JP2005255504A - Granular explosive composition and method of preparing the same - Google Patents

Granular explosive composition and method of preparing the same Download PDF

Info

Publication number
JP2005255504A
JP2005255504A JP2004072625A JP2004072625A JP2005255504A JP 2005255504 A JP2005255504 A JP 2005255504A JP 2004072625 A JP2004072625 A JP 2004072625A JP 2004072625 A JP2004072625 A JP 2004072625A JP 2005255504 A JP2005255504 A JP 2005255504A
Authority
JP
Japan
Prior art keywords
explosive composition
ammonium nitrate
unsaturated dicarboxylic
granular explosive
granular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004072625A
Other languages
Japanese (ja)
Other versions
JP4474956B2 (en
Inventor
Tetsuya Sawada
徹哉 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
NOF Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOF Corp filed Critical NOF Corp
Priority to JP2004072625A priority Critical patent/JP4474956B2/en
Publication of JP2005255504A publication Critical patent/JP2005255504A/en
Application granted granted Critical
Publication of JP4474956B2 publication Critical patent/JP4474956B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a granular explosive composition in which the production of ammonia gas in the use in a mine is suppressed, excellent ability to prevent the solidification due to moisture absorption in storage is exhibited and explosive performance is improved and a method of preparing the same. <P>SOLUTION: The granular explosive composition contains ammonium nitrate, an oil agent and an α,β-unsaturated dicarboxylic anhydride-based polymer and is prepared by previously mixing/dissolving the α,β-unsaturated dicarboxylic anhydride-based polymer with the oil agent and after that, mixing with ammonium nitrate. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は隧道掘進、採石、採鉱などの産業用の爆破作業に利用される粒状爆薬組成物およびその製造方法に関する。   The present invention relates to a granular explosive composition used for industrial blasting operations such as tunnel excavation, quarrying and mining, and a method for producing the same.

産業用の爆破作業に利用される爆薬として、通常多孔質状硝酸アンモニウム(以下プリル硝安と略記)94重量%に油剤6重量%を含浸させた混合系粒状爆薬である硝安油剤爆薬(以下ANFO爆薬と略記)、含水爆薬、ダイナマイト、アンモン爆薬などが使用されている。
これらの中でANFO爆薬は安価であり、装薬孔にバルクの状態で装填できるメリットや、非雷管起爆性という特徴を有し、安全性の高い爆薬である点から最も多く使用されている。
As an explosive used for industrial blasting operations, an ammonium nitrate explosive (hereinafter referred to as ANFO explosive), which is a mixed granular explosive in which 94 wt% of porous ammonium nitrate (hereinafter abbreviated as “prill ammonium nitrate”) is impregnated with 6 wt% of the oil, is used. Abbreviations), hydrous explosives, dynamite, Ammon explosives, etc. are used.
Among these, ANFO explosives are inexpensive and are most frequently used because they have a merit that they can be loaded in a charged state in a bulk state and have a characteristic of non-detonator initiation, and are highly safe explosives.

そしてANFO爆薬は一般には明かり発破に多く使用されているが、前記の利点からトンネルや鉱山の坑内などの密閉空間内でも一部使用されるようになってきた。
その際、トンネル掘削において地山の本来持っている耐荷強度を利用し、地山自体の支保力によってトンネルの安定化を図るという考え方に基づき、支保力を補助するような構造で吹付けコンクリートやロックボルトなどを機能的に組み合わせた支保構造を掘進直後に構築する。
このような支保力の補強のために使用されるセメント(コンクリート)は坑内排水や掘削に使用される水と接触することでアルカリ性を呈する。ところがこれら塩基性物質とANFO爆薬の主成分であるプリル硝安とが接触した場合、人体に有害なアンモニアガスが発生する。アンモニアガスの許容濃度は25ppm(ACGIH勧告)と低い上に、僅かな発生量で刺激臭により、作業性に支障をきたすため、切羽での装薬作業が困難となる状況があった。
In general, ANFO explosives are widely used for light blasting, but due to the above-mentioned advantages, they have been partially used in sealed spaces such as tunnels and mines.
At that time, in the tunnel excavation, based on the idea of utilizing the load bearing strength of the natural ground and stabilizing the tunnel by the supporting force of the natural ground itself, the structure is designed to assist the supporting force with shot concrete and A support structure that is functionally combined with rock bolts will be constructed immediately after excavation.
Cement (concrete) used to reinforce such a supporting force exhibits alkalinity when in contact with underground drainage or water used for excavation. However, when these basic substances come into contact with prill nitrate, which is the main component of the ANFO explosive, ammonia gas harmful to the human body is generated. The allowable concentration of ammonia gas is as low as 25 ppm (ACGIH recommendation), and the operability is hindered by the irritating odor with a small amount of generation, so that there is a situation where the charge work at the face becomes difficult.

前記作業環境ではアンモニアガスの発生を抑制したANFO爆薬が求められ、クエン酸や酒石酸といった水溶性の固形酸をANFO爆薬中に添加する方法が提案された(例えば特許文献1参照)。
しかしながら、これらの有機酸は固体の形で添加されるため、使用時に固形酸の微粉が飛散する、あるいは硝酸アンモニウムとの比重差により固形酸が爆薬成分中で偏在するといった問題があった。さらに前記の固形酸は吸湿性があるため爆薬成分の固化を助長し、取り扱いを困難にするといった問題もあった。
また、穿孔径の小さい坑内で使用する場合、含水爆薬, ダイナマイトに比較し、爆薬としての反応性に乏しい固体の硝安アンモニウムを主成分とする爆薬にさらに固形酸を添加したアンモニア臭抑制爆薬は爆発性能が不十分という問題があった。
An ANFO explosive that suppresses the generation of ammonia gas is required in the working environment, and a method of adding a water-soluble solid acid such as citric acid or tartaric acid to the ANFO explosive has been proposed (for example, see Patent Document 1).
However, since these organic acids are added in the form of a solid, there is a problem in that fine powder of the solid acid is scattered during use, or the solid acid is unevenly distributed in the explosive component due to a difference in specific gravity with ammonium nitrate. Further, since the solid acid has a hygroscopic property, there is a problem that the explosive component is solidified and handling becomes difficult.
In addition, when used in a pit with a small drilling diameter, an ammonia odor-inhibiting explosive with a solid acid added to a solid ammonium nitrate explosive that is less reactive compared to hydrous explosives and dynamite explodes. There was a problem of insufficient performance.

特開2002−338383号公報(第2〜3頁)JP 2002-338383 A (pages 2 to 3)

本発明の目的は、坑内使用時におけるアンモニアガスの発生を抑制し、保管時における吸湿による固化を防止する能力(以下、耐固化性と略記)に優れ、爆発性能を向上させた粒状爆薬組成物およびその製造方法を提供することにある。   An object of the present invention is a granular explosive composition that has excellent ability to suppress the generation of ammonia gas during underground use, prevent solidification due to moisture absorption during storage (hereinafter abbreviated as solidification resistance), and improve explosive performance. And providing a manufacturing method thereof.

本発明者はANFO爆薬の主成分である硝酸アンモニウムと塩基性物質との接触により発生するアンモニアガスの抑制について鋭意研究した結果、特定の高分子樹脂を硝酸アンモニウムと油剤の混合物に配合することにより、少量添加でアンモニアガスの発生を抑制し、耐固化性を向上できると共に、爆発性能を向上させることができることの知見を得て本発明を完成するに至った。   As a result of diligent research on the suppression of ammonia gas generated by contact between ammonium nitrate, which is the main component of ANFO explosive, and a basic substance, the present inventor has found that a small amount of water can be obtained by blending a specific polymer resin into a mixture of ammonium nitrate and an oil agent. The addition of the present invention suppresses the generation of ammonia gas, improves the solidification resistance, and obtains the knowledge that the explosion performance can be improved, thereby completing the present invention.

本発明の第1は、硝酸アンモニウムと油剤とα,β−不飽和ジカルボン酸無水物系重合体とを含有する粒状爆薬組成物である。
本発明の第2は、α,β−不飽和ジカルボン酸無水物系重合体がスチレン・無水マレイン酸共重合体である第1の発明の粒状爆薬組成物である。
本発明の第3は、α,β−不飽和ジカルボン酸無水物系重合体の含有量が3〜10重量%である第1の発明または第2の発明の粒状爆薬組成物である。
本発明の第4は、硝酸アンモニウムがポーラスプリル硝酸アンモニウムである第1〜3の発明のいずれかの粒状爆薬組成物である。
本発明の第5は、予めα,β−不飽和ジカルボン酸無水物系重合体と油剤とを混合・溶解後、硝酸アンモニウムと混合することを特徴とする粒状爆薬組成物の製造方法である。
The first of the present invention is a granular explosive composition containing ammonium nitrate, an oil agent, and an α, β-unsaturated dicarboxylic acid anhydride polymer.
A second aspect of the present invention is the granular explosive composition according to the first aspect, wherein the α, β-unsaturated dicarboxylic acid anhydride polymer is a styrene / maleic anhydride copolymer.
3rd of this invention is a granular explosive composition of 1st invention or 2nd invention whose content of (alpha), (beta)-unsaturated dicarboxylic anhydride type polymer is 3 to 10 weight%.
4th of this invention is a granular explosive composition in any one of 1st-3rd invention whose ammonium nitrate is porous prill ammonium nitrate.
A fifth aspect of the present invention is a method for producing a granular explosive composition, wherein an α, β-unsaturated dicarboxylic acid anhydride polymer and an oil agent are mixed and dissolved in advance, and then mixed with ammonium nitrate.

第1の本発明によれば、アンモニア臭の発生を抑制し、耐固化性に優れ、かつ穿孔径の小さい坑内でも使用可能な程度に爆発性能に優れた粒状爆薬組成物である。
また第2の発明によれば、アンモニア臭の抑制効果が大きく、耐固化性に優れる。
また第3の発明によれば、アンモニア臭の発生を抑制し、爆発性能がより一層優れている。
また第4の発明によれば、ポーラスプリル硝酸アンモニウムを用いることにより、爆発反応性が向上するので、爆発性能を向上させることができる。また耐固化性にも優れる。
さらに第5の発明によれば、粒状爆発組成物がより均一となり、その結果前記の各効果が大きくなる。
According to 1st this invention, it is a granular explosive composition which suppressed generation | occurrence | production of the ammonia odor, was excellent in solidification resistance, and was excellent in explosive performance to such an extent that it can be used even in a pit with a small piercing diameter.
Moreover, according to 2nd invention, the suppression effect of ammonia odor is large and it is excellent in solidification resistance.
According to the third invention, the generation of ammonia odor is suppressed, and the explosion performance is further improved.
According to the fourth invention, the explosive reactivity can be improved by using porous prill ammonium nitrate, so that the explosive performance can be improved. It also has excellent solidification resistance.
Further, according to the fifth invention, the granular explosion composition becomes more uniform, and as a result, the above-mentioned effects become larger.

以下に、本発明を具体化した実施の形態について詳細に説明する。
本発明は、硝酸アンモニウム(以下硝安と略記)と油剤とα,β−不飽和ジカルボン酸無水物系重合体とを含有する点に特徴を有する粒状爆薬組成物である。
本発明に用いる硝安は、酸化剤として作用し、例えばJIS K1424に規定されるところの、純度が99.5%以上である硝安が爆発反応性の観点から好ましい。
また市販の、あるいは従来から公知のポーラスプリル硝安がさらに好ましい。ポーラスプリル硝安は爆薬自体の反応性を高めるため、吸油率が通常10重量%以上、好ましくは12〜20重量%で、かつ嵩比重が通常0.5〜0.8、好ましくは0.65〜0.72である。
吸油率が10%未満ではポーラスプリル硝安内の空隙率が低く、油剤、例えば軽油と硝安の十分な接触が期待できないため、爆薬としたときの反応性が低下する。
また、嵩比重が0.5未満の場合は、ポーラスプリル硝安粒子中の空隙率の割合が大きすぎるため、粒子全体の強度が不足し、製造から消費の間で粉化するといった問題が発生し易くなる。
また、嵩比重が0.8を越える場合には、爆薬比重が高すぎて爆薬の反応性が低下する傾向にある。
なお、前記の吸油率および嵩比重の測定方法は、当分野で公知の方法による。
Hereinafter, embodiments of the present invention will be described in detail.
The present invention is a granular explosive composition characterized by containing ammonium nitrate (hereinafter abbreviated as ammonium nitrate), an oil agent, and an α, β-unsaturated dicarboxylic acid anhydride polymer.
The ammonium nitrate used in the present invention acts as an oxidizing agent, and ammonium nitrate having a purity of 99.5% or more as defined in JIS K1424 is preferable from the viewpoint of explosion reactivity.
Further, commercially available or conventionally known porous prill ammonium sulfate is more preferable. Porous prill ammonium nitrate increases the reactivity of the explosive itself, so that the oil absorption is usually 10% by weight or more, preferably 12 to 20% by weight, and the bulk specific gravity is usually 0.5 to 0.8, preferably 0.65. 0.72.
If the oil absorption is less than 10%, the porosity in the porous prill ammonium nitrate is low and sufficient contact between the oil agent, for example, light oil and ammonium nitrate cannot be expected.
In addition, when the bulk specific gravity is less than 0.5, the porosity ratio in the porous prill ammonium particles is too large, so that the strength of the whole particles is insufficient, and the problem of powdering between production and consumption occurs. It becomes easy.
On the other hand, when the bulk specific gravity exceeds 0.8, the explosive specific gravity is too high and the reactivity of the explosive tends to decrease.
In addition, the measuring method of the said oil absorption rate and bulk specific gravity is based on a well-known method in this field | area.

本発明に使用されるプリル硝安は、平均粒径が通常1〜2.5mm、好ましくは1〜1.7mmである。
1mm未満の場合は、貯蔵時などに荷重が加わった場合に固結する可能性が高く、2.5mmより大きいと、添加したα,β−不飽和ジカルボン酸無水物系重合体のアンモニアガスの発生を抑制する効果が低減する傾向にある。
本発明に用いられる硝安の使用量は、粒状爆薬組成物全体中、通常60〜97重量%、好ましくは70〜96重量%の範囲である。
The average particle size of the prill ammonium nitrate used in the present invention is usually 1 to 2.5 mm, preferably 1 to 1.7 mm.
If it is less than 1 mm, there is a high possibility of solidification when a load is applied during storage, etc., and if it is greater than 2.5 mm, the ammonia gas of the added α, β-unsaturated dicarboxylic acid anhydride polymer will increase. The effect of suppressing the occurrence tends to decrease.
The amount of ammonium nitrate used in the present invention is usually in the range of 60 to 97% by weight, preferably 70 to 96% by weight in the whole granular explosive composition.

次に、本発明に用いる油剤について説明する。
本発明の粒状爆薬における油剤は、可燃剤として作用し、他の成分と混合時に液体であるものが好ましい。油剤の具体例としては、ANFO爆薬に用いられている軽油、その他合成油、鉱物油、植物油などが挙げられる。また、エタノール、イソプロパノールなどのアルコール類、アセトン、2−ブタノンなどのケトン類は本発明で使用するα,β−不飽和ジカルボン酸無水物系重合体の溶解度が高いため、硝安への分散補助剤として使用するのが好ましい。油剤の使用量は、通常粒状爆薬組成物全体の2〜8重量%、好ましくは3〜7重量%の範囲である。前記、エタノール、イソプロパノールなどのアルコール類、アセトン、2−ブタノンなどのケトン類を硝安への分散補助剤として使用し、その後乾燥させる場合は、前記油剤使用範囲を超えて使用される。
Next, the oil used in the present invention will be described.
The oil agent in the granular explosive of the present invention is preferably one that acts as a combustible and is liquid when mixed with other components. Specific examples of oil agents include light oils used in ANFO explosives, other synthetic oils, mineral oils, vegetable oils, and the like. In addition, alcohols such as ethanol and isopropanol, and ketones such as acetone and 2-butanone have high solubility of the α, β-unsaturated dicarboxylic acid anhydride-based polymer used in the present invention. It is preferable to use as. The amount of the oil used is usually in the range of 2 to 8% by weight, preferably 3 to 7% by weight, based on the whole granular explosive composition. When the alcohols such as ethanol and isopropanol and the ketones such as acetone and 2-butanone are used as a dispersion aid for ammonium nitrate and then dried, they are used beyond the range of use of the oil.

次に、本発明に用いるα,β−不飽和ジカルボン酸無水物系重合体について説明する。
本発明に使用するα,β−不飽和ジカルボン酸無水物系重合体は塩基性物質を含んだ水と接触すると反応し、塩を生じてアンモニアガスの発生を抑制する作用がある。
本発明に使用するα,β−不飽和ジカルボン酸無水物系重合体は、粉体として、プリル硝安と油剤と均一に混合して粒状爆薬組成物とする場合と、予め油剤に溶解させた後、この油剤とプリル硝安を均一に混合して粒状爆薬組成物とする場合の2種類の使用形態がある。組成物の均一性の観点からは、後者の方が好ましい。前記の2種類の形態以外にその中間的形態、即ち、油剤に一部分散した形態でも使用は可能である。
Next, the α, β-unsaturated dicarboxylic acid anhydride polymer used in the present invention will be described.
The α, β-unsaturated dicarboxylic acid anhydride polymer used in the present invention reacts with contact with water containing a basic substance to produce a salt and suppress the generation of ammonia gas.
The α, β-unsaturated dicarboxylic acid anhydride-based polymer used in the present invention is prepared as a granular explosive composition by uniformly mixing with prill ammonium nitrate and an oil agent as a powder, or after being dissolved in an oil agent in advance. There are two types of usage when the oil agent and prill ammonium nitrate are uniformly mixed to form a granular explosive composition. From the viewpoint of the uniformity of the composition, the latter is preferred. In addition to the two types of forms described above, intermediate forms thereof, that is, forms partially dispersed in an oil agent can also be used.

本発明において使用されるα,β−不飽和ジカルボン酸無水物系重合体とは、α,β−不飽和ジカルボン酸無水物の単独重合体、α,β−不飽和ジカルボン酸無水物とこれと共重合可能なモノマーとの共重合体、例えば、ランダム共重合体、ブロック共重合体やグラフト共重合体である。
さらに、これらの重合体及び共重合体に含まれるα,β−不飽和ジカルボン酸無水物単位の酸無水物基の一部または全部を公知の反応によりカルボキシル基に変換した構造を有するものもα,β−不飽和ジカルボン酸無水物系重合体に含まれる。
α,β−不飽和ジカルボン酸無水物の具体例としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸などが挙げられる。これらの中でも反応性、経済性等の点から無水マレイン酸が好ましい。
また、α,β−不飽和ジカルボン酸無水物と共重合可能なモノマーの具体例としては、スチレン、α−メチルスチレン、ビニルトルエンなどの芳香族モノオレフィン類;プロピレン、イソブテン、ブテン−1、ブテン−2、ペンテン−1、ペンテン−2、2−メチルブテン−1、2−メチルブテン−2、ヘキセン−1などの脂肪族モノオレフィン類;シクロペンテン、シクロヘキセンなどの環状モノマオレフィン類;ブタジエン、イソプレンなどの脂肪族ジオレフィン類;シクロペンタジエンなどの環状ジオレフィン類;アクリル酸、メタクリル酸などの不飽和カルボン酸類;アクリル酸エチル、メタクリル酸メチルなどの不飽和カルボン酸エステル類;アクリロニトリル、メタクリロニトリルなどの不飽和ニトリル類;塩化ビニルなどのハロゲン化ビニル類;酢酸ビニルなどのカルボン酸ビニル類などを挙げることができる。
本発明において使用されるα,β−不飽和ジカルボン酸無水物系重合体を得る方法は特に限定されるものではなく、例えば、乳化重合、溶液重合などの公知の重合法で製造される。
本発明において使用されるα,β−不飽和ジカルボン酸無水物系重合体に含まれるα,β−不飽和ジカルボン酸無水物単位またはこれから誘導される単位の量は、特に限定されないが、通常、α,β−不飽和ジカルボン酸無水物系重合体を構成する全モノマー単位のうち1モル%以上、好ましくは5モル%以上である。この量が過度に少ないときは配合量が多くなりすぎる傾向にある。
本発明において用いられるα,β−不飽和ジカルボン酸無水物系重合体の分子量は特に限定されないが、通常、500〜500,000、好ましくは1,000〜300,000である。
The α, β-unsaturated dicarboxylic acid anhydride polymer used in the present invention is a homopolymer of α, β-unsaturated dicarboxylic acid anhydride, α, β-unsaturated dicarboxylic acid anhydride, and A copolymer with a copolymerizable monomer, for example, a random copolymer, a block copolymer or a graft copolymer.
Furthermore, those having a structure in which part or all of the acid anhydride groups of the α, β-unsaturated dicarboxylic anhydride units contained in these polymers and copolymers are converted to carboxyl groups by a known reaction are also α , Β-unsaturated dicarboxylic acid anhydride polymer.
Specific examples of the α, β-unsaturated dicarboxylic acid anhydride include maleic anhydride, itaconic anhydride, citraconic anhydride and the like. Among these, maleic anhydride is preferable from the viewpoints of reactivity and economy.
Specific examples of monomers copolymerizable with α, β-unsaturated dicarboxylic acid anhydrides include aromatic monoolefins such as styrene, α-methylstyrene and vinyltoluene; propylene, isobutene, butene-1, butene -2, aliphatic monoolefins such as pentene-1, pentene-2, 2-methylbutene-1, 2-methylbutene-2, hexene-1; cyclic monoolefins such as cyclopentene and cyclohexene; fats such as butadiene and isoprene Aromatic diolefins; Cyclic diolefins such as cyclopentadiene; Unsaturated carboxylic acids such as acrylic acid and methacrylic acid; Unsaturated carboxylic acid esters such as ethyl acrylate and methyl methacrylate; Unsatisfied such as acrylonitrile and methacrylonitrile Saturated nitriles; Halo such as vinyl chloride Lanka vinyls; and vinyl carboxylate such as vinyl acetate and the like.
The method for obtaining the α, β-unsaturated dicarboxylic anhydride-based polymer used in the present invention is not particularly limited, and for example, it is produced by a known polymerization method such as emulsion polymerization or solution polymerization.
The amount of the α, β-unsaturated dicarboxylic acid anhydride unit or the unit derived therefrom contained in the α, β-unsaturated dicarboxylic acid anhydride polymer used in the present invention is not particularly limited. It is 1 mol% or more, preferably 5 mol% or more of all monomer units constituting the α, β-unsaturated dicarboxylic acid anhydride polymer. When this amount is excessively small, the blending amount tends to be too large.
The molecular weight of the α, β-unsaturated dicarboxylic anhydride polymer used in the present invention is not particularly limited, but is usually 500 to 500,000, preferably 1,000 to 300,000.

前記α,β−不飽和ジカルボン酸無水物系重合体の中では、スチレン・無水マレイン酸共重合体がアンモニアガスの発生を抑制する観点から好ましい。特に、油剤への均一な溶解性という観点から構成モノマー比率(スチレン/無水マレイン酸)は1〜4であり、またアンモニアガスの発生を抑制するという観点から分子量が1000〜100,000であるものがより好ましい。
また、メチルアルコールやエチルアルコールなどの脂肪族アルコールでエステル化することで油剤への溶解性が増し、均一な混合がさらに可能となるため、油剤に混合する場合はα,β−不飽和ジカルボン酸無水物系重合体のエステル化物を使用する方がより好ましい。
Among the α, β-unsaturated dicarboxylic anhydride-based polymers, a styrene / maleic anhydride copolymer is preferable from the viewpoint of suppressing generation of ammonia gas. Particularly, the constituent monomer ratio (styrene / maleic anhydride) is 1 to 4 from the viewpoint of uniform solubility in the oil, and the molecular weight is 1000 to 100,000 from the viewpoint of suppressing the generation of ammonia gas. Is more preferable.
In addition, esterification with aliphatic alcohols such as methyl alcohol and ethyl alcohol increases the solubility in the oil, and further uniform mixing is possible. When mixing with the oil, α, β-unsaturated dicarboxylic acid It is more preferable to use an esterified product of an anhydride polymer.

本発明に使用するα,β−不飽和ジカルボン酸無水物系重合体を粉体としてその他の成分と混合使用する場合、その平均粒子径は通常0.005〜3mm、好ましくは0.01〜2mm程度である。平均粒径が0.005mm未満の場合は、粒状爆薬組成物の固結といった取り扱い上の問題が発生し、平均粒径が3mmを超える場合は、アンモニア臭抑制の十分な効果が得られない傾向にある。
本発明に使用するα,β−不飽和ジカルボン酸無水物系重合体の配合量は、粒状爆薬組成物中、通常1〜15重量%、好ましくは3〜10重量%である。配合量が1重量%未満の場合、アンモニアガス発生の抑制効果が小さく、配合量が15重量%を超える場合は、粒状爆薬組成物そのものの爆発性能が低下する傾向にある。
When the α, β-unsaturated dicarboxylic acid anhydride polymer used in the present invention is used as a powder and mixed with other components, the average particle size is usually 0.005 to 3 mm, preferably 0.01 to 2 mm. Degree. When the average particle size is less than 0.005 mm, a handling problem such as solidification of the granular explosive composition occurs. When the average particle size exceeds 3 mm, a sufficient effect of suppressing ammonia odor tends not to be obtained. It is in.
The blending amount of the α, β-unsaturated dicarboxylic acid anhydride polymer used in the present invention is usually 1 to 15% by weight, preferably 3 to 10% by weight in the granular explosive composition. When the blending amount is less than 1% by weight, the effect of suppressing the generation of ammonia gas is small. When the blending amount exceeds 15% by weight, the explosive performance of the granular explosive composition itself tends to decrease.

本発明の粒状爆薬組成物には必要に応じて、前記の成分以外に、通常使用する従来公知の全ての添加物を加えることが可能である。例えば、静電気発生防止のために各種界面活性剤や、デンプン類、脂肪族アミドなどの添加剤を加えることができる。また場合によっては、前記の硝安以外に、例えば硝酸カリウムや過塩素酸塩などの酸化剤を加えることも可能であり、更に、木粉、アルミニウム粉のような粉末燃料あるいは他の添加剤を加えることも可能である。   In addition to the above-described components, all conventionally known additives that are usually used can be added to the granular explosive composition of the present invention as necessary. For example, various surfactants and additives such as starches and aliphatic amides can be added to prevent the generation of static electricity. In some cases, it is possible to add an oxidizing agent such as potassium nitrate or perchlorate in addition to the above-mentioned ammonium nitrate, and further add a powdered fuel such as wood powder or aluminum powder or other additives. Is also possible.

次に、本発明の粒状爆薬組成物の代表的な製造方法について説明する。
本発明の粒状爆薬組成物は、硝安、通常はプリル硝安とα,β−不飽和ジカルボン酸無水物系重合体の粉体とを混和機に仕込み、次に油剤を仕込み均一に混合することにより製造される。その際用いる混和機は例えば回転円筒式、ウェルナー式、プラネット式などのいずれの混和機を使用してもよい。また、油剤にα,β−不飽和ジカルボン酸無水物系重合体を予め溶解させて使用する場合は、プリル硝安を混和機に仕込み、α,β−不飽和ジカルボン酸無水物系重合体を溶解させた油剤を添加混合することで製造される。後者の方法は組成物の均一性の観点から好ましく、そのために各効果が増大する。
Next, the typical manufacturing method of the granular explosive composition of this invention is demonstrated.
The granular explosive composition of the present invention is prepared by charging ammonium, usually prill ammonium nitrate, and powder of α, β-unsaturated dicarboxylic acid anhydride polymer into a blender, then charging an oil agent and mixing them uniformly. Manufactured. The mixer used at that time may be any mixer such as a rotating cylinder type, a Werner type, or a planet type. Also, when using α, β-unsaturated dicarboxylic acid anhydride polymer in an oil agent in advance, prill ammonium nitrate is charged into the blender to dissolve the α, β-unsaturated dicarboxylic acid anhydride polymer. It is manufactured by adding and mixing the prepared oil agent. The latter method is preferable from the viewpoint of the uniformity of the composition, and therefore each effect is increased.

次に実施例と比較例の関係により、本発明をさらに詳しく説明する。
なお、得られた粒状爆薬組成物に関する爆速試験、アンモニアガス発生量の測定および耐固化性試験は下記方法により行なった。
Next, the present invention will be described in more detail based on the relationship between examples and comparative examples.
The explosion test, the measurement of the amount of ammonia gas generated, and the solidification resistance test for the obtained granular explosive composition were carried out by the following methods.

1)爆速試験
火薬学会規格ES−41(2)イオンギャップ法により測定する。
1) Explosive speed test Measured by the pyrotechnic association ES-41 (2) ion gap method.

2)アンモニアガス発生量の測定
ガーゼを敷いたシャーレ上にセメント(太平洋セメント(株)製ポルトランドセメント)5gを約5cm×5cmの大きさに置き、その上に水5gを均一にかけ、表面を軽くならす。さらにその上に粒状爆薬組成物10gを均などに分散させる。このシャーレを吸引瓶にセットし、そこから吸引して200ミリリットルの蒸留水中に1時間吸収させる。この蒸留水を10ミリリットル採取し、0.01規定の塩酸水溶液で滴定し、使用した塩酸水溶液の量(ミリリットル)でアンモニアガスの発生量を定量する。
2) Measurement of ammonia gas generation amount Place 5g of cement (Portland cement manufactured by Taiheiyo Cement Co., Ltd.) in a size of about 5cm x 5cm on a petri dish laid with gauze. Naru Further, 10 g of the granular explosive composition is uniformly dispersed thereon. This petri dish is set in a suction bottle, sucked from there, and absorbed in 200 ml of distilled water for 1 hour. Ten milliliters of this distilled water is sampled and titrated with 0.01 N aqueous hydrochloric acid, and the amount of ammonia gas generated is quantified by the amount of aqueous hydrochloric acid used (milliliter).

3)耐固化性試験
塩ビ管を半分に切断(内径25mm、長さ55mmで垂直方向に半分に切断したもの)したもの2組を円柱状に組み合わせ、円柱下部に直径25mm厚さ15mmの塩ビ板を挿入し固定する。円柱開放面より粒状爆薬組成物約12gを入れ、かるく2〜3回振動を与えて表面を平らにし、その上に塩ビ板(直径24mm、厚さ15mm)を置く。さらにその上に丸鋼(1kg)の荷重をかけ、その状態のまま、粒状爆薬組成物の吸湿乾燥を一定にするためにポリエチレン袋の中に入れる。
前記試料に対して温度サイクル(7hr×50±2℃の加熱処理後、17hr×20±2℃の冷却処理)を3サイクルかけ、強制的に固化しやすい状況とする。円柱状に組み合わせた半割れの塩ビ管を取り外し、中の固化した粒状爆薬組成物を取り出し、圧縮試験機で一軸圧縮(荷重速度:30mm/分)する。
次に圧縮破壊強度を求める式(Se(圧縮破壊強度、単位:N/cm)=W(圧縮破壊荷重、単位:N)/S(試料の断面積、4.9cm))により耐固化性を判断する。
3) Solidification resistance test Two PVC pipes cut in half (inner diameter 25 mm, length 55 mm, cut in half in the vertical direction) are combined in a cylindrical shape, and a PVC plate with a diameter of 25 mm and a thickness of 15 mm at the bottom of the cylinder Insert and fix. About 12 g of the granular explosive composition is put through the open surface of the cylinder, and the surface is flattened by applying a slight vibration 2-3 times, and a PVC plate (diameter 24 mm, thickness 15 mm) is placed thereon. In addition, a load of round steel (1 kg) is applied on it, and in that state, the granular explosive composition is placed in a polyethylene bag in order to keep moisture absorption and drying constant.
The sample is subjected to three cycles of a temperature cycle (7 hr × 50 ± 2 ° C. heat treatment and then 17 hr × 20 ± 2 ° C. cooling treatment) to make it easy to solidify. The half-cracked PVC pipe combined in a cylindrical shape is removed, and the solid granular explosive composition inside is taken out and uniaxially compressed (loading speed: 30 mm / min) with a compression tester.
Next, solidification resistance is obtained by an equation for determining the compression fracture strength (Se (compression fracture strength, unit: N / cm 2 ) = W (compression fracture load, unit: N) / S (sample cross-sectional area, 4.9 cm 2 )). Judging sex.

実施例1
ポットミール中で、α,β−不飽和ジカルボン酸無水物系重合体としてのスチレン・無水マレイン酸共重合体(スチレン/無水マレイン酸の仕込比率:2/1、分子量:3100)4.0重量%およびアセトン(スチレン・無水マレイン酸共重合体に対して2倍量)を含む均一溶液と、プリル硝安(平均粒径:1.4mm、吸油率:19%、嵩比重:0.66)92.2重量%とを混合してから乾燥した。そこに2号軽油3.8重量%となるように加え、均一に混合することにより本発明の粒状爆薬組成物を得た。
これを用いて下記爆速試験、アンモニアガス発生量の測定および耐固化性試験を行った。その結果を表1に示す。
Example 1
In pot meal, styrene / maleic anhydride copolymer (styrene / maleic anhydride charge ratio: 2/1, molecular weight: 3100) as an α, β-unsaturated dicarboxylic acid anhydride polymer, 4.0 weight % And acetone (2 times the amount of styrene / maleic anhydride copolymer) and prill ammonium nitrate (average particle size: 1.4 mm, oil absorption: 19%, bulk specific gravity: 0.66) 92 .2% by weight and then dried. The granular explosive composition of the present invention was obtained by adding the mixture to 3.8% by weight of No. 2 diesel oil and mixing uniformly.
Using this, the following explosion test, measurement of the amount of ammonia gas generated, and solidification resistance test were conducted. The results are shown in Table 1.

Figure 2005255504
Figure 2005255504

実施例2
α,β−不飽和ジカルボン酸無水物系重合体としてスチレン・無水マレイン酸共重合体(スチレン/無水マレイン酸の仕込比率:1/1、分子量:1600、平均粒径0.03mm)9.2重量%を使用し、プリル硝安は同一の物を87.1重量%の添加量に変更し、アセトンを用いないで両成分をポットミール中で混合し、そこへさらに2号軽油3.7重量%となるように加えて均一混合した以外は実施例1に準じて本発明の粒状爆薬組成物を製造した。
これを用いて実施例1と同じ試験を行った。その結果を表1に示す。
Example 2
Styrene / maleic anhydride copolymer as α, β-unsaturated dicarboxylic acid anhydride-based polymer (styrene / maleic anhydride charge ratio: 1/1, molecular weight: 1600, average particle size: 0.03 mm) 9.2 Using the weight percent, prill ammonium sulfate changed the same to 87.1 weight percent, and mixed both ingredients in potmeal without using acetone, and further added 3.7 weight of No. 2 gas oil %, The granular explosive composition of the present invention was produced in accordance with Example 1 except that the mixture was uniformly mixed.
Using this, the same test as in Example 1 was performed. The results are shown in Table 1.

実施例3
製造方法の手順を次のように変えた以外は実施例1に準じて、本発明の粒状爆薬組成物を製造した。
即ち、スチレン・無水マレイン酸共重合体をアセトンに溶解したものを、2号軽油に分散混合し、これをプリル硝安と均一混合した後30℃で乾燥した。
これを用いて実施例1と同じ試験を行った。その結果を表1に示す。
Example 3
A granular explosive composition of the present invention was produced according to Example 1 except that the procedure of the production method was changed as follows.
That is, a styrene / maleic anhydride copolymer dissolved in acetone was dispersed and mixed in No. 2 gas oil, and this was uniformly mixed with prill ammonium nitrate and dried at 30 ° C.
Using this, the same test as in Example 1 was performed. The results are shown in Table 1.

比較例1
プリル硝安(平均粒径:1.4mm、吸油率:9%、嵩比重:0.76)94重量%と2号軽油6重量%をポットミール中に加え均一混合し、比較用の粒状爆薬組成物を得た。
この組成物を用いて実施例1と同じ試験を行った。その結果を表1に示す。
Comparative Example 1
Prill ammonium nitrate (average particle size: 1.4mm, oil absorption rate: 9%, bulk specific gravity: 0.76) 94% by weight and No. 2 diesel oil 6% by weight are added to the pot meal and mixed uniformly, and the composition of the granular explosive for comparison I got a thing.
The same test as in Example 1 was performed using this composition. The results are shown in Table 1.

比較例2
プリル硝安の配合量を90.5重量%、クエン酸(平均粒径:0.3mm)5.7重量%、2号軽油3.8重量%用いた以外は比較例1に順じて比較用の粒状爆薬組成物を得た。
これを用いて実施例1と同じ試験を行った。その結果を表1に示す。
Comparative Example 2
For comparison with Comparative Example 1 except that the amount of prill ammonium sulfate was 90.5% by weight, citric acid (average particle size: 0.3 mm) 5.7% by weight, and No. 2 diesel oil 3.8% by weight was used. A granular explosive composition was obtained.
Using this, the same test as in Example 1 was performed. The results are shown in Table 1.

アンモニアガスの発生抑制効果に関して、当該爆薬組成物は硝安および軽油から成る通常ANFOのガス発生量に比較し、より低いガス発生濃度に抑えられており、その抑制効果が確認された。特に一度、油剤に溶解させてから硝安と均一混合して製造された組成物の抑制効果大きいことが明らかになった。
また、従来のクエン酸などの水溶性の固形酸を使用した爆薬組成物に比較し、本願による爆薬組成物の方が、耐固化性試験における圧縮強度の値が小さく、耐固化性が優れることが確認された。また、硝安と軽油から成る通常ANFOの測定値と同などの値であり、通常ANFOと同様の保管が可能であると言える。
爆速試験の結果より、本願による爆薬組成物は通常ANFOと同など以上の爆速を有しており、従来の水溶性固形酸を含有する粒状爆薬組成物よりも爆発性能に優れることが明らかである。
以上の結果から本発明の粒状爆薬組成物は、従来の粒状爆薬組成物と同などの取り扱い性(耐固化性)でありながら、アンモニアガスの発生を抑制する効果および爆発性能に優れていることが明らかとなった。
Regarding the effect of suppressing the generation of ammonia gas, the explosive composition was suppressed to a lower gas generation concentration than the amount of gas generated by normal ANFO composed of ammonium nitrate and light oil, and the suppression effect was confirmed. In particular, it has been revealed that the composition produced once dissolved in an oil and then mixed uniformly with ammonium nitrate has a great inhibitory effect.
Compared to conventional explosive compositions using water-soluble solid acids such as citric acid, the explosive composition according to the present application has a smaller compressive strength value in the solidification resistance test and better solidification resistance. Was confirmed. Moreover, it is the same value as the measured value of normal ANFO composed of ammonium nitrate and light oil, and it can be said that the same storage as normal ANFO is possible.
From the explosive speed test results, it is clear that the explosive composition according to the present application usually has an explosive speed equal to or higher than that of ANFO, and is superior to conventional granular explosive compositions containing a water-soluble solid acid. .
From the above results, the granular explosive composition of the present invention is excellent in the effect of suppressing the generation of ammonia gas and the explosive performance while having the same handling property (solidification resistance) as the conventional granular explosive composition. Became clear.

Claims (5)

硝酸アンモニウムと油剤とα,β−不飽和ジカルボン酸無水物系重合体とを含有する粒状爆薬組成物。 A granular explosive composition containing ammonium nitrate, an oil agent, and an α, β-unsaturated dicarboxylic anhydride polymer. α,β−不飽和ジカルボン酸無水物系重合体がスチレン・無水マレイン酸共重合体である請求項1記載の粒状爆薬組成物。 The granular explosive composition according to claim 1, wherein the α, β-unsaturated dicarboxylic acid anhydride polymer is a styrene / maleic anhydride copolymer. α,β−不飽和ジカルボン酸無水物系重合体の含有量が3〜10重量%である請求項1または2記載の粒状爆薬組成物。 The granular explosive composition according to claim 1 or 2, wherein the content of the α, β-unsaturated dicarboxylic anhydride polymer is 3 to 10% by weight. 硝酸アンモニウムがポーラスプリル硝酸アンモニウムである請求項1〜4項のいずれか一項記載の粒状爆薬組成物。 The granular explosive composition according to any one of claims 1 to 4, wherein the ammonium nitrate is porous prill ammonium nitrate. 予めα,β−不飽和ジカルボン酸無水物系重合体と油剤とを混合・溶解後、硝酸アンモニウムと混合することを特徴とする粒状爆薬組成物の製造方法。 A method for producing a granular explosive composition, wherein an α, β-unsaturated dicarboxylic acid anhydride polymer and an oil agent are mixed and dissolved in advance, and then mixed with ammonium nitrate.
JP2004072625A 2004-03-15 2004-03-15 Granular explosive composition and method for producing the same Expired - Fee Related JP4474956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004072625A JP4474956B2 (en) 2004-03-15 2004-03-15 Granular explosive composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004072625A JP4474956B2 (en) 2004-03-15 2004-03-15 Granular explosive composition and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005255504A true JP2005255504A (en) 2005-09-22
JP4474956B2 JP4474956B2 (en) 2010-06-09

Family

ID=35081598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004072625A Expired - Fee Related JP4474956B2 (en) 2004-03-15 2004-03-15 Granular explosive composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP4474956B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012051769A (en) * 2010-09-02 2012-03-15 Japan Carlit Co Ltd:The Explosive composition
WO2012018655A3 (en) * 2010-08-03 2012-05-24 The Lubrizol Corporation Ammonium nitrate fuel oil mixtures
CN103896695A (en) * 2012-12-30 2014-07-02 南京理工大学 Microporous pelletal ammonium nitrate and preparation method thereof
CN103946184A (en) * 2011-11-17 2014-07-23 戴诺诺贝尔亚太股份有限公司 Blasting compositions
US11993550B2 (en) 2016-04-27 2024-05-28 Clariant International Ltd Water resistance additive for particulate ammonium nitrate-fuel oil (ANFO) explosives

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012018655A3 (en) * 2010-08-03 2012-05-24 The Lubrizol Corporation Ammonium nitrate fuel oil mixtures
US9315429B2 (en) 2010-08-03 2016-04-19 The Lubrizol Corporation Ammonium nitrate fuel oil mixtures
JP2012051769A (en) * 2010-09-02 2012-03-15 Japan Carlit Co Ltd:The Explosive composition
CN103946184A (en) * 2011-11-17 2014-07-23 戴诺诺贝尔亚太股份有限公司 Blasting compositions
EP2780302A4 (en) * 2011-11-17 2015-07-22 Dyno Nobel Asia Pacific Pty Ltd Blasting compositions
CN103946184B (en) * 2011-11-17 2019-09-24 戴诺诺贝尔亚太股份有限公司 Explosive composite
US10723670B2 (en) 2011-11-17 2020-07-28 Dyno Nobel Asia Pacific Pty Limited Blasting compositions
CN103896695A (en) * 2012-12-30 2014-07-02 南京理工大学 Microporous pelletal ammonium nitrate and preparation method thereof
CN103896695B (en) * 2012-12-30 2016-04-20 南京理工大学 Many micropores spherulitic ammonium nitrate and method for making thereof
US11993550B2 (en) 2016-04-27 2024-05-28 Clariant International Ltd Water resistance additive for particulate ammonium nitrate-fuel oil (ANFO) explosives

Also Published As

Publication number Publication date
JP4474956B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
RU2722781C2 (en) Composition of explosive and method of delivery to well
JP4474956B2 (en) Granular explosive composition and method for producing the same
JP2002047088A (en) Granular explosive composition with water resistance
JPH10291884A (en) Crushing composition
US3496040A (en) Aqueous ammonium nitrate slurry explosive compositions containing hexamethylenetetramine
JP3862828B2 (en) Explosive composition
JP2005139036A (en) Insensible high-power non-gunpowder crushing agent
JP2009057258A (en) Ammonium nitrate oil explosive
JP2000233988A (en) Granular explosive composition
RU2243200C2 (en) Water-containing explosive compound
JPS59162194A (en) Water-in-oil emulsion explosive composition
JP3599623B2 (en) Explosive composition
JP2001233692A (en) Explosive composition
CA1081965A (en) Foamed and thickened explosive compositions having improved stability
JP2005306626A (en) Ammonium nitrate-fuel oil explosive and blasting method using the explosive
RU2574626C2 (en) Gel-like water-bearing explosive powder composition
JP2003176195A (en) Explosive composition
JP3797840B2 (en) Explosive composition
JP2598318B2 (en) Granular explosive composition
JP2004002169A (en) Explosive composition
RU2237645C1 (en) Blasting composition
JP3408837B2 (en) Method for producing explosive composition
JP2002338383A (en) Explosive composition
KR100473594B1 (en) Low density ammonium nitrate fuel oil with the improved power and small odor
JP2609148B2 (en) Pressurized explosive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100301

R150 Certificate of patent or registration of utility model

Ref document number: 4474956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees