JP2005254297A - Hot forming method - Google Patents

Hot forming method Download PDF

Info

Publication number
JP2005254297A
JP2005254297A JP2004070868A JP2004070868A JP2005254297A JP 2005254297 A JP2005254297 A JP 2005254297A JP 2004070868 A JP2004070868 A JP 2004070868A JP 2004070868 A JP2004070868 A JP 2004070868A JP 2005254297 A JP2005254297 A JP 2005254297A
Authority
JP
Japan
Prior art keywords
steel
die
forming
punch
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004070868A
Other languages
Japanese (ja)
Other versions
JP4625263B2 (en
Inventor
Kazuhisa Kusumi
和久 楠見
Jun Maki
純 真木
Masahiro Ogami
正浩 大神
Masayuki Abe
阿部  雅之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004070868A priority Critical patent/JP4625263B2/en
Publication of JP2005254297A publication Critical patent/JP2005254297A/en
Application granted granted Critical
Publication of JP4625263B2 publication Critical patent/JP4625263B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hot forming method capable of enhancing the forming property by a die rayher than before, and manufacturing a product having excellent strength after the forming. <P>SOLUTION: After a steel plate is heated to the temperature range from A<SB>c3</SB>point to the melting point, the forming of the steel plate is started at the temperature higher than the temperature at which ferritic, pearlitic, bainitic and martensitic transformations occur by using a die 11 having a punch 14 formed of a material having the heat conductivity smaller than that of steel. The steel plate is rapidly cooled after the forming, and the forming property can be enhanced, and a product having excellent strength after the forming can be manufactured. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えば、自動車の構造部材、補強部材等の強度が必要とされる製品(部品)を製造するための熱間成形方法に係り、更に詳細には金型による成形性を向上させ、成形後の強度に優れた製品を製造する熱間成形方法に関する。 The present invention relates to a hot forming method for producing a product (part) that requires strength, such as a structural member of a car, a reinforcing member, etc., and more specifically, improves moldability by a mold, The present invention relates to a hot forming method for producing a product having excellent strength after forming.

従来、例えば、地球環境問題に端を発する自動車の燃費向上対策の一つとして、車体の軽量化が進められており、自動車に使用される鋼板をできるだけ高強度化することが必要となっている。
しかし、自動車の軽量化のために、一般に鋼板を高強度化していくと、伸びやr値(ランクフォード値)が低下し、成形性が低下していく。
このような課題を解決するため、例えば、特許文献1には、鋼板を温間で成形し、その際の熱を利用して強度上昇を図る技術が開示されている。なお、この技術では、鋼中成分を適切に制御した鋼板を使用し、この鋼板を200〜850℃の温度域に保持して成形加工し、この温度域での析出強化を利用して鋼板の強度を上昇させることを狙っている。
また、特許文献2には、プレス成形の精度を向上させる目的で、温間プレス時での降伏強度を低く、常温での降伏強度を高くする高強度鋼板が提案されている。
Conventionally, for example, as one of the measures for improving the fuel efficiency of automobiles originating from global environmental problems, the weight of the vehicle body has been reduced, and it is necessary to increase the strength of steel sheets used in automobiles as much as possible. .
However, in general, when the strength of a steel plate is increased in order to reduce the weight of an automobile, the elongation and r value (Rankford value) decrease, and the formability decreases.
In order to solve such a problem, for example, Patent Document 1 discloses a technique of forming a steel plate warm and using the heat at that time to increase the strength. In this technique, a steel plate in which the components in the steel are appropriately controlled is used, the steel plate is formed in a temperature range of 200 to 850 ° C., and precipitation strengthening in this temperature range is used to form the steel plate. Aims to increase strength.
Patent Document 2 proposes a high-strength steel sheet that has low yield strength during warm pressing and high yield strength at room temperature for the purpose of improving the accuracy of press forming.

しかし、これらの技術では、得られる強度に限界が生じる可能性があり、自動車に使用可能な強度を備えた鋼板を製造できない恐れがある。
そこで、特許文献3には、より高い強度を得る目的で、鋼板を成形した後に、これを高温のオーステナイト単相域まで加熱し、その後の冷却過程で硬質相に変態させる技術が開示されている。この方法は、金型間のクリアランスを制限し、その間隙に冷媒を導入することで成形後の製品の焼入れを行い、高強度で且つ形状凍結(形状保持)性に優れた製品を得ることができる方法である。
However, with these techniques, there is a possibility that the obtained strength may be limited, and there is a possibility that a steel plate having strength that can be used in an automobile cannot be manufactured.
Therefore, Patent Document 3 discloses a technique of forming a steel sheet for the purpose of obtaining higher strength, and then heating the steel sheet to a high temperature austenite single phase region and transforming it into a hard phase in the subsequent cooling process. . This method limits the clearance between the molds and quenches the molded product by introducing a refrigerant into the gap, thereby obtaining a product with high strength and excellent shape freezing (shape retention) properties. It can be done.

特開2000−234153号公報JP 2000-234153 A 特開2000−87183号公報JP 2000-87183 A 特開2002−282951号公報JP 2002-282951 A

しかしながら、特許文献3の実施例に示される角筒深絞り金型を使用して、例えば鋼板から打ち抜いた高温のブランク(中間製品)をプレスする場合、ブランクの成形中にパンチと接触する部分の温度が低下し、その成形部位の延性が落ちてブランクに破断が生じることが多く、成形できる形状に制約が生じてしまう問題がある。 However, when a high-temperature blank (intermediate product) punched from a steel plate is pressed using the square tube deep drawing die shown in the embodiment of Patent Document 3, for example, the portion in contact with the punch during blank forming There is a problem that the temperature is lowered, the ductility of the molding portion is lowered, and the blank is often broken, and the shape that can be molded is restricted.

本発明はかかる事情に鑑みてなされたもので、従来よりも金型による成形性を向上させ、しかも成形後の強度に優れる製品を製造可能な熱間成形方法を提供することを目的とする。 This invention is made | formed in view of this situation, and it aims at providing the hot forming method which can manufacture the product which improves the moldability by a metal mold | die conventionally, and is excellent in the intensity | strength after shaping | molding.

前記目的に沿う請求項1記載の熱間成形方法は、鋼板をAC3点から融点までの温度範囲に加熱した後、鋼よりも熱伝導率が小さい材料で構成されたパンチを有する金型を用いて、フェライト、パーライト、ベイナイト、及びマルテンサイト変態のいずれもが生じる温度より高い温度で前記鋼板の成形を開始し、この成形後に急冷する。 The hot forming method according to claim 1, wherein the hot forming method according to claim 1, wherein the steel plate is heated to a temperature range from the AC3 point to the melting point, and then a die having a punch made of a material having a lower thermal conductivity than the steel is used. Using, the forming of the steel sheet is started at a temperature higher than the temperature at which any of ferrite, pearlite, bainite, and martensitic transformation occurs, and the steel sheet is rapidly cooled after the forming.

前記目的に沿う請求項2記載の熱間成形方法は、鋼板をAC3点から融点までの温度範囲に加熱した後、前記鋼板の成形限界を向上させることが必要な部位と接触する部分が鋼よりも熱伝導率が小さい材料で構成されたパンチを有する金型を用いて、フェライト、パーライト、ベイナイト、及びマルテンサイト変態のいずれもが生じる温度より高い温度で前記鋼板の成形を開始し、この成形後に急冷する。 The hot forming method according to claim 2, which meets the above-mentioned purpose, is a method in which a portion in contact with a portion where it is necessary to improve the forming limit of the steel plate after the steel plate is heated to a temperature range from the AC 3 point to the melting point. Using a mold having a punch made of a material having a lower thermal conductivity, the forming of the steel sheet is started at a temperature higher than the temperature at which any of ferrite, pearlite, bainite, and martensitic transformation occurs. Cool rapidly after molding.

請求項1及び2記載の熱間成形方法において、鋼板としては、例えば、炭素(C)を0.05〜0.55質量%、マンガン(Mn)を0.1〜3質量%含有するものを使用できる。この鋼板の成形性と成形後の強度を高めるため、鋼板を、その組織がオーステナイト単相域となるAC3点以上融点以下の温度範囲に加熱してオーステナイト変態させている。なお、フェライト、パーライト、ベイナイト、及びマルテンサイト変態のいずれもが生じる温度より高い温度で鋼板の成形を開始することで、鋼板の成形が行われる部分である成形部位の延性が良好になる。
また、鋼よりも熱伝導率が小さい材料としては、例えば、セラミック、ステンレス鋼等を使用できる。
請求項2記載の熱間成形方法において、鋼板の成形限界とは、金型による鋼板の成形時において、例えば、鋼板に割れやネッキング(くびれ現象)等が発生することなく成形できる限界を意味する。
また、鋼板の成形限界を向上させることが必要な部位とは、鋼板の成形部位を意味する。従って、この成形部位と接触する部分とは、例えばパンチの表層部を意味する。
なお、鋼板としては、鋼板の強度、靱性、その他の特性を向上させるため、炭素、マンガン以外の元素であるアルミニウム(Al)、ケイ素(Si)、酸素(O)、硫黄(S)、チタン(Ti)、バナジウム(V)、クロム(Cr)、ニッケル(Ni)、銅(Cu)、ジルコニウム(Zr)、ニオブ(Nb)、モリブデン(Mo)、アンチモン(Sb)、タングステン(W)、カルシウム(Ca)、マグネシウム(Mg)、希土類元素(REM)などの元素を目的に応じて最適化したもの、更に金属組織や析出物などを最適化したもの等も使用できる。
3. The hot forming method according to claim 1, wherein the steel sheet contains, for example, 0.05 to 0.55 mass% carbon (C) and 0.1 to 3 mass% manganese (Mn). Can be used. In order to increase the formability of the steel sheet and the strength after forming, the steel sheet is heated to a temperature range between the AC3 point and the melting point of which the structure becomes an austenite single phase region, and austenite is transformed. In addition, the ductility of the forming site | part which is a part in which the shaping | molding of a steel plate is performed becomes favorable by starting shaping | molding of a steel plate at the temperature higher than the temperature in which all of a ferrite, pearlite, a bainite, and a martensitic transformation occur.
Moreover, as a material having a lower thermal conductivity than steel, for example, ceramic, stainless steel, or the like can be used.
3. The hot forming method according to claim 2, wherein the forming limit of the steel sheet means a limit that can be formed without forming a crack or necking (necking phenomenon) in the steel sheet when the steel sheet is formed by a mold. .
Moreover, the site | part which needs to improve the shaping | molding limit of a steel plate means the shaping | molding site | part of a steel plate. Therefore, the portion in contact with the forming portion means, for example, the surface layer portion of the punch.
In addition, as a steel plate, in order to improve the strength, toughness, and other properties of the steel plate, aluminum (Al), silicon (Si), oxygen (O), sulfur (S), titanium (elements other than carbon and manganese) Ti), vanadium (V), chromium (Cr), nickel (Ni), copper (Cu), zirconium (Zr), niobium (Nb), molybdenum (Mo), antimony (Sb), tungsten (W), calcium ( A material in which elements such as Ca), magnesium (Mg), and rare earth elements (REM) are optimized according to the purpose, and a metal structure, precipitates, and the like are optimized.

請求項3記載の熱間成形方法は、請求項1及び2記載の熱間成形方法において、前記鋼よりも熱伝導率が小さい材料はセラミックである。
請求項3記載の熱間成形方法において、セラミックとしては、例えば、アルミナ(Al23 )、ジルコニア(ZrO2 )、サイアロン等を使用できる。
The hot forming method according to claim 3 is the hot forming method according to claims 1 and 2, wherein the material having a lower thermal conductivity than the steel is ceramic.
In the hot forming method according to claim 3, for example, alumina (Al 2 O 3 ), zirconia (ZrO 2 ), sialon or the like can be used as the ceramic.

請求項4記載の熱間成形方法は、請求項1〜3記載の熱間成形方法において、前記金型のダイは熱伝導率が鋼と同等又は鋼よりも大きい材料で構成され、前記鋼板の成形後の急冷は、前記ダイに前記鋼板の成形部位を接触させてマルテンサイト変態が生じる冷却速度以上の速度で、且つマルテンサイト変態の開始温度まで行う。
請求項4記載の熱間成形方法において、熱伝導率が鋼と同等の材料としては、例えば、軟鋼、硬鋼等を使用でき、また、熱伝導率が鋼よりも大きい材料としては、例えば、銅、銅合金、アルミニウム、アルミニウム合金、タングステン、黄銅等を使用できる。
また、マルテンサイト変態が生じる冷却速度としては、例えば、20℃/秒以上、好ましくは30℃/秒以上の速度である。
そして、急冷は、マルテンサイト変態の開始温度(例えば、400℃程度)以下まで行っているが、より確実に成形後の強度を高めるには、急冷をマルテンサイト変態の終了温度(例えば、300℃程度)以下まで行うことが好ましい。
The hot forming method according to claim 4 is the hot forming method according to claims 1 to 3, wherein the die of the mold is made of a material having a thermal conductivity equal to or larger than that of steel, The rapid cooling after forming is performed at a speed equal to or higher than a cooling rate at which martensitic transformation occurs by bringing the forming portion of the steel sheet into contact with the die and to the start temperature of martensitic transformation.
In the hot forming method according to claim 4, as a material having a thermal conductivity equivalent to that of steel, for example, mild steel, hard steel and the like can be used, and as a material having a higher thermal conductivity than steel, for example, Copper, copper alloy, aluminum, aluminum alloy, tungsten, brass, etc. can be used.
The cooling rate at which martensitic transformation occurs is, for example, 20 ° C./second or more, preferably 30 ° C./second or more.
The rapid cooling is performed up to the start temperature of the martensitic transformation (for example, about 400 ° C.) or lower. In order to increase the strength after molding more reliably, the rapid cooling is performed at the end temperature of the martensitic transformation (for example, 300 ° C.). It is preferable to carry out to the following extent.

請求項1及びこれに従属する請求項3、4記載の熱間成形方法は、鋼よりも熱伝導率が小さい材料で構成されたパンチを有する金型を用いるので、パンチが接触する鋼板の成形部位の温度低下を抑制できる。これにより、鋼で構成されたパンチを有する金型を使用した場合と比較して、成形部位の成形性を向上させることができる。そして、成形した鋼板を高温の状態から急冷することで、製品の硬度を高め、成形後の強度に優れる製品を製造できる。 Since the hot forming method according to claim 1 and claims 3 and 4 dependent thereon uses a die having a punch made of a material having a lower thermal conductivity than steel, the forming of the steel plate with which the punch comes into contact is performed. The temperature drop of the part can be suppressed. Thereby, compared with the case where the metal mold | die which has the punch comprised with steel is used, the moldability of a shaping | molding site | part can be improved. Then, by rapidly cooling the formed steel sheet from a high temperature state, it is possible to increase the hardness of the product and manufacture a product having excellent strength after forming.

請求項2及びこれに従属する請求項3、4記載の熱間成形方法は、鋼板の成形限界を向上させることが必要な部位と接触する部分が鋼よりも熱伝導率が小さい材料で構成されたパンチを有する金型を用いるので、成形限界を向上させることが必要な部位である鋼板の成形部位の温度低下を抑制できる。これにより、鋼で構成されたパンチを有する金型を使用した場合と比較して、成形部位の成形性を向上させることができる。そして、成形した鋼板を高温の状態から急冷することで、製品の硬度を高め、成形後の強度に優れる製品を製造できる。 The hot forming method according to claim 2 and claims 3 and 4 subordinate thereto is made of a material having a lower thermal conductivity than that of the steel at the portion in contact with the portion that needs to improve the forming limit of the steel plate. Since a mold having a punch is used, it is possible to suppress a temperature drop at a forming part of the steel sheet, which is a part that needs to improve the forming limit. Thereby, compared with the case where the metal mold | die which has the punch comprised with steel is used, the moldability of a shaping | molding site | part can be improved. Then, by rapidly cooling the formed steel sheet from a high temperature state, it is possible to increase the hardness of the product and manufacture a product having excellent strength after forming.

特に、請求項3記載の熱間成形方法は、鋼よりも熱伝導率が小さい材料はセラミックであるので、簡単な構成で鋼板の成形部位の成形性を向上させることができる。
請求項4記載の熱間成形方法は、金型のダイに熱伝導率が鋼と同等又は鋼よりも大きい材料で構成されたものを用い、ダイに鋼板の成形部位を接触させ、急冷をマルテンサイト変態が生じる冷却速度以上の速度で、且つマルテンサイト変態の開始温度まで行うので、鋼板の成形加工後の硬度を確実に高め、安定した品質の製品を提供することができる。
In particular, in the hot forming method according to claim 3, since the material having a lower thermal conductivity than steel is ceramic, the formability of the forming portion of the steel sheet can be improved with a simple configuration.
The hot forming method according to claim 4 uses a die having a die made of a material having a thermal conductivity equal to or larger than that of steel, contacting the forming portion of the steel plate with the die, and rapidly cooling the martensite. Since it is performed at a speed equal to or higher than the cooling rate at which site transformation occurs and up to the start temperature of martensite transformation, the hardness after forming of the steel sheet can be reliably increased, and a product with stable quality can be provided.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1は本発明の一実施の形態に係る熱間成形方法を適用する金型の部分側断面図、図2〜図4はそれぞれ第1〜第3の変形例に係る金型の部分側断面図、図5は金型に使用する変形例に係るパンチの部分側断面図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1 is a partial sectional side view of a mold to which a hot forming method according to an embodiment of the present invention is applied, and FIGS. 2 to 4 are molds according to first to third modifications, respectively. FIG. 5 is a partial cross-sectional view of a punch according to a modification used for a mold.

図1に示すように、本発明の一実施の形態に係る熱間成形方法は、例えば、炭素(C)を0.05〜0.55質量%、マンガン(Mn)を0.1〜3質量%有し、板厚が1〜3mm(好ましくは、1〜2.6mm)の鋼板(ホットプレス用鋼板ともいう)から例えば打ち抜いたブランク(中間製品)10を、金型11を用いて張り出し成形を行い、例えば、バンパー補強部材、センターピラー補強部材、ドアインパクト補強部材のような、自動車の構造部材、補強部材等を製造する方法である。以下、詳しく説明する。 As shown in FIG. 1, the hot forming method according to an embodiment of the present invention includes, for example, 0.05 to 0.55 mass% of carbon (C) and 0.1 to 3 mass of manganese (Mn). For example, a blank (intermediate product) 10 punched from a steel plate (also referred to as a hot press steel plate) having a thickness of 1 to 3 mm (preferably 1 to 2.6 mm) is stretched using a mold 11. And manufacturing a structural member, a reinforcing member, and the like of an automobile such as a bumper reinforcing member, a center pillar reinforcing member, and a door impact reinforcing member. This will be described in detail below.

まず、鋼板から打ち抜かれたブランク10を、加熱炉(図示しない)内に装入し、オーステナイト単相域であるAC3点から融点までの温度範囲(ブランク10の成分により異なるが、例えば、800〜1500℃、好ましくは900〜1200℃)に加熱してオーステナイト変態させる。
次に、図1に示すように、加熱されたブランク10を、所定形状(例えば、自動車のバンパー補強部材、センターピラー補強部材、ドアインパクト補強部材等を製造可能な形状)の金型11でプレスする。
First, the blank 10 punched from the steel plate is charged into a heating furnace (not shown), and the temperature range from the AC3 point, which is an austenite single phase region, to the melting point (although it varies depending on the components of the blank 10, for example, 800 ˜1500 ° C., preferably 900-1200 ° C.) to cause austenite transformation.
Next, as shown in FIG. 1, the heated blank 10 is pressed with a mold 11 having a predetermined shape (for example, a shape capable of manufacturing a bumper reinforcing member, a center pillar reinforcing member, a door impact reinforcing member, etc. of an automobile). To do.

この金型11は、曲面で構成される突出部分12を備え、ブランク10が載置されるしわ押え部13に対して上下方向に移動可能な断面円形のパンチ(下金型部)14と、金型11の作動時において、パンチ14の突出部分12の上面と所定の隙間(例えば、ブランク10の板厚)を有して配置されるダイ(上金型部、ダイスともいう)15とを有している。このしわ押え部13も、ダイ15に対して上下方向に移動可能となっており、ダイ15としわ押え部13との間にブランク10が配置された後、ダイ15の下面としわ押え部13の上面とでブランク10を押さえ込み、パンチ14による成形時におけるブランク10の位置ずれを防止している。 The mold 11 includes a projecting portion 12 formed of a curved surface, and has a circular cross-section punch (lower mold portion) 14 that is movable in the vertical direction with respect to the wrinkle pressing portion 13 on which the blank 10 is placed. When the mold 11 is in operation, a die 15 (also referred to as an upper mold part or a die) 15 disposed with a predetermined gap (for example, a plate thickness of the blank 10) from the upper surface of the protruding portion 12 of the punch 14 is provided. Have. The wrinkle pressing portion 13 is also movable in the vertical direction with respect to the die 15. After the blank 10 is disposed between the die 15 and the wrinkle pressing portion 13, the lower surface of the die 15 and the wrinkle pressing portion 13 are arranged. The blank 10 is pressed against the upper surface of the sheet 10 to prevent the blank 10 from being displaced during molding by the punch 14.

パンチ14は、鋼よりも熱伝導率が小さい材料(例えば、60W/m/K以下程度)、例えば、アルミナ、ジルコニア、サイアロンなどのセラミック、SUS304などのステンレス鋼等で構成されている。
また、ダイ15は、鋼と同等の熱伝導率を備えた材料、例えば、軟鋼、硬鋼等や、鋼よりも大きい材料、例えば、銅、銅合金、アルミニウム、アルミニウム合金、タングステン、黄銅等で構成されている。なお、ダイ内部に冷媒(例えば水等)を流す冷却管を配置し、ダイによる冷却効率を高めることもできる。
この金型11の寸法は、図1に示すように、パンチ14の突出部分12の上端部の曲率半径が50mm、しわ押え部13の上面からの突出高さが28mm、ダイ15の凹部16の最大直径が110mm、ダイ15の凹部16とこれに連通する平坦部17との境部の曲率半径が5mmとなっている。
The punch 14 is made of a material having a lower thermal conductivity than steel (for example, about 60 W / m / K or less), for example, ceramic such as alumina, zirconia, and sialon, stainless steel such as SUS304, and the like.
The die 15 is made of a material having a thermal conductivity equivalent to that of steel, for example, mild steel, hard steel, or a material larger than steel, for example, copper, copper alloy, aluminum, aluminum alloy, tungsten, brass, or the like. It is configured. Note that a cooling pipe through which a coolant (for example, water or the like) flows can be arranged inside the die, and the cooling efficiency by the die can be increased.
As shown in FIG. 1, the mold 11 has a radius of curvature of 50 mm at the upper end of the projecting portion 12 of the punch 14, a projection height of 28 mm from the upper surface of the wrinkle holding portion 13, and a recess 16 of the die 15. The maximum diameter is 110 mm, and the radius of curvature of the boundary between the concave portion 16 of the die 15 and the flat portion 17 communicating with the concave portion 16 is 5 mm.

なお、使用する金型の形状及び数値はこれに限定されるものではなく、例えば、図2に示すパンチ20とダイ21とを有する金型22のように、しわ押え部13の上面からのパンチ20の突出部分23の突出高さが33mmとなったものや、また、図3に示すパンチ25とダイ26とを有する金型27のように、しわ押え部13の上面からのパンチ25の突出部分28の突出高さが35mmとなったもの等を使用することもできる。 In addition, the shape and numerical value of the metal mold | die to be used are not limited to this, For example, the punch from the upper surface of the wrinkle pressing part 13 like the metal mold | die 22 which has the punch 20 and die | dye 21 shown in FIG. The protrusion of the punch 25 from the upper surface of the crease presser 13 such as a protrusion having a protrusion height of 20 mm and a mold 27 having a punch 25 and a die 26 shown in FIG. It is also possible to use a portion 28 having a protruding height of 35 mm.

また、金型としては、図4に示す金型30を使用することも可能である。
この金型30は、パンチ14と同様材料で構成されたパンチ31と、このパンチ31の移動方向に開口部32が形成されたダイ33とを有している。このため、パンチ31がしわ押え部13の上方に突出しても、ブランクの成形部位がダイ33の表面に接触しない構成となっている。なお、開口部32を形成するダイ33の内面34と下面35との境部の曲率半径が5mmとなっている。
これにより、前記した各金型11、22、27同様、成形時においてブランクの成形部位の温度低下を招くことなく、ブランクの成形を実施できる。
Further, as the mold, the mold 30 shown in FIG. 4 can be used.
The mold 30 includes a punch 31 made of the same material as the punch 14 and a die 33 having an opening 32 formed in the moving direction of the punch 31. For this reason, even if the punch 31 protrudes above the wrinkle pressing portion 13, the blank forming portion does not contact the surface of the die 33. The radius of curvature of the boundary between the inner surface 34 and the lower surface 35 of the die 33 that forms the opening 32 is 5 mm.
Thereby, like the above-mentioned each metal mold | die 11,22,27, it can shape | mold a blank, without causing the temperature fall of the shaping | molding site | part of a blank at the time of shaping | molding.

なお、前記した各金型11、22、27、30のパンチとしては、図5に示すように、ブランクを成形できる限界(成形限界)を向上させることが必要な部位である成形部位と接触する部分、即ち突出部分40が、鋼よりも熱伝導率が小さい材料(例えば、パンチ14を構成した材料)で構成されたパンチ41を使用することもできる。
このパンチ41は、鋼製のパンチ本体42の上部に、断面円形の突出部分40が取付けられた構造となっており、突出部分40の最大直径が103mm、その上端部の曲率半径が50mm、突出高さが35mmとなっているが、この形状及び数値に限定されるものではない。なお、パンチ本体42に対する突出部分40の取付けは、例えば、ねじ構造、嵌め込み構造、接合等により行うことができる。
In addition, as shown in FIG. 5, as punch mentioned above each metal mold | die 11,22,27,30, it contacts with the shaping | molding site | part which is a site | part which needs to improve the limit (molding limit) which can shape | mold a blank. It is also possible to use a punch 41 in which the portion, that is, the protruding portion 40 is made of a material having a lower thermal conductivity than steel (for example, a material constituting the punch 14).
The punch 41 has a structure in which a projecting portion 40 having a circular cross section is attached to an upper portion of a steel punch main body 42. The projecting portion 40 has a maximum diameter of 103 mm, a curvature radius of 50 mm at its upper end, and a projecting portion. Although the height is 35 mm, it is not limited to this shape and numerical value. In addition, attachment of the protrusion part 40 with respect to the punch main body 42 can be performed by a screw structure, a fitting structure, joining, etc., for example.

前記した金型11を用いて、フェライト、パーライト、ベイナイト、及びマルテンサイト変態のいずれもが生じる温度より高い温度(例えば、700℃以上程度)でブランク10の成形を開始する。
このとき、ブランク10の成形部位と接触するパンチ14の突出部分12の断熱性が良好であるため、ブランク10の成形部位の温度低下は抑制され、成形部位の延性を高めることができる。そして、ブランク10の成形部位がダイ15の凹部16に接触するまでパンチ14を突出させることでブランク10の成形を終了し、引き続き成形後の急冷を行う。
Using the mold 11 described above, the blank 10 is started to be molded at a temperature (for example, about 700 ° C. or higher) higher than the temperature at which any of ferrite, pearlite, bainite, and martensitic transformation occurs.
At this time, since the heat insulating property of the protruding portion 12 of the punch 14 that comes into contact with the molding part of the blank 10 is good, the temperature drop of the molding part of the blank 10 is suppressed, and the ductility of the molding part can be increased. And the shaping | molding of the blank 10 is complete | finished by making the punch 14 project until the shaping | molding site | part of the blank 10 contacts the recessed part 16 of the die | dye 15, and the rapid cooling after shaping | molding is performed continuously.

ブランク10の成形部位が接触する凹部16を含むダイ15は、熱伝導性が良好であるため、成形部位を急冷して焼入れすることができる。ここで、急冷を、ブランク10の成形部位をダイ15の凹部16に接触させた状態で、マルテンサイト変態が生じる冷却速度以上(例えば、20℃/秒以上、好ましくは30℃/秒以上)の速度で、且つマルテンサイト変態の開始温度(例えば、400℃程度)以下、好ましくはマルテンサイト変態の終了温度(例えば、300℃程度)以下まで行う。
これにより、オーステナイト変態させたブランク10を、軟質相(例えば、ベイナイト、パーライト)への変態を抑制、更には防止しながらマルテンサイト変態させることができる。
上記した方法で、ブランク10を金型11で連続的に焼入れ成形することで、反応に応じた焼入れ強度、例えば、0.22%C鋼では、引張り強度が1470MPa以上程度の製品を製造できる。
Since the die 15 including the recess 16 with which the molding part of the blank 10 contacts has good thermal conductivity, the molding part can be quenched and quenched. Here, rapid cooling is performed at a cooling rate or higher (for example, 20 ° C./second or higher, preferably 30 ° C./second or higher) at which martensitic transformation occurs in a state where the molding portion of the blank 10 is in contact with the concave portion 16 of the die 15. It is performed at a speed and not higher than the start temperature of the martensitic transformation (for example, about 400 ° C.), preferably not higher than the end temperature of the martensitic transformation (for example, about 300 ° C.).
Thereby, the austenite transformed blank 10 can be martensitic transformed while suppressing and further preventing transformation to a soft phase (for example, bainite, pearlite).
By continuously quenching the blank 10 with the mold 11 by the method described above, a product having a quenching strength corresponding to the reaction, for example, 0.22% C steel, having a tensile strength of about 1470 MPa or more can be produced.

なお、図4に示す金型30を使用した場合、ブランクの成形部位をダイ33の表面に接触させることができないため、急冷して焼入れすることができず、成形後の製品の硬度を高めることができない。このため、パンチ31による成形を行った後、この成形品を従来使用している同一形状の金型、例えばパンチ、ダイ共に鋼製の金型を使用して再度熱間プレスすることで、成形部位の焼入れを行い、製品の強度を高めることが好ましい。
これにより、他の金型11、22、27を使用した場合と同等の引張り強度が得られる製品を製造できる。
In addition, when the metal mold 30 shown in FIG. 4 is used, since the molding site of the blank cannot be brought into contact with the surface of the die 33, it cannot be quenched and quenched, and the hardness of the product after molding is increased. I can't. For this reason, after performing molding with the punch 31, the molded product is molded by using the same-shaped mold that has been conventionally used, for example, hot pressing again using a steel mold for both the punch and die. It is preferable to quench the part and increase the strength of the product.
Thereby, the product from which the tensile strength equivalent to the case where other metal mold | dies 11, 22, and 27 are used can be manufactured.

次に、本発明の作用効果を確認するために行った実施例について説明する。
まず、表1に示す化学成分となった鋼種a〜cのスラブを鋳造した。
Next, examples carried out for confirming the effects of the present invention will be described.
First, slabs of steel types a to c having chemical components shown in Table 1 were cast.

Figure 2005254297
Figure 2005254297

これらのスラブを1050〜1350℃に加熱し、熱間圧延にて、仕上温度800〜900℃、巻取温度450〜680℃で、板厚4mmの熱延鋼板を製造した。そして、一部の熱延鋼板を、冷間圧延により板厚1.4mmの冷延鋼板とし、この冷延鋼板の一部に、表2に示す溶融アルミめっき(アルミめっき)、合金化溶融亜鉛めっき、溶融亜鉛めっきをそれぞれ施した。 These slabs were heated to 1050 to 1350 ° C., and hot rolled steel sheets with a finishing temperature of 800 to 900 ° C. and a winding temperature of 450 to 680 ° C. were manufactured by hot rolling. A part of the hot-rolled steel sheet is made into a cold-rolled steel sheet having a thickness of 1.4 mm by cold rolling, and a part of the cold-rolled steel sheet is subjected to hot-dip aluminum plating (aluminum plating) and alloyed hot-dip zinc shown in Table 2. Plating and hot dip galvanizing were performed respectively.

Figure 2005254297
Figure 2005254297

その後、これらの冷延鋼板及び表面処理鋼板から例えば打ち抜いたブランクを、加熱炉によりAC3点以上(融点以下)である950℃のオーステナイト領域に加熱した後、熱間成形加工を行った。なお、ブランクの成形に使用する金型としては、前記実施の形態で説明した各金型11、22、27、30の形状、サイズの金型A、B、C、Dをそれぞれ使用し、各金型A〜Dのパンチの材質としては、表3に示すものを使用する。ここで、パンチ材質が鋼よりも熱伝導率が小さいセラミックとは、図1〜図4に示すパンチを使用した場合のものであり、パンチ材質が鋼よりも熱伝導率が小さいセラミックを鋼上にインサートとは、図5に示すパンチを使用した場合のものである。 After that, blanks punched from these cold-rolled steel sheets and surface-treated steel sheets, for example, were heated in a heating furnace to the austenite region of 950 ° C., which is higher than the AC 3 point (lower melting point), and then hot-formed. In addition, as a metal mold | die used for shaping | molding of a blank, the metal mold | die A, B, C, D of the shape and size of each metal mold | die 11,22,27,30 demonstrated in the said embodiment is used, respectively. As the material for the punches of the molds A to D, those shown in Table 3 are used. Here, the ceramic whose punch material is smaller in thermal conductivity than steel is that when the punch shown in FIGS. 1 to 4 is used, and the ceramic whose punch material is smaller in thermal conductivity than steel is used on the steel. The insert is the one when the punch shown in FIG. 5 is used.

Figure 2005254297
Figure 2005254297

なお、各金型A〜Cはパンチ形状に倣い、板厚1.4mmのクリアランスにて各ダイの形状を決定した。成形条件としては、鋼板から打抜いた厚み1.4mm、直径150mmの円板状のブランクを使用し、パンチ速度10mm/秒、加圧力100トン、しわ押え力30トン、下死点での保持時間(パンチの突出部分とダイの凹部とで成形部位を挟み込む時間)を5秒とした。
ここで、実施した試験の組み合わせを、前記した表1〜表3の記号に基づき、表4〜表7にそれぞれ示す。なお、表4〜表7中の比較例1〜26は従来例(パンチの材質が鋼)である。
Each die A to C follows the punch shape, and the shape of each die was determined with a clearance of 1.4 mm. As the forming conditions, a disc-shaped blank with a thickness of 1.4 mm and a diameter of 150 mm punched from a steel plate is used, a punch speed of 10 mm / second, a pressing force of 100 tons, a wrinkle pressing force of 30 tons, and holding at the bottom dead center. The time (time for sandwiching the molding part between the protruding part of the punch and the concave part of the die) was 5 seconds.
Here, combinations of the tests performed are shown in Tables 4 to 7 based on the symbols in Tables 1 to 3, respectively. In addition, Comparative Examples 1-26 in Tables 4-7 are conventional examples (the material of the punch is steel).

Figure 2005254297
Figure 2005254297

Figure 2005254297
Figure 2005254297

Figure 2005254297
Figure 2005254297

Figure 2005254297
Figure 2005254297

なお、表4〜表7中の成形結果は、成形後の部品を各金型A〜Dから取り出し、目視にて判定した結果であり、表8に示すように、割れ無し(○)、ネッキング発生(△)、割れ発生(×)の3つの基準で判定している。 The molding results in Tables 4 to 7 are the results of taking out the molded parts from the molds A to D and visually judging. As shown in Table 8, there is no cracking (◯), necking Judgment is made based on three criteria: occurrence (Δ) and crack occurrence (×).

Figure 2005254297
Figure 2005254297

また、表4〜表7中の硬度は、成形後に各金型A〜Dから取り出した部品のビッカース硬度を測定した結果である。これを表9に示す。 Moreover, the hardness in Table 4-Table 7 is the result of having measured the Vickers hardness of the components taken out from each metal mold | die AD after shaping | molding. This is shown in Table 9.

Figure 2005254297
Figure 2005254297

表9に示すように、硬度は、成形前の鋼板をAC3点以上である950℃のオーステナイト領域に加熱した後、AC3点以上である900℃から水焼入れしたときの硬度を基準に、強度が必要とされる部位(成形部位)の硬度が85%以上の場合を「◎」、70%以上85%未満の場合を「○」、50%以上70%未満の場合を「△」、50%未満の場合を「×」とし、70%未満の「△」及び「×」を不合格とした。ここで、硬度の測定箇所は、部品の側壁及び底部とし、フランジ部は測定の範囲から除いた。 As shown in Table 9, hardness, after the steel sheet before forming was heated to the austenite region of 950 ° C. is A C3 or more points, based on the hardness when the water quenching from 900 ° C. is A C3 or more points, “◎” when the hardness of the part where the strength is required (molded part) is 85% or more, “◯” when 70% or more and less than 85%, “△” when 50% or more and less than 70%. The case of less than 50% was evaluated as “x”, and “Δ” and “x” of less than 70% were rejected. Here, the hardness measurement points were the side wall and the bottom part of the component, and the flange part was excluded from the measurement range.

実施例2−1〜実施例25−2、及び比較例2〜25は、鋼板として鋼種bを使用し、各金型A〜D、各パンチ材質、及び各めっき種をそれぞれ用いて、ブランクの成形限界について検討した結果である。
パンチの材質が鋼である比較例の場合、成形高さが低い(28mm:金型A、Dを使用)とき、即ち比較例2、5、8、11、14、17、20、23では成形結果が良好(○)であったが、成形高さが高くなる(33mm、35mm:金型B、C、Dを使用)に伴って、成形結果が悪くなった。しかし、パンチ材質を鋼よりも熱伝導率が小さいセラミック、もしくは鋼よりも熱伝導率が小さいセラミックを鋼上にインサートした実施例の場合、パンチの材質が鋼である場合と比較して、成形高さに影響されることなく、いずれの各金型A〜Dを使用した場合においても成形限界が向上した。
Example 2-1 to Example 25-2 and Comparative Examples 2 to 25 use steel type b as a steel plate, and use each die A to D, each punch material, and each plating type, respectively. It is the result of examining the molding limit.
In the case of the comparative example in which the punch material is steel, when the molding height is low (28 mm: using molds A and D), that is, in Comparative Examples 2, 5, 8, 11, 14, 17, 20, and 23, molding is performed. Although the result was good (◯), the molding result deteriorated as the molding height increased (33 mm, 35 mm: using molds B, C, and D). However, in the case of the example in which the punch material is ceramic having a lower thermal conductivity than steel, or the ceramic having the lower thermal conductivity than steel is inserted on the steel, the punch material is formed in comparison with the case where the punch material is steel. The molding limit was improved when any of the molds A to D was used without being affected by the height.

また、金型Dを用いた場合は、成形後の部品を金型D内で保持しても、ブランクの一部がマルテンサイト開始温度まで急冷されなかったため硬度が不十分(×)であったが、成形後に、例えば従来使用しているパンチ、ダイ共に鋼製で同一形状の金型を使用して再度熱間プレスすることで、十分な焼入れ硬度を得ることができる。
従って、金型Dを用いた場合についても、従来よりも金型による成形性を向上させることができ、しかも十分な焼入れ硬度(◎)を得ることができるため、ここでは実施例としている。
なお、他の金型A〜Cの場合は、成形性を向上させることができることは勿論であるが、焼入れ硬度についても十分であった。また、どのめっき種を用いても、実施例から明らかなように、成形限界が向上し、更に十分な焼入れ硬度を得ることができた。
In addition, when the mold D was used, even if the molded part was held in the mold D, the hardness was insufficient (x) because a part of the blank was not rapidly cooled to the martensite start temperature. However, after forming, for example, a conventionally used punch and die are both made of steel and hot-pressed again using a mold having the same shape, sufficient quenching hardness can be obtained.
Therefore, also in the case where the mold D is used, the moldability by the mold can be improved as compared with the prior art, and a sufficient quenching hardness (◎) can be obtained.
In the case of the other molds A to C, the moldability can be improved, but the quenching hardness is sufficient. In addition, as is clear from the examples, any type of plating was used, so that the molding limit was improved and a sufficient quenching hardness could be obtained.

実施例1−1、1−2、実施例26−1、26−2、及び比較例1、26は、鋼板として鋼種a、cをそれぞれ使用し、金型B、各パンチ材質、及びめっき種CRをそれぞれ用いて、ブランクの成形限界について検討した結果である。
パンチ材質を鋼よりも熱伝導率が小さいセラミックとした、もしくは鋼よりも熱伝導率が小さいセラミックを鋼上にインサートした実施例の場合、パンチ材質が鋼の場合と比較して、成形限界が向上した。
このように、本発明の熱間成形方法を使用することで、従来よりも金型による成形性を向上させ、しかも成形後の強度に優れる製品を製造できることを確認できた。
Examples 1-1 and 1-2, Examples 26-1 and 26-2, and Comparative Examples 1 and 26 use steel types a and c as steel plates, respectively, a mold B, each punch material, and a plating type. It is the result of examining the forming limit of the blank using each CR.
In the case of an embodiment in which the punch material is ceramic having a thermal conductivity smaller than that of steel, or a ceramic having a thermal conductivity smaller than that of steel is inserted on the steel, the forming limit is smaller than that in the case where the punch material is steel. Improved.
Thus, it has been confirmed that by using the hot forming method of the present invention, it is possible to produce a product that has improved moldability with a mold and is excellent in strength after molding.

以上、本発明を、一実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の熱間成形方法を構成する場合も本発明の権利範囲に含まれる。
前記実施の形態においては、例えば、バンパー補強部材、センターピラー補強部材、ドアインパクト補強部材のように、自動車の構造部材、補強部材等を製造する熱間成形について説明したが、所定の形状に加工された高張力鋼を使用する分野、例えば、車両、重機、船舶等の構造部材、補強部材等を製造するために、本発明の熱間成形方法を適用することも勿論可能である。
As described above, the present invention has been described with reference to one embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and is described in the claims. Other embodiments and modifications conceivable within the scope of the above are also included. For example, a case where the hot forming method of the present invention is configured by combining a part or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.
In the above embodiment, for example, hot forming for manufacturing a structural member, a reinforcing member, etc. of an automobile such as a bumper reinforcing member, a center pillar reinforcing member, and a door impact reinforcing member has been described, but it is processed into a predetermined shape. Of course, it is possible to apply the hot forming method of the present invention in order to manufacture structural members such as vehicles, heavy machinery and ships, reinforcing members, etc., in the field where the high-strength steel is used.

本発明の一実施の形態に係る熱間成形方法を適用する金型の部分側断面図である。It is a fragmentary sectional side view of the metal mold | die which applies the hot forming method which concerns on one embodiment of this invention. 第1の変形例に係る金型の部分側断面図である。It is a fragmentary sectional side view of the metal mold | die which concerns on a 1st modification. 第2の変形例に係る金型の部分側断面図である。It is a fragmentary sectional side view of the metal mold | die which concerns on a 2nd modification. 第3の変形例に係る金型の部分側断面図である。It is a fragmentary sectional side view of the metal mold | die which concerns on a 3rd modification. 金型に使用する変形例に係るパンチの部分側断面図である。It is a fragmentary sectional side view of the punch which concerns on the modification used for a metal mold | die.

符号の説明Explanation of symbols

10:ブランク、11:金型、12:突出部分、13:しわ押え部、14:パンチ、15:ダイ、16:凹部、17:平坦部、20:パンチ、21:ダイ、22:金型、23:突出部分、25:パンチ、26:ダイ、27:金型、28:突出部分、30:金型、31:パンチ、32:開口部、33:ダイ、34:内面、35:下面、40:突出部分、41:パンチ、42:パンチ本体 10: Blank, 11: Mold, 12: Protruding part, 13: Wrinkle pressing part, 14: Punch, 15: Die, 16: Concave part, 17: Flat part, 20: Punch, 21: Die, 22: Mold, 23: protruding portion, 25: punch, 26: die, 27: mold, 28: protruding portion, 30: mold, 31: punch, 32: opening, 33: die, 34: inner surface, 35: lower surface, 40 : Protruding part, 41: Punch, 42: Punch body

Claims (4)

鋼板をAC3点から融点までの温度範囲に加熱した後、鋼よりも熱伝導率が小さい材料で構成されたパンチを有する金型を用いて、フェライト、パーライト、ベイナイト、及びマルテンサイト変態のいずれもが生じる温度より高い温度で前記鋼板の成形を開始し、この成形後に急冷することを特徴とする熱間成形方法。 After heating the steel sheet to a temperature range from the AC 3 point to the melting point, any of ferrite, pearlite, bainite, and martensite transformation using a die having a punch made of a material having a lower thermal conductivity than steel A hot forming method characterized in that the forming of the steel sheet is started at a temperature higher than the temperature at which water is generated, and rapidly cooled after the forming. 鋼板をAC3点から融点までの温度範囲に加熱した後、前記鋼板の成形限界を向上させることが必要な部位と接触する部分が鋼よりも熱伝導率が小さい材料で構成されたパンチを有する金型を用いて、フェライト、パーライト、ベイナイト、及びマルテンサイト変態のいずれもが生じる温度より高い温度で前記鋼板の成形を開始し、この成形後に急冷することを特徴とする熱間成形方法。 After the steel plate is heated to a temperature range from the AC 3 point to the melting point, the portion in contact with the portion that needs to improve the forming limit of the steel plate has a punch made of a material having a lower thermal conductivity than the steel. A hot forming method characterized by using a mold to start forming the steel sheet at a temperature higher than a temperature at which any of ferrite, pearlite, bainite, and martensite transformation occurs, and quenching after the forming. 請求項1及び2のいずれか1項に記載の熱間成形方法において、前記鋼よりも熱伝導率が小さい材料はセラミックであることを特徴とする熱間成形方法。 3. The hot forming method according to claim 1, wherein the material having a lower thermal conductivity than the steel is a ceramic. 4. 請求項1〜3のいずれか1項に記載の熱間成形方法において、前記金型のダイは熱伝導率が鋼と同等又は鋼よりも大きい材料で構成され、前記鋼板の成形後の急冷は、前記ダイに前記鋼板の成形部位を接触させてマルテンサイト変態が生じる冷却速度以上の速度で、且つマルテンサイト変態の開始温度まで行うことを特徴とする熱間成形方法。 The hot forming method according to any one of claims 1 to 3, wherein the die of the mold is made of a material having a thermal conductivity equal to or larger than that of steel, and rapid cooling after forming the steel plate is performed. A hot forming method characterized in that the forming portion of the steel sheet is brought into contact with the die and is performed at a speed equal to or higher than a cooling rate at which martensitic transformation occurs and up to the start temperature of martensitic transformation.
JP2004070868A 2004-03-12 2004-03-12 Hot forming method Expired - Lifetime JP4625263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004070868A JP4625263B2 (en) 2004-03-12 2004-03-12 Hot forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004070868A JP4625263B2 (en) 2004-03-12 2004-03-12 Hot forming method

Publications (2)

Publication Number Publication Date
JP2005254297A true JP2005254297A (en) 2005-09-22
JP4625263B2 JP4625263B2 (en) 2011-02-02

Family

ID=35080540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004070868A Expired - Lifetime JP4625263B2 (en) 2004-03-12 2004-03-12 Hot forming method

Country Status (1)

Country Link
JP (1) JP4625263B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100797285B1 (en) * 2006-12-19 2008-01-23 주식회사 포스코 Hot press mold and hot press forming method using the same
KR101483801B1 (en) * 2006-07-17 2015-01-21 마그나 인터내셔널 인코포레이티드 Hot forming die and method for its manufacture and method for hot forming a workpiece
EP2623225A4 (en) * 2010-09-30 2016-09-07 Kobe Steel Ltd Method for manufacturing press-formed article
JP2020522430A (en) * 2017-06-08 2020-07-30 イェスタムプ・ハードテック・アクチエボラーグ Method of forming CFRP patch on steel plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1490535A (en) * 1973-11-06 1977-11-02 Norrbottens Jaernverk Ab Manufacturing a hardened steel article
JPH1157873A (en) * 1997-08-21 1999-03-02 Fukai Kogyo Kk Drawing method, drawing die, drawing punch and drawing press machine
JPH11140537A (en) * 1997-11-14 1999-05-25 High Frequency Heattreat Co Ltd Selective hardening method of steel plate
JP2002282951A (en) * 2001-03-22 2002-10-02 Toyota Motor Corp Method for hot press forming metal plate and apparatus therefor
JP2003328031A (en) * 2002-05-13 2003-11-19 Nissan Motor Co Ltd Method for quenching pressed parts, quenching device, and pressed parts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1490535A (en) * 1973-11-06 1977-11-02 Norrbottens Jaernverk Ab Manufacturing a hardened steel article
JPH1157873A (en) * 1997-08-21 1999-03-02 Fukai Kogyo Kk Drawing method, drawing die, drawing punch and drawing press machine
JPH11140537A (en) * 1997-11-14 1999-05-25 High Frequency Heattreat Co Ltd Selective hardening method of steel plate
JP2002282951A (en) * 2001-03-22 2002-10-02 Toyota Motor Corp Method for hot press forming metal plate and apparatus therefor
JP2003328031A (en) * 2002-05-13 2003-11-19 Nissan Motor Co Ltd Method for quenching pressed parts, quenching device, and pressed parts

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101483801B1 (en) * 2006-07-17 2015-01-21 마그나 인터내셔널 인코포레이티드 Hot forming die and method for its manufacture and method for hot forming a workpiece
KR101504467B1 (en) 2006-07-17 2015-03-19 마그나 인터내셔널 인코포레이티드 Hot forming die and method for its manufacture and method for hot forming a workpiece
KR100797285B1 (en) * 2006-12-19 2008-01-23 주식회사 포스코 Hot press mold and hot press forming method using the same
EP2623225A4 (en) * 2010-09-30 2016-09-07 Kobe Steel Ltd Method for manufacturing press-formed article
JP2020522430A (en) * 2017-06-08 2020-07-30 イェスタムプ・ハードテック・アクチエボラーグ Method of forming CFRP patch on steel plate

Also Published As

Publication number Publication date
JP4625263B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
JP5873385B2 (en) Hot press-formed product, manufacturing method thereof, and thin steel plate for hot press forming
JP5873393B2 (en) Hot press-formed product, manufacturing method thereof, and thin steel plate for hot press forming
JP5883350B2 (en) Hot press-formed product, manufacturing method thereof, and thin steel plate for hot press forming
JP5883351B2 (en) Hot press-formed product, manufacturing method thereof, and thin steel plate for hot press forming
JP5194986B2 (en) Manufacturing method of high-strength parts and high-strength parts
JP2009082992A (en) Hot forming method
JP2004353026A (en) Hot forming method, and hot-formed member
CN107709598A (en) High strength cold rolled steel plate, high-strength hot-dip galvanized steel sheet and high-strength and high-ductility galvannealed steel sheet
US20100187291A1 (en) Method and apparatus for the temperature-controlled shaping of hot-rolled steel materials
WO2015037060A1 (en) Hot-pressing steel plate, press-molded article, and method for manufacturing press-molded article
KR20140117584A (en) Steel sheet, plated steel sheet, method for producing steel sheet, and method for producing plated steel sheet
US20140186655A1 (en) Press hardened parts and method of producing the same
WO2015037059A1 (en) Method for manufacturing press-molded article, and press-molded article
KR20220124789A (en) hot stamped parts
JP2009173959A (en) High-strength steel sheet and producing method therefor
JP4975245B2 (en) Manufacturing method of high strength parts
JP5857913B2 (en) Hot-formed steel plate member, method for producing the same, and hot-formed steel plate
WO2017029773A1 (en) Method for manufacturing hot press part and hot press part
JP4494834B2 (en) Hot forming method
JP2013185247A (en) Steel sheet for hot pressing, press-molded product and method for manufacturing the press-molded product
JP2017510703A (en) Hot forming air hardenability weldable steel plate
JP4625263B2 (en) Hot forming method
JP2006104527A (en) Method for producing high strength component and high strength component
JP2005297042A (en) Deep drawing method in hot forming
JP4837259B2 (en) Hot forming method and high strength hot formed parts with excellent strength after forming

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090811

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101105

R151 Written notification of patent or utility model registration

Ref document number: 4625263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350