより、光学素子の、被測定物に対する拡大・縮小倍率を調節する駆動機構と、を含み、前記被測定物の画像の空間周波数を調整することにより、測定者の肉眼における、低コントラストの被測定物の画像に対する認識能力を高めている。   In order to achieve the above object, the present invention adjusts the distance between the optical element positioned between the naked eye of the measurer and the image of the object to be measured, and the distance between the optical element and the image of the object to be measured. And a drive mechanism for adjusting the magnification / reduction magnification of the optical element with respect to the object to be measured, and by adjusting the spatial frequency of the image of the object to be measured, the object to be measured having a low contrast with the naked eye of the measurer The recognition ability for images is improved.

また、前記低コントラスト画像の補助助システムは、更に前記駆動機構と接続される制御ユニットを含んでいてもよく、また、前記低コントラスト画像の認識補助システムは、異なる被測定物の画像における予め設定された空間周波数の値を保存すると共に、前記制御ユニットに接続され、前記駆動機構を制御する根拠となるデータベースを更に含んでもよく、また、前記低コントラスト画像の認識補助システムは、更に被測定物に対して一定距離離れた位置に設けられるハーフミラーと、その画像取り込み角度が前記ハーフミラーを介して被測定物側を向くと共に前記制御ユニットに接続される画像取り込み装置と、を含んでもよい。   The low-contrast image auxiliary assistance system may further include a control unit connected to the drive mechanism, and the low-contrast image recognition auxiliary system is preset in images of different objects to be measured. The system may further include a database connected to the control unit and serving as a basis for controlling the driving mechanism, and the low-contrast image recognition assisting system may further include an object to be measured. And a half mirror provided at a position a certain distance away from the image sensor, and an image capturing device whose image capturing angle faces the object to be measured via the half mirror and is connected to the control unit.

上述したように、本発明は画像取り込み装置により、ハーフミラー,光学素子を介して、被測定物を撮像し、制御ユニットヘ送信して、データベースに予め保存された所定の空間周波数の値と比較し、該制御ユニットで駆動機構を制御して光学素子を昇降させることにより、所定の空間周波数に調整する。   As described above, the present invention captures an object to be measured through a half mirror and an optical element by an image capturing device, transmits it to a control unit, and compares it with a predetermined spatial frequency value stored in advance in a database. The control unit controls the drive mechanism to raise and lower the optical element, thereby adjusting to a predetermined spatial frequency.

また、この時、測定者とハーフミラーとの間には一定の距離を有することから、ミラーを介して既に空間周波数の調整を行なった被測定物を観察するので、測定者は肉眼により最適なコントラスト感度で画像の認識を行なうことができる。故に、画像認識の正確性をより高めることができる。   At this time, since there is a certain distance between the measurer and the half mirror, the object to be measured that has already been subjected to spatial frequency adjustment is observed through the mirror. Image recognition can be performed with contrast sensitivity. Therefore, the accuracy of image recognition can be further improved.

また、前記画像取り込み装置は、被測定物の画像の輝度を測定する機能も有し、前記制御ユニットには、該被測定物の画像の輝度を測定するための輝度調節装置が更に接続され、また、前記輝度調節装置は、被測定物の画像を映し出すディスプレイに内蔵され、また、前記輝度調節装置は、被測定物の画像を映し出す際に用いられるバックライトユニットに内蔵され、また、前記輝度調節装置は外部光源内に設けられ、該外部光源は反射型ディスプレイの画面上に投射されてもよい。   The image capturing device also has a function of measuring the luminance of the image of the object to be measured, and the control unit is further connected to a luminance adjusting device for measuring the luminance of the image of the object to be measured. In addition, the brightness adjusting device is built in a display that displays an image of the object to be measured, and the brightness adjusting device is built in a backlight unit that is used when projecting an image of the object to be measured. The adjusting device may be provided in the external light source, and the external light source may be projected on the screen of the reflective display.

また、本発明では、前記肉眼による低コントラスト画像認識時の補助方法を提供するために、測定者の肉眼を、被測定物の画像に対し所定の距離をおいて位置させるステップと、前記距離での測定者の、被測定物の画像に対する空間周波数を測定するステップと、測定した空間周波数が最適ではない時、測定者の、被測定物の画像に対する空間周波数を調節して、肉眼のコントラスト感度を最適な状態とするステップと、を順次行なうことにより、測定者の肉眼で被測定物の画像にムラ或いはその他の品質の問題が発生しているか否かを判断している。   Further, in the present invention, in order to provide an auxiliary method at the time of low-contrast image recognition by the naked eye, a step of positioning the naked eye of the measurer at a predetermined distance from the image of the object to be measured; Measuring the spatial frequency of the measured object with respect to the image of the measured object, and adjusting the spatial frequency of the measured object with respect to the image of the measured object when the measured spatial frequency is not optimal, and contrast sensitivity of the naked eye In order to determine whether or not there is any unevenness or other quality problem in the image of the object to be measured with the naked eye of the measurer.

前記ステップにより、測定者は肉眼のコントラスト感度が最適な状態で被測定物の画像に対する認識動作を行なうことができるので、認識動作の正確性をより高めることができる。   According to the above steps, the measurer can perform the recognition operation on the image of the object under measurement with the optimum contrast sensitivity of the naked eye, so that the accuracy of the recognition operation can be further improved.

また、前記ステップでは更に、空間周波数を測定した後、該測定した空間周波数データベースに予め保存された空間周波数のデータとの比較を行ない、空間周波数と所定の空間周波数とが異なる場合は、測定者の、被測定物の画像に対する空間周波数を調節することにより、肉眼のコントラスト感度を最適な状態とすることができる。   Further, in the step, after measuring the spatial frequency, the measured spatial frequency is compared with the data of the spatial frequency stored in advance, and if the spatial frequency is different from the predetermined spatial frequency, the measurer By adjusting the spatial frequency of the image of the object to be measured, the contrast sensitivity of the naked eye can be brought into an optimum state.

更に、前記ステップにおいては、測定者の肉眼に対する被測定物の画像の空間周波数を調節した後、肉眼のコントラスト感度と特定の波長の光源と光源強度との関係を利用して、被測定物の画像の色彩、該画像に対するバックライト(或いは反射光)の強弱を変更することにより、肉眼のコントラスト感度をより向上させてもよい。   Further, in the above step, after adjusting the spatial frequency of the image of the object to be measured with respect to the naked eye of the measurer, the relationship between the contrast sensitivity of the naked eye, the light source of a specific wavelength, and the light source intensity is used. The contrast sensitivity of the naked eye may be further improved by changing the color of the image and the intensity of the backlight (or reflected light) for the image.

更に、前記ステップにおいては、被測定物の画像における空間周波数を測定する時、それと同時に前記被測定物の画像における輝度を測定することにより、映像に対するバックライト或いは反射光の強度を調節する否か判断してもよい。   Further, in the step, when measuring the spatial frequency in the image of the object to be measured, at the same time, by measuring the luminance in the image of the object to be measured, whether or not to adjust the intensity of the backlight or reflected light for the image. You may judge.

また、前記被測定物の画像における光源色、背景色は一般に、緑色が好ましいが、特定の被測定物に対して実験により好ましい色を得てもよい。   In addition, the light source color and background color in the image of the object to be measured are generally preferably green, but a preferable color may be obtained by experiment for a specific object to be measured.

また、前記被測定物の画像は、平面ディスプレイの画面に映し出された画像、X線フィルム、回路板上の配線パターンであってもよい。   Further, the image of the object to be measured may be an image projected on a screen of a flat display, an X-ray film, or a wiring pattern on a circuit board.

以下、添付図面を参照して本発明の好適な実施の形態を詳細に説明する。   Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

図1は本発明に係る使用状態図であり、図2は本発明に係る他の使用状態図であり、図3は本発明に係るシステムのブロック図であり、図4は光源波長と肉眼のコントラスト感度との関係を示す曲線図であり、図5は肉眼のコントラスト感度の、空間周波数に対する特性を示した曲線図であり、図6のA,Bは視神経細胞により感知した画像の強弱や抑制を示す図であり、図7は肉眼により1本の線を見た時に、視神経細胞が感知した領域を示す図であり、図8のA〜Cはそれぞれ、空間間波数(異なる大きさ)の異なる画像に対する視神経細胞の感知効果を示した図である。   1 is a use state diagram according to the present invention, FIG. 2 is another use state diagram according to the present invention, FIG. 3 is a block diagram of a system according to the present invention, and FIG. 5 is a curve diagram showing the relationship with contrast sensitivity, FIG. 5 is a curve diagram showing characteristics of contrast sensitivity of the naked eye with respect to spatial frequency, and FIGS. 6A and 6B show the intensity and suppression of images sensed by optic nerve cells. FIG. 7 is a diagram showing a region sensed by an optic nerve cell when a single line is viewed with the naked eye, and FIGS. 8A to 8C each show inter-space wave numbers (different sizes). It is the figure which showed the sensing effect of the optic nerve cell with respect to a different image.

図1の実施例に示すように、本発明の肉眼による低コントラスト画像認識時の補助システムは、測定者の肉眼と被測定物100の画像との間に位置する、レンズ(例えば、凹面鏡、凸面鏡など)、レンズ系、光学レンズ或いはズームレンズなどの光学素子30と、前記光学素子30と連結され、該光学素子30と被測定物100の画像との距離或いは焦点距雌(例えば、ズームレンズ)を調整することにより、光学素子30の、被測定物100に対する拡大・縮小倍率を調節する駆動機構(図示せず)を含み、前記システムの方式としては、測定者が肉眼で光学素子30を介して被測定物の画像を観察することにより測定を行なうが、更に詳しく脱明すると、この測定方式では、先ず光学素子30が初期位置にある時における、肉眼に映った被測定物の画像サイズが認識し易いかを判断し、認識し難い場合は、駆動機構により光学素子30を移動させて被測定物の画像の空間周波数を調整し、肉眼に映った被測定物の画像サイズを適当な大きさにする。これにより、測定者の肉眼における、低コントラストの被測定物の画像に対する認識能力を高めている。   As shown in the embodiment of FIG. 1, the auxiliary system for recognizing a low-contrast image by the naked eye according to the present invention is a lens (for example, a concave mirror or a convex mirror) positioned between the naked eye of the measurer and the image of the object 100 to be measured. ), An optical element 30 such as a lens system, an optical lens or a zoom lens, and a distance or focal length female (for example, a zoom lens) between the optical element 30 and an image of the object 100 to be measured. By adjusting the magnification / reduction magnification of the optical element 30 with respect to the object 100 to be measured, and the system is configured such that the measurer passes the optical element 30 with the naked eye. The measurement is performed by observing the image of the object to be measured. However, in more detail, in this measurement method, the optical element 30 is first visible to the naked eye when it is in the initial position. It is determined whether the image size of the measurement object is easy to recognize. If it is difficult to recognize, the optical element 30 is moved by the drive mechanism to adjust the spatial frequency of the image of the measurement object, Set the image size appropriately. As a result, the ability to recognize the image of the low-contrast measurement object with the naked eye of the measurer is enhanced.

図2に示すように、本発明の前記構成においては、更に自動化補助システムに拡充することができる。その構成を以下にて説明する。   As shown in FIG. 2, in the said structure of this invention, it can further expand to an automation assistance system. The configuration will be described below.

被測定物100に対して一定距離離れた位置に設けられ、測定者が測定を行なうための半反射と、画像取り込み装置(例えばディジタルカメラ)が自動化処理を行なうための半透過とを行うと共に、回動可能であり、被測定物100に対する角度が45度の時に、測定者により測定可能で、90度の時に、画像取り込み装置により撮像可能な全反射を行うハーフミラー10と、前記ハーフミラー10の上に設けられ、前記ハーフミラー10を介して被測定物100の画像を取リ込む画像取り込み装置20と、前記ハーフミラー10と被測定物100との間に位置すると共に駆動機構(図示せず)によりハーフミラー10と被測定物100との距離を調整して、ハーフミラー10上に投射される被測定物100の画像の拡大・縮小倍率を調節するレンズ(例えば、凹面鏡、凸面鏡など)、レンズ系、光学レンズ、或いはズームレンズの光学素子30とを含み、前記システムの測定方式では、ハーフミラー10から測定者までの距離と、ハーフミラー10から画像取り込み装置20までの距離とには関係があり、即ち、測定者の肉眼と映像取り込み装置20とはそれぞれハーフミラー10から取り込む画像の空間周波数が同一である。これより、該画像取り込み装置20はハーフミラー10、光学素子30を介して、被測定物100の画像(例えば、平面ディスプレイの画面を撮像するが、測定した空間周波数が最適な値でない場合は、駆動機構により光学素子30の、被測定物100に対する距離(即ち、拡大或いは縮小率)が調整され、それに応じてハーフミラー10上に投射された画像の空間周波数が最適な空間周波数に変更調整されるので、測定者は常に最適なコントラスト感度で測定を行なうことができる。   Provided at a position away from the object to be measured 100 by a certain distance, performs semi-reflection for measurement by a measurer and semi-transmission for an image capturing device (for example, a digital camera) to perform automation processing. The half mirror 10 that can be rotated and can be measured by a measurer when the angle with respect to the object to be measured 100 is 45 degrees and that can be imaged by an image capturing device when the angle is 90 degrees, and the half mirror 10 And an image capturing device 20 that captures an image of the device under test 100 via the half mirror 10 and a drive mechanism (not shown) that is positioned between the half mirror 10 and the device under test 100. The distance between the half mirror 10 and the device under test 100 is adjusted by adjusting the enlargement / reduction magnification of the image of the device under test 100 projected onto the half mirror 10. A lens system (for example, a concave mirror, a convex mirror, etc.), a lens system, an optical lens, or an optical element 30 of a zoom lens. In the measurement method of the system, the distance from the half mirror 10 to the measurer and the image from the half mirror 10 The distance to the capturing device 20 is related, that is, the measurement subject's naked eye and the image capturing device 20 have the same spatial frequency of images captured from the half mirror 10. Thus, the image capturing device 20 captures an image of the device under test 100 (for example, a screen of a flat display through the half mirror 10 and the optical element 30, but when the measured spatial frequency is not an optimal value, The distance (that is, the enlargement or reduction ratio) of the optical element 30 with respect to the device under test 100 is adjusted by the drive mechanism, and the spatial frequency of the image projected on the half mirror 10 is changed and adjusted to the optimum spatial frequency accordingly. Therefore, the measurer can always perform the measurement with the optimum contrast sensitivity.

前記光学素子30の拡大/縮小率の変更は、制御ユニット及びデータベースにより達成され、そのシステムの構成としては、図3に示すように、異なる被測定物の画像及び/又は図形の予め設定され最適な空間周波数の値が保存されるデータペベース40と、画像取り込み装置20、光学素子30の駆動機構60及びデータベース40と連結される制御の中枢である制御ユニット50とを含む。   The change of the enlargement / reduction ratio of the optical element 30 is achieved by a control unit and a database. As shown in FIG. 3, the configuration of the system is preset and optimized for images and / or figures of different objects to be measured. A data base 40 in which various spatial frequency values are stored, and a control unit 50 which is a control center connected to the image capturing device 20, the driving mechanism 60 of the optical element 30 and the database 40.

これにより、画像取り込み装置20が被測定物の画像を取り込んで空間周波数を算出した後、制御ユニット50に送り、該測定した空間周波数とデータベース40に予め保存された空間周波数のデータとの比較を行ない、そして、制御ユニット50により駆動機構60を制御して光学素子30を昇降させて、画像に対する拡大/縮小率を調整し、所定の空間周波数を達成する。
故に、測定者の肉眼はハーフミラー10により最適なコントラスト感度で被測定物の画像を測定できるので、画像認識の正確性をより向上させることができる。
Thereby, after the image capturing device 20 captures the image of the object to be measured and calculates the spatial frequency, it is sent to the control unit 50 and the measured spatial frequency is compared with the spatial frequency data stored in the database 40 in advance. Then, the control mechanism 50 controls the drive mechanism 60 to raise and lower the optical element 30 to adjust the enlargement / reduction ratio for the image and achieve a predetermined spatial frequency.
Therefore, the naked eye of the measurer can measure the image of the object to be measured with the optimum contrast sensitivity by the half mirror 10, so that the accuracy of image recognition can be further improved.

また、前記システムにおいては、被測定物の画像における空間周波数を調整する他に、更に肉眼のコントラスト感度と被測定物の画像の輝度、色彩の関係を組合せることにより、被捌定物の画像の輝度、色彩に対して調整を行なって、測定者の肉眼における正確性をより向上させるようにしてもよい。   In the system, in addition to adjusting the spatial frequency in the image of the object to be measured, the image of the object to be measured is further combined by combining the contrast sensitivity of the naked eye with the luminance and color of the image of the object to be measured. The brightness and color may be adjusted to improve the accuracy of the measurer with the naked eye.

図4は、光源波長と肉眼のコントラスト感度との関係を示す曲続図であり、同図からも分かるように、肉眼は、波長力軸500nmの光に対して最適なコントラスト感度を有し、該波長の光は緑色である。故に、若し、肉眼により測定した低コントラストの画像のコントラスト感度を高めたい場合は、被測定物に係る光源を緑色に調整すればよい。尚、前記方式において、被測定物が平面ディスプレイである場合は、緑色の背景の画像を発生させればよい。   FIG. 4 is a continuation diagram showing the relationship between the light source wavelength and the contrast sensitivity of the naked eye. As can be seen from the figure, the naked eye has an optimum contrast sensitivity for light having a wavelength force axis of 500 nm. The light of this wavelength is green. Therefore, if it is desired to increase the contrast sensitivity of a low-contrast image measured with the naked eye, the light source relating to the object to be measured may be adjusted to green. In the above method, when the object to be measured is a flat display, a green background image may be generated.

また、前記本発明により反射型ディスプレイの画像を測定する場合は、該反射型ディスプレイ上に投射された外部光源が緑色であればよく、また、前記本発明によりX線フィルムの分析を行なう場合は、該X線フィルムの背景光源が緑色であればよい。   When measuring the image of the reflective display according to the present invention, the external light source projected on the reflective display may be green, and when the X-ray film is analyzed according to the present invention. The background light source of the X-ray film may be green.

一方、輝度調整により肉眼のコントラスト感度を高める方式では、前記画像取り込み装置20に被測定物100の画像の輝度を測定する機能を持たせると共に、データベース40には予め各種被測定物の最適な輝度値を保存し、制御ユニット50により、その輝度値と測定した値との比較を行ない、その比較結果に基づいて、戯被測定物100の画像の輝度を測定するための輝度調節装置51が接続された制御ユニット50により、被測定物の画像輝度を調整する。   On the other hand, in the method of increasing the contrast sensitivity of the naked eye by adjusting the brightness, the image capturing device 20 has a function of measuring the brightness of the image of the device under test 100, and the database 40 stores in advance the optimum brightness of various devices under test. A brightness adjustment device 51 is connected to store the value, compare the brightness value with the measured value by the control unit 50, and measure the brightness of the image of the play object 100 based on the comparison result. The image brightness of the object to be measured is adjusted by the control unit 50.

上述したように、本発明を用いれば、各種低コントラストの画像(例えば、平面ディスプレイイ、X線フィルム、チップパターン、印刷回路板(PCB)など)の測定を行なうことができるので、前記輝度調節装置51の実施形態は、以下に示すように被測定物により異なってくる。   As described above, by using the present invention, various low-contrast images (for example, flat display, X-ray film, chip pattern, printed circuit board (PCB), etc.) can be measured. The embodiment of the device 51 varies depending on the object to be measured as described below.

被測定物が液晶ディスプレイである場含は、輝度調節装置51は該液晶ディスプレイに内蔵される。
被測定物が反射型ディスプレイである場合は、輝度調節装置51は外部光源内に設けられる。
また、被測定物がX線フィルムである場合は、輝度調節装置51はX線フィルムのバックライトユニット内に設けられる。
When the object to be measured is a liquid crystal display, the brightness adjusting device 51 is built in the liquid crystal display.
When the object to be measured is a reflective display, the brightness adjusting device 51 is provided in an external light source.
When the object to be measured is an X-ray film, the brightness adjusting device 51 is provided in the backlight unit of the X-ray film.

なお、上記の説明は、単に輝度調節装置51の一つの実施例を示したものであり、本明細書に示す特許請求の範囲内であれば如何なる形態に構成させてもよく、また、容易に想到し得る範囲内である場合も、当然本発明の請求範囲に属することは言うまでもない。   The above description merely shows one embodiment of the brightness adjusting device 51, and any form may be used as long as it is within the scope of the claims shown in this specification. Needless to say, even within the conceivable range, it is within the scope of the claims of the present invention.

更に、本発明ではデータベースに予め各種被測定物の画像の空間周波数の値が保存されるが、測定者により同一の空間周波数に対して同一のコントラスト感度を有するとは限らず、言い換えれば、データベースにより調整した被測定物の画像の空間周波数が、各測定者のコントラスト感度に適合するとは限らない。故に、本発明では光学素子の駆動機構を測定者自らが調整を行なうことにより、最適なコントラスト感度を得ることができる。   Further, in the present invention, the spatial frequency values of the images of various objects to be measured are stored in the database in advance, but the measurement person does not always have the same contrast sensitivity for the same spatial frequency, in other words, the database. The spatial frequency of the image of the object to be measured adjusted by the above does not always match the contrast sensitivity of each measurer. Therefore, according to the present invention, the optimum contrast sensitivity can be obtained by the operator himself / herself adjusting the drive mechanism of the optical element.

尚、前記テータベースのデータは、文献より得てもよく、特定の条件で実験を行なうことにより得てもよい。   The data base data may be obtained from literature or may be obtained by conducting an experiment under specific conditions.

また、予め空間周波数を得る方法としては、以下の表1に示す方法を採用してもよい。
Moreover, as a method for obtaining the spatial frequency in advance, the method shown in Table 1 below may be adopted.

上述したように、本発明は肉眼のコントラスト感度に対する空間周波数の関係を利用して、肉眼の、被測定物に対する空間周波数を調整することにより、測定者は肉眼のコントラスト感度が最適な状態で被測定物の画像に対する認識動作を行なうことができるので、低コントラストの画像に対する測定における正確性が向上する。更に、この技術では、各種低コントラストの画像に対する測定ができ、例えば、平面ディスプレイの瑕疵検出、回路板のパターン確認及びX線フィルムの分析などに用いられる他に、測定者の肉眼訓練や甚準の測定などにも用いられる。故に、本発明は明らかに従来の課題を解決することができる。   As described above, the present invention uses the relationship of the spatial frequency to the contrast sensitivity of the naked eye, and adjusts the spatial frequency of the naked eye to the object to be measured, so that the measurer can perform the measurement with the optimal contrast sensitivity of the naked eye. Since the recognition operation for the image of the measurement object can be performed, the accuracy in the measurement for the low-contrast image is improved. Furthermore, this technique can measure various low-contrast images. For example, it can be used for flat panel display wrinkle detection, circuit board pattern confirmation, and X-ray film analysis. It is also used for measurement. Therefore, the present invention can clearly solve the conventional problems.

本発明に係る使用状態図である。It is a use condition figure concerning the present invention. 本発明に係る他の使用状態図である。It is another use condition figure concerning the present invention. 本発明に係るシステムブロック図である。It is a system block diagram concerning the present invention. 光源波長と肉眼のコントラスト感度との関係を示す曲線図である。It is a curve figure which shows the relationship between a light source wavelength and the contrast sensitivity of the naked eye. 肉眼のコントラスト感度の、空間周波数に対する特性を示した曲線図である。It is a curve diagram showing characteristics of contrast sensitivity of the naked eye with respect to spatial frequency. A,Bは視神経細胞により感知した画像の強弱や抑制を示す図である。A and B are diagrams showing intensity and suppression of an image sensed by an optic nerve cell. 肉眼により1本の線を見た時に、視神経細胞が感知した領域を示す図である。It is a figure which shows the area | region which the optic nerve cell sensed when seeing one line | wire with the naked eye. A〜Cはそれぞれ、空間周波数(異なる大きさ)の、異なる画像に対する視神経細胞の感知効果を示した図である。FIGS. 8A to 8C are diagrams showing the sensing effect of optic nerve cells on different images of spatial frequencies (different sizes).

符号の説明Explanation of symbols

10 ハーフミラー
100 被測定物
20 画像取り込み装置
30 光学素子
40 データベース
50 制御ユニット
51 輝度調節装置
60 駆動機構
70,70’ 強化領域
71,71’ 抑制領域
DESCRIPTION OF SYMBOLS 10 Half mirror 100 Measured object 20 Image acquisition apparatus 30 Optical element 40 Database 50 Control unit 51 Brightness adjustment apparatus 60 Drive mechanism 70,70 'Strengthening area | region 71,71' Suppression area | region

Claims (23)

測定者の肉眼と被測定物100の画像との間に位置する光学素子30と、
前記光学素子30と被測定物100の画像との距離を調整することにより、光学素子30の、被測定物100に対する拡大・縮小倍率を調節する駆動機構60と、を含み、
前記被測定物100の画像の空間周波数の調整を行なうことにより、測定者の肉眼の、低コントラストの被測定物100の画像に対する認識能力を高めることを特微とする肉眼による低コントラスト画像認識時の補助システム。
An optical element 30 positioned between the naked eye of the measurer and the image of the object 100 to be measured;
A drive mechanism 60 for adjusting the magnification / reduction magnification of the optical element 30 with respect to the measurement object 100 by adjusting the distance between the optical element 30 and the image of the measurement object 100;
At the time of low-contrast image recognition by the naked eye, which is characterized by enhancing the ability of the naked eye of the measurer to recognize the image of the low-contrast object 100 by adjusting the spatial frequency of the image of the object 100 to be measured. Auxiliary system.
前記駆動機構60に接続される制御ユニット50を更に含むことを特微とする請求項1に記載の肉眼による低コントラスト画像認識時の補助システム。   The auxiliary system at the time of low-contrast image recognition by the naked eye according to claim 1, further comprising a control unit 50 connected to the drive mechanism 60. 異なる被測定物100の画像の予め設定された空間周波数の値を保存すると共に、前記制御ユニット50に接続され、前記駆動機構60を制御する根拠となるデータベース40を更に含むことを特徴とする請求項2に記載の肉眼による低コントラスト画像認識時の補助システム。   The apparatus further includes a database 40 that stores values of preset spatial frequencies of images of different objects to be measured 100 and is connected to the control unit 50 and serves as a basis for controlling the drive mechanism 60. Item 3. An auxiliary system for low-contrast image recognition by the naked eye according to Item 2. 被測定物100に対して一定距離離れた位置に設けられるミラーと、
画像取り込み角度が前記ミラーを介して被測定物100側を向くと共に、前記制御ユニット50に接続される画像取り込み装置20と、を含むことを特微とする請求項3に記載の肉眼による低コントラスト画認識時の補助システム。
A mirror provided at a certain distance from the DUT 100;
4. The low contrast by the naked eye according to claim 3, further comprising: an image capturing device having an image capturing angle directed toward the object to be measured 100 through the mirror and connected to the control unit 50. Auxiliary system for image recognition.
前記ミラーが全反射ミラーであることを特徴とする請求項4記載の肉眼による低コントラスト画像認識時の補助システム。   5. The auxiliary system for low-contrast image recognition with the naked eye according to claim 4, wherein the mirror is a total reflection mirror. 前記ミラーがハーフミラー10であることを特微とする請求項4に記載の肉眼による低コントラスト画像認識時の補助システム。   The auxiliary system at the time of low-contrast image recognition by the naked eye according to claim 4, wherein the mirror is a half mirror 10. 前記光学素子30の駆動機構60は手動により微調整可能であることを特微とする請求項1、4、5又は6のいずれか1つに記載の肉眼による低コントラスト画像認識時の補助システム。   The auxiliary system at the time of low-contrast image recognition by the naked eye according to any one of claims 1, 4, 5 and 6, wherein the drive mechanism 60 of the optical element 30 can be finely adjusted manually. 前記光学素子30が凸面競であることを特徴とする請求項7に記載の肉眼による低コントラスト画像認識時の補助システム。   The auxiliary system for low-contrast image recognition by the naked eye according to claim 7, wherein the optical element 30 is a convex race. 前記光学素子30が凹面鏡であることを特徴とする請求項7に記載の肉眼による低コントラスト画像認識時の補助システム。   The auxiliary system for low-contrast image recognition by the naked eye according to claim 7, wherein the optical element 30 is a concave mirror. 前記光学素子30がズームレンズであることを特徴とする請求項7に記載の肉眼による低コントラスト画像認識時の補助システム。   The auxiliary system for low-contrast image recognition by the naked eye according to claim 7, wherein the optical element (30) is a zoom lens. 前記光学素子30が光学レンズであることを特徴とする請求項7に記載の肉眼による低コントラスト画像認識時の補助システム。 The auxiliary system for low-contrast image recognition by the naked eye according to claim 7, wherein the optical element 30 is an optical lens. 前記画像取り込み装置20は、被測定物100の画像の輝度を測定する機能も有し、制御ユニット50には、該被測定物100の画像の輝度を測定するための輝度調節装置51が更に接続されることを特徴とする請求項4に記載の肉眼による低コントラスト画像認識時の補助システム。   The image capturing device 20 also has a function of measuring the luminance of the image of the device under test 100, and a brightness adjusting device 51 for measuring the luminance of the image of the device under test 100 is further connected to the control unit 50. The auxiliary system at the time of low contrast image recognition by the naked eye according to claim 4. 前記輝度調節装置51は、被測定物100の画像を映し出すディスプレイに内蔵されることを特徴とする請求項12に記載の肉眼による低コントラスト画像認識時の補助システム。   The auxiliary system for low-contrast image recognition by the naked eye according to claim 12, wherein the brightness adjusting device 51 is built in a display that displays an image of the device under test 100. 前記輝度調節装置51は、被測定物100の画像を映し出す際に用いられるバックライトユニットに内蔵されることを特徴とする請求項12に記載の肉眼による低コントラスト画像認識時の補助システム。   The auxiliary system for low-contrast image recognition by the naked eye according to claim 12, wherein the brightness adjusting device 51 is built in a backlight unit used when projecting an image of the device under test 100. 前記輝度調節装置51は外部光源内に設けられ、該外部光源は反射型ディスプレイの画面上に投射されることを特徴とする請求項12に記載の肉眼による低コントラスト画像認識時の補助システム。   The auxiliary system for low-contrast image recognition by the naked eye according to claim 12, wherein the brightness adjusting device 51 is provided in an external light source, and the external light source is projected on a screen of a reflective display. 測定者の肉眼を、被測定物100の画像に対し所定の距離をおいて位置させるステップと、
前記距離での測定者の、被測定物100の画像に対する空間周波数を測定するステップと、
測定した空間周波数が最適ではない時、測定者の、被測定物100の画像に対する空間周波数を調節して、肉眼のコントラスト感度を最適な状態とするステップと、を順次行なうことにより、測定者の肉眼で被測定物100の画像にムラ或いはその他の品質の問題が発生しているかを判断することを特徽とする肉眼による低コントラスト画像認識時の補助方法。
Positioning the measurer's naked eye at a predetermined distance from the image of the object to be measured 100;
Measuring a spatial frequency of an image of the object 100 to be measured by a measurer at the distance;
When the measured spatial frequency is not optimal, the step of adjusting the spatial frequency with respect to the image of the object 100 to be measured to optimize the contrast sensitivity of the naked eye is sequentially performed. An assisting method at the time of low-contrast image recognition by the naked eye, characterized by determining whether the image of the object to be measured 100 is uneven or other quality problems with the naked eye.
空間周波数を測定した後、該測定した空間周波数とデータベース40に予め保存された空間周波数のデータとの比較を行ない、空間周波数と所定の空間周波数とが異なる場合、速やかに測定者の、被測定物100の画像に対する空間周波数を調節し、肉眼のコントラスト感度を最適な状態とすることを特徴とする請求項16に記載の肉眼による低コントラスト画像認識時の補助方法。   After the spatial frequency is measured, the measured spatial frequency is compared with the spatial frequency data stored in advance in the database 40. If the spatial frequency is different from the predetermined spatial frequency, the measurer quickly measures the measured frequency. The assisting method for low-contrast image recognition by the naked eye according to claim 16, wherein the spatial frequency of the object 100 is adjusted to optimize the contrast sensitivity of the naked eye. 前記被測定物100の画像が平面ディスプレイの画面に映し出された画像であることを特徴とする請求項16に記載の肉眼による低コントラスト画像認識時の補助方法。   The assisting method at the time of low-contrast image recognition by the naked eye according to claim 16, wherein the image of the device under test 100 is an image projected on a screen of a flat display. 前記被測定物100の画像がX線フィルムであることを特徽とする請求項16に記載の肉眼による低コントラスト画像認識時の補助方法。   The assisting method at the time of low-contrast image recognition by the naked eye according to claim 16, wherein the image of the device under test 100 is an X-ray film. 前記被測定物100の画像が回路板上の配線パターンであることを特徴とする請求項16に記載の肉眼による低コントラスト画像認識時の補助方法。 The auxiliary method for recognizing a low-contrast image by the naked eye according to claim 16, wherein the image of the device under test 100 is a wiring pattern on a circuit board. 前記被測定物100の画像における光源色、背景色は、緑色が好ましいことを特微とする請求項16乃至20の何れか1項に記載の肉眼による低コントラスト画像認識時の補助方法。   21. The assist method for recognizing a low-contrast image by the naked eye according to any one of claims 16 to 20, wherein the light source color and the background color in the image of the object to be measured 100 are preferably green. 前記被測定物100の画像における空間周波数を測定する時、それと同時に前記被測定物100の画像における輝度を測定することにより、映像に対する光源強度を調節するか否かを判断することを特徴とする請求項16乃至20の何れか1項に記載の肉眼による低コントラスト画像認識時の補助方法。   When measuring the spatial frequency in the image of the object to be measured 100, it is determined whether to adjust the light source intensity for the image by measuring the luminance in the image of the object to be measured 100 at the same time. 21. A method for assisting low-contrast image recognition with the naked eye according to any one of claims 16 to 20. 前記被測定物100の画像における空間周波数を測定する時、それと同時に前記被測定物100の画像における輝度を測定することにより、映像の光源強度を調節するか否かを判断することを特徴とする請求項21に記載の肉眼による低コントラスト画像認識時の補助方法。
When measuring the spatial frequency in the image of the object to be measured 100, it is determined whether to adjust the light source intensity of the image by measuring the luminance in the image of the object to be measured 100 at the same time. The assisting method at the time of low contrast image recognition by the naked eye according to claim 21.
JP2004104300A 2004-03-09 2004-03-31 Auxiliary system for low-contrast image recognition with the naked eye Expired - Fee Related JP4210618B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW093106142A TWI250310B (en) 2004-03-09 2004-03-09 A system and its method to aid eye inspection for discrimination of low contract images from background

Publications (2)

Publication Number Publication Date
JP2005257655A true JP2005257655A (en) 2005-09-22
JP4210618B2 JP4210618B2 (en) 2009-01-21

Family

ID=35083497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004104300A Expired - Fee Related JP4210618B2 (en) 2004-03-09 2004-03-31 Auxiliary system for low-contrast image recognition with the naked eye

Country Status (3)

Country Link
JP (1) JP4210618B2 (en)
KR (1) KR100816771B1 (en)
TW (1) TWI250310B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014041964A1 (en) * 2012-09-14 2014-03-20 住友ゴム工業株式会社 Tire appearance inspection device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02157619A (en) * 1988-12-09 1990-06-18 Murata Mfg Co Ltd Specifying device for two-dimensionally arranged object
JPH09294224A (en) * 1996-04-25 1997-11-11 Shigeki Kobayashi Automatic magnification image pickup device and automatic magnification image pickup device
JPH09307299A (en) * 1996-05-17 1997-11-28 Sony Corp Inspection device for mounting substrate
JP2000046746A (en) * 1998-07-30 2000-02-18 Sony Corp Magnifying observation apparatus
JP2000200813A (en) * 1998-10-27 2000-07-18 Hitachi Ltd Picture automatic collecting device and method thereof
JP2003066341A (en) * 2001-08-28 2003-03-05 Nec Corp Reticle inspection device
JP2003177102A (en) * 2001-09-13 2003-06-27 Hitachi Ltd Method and apparatus for inspecting pattern defects
JP2004015178A (en) * 2002-06-04 2004-01-15 Fuji Xerox Co Ltd Image processing apparatus
JP2005148044A (en) * 2003-11-14 2005-06-09 Ind Technol Res Inst Method for detecting low-contrast image

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4528989A (en) * 1982-10-29 1985-07-16 Weinblatt Lee S Screening method for monitoring physiological variables
US4697598A (en) * 1985-04-25 1987-10-06 Westinghouse Electric Corp. Evoked potential autorefractometry system
US4861154A (en) * 1986-08-06 1989-08-29 Westinghouse Electric Corp. Automated visual assessment system with steady state visual evoked potential stimulator and product detector
JPH06165754A (en) * 1992-11-28 1994-06-14 Canon Inc Ophthalmic apparatus
JP4591802B2 (en) * 2000-09-13 2010-12-01 株式会社ニコン Surface inspection apparatus and method
KR20030060243A (en) * 2002-01-07 2003-07-16 엘지전자 주식회사 The apparatus of automatic inspection for flat panel display

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02157619A (en) * 1988-12-09 1990-06-18 Murata Mfg Co Ltd Specifying device for two-dimensionally arranged object
JPH09294224A (en) * 1996-04-25 1997-11-11 Shigeki Kobayashi Automatic magnification image pickup device and automatic magnification image pickup device
JPH09307299A (en) * 1996-05-17 1997-11-28 Sony Corp Inspection device for mounting substrate
JP2000046746A (en) * 1998-07-30 2000-02-18 Sony Corp Magnifying observation apparatus
JP2000200813A (en) * 1998-10-27 2000-07-18 Hitachi Ltd Picture automatic collecting device and method thereof
JP2003066341A (en) * 2001-08-28 2003-03-05 Nec Corp Reticle inspection device
JP2003177102A (en) * 2001-09-13 2003-06-27 Hitachi Ltd Method and apparatus for inspecting pattern defects
JP2004015178A (en) * 2002-06-04 2004-01-15 Fuji Xerox Co Ltd Image processing apparatus
JP2005148044A (en) * 2003-11-14 2005-06-09 Ind Technol Res Inst Method for detecting low-contrast image

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014041964A1 (en) * 2012-09-14 2014-03-20 住友ゴム工業株式会社 Tire appearance inspection device
JP2014055912A (en) * 2012-09-14 2014-03-27 Sumitomo Rubber Ind Ltd Tire visual inspection device

Also Published As

Publication number Publication date
KR100816771B1 (en) 2008-03-26
KR20050091610A (en) 2005-09-15
JP4210618B2 (en) 2009-01-21
TW200530624A (en) 2005-09-16
TWI250310B (en) 2006-03-01

Similar Documents

Publication Publication Date Title
JP2012215486A (en) Surface property measuring apparatus and comprehensive evaluation method for surface property
WO2015014067A1 (en) Quality detection method, apparatus and device for liquid crystal screen
JP4080514B2 (en) Inspection device, inspection method, inspection program, and computer-readable recording medium
JP4655644B2 (en) Periodic pattern unevenness inspection system
JP2009150835A (en) Optical inspection method and optical inspection device
TW201013172A (en) Lens testing device with variable testing patterns
JP5557586B2 (en) Surface texture measuring device and surface texture measuring method
JP4354941B2 (en) Vision and brightness detection system for backlight unit
JP2006275609A (en) Irregularity inspection device and irregularity inspection method for cyclic pattern
JP4210618B2 (en) Auxiliary system for low-contrast image recognition with the naked eye
JP2011191170A (en) Image processing apparatus
JP2009058377A (en) Inspection apparatus
TW584708B (en) Method and apparatus for measuring a line width
JP2007278931A (en) Image evaluating apparatus and method
JP4401126B2 (en) Method for registering predetermined part of dimension measuring device
TWI583932B (en) Device for measuring optical quality of lenses
JP2004170400A (en) Method and system for measuring dimensions
KR20050104855A (en) Inspecting apparatus and method of inspecting the display panel
JP2005249946A (en) Defect inspecting apparatus for display device
KR20110088628A (en) Denting inspecting system having 3d surface measuring instrument
JP3311628B2 (en) Defect location device for thin display devices
CN111947896A (en) System and method for aligning optical center of lens with center of photosensitive surface of imaging sensor
JP6885762B2 (en) Lens meter
JPH08136876A (en) Substrate inspecting device
JP2938126B2 (en) Color filter surface inspection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20061115

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20061206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080529

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080603

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080701

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081027

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees