JP2005251941A - Activated carbon for capacitor - Google Patents

Activated carbon for capacitor Download PDF

Info

Publication number
JP2005251941A
JP2005251941A JP2004059519A JP2004059519A JP2005251941A JP 2005251941 A JP2005251941 A JP 2005251941A JP 2004059519 A JP2004059519 A JP 2004059519A JP 2004059519 A JP2004059519 A JP 2004059519A JP 2005251941 A JP2005251941 A JP 2005251941A
Authority
JP
Japan
Prior art keywords
activated carbon
coal
capacitor
transition metal
capacitors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004059519A
Other languages
Japanese (ja)
Other versions
JP4401192B2 (en
Inventor
Tetsuya Kume
哲也 久米
Yasuyuki Higashionno
靖之 東恩納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Original Assignee
Cataler Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Corp filed Critical Cataler Corp
Priority to JP2004059519A priority Critical patent/JP4401192B2/en
Publication of JP2005251941A publication Critical patent/JP2005251941A/en
Application granted granted Critical
Publication of JP4401192B2 publication Critical patent/JP4401192B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an activated carbon for capacitors which realize a high capacity, low resistance and long life time for electric double-layer capacitors. <P>SOLUTION: The activated carbon for the capacitor is made of coal containing ≥200 ppm transition metal. In the activated carbon, a mean diameter of 1 to 50 μm, BET ratio surface area is ≥2,000 m<SP>2</SP>/g and a pore volume is ≥1 mL/g, and the transition metal is contained by 200 to 10,000 ppm. The activated carbon has the effect of realizing the electric double-layer capacitor having superior characteristics. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、キャパシタ用活性炭に関し、詳しくは、電気二重層キャパシタの電極材料として使用されるキャパシタ用活性炭に関する。   The present invention relates to activated carbon for capacitors, and more particularly to activated carbon for capacitors used as an electrode material for electric double layer capacitors.

近年、従来の電池電源に代わって超大容量を有しかつ充放電性や急速充電性にもすぐれた電源として電気二重層キャパシタが注目されてきている。   In recent years, electric double layer capacitors have been attracting attention as a power source that has an ultra-large capacity instead of a conventional battery power source and is excellent in charge / discharge characteristics and quick chargeability.

電子の導体は、一般に電気二重層と称する分子レベルのごく薄い電荷の分離した層を形成している。これは電子のトンネル効果による。電気二重層キャパシタは、この電気二重層に電荷を蓄積することをその原理としている。   The electron conductor forms a very thin charge-separated layer of molecular level, commonly referred to as an electric double layer. This is due to the electron tunnel effect. The electric double layer capacitor is based on the principle that electric charges are accumulated in the electric double layer.

電気二重層キャパシタの電極材料には、大きな表面積を有することから活性炭が用いられている。たとえば、特許文献1〜4に電気二重層キャパシタの電極に用いることができる活性炭が開示されている。   Activated carbon is used as an electrode material for electric double layer capacitors because of its large surface area. For example, Patent Documents 1 to 4 disclose activated carbon that can be used for electrodes of electric double layer capacitors.

特許文献1には、Fe等の不純物量を制限した活性炭を用いた電気二重層キャパシタが開示されている。さらに、特許文献1には、活性炭中の不純物量が多くなるとキャパシタの長期信頼性が低下することが記載されている。   Patent Document 1 discloses an electric double layer capacitor using activated carbon in which the amount of impurities such as Fe is limited. Furthermore, Patent Document 1 describes that the long-term reliability of a capacitor decreases when the amount of impurities in the activated carbon increases.

特許文献2〜3には、Fe等の金属化合物をあえて後から担持させた活性炭が開示されている。また、特許文献4には、活性炭の原材料に金属化合物を担持させる製造方法が開示されている。これらの特許文献に開示された活性炭は、金属を活性炭に担持させることで活性炭自体の導電率を高めている。   Patent Documents 2 to 3 disclose activated carbon in which a metal compound such as Fe is intentionally supported later. Patent Document 4 discloses a production method in which a metal compound is supported on a raw material of activated carbon. The activated carbon disclosed in these patent documents increases the conductivity of the activated carbon itself by supporting a metal on the activated carbon.

電気二重層キャパシタにおいては、高容量化をはかると、活性炭の細孔内のイオン濃度が高くなり、抵抗性能に最も寄与する細孔内でのイオンの移動抵抗が低下する。すなわち、電気二重層キャパシタにおいては、静電容量、内部抵抗、耐久性を同時に向上させることは困難であった。
特開平1−241811号公報 特開2002−43191号公報 特開2002−367860号公報 特開2001−210564号公報
In the electric double layer capacitor, when the capacity is increased, the ion concentration in the pores of the activated carbon is increased, and the ion migration resistance in the pores most contributing to the resistance performance is lowered. That is, in the electric double layer capacitor, it is difficult to simultaneously improve the capacitance, internal resistance, and durability.
Japanese Laid-Open Patent Publication No. 1-224111 JP 2002-43191 A JP 2002-367860 A JP 2001-210564 A

本発明は上記実状に鑑みてなされたものであり、電気二重層キャパシタに高容量、低抵抗、長寿命化を実現できるキャパシタ用活性炭を提供することを課題とする。   This invention is made | formed in view of the said actual condition, and makes it a subject to provide the activated carbon for capacitors which can implement | achieve high capacity | capacitance, low resistance, and lifetime improvement for an electric double layer capacitor.

上記課題を解決するために本発明者らはキャパシタ用活性炭について検討を重ねた結果、従来は不純物として取り除かれていた遷移金属成分を所定の含有量で含有した活性炭とすることで上記課題を解決できることを見出した。   In order to solve the above problems, the present inventors have repeatedly studied activated carbon for capacitors, and as a result, the activated carbon containing a transition metal component that has been removed as impurities in the past with a predetermined content is solved. I found out that I can do it.

すなわち、本発明のキャパシタ用活性炭は、遷移金属を200ppm以上含んだ石炭から製造されてなり、平均粒径が1〜50μm、BET比表面積が2000m2/g以上、細孔容積が1mL/g以上でありかつ200〜10000ppmで遷移金属を含有したことを特徴とする。 That is, the activated carbon for a capacitor of the present invention is manufactured from coal containing 200 ppm or more of transition metal, has an average particle diameter of 1 to 50 μm, a BET specific surface area of 2000 m 2 / g or more, and a pore volume of 1 mL / g or more. And containing a transition metal at 200 to 10000 ppm.

本発明のキャパシタ用活性炭は、電気二重層キャパシタを形成したときに高容量化、低抵抗化、長寿命化を実現できる。すなわち、特性に優れた電気二重層キャパシタを実現できる効果を有する。   The activated carbon for a capacitor of the present invention can realize high capacity, low resistance, and long life when an electric double layer capacitor is formed. That is, the electric double layer capacitor having excellent characteristics can be realized.

本発明のキャパシタ用活性炭は、200〜10000ppmで遷移金属を含有した活性炭である。活性炭中に遷移金属を含有することで、活性炭の導電率が上昇する。この結果、本発明のキャパシタ用活性炭を用いた電気二重層キャパシタは、電極の抵抗が低下することで低抵抗化が実現される。   The activated carbon for capacitors of the present invention is activated carbon containing a transition metal at 200 to 10,000 ppm. By containing a transition metal in the activated carbon, the conductivity of the activated carbon increases. As a result, in the electric double layer capacitor using the activated carbon for a capacitor of the present invention, the resistance is reduced by reducing the resistance of the electrode.

また、活性炭中に含まれた遷移金属は、活性炭の構造中に取り込まれた状態で存在する。この構造により、遷移金属の触媒効果による活性炭自身および電気二重層キャパシタを形成したときに電解液の分解を生じさせない。具体的には、遷移金属が活性炭の構造中に取り込まれたことで、電気二重層キャパシタを形成しても電解液中に遷移金属が溶出しなくなっている。これにより、遷移金属が電解液を分解して電気二重層キャパシタの寿命を短縮することを抑えることができる。   Moreover, the transition metal contained in activated carbon exists in the state taken in in the structure of activated carbon. With this structure, when the activated carbon itself and the electric double layer capacitor are formed by the catalytic effect of the transition metal, the electrolytic solution is not decomposed. Specifically, since the transition metal is taken into the structure of the activated carbon, the transition metal does not elute into the electrolyte even when the electric double layer capacitor is formed. Thereby, it can suppress that a transition metal decomposes | disassembles electrolyte solution and shortens the lifetime of an electrical double layer capacitor.

さらに、活性炭中に遷移金属である遷移金属が含まれることで、この遷移金属の還元作用により酸素原子を除去することが可能となり、キャパシタセルにおいてガスの発生を抑えることができる。この結果、本発明のキャパシタ用活性炭を用いた電気二重層キャパシタは、長寿命となる。   Furthermore, when the transition metal which is a transition metal is contained in the activated carbon, oxygen atoms can be removed by the reduction action of the transition metal, and gas generation can be suppressed in the capacitor cell. As a result, the electric double layer capacitor using the activated carbon for capacitors of the present invention has a long life.

活性炭中に含まれる遷移金属量が200ppm未満となると、遷移金属含有の効果が得られなくなる。活性炭中に含まれる遷移金属量が10000ppmを超えると、活性炭中に遷移金属以外の不純物が多く含まれることとなり、キャパシタ用活性炭として相応しくなくなる。より好ましい遷移金属含有量は、200〜5000ppmである。   If the amount of transition metal contained in the activated carbon is less than 200 ppm, the transition metal-containing effect cannot be obtained. If the amount of transition metal contained in the activated carbon exceeds 10,000 ppm, the activated carbon contains a large amount of impurities other than the transition metal, making it unsuitable as a capacitor activated carbon. A more preferable transition metal content is 200 to 5000 ppm.

活性炭中に含まれる遷移金属は、遷移金属であればその元素が特に限定されるものではない。活性炭中に含まれる遷移金属が複数種であるときには、その合計が200〜10000ppmであることが好ましい。遷移金属は、Feであることが好ましい。   The transition metal contained in the activated carbon is not particularly limited as long as it is a transition metal. When there are a plurality of transition metals contained in the activated carbon, the total is preferably 200 to 10,000 ppm. The transition metal is preferably Fe.

本発明のキャパシタ用活性炭は、平均粒径が1〜50μm、BET比表面積が2000m2/g以上、細孔容積が1mL/g以上の活性炭である。 The activated carbon for capacitors of the present invention is activated carbon having an average particle diameter of 1 to 50 μm, a BET specific surface area of 2000 m 2 / g or more, and a pore volume of 1 mL / g or more.

活性炭の平均粒径が1μm未満となると電極密度が低下してキャパシタの静電容量が低下し、50μmを超えても同様に電極密度が低下してキャパシタの静電容量が低下する。   When the average particle diameter of the activated carbon is less than 1 μm, the electrode density is lowered and the capacitance of the capacitor is lowered. When the average particle diameter is more than 50 μm, the electrode density is similarly lowered and the capacitance of the capacitor is lowered.

活性炭の比表面積は、電気二重層キャパシタの容量と相関関係がある。そして、BET比表面積が2000m2/g以上となることで高容量の電気二重層キャパシタが得られる。BET比表面積が2000m2/g未満では、高容量の電気二重層キャパシタが得られなくなる。 The specific surface area of the activated carbon has a correlation with the capacity of the electric double layer capacitor. And a high capacity | capacitance electric double layer capacitor is obtained because a BET specific surface area becomes 2000 m < 2 > / g or more. When the BET specific surface area is less than 2000 m 2 / g, a high-capacity electric double layer capacitor cannot be obtained.

活性炭の細孔容積は、活性炭の比表面積と相関関係がある。すなわち、細孔容積が大きくなると、比表面積が大きくなる。細孔容積が1mL/g未満となると、比表面積の大きな活性炭が得られなくなり、高容量の電気二重層キャパシタが得られなくなる。   The pore volume of activated carbon correlates with the specific surface area of activated carbon. That is, as the pore volume increases, the specific surface area increases. When the pore volume is less than 1 mL / g, activated carbon having a large specific surface area cannot be obtained, and a high-capacity electric double layer capacitor cannot be obtained.

本発明のキャパシタ用活性炭は、遷移金属を200ppm以上含んだ石炭から製造されてなる。この石炭は、その内部に遷移金属が含まれる。あらかじめ内部に遷移金属を含む石炭から活性炭を製造することで、内部に遷移金属を含有した活性炭を製造することができる。本発明のキャパシタ用活性炭において原料の石炭に含まれる遷移金属は、上記した活性炭に含まれる遷移金属となる。すなわち、活性炭に含まれる遷移金属は、遷移金属であればその元素が特に限定されるものではない。遷移金属は、Feであることが好ましい。   The activated carbon for capacitors of the present invention is manufactured from coal containing 200 ppm or more of transition metal. This coal contains a transition metal inside. By producing activated carbon from coal containing a transition metal inside in advance, activated carbon containing a transition metal inside can be produced. In the activated carbon for capacitors of the present invention, the transition metal contained in the raw material coal becomes the transition metal contained in the activated carbon described above. That is, the transition metal contained in the activated carbon is not particularly limited as long as it is a transition metal. The transition metal is preferably Fe.

石炭が遷移金属を200ppm以上で含むことで、この石炭から製造される活性炭が200ppm以上で遷移金属を含むこととなる。石炭に含まれる遷移金属は、200〜10000ppmであることが好ましく、より好ましくは、200〜5000ppmである。   Coal contains transition metal at 200 ppm or more, so that activated carbon produced from this coal contains transition metal at 200 ppm or more. The transition metal contained in the coal is preferably 200 to 10,000 ppm, and more preferably 200 to 5000 ppm.

本発明のキャパシタ用活性炭は、揮発分が20wt%以下の石炭から製造されたことが好ましい。石炭の揮発分とは、石炭を窒素、アルゴンなどの不活性ガス中で急速に高温まで加熱すると、石炭の高分子マトリックスの側鎖の部分あるいはブリッジの部分が熱分解により切断され、低分子量炭化水素など低沸点成分やCO、H2が発生し、ガス状で粒子外部に放出される。これがいわゆる石炭の揮発分である。すなわち、揮発分が小さい石炭は、高い炭素密度を有している。高い炭素密度を有する石炭から製造される活性炭も高い炭素密度を有することとなり、キャパシタ用活性炭として用いたときに高い静電容量を得られる。揮発分が20wt%を超えると、石炭の炭素密度が低いため、この石炭から製造される活性炭の炭素密度も低くなり、キャパシタ用活性炭として十分な静電容量が得られなくなる。より好ましい石炭の揮発分は、10wt%以下である。石炭の揮発分は、JIS M8812に規定された方法で測定することができる。 The activated carbon for capacitors of the present invention is preferably manufactured from coal having a volatile content of 20 wt% or less. The volatile matter of coal means that when coal is heated to a high temperature rapidly in an inert gas such as nitrogen or argon, the side chain part or bridge part of the polymer matrix of coal is cleaved by pyrolysis, resulting in low molecular weight carbonization. Low-boiling components such as hydrogen, CO, and H 2 are generated and released in the form of gas to the outside of the particles. This is the so-called volatile matter of coal. That is, coal with a small volatile content has a high carbon density. Activated carbon produced from coal having a high carbon density also has a high carbon density, and a high capacitance can be obtained when used as an activated carbon for capacitors. If the volatile content exceeds 20 wt%, the carbon density of the coal is low, so the carbon density of the activated carbon produced from the coal is also low, and sufficient capacitance as the activated carbon for capacitors cannot be obtained. More preferable volatile matter of coal is 10 wt% or less. The volatile matter of coal can be measured by a method defined in JIS M8812.

灰分が5wt%以下の石炭から製造されたことが好ましい。石炭の灰分とは石炭を加熱灰化したときに残留する灰の量の質量百分率を示したものであり、配分が多い石炭は炭素以外の不純物を多く含んでいる。すなわち、灰分が少ない石炭から製造された活性炭は炭素の純度が高くなる。この結果、キャパシタ用活性炭として用いたときに、不純物が電解液中に溶出しなくなり電解液の劣化が抑えられて耐久性が向上する。配分が5wt%を超えると電解液を劣化させるようになりキャパシタ用活性炭として好ましくない。より好ましい石炭の灰分は、2wt%以下である。石炭の灰分は、JIS M8812に規定された方法で測定することができる。   It is preferable that the ash is produced from coal of 5 wt% or less. The ash content of coal indicates the mass percentage of the amount of ash remaining when coal is heat ashed, and coal with a large distribution contains many impurities other than carbon. That is, activated carbon produced from coal with low ash content has high carbon purity. As a result, when used as an activated carbon for a capacitor, impurities are not eluted into the electrolytic solution, deterioration of the electrolytic solution is suppressed, and durability is improved. When the distribution exceeds 5 wt%, the electrolytic solution is deteriorated, which is not preferable as the activated carbon for capacitors. A more preferable coal ash content is 2 wt% or less. The ash content of coal can be measured by a method defined in JIS M8812.

このような石炭としては、たとえば、無煙炭、一部の亜瀝青炭、褐炭等に分類される石炭をあげることができる。石炭としては、無煙炭を用いることがより好ましい。   Examples of such coal include coal classified into anthracite, some subbituminous coal, lignite, and the like. As coal, it is more preferable to use anthracite.

遷移金属を200ppm以上含んだ石炭からの活性炭の製造は、従来公知の方法を用いて行うことができる。すなわち、遷移金属を200ppm以上含んだ石炭に炭化処理、酸化処理、賦活処理を施すことで製造することができる。なお、これらの処理は、遷移金属を200ppm以上含んだ石炭の状態により適宜選択して施される。   Production of activated carbon from coal containing 200 ppm or more of transition metal can be performed using a conventionally known method. That is, it can be manufactured by subjecting coal containing 200 ppm or more of transition metal to carbonization treatment, oxidation treatment, and activation treatment. In addition, these processes are suitably selected according to the state of coal containing 200 ppm or more of transition metal.

炭化処理は、たとえば、炭化炉を用いて原料の石炭を蒸し焼きにする方法や不活性ガス雰囲気下で加熱する方法を用いることができる。   For the carbonization treatment, for example, a method of steaming and burning raw material coal using a carbonization furnace or a method of heating in an inert gas atmosphere can be used.

賦活処理は、炭化した石炭の細孔を発達させるとともに細孔径を制御する。賦活処理としては、高度賦活あるいは薬品賦活をもちいることができる。より好ましくは、アルカリ賦活処理である。   The activation treatment develops pores of carbonized coal and controls the pore diameter. As the activation treatment, advanced activation or chemical activation can be used. More preferably, it is an alkali activation treatment.

アルカリ賦活処理は、炭化した石炭をアルカリ化合物と混合し、不活性ガス雰囲気下で加熱処理を施す処理方法である。アルカリ化合物量は、石炭に対して0.5〜5倍等量で混合されることが好ましく、より好ましくは1.5〜2.5倍等量である。アルカリ化合物としては、KOH、NaOH等の化合物をあげることができる。また、賦活処理時の加熱温度は600〜900℃が好ましく、より好ましくは750〜850℃である。加熱時間は、0.5〜10時間が好ましく、より好ましくは3〜5時間である。   The alkali activation treatment is a treatment method in which carbonized coal is mixed with an alkali compound and heat treatment is performed in an inert gas atmosphere. The amount of the alkali compound is preferably mixed in an amount of 0.5 to 5 times the equivalent of coal, more preferably 1.5 to 2.5 times the equivalent. Examples of the alkali compound include compounds such as KOH and NaOH. Moreover, 600-900 degreeC is preferable and the heating temperature at the time of an activation process has more preferably 750-850 degreeC. The heating time is preferably 0.5 to 10 hours, more preferably 3 to 5 hours.

200ppm以上のFeを含有する活性炭とするには、原料である粘結性を持たない石炭は、200ppm以上のFeを含有することが好ましい。より好ましくは、200〜5000ppmである。   In order to make activated carbon containing 200 ppm or more of Fe, coal having no caking property as a raw material preferably contains 200 ppm or more of Fe. More preferably, it is 200-5000 ppm.

さらに、遷移金属を200ppm以上含んだ石炭からの活性炭の製造時に、賦活処理の前に整粒処理を施すことが好ましい。整粒処理は、炭化した石炭の粒径を整える。整粒処理を施すことで、賦活処理を施したときに、ムラを生じることなく賦活できる。詳しくは、整粒処理により炭化した石炭の大きさがそろうことで、賦活処理がそれぞれの粒子に均一に施されることとなる。この結果、製造される活性炭の細孔の大きさにムラが生じなくなるため、活性炭の特性が向上する。この整粒処理により賦活処理が施される石炭の粒径を10〜200μmとすることが好ましい。より好ましくは、20〜100μmである。   Furthermore, it is preferable to perform a sizing treatment before the activation treatment when producing activated carbon from coal containing 200 ppm or more of transition metal. In the sizing treatment, the particle size of the carbonized coal is adjusted. By performing the sizing treatment, activation can be performed without causing unevenness when the activation treatment is performed. Specifically, the activated carbon is uniformly applied to each particle because the size of coal carbonized by the sizing treatment is uniform. As a result, unevenness does not occur in the pore size of the activated carbon to be produced, and the characteristics of the activated carbon are improved. It is preferable that the particle diameter of coal subjected to the activation treatment by this sizing treatment is 10 to 200 μm. More preferably, it is 20-100 micrometers.

整粒処理は、炭化した石炭の大きさをそろえることができる処理であれば特に限定されない。たとえば、炭化した石炭を破砕し、つづいて篩別する処理をあげることができる。   The sizing treatment is not particularly limited as long as it can treat the size of the carbonized coal. For example, the process which crushes carbonized coal and then sieving can be mentioned.

本発明のキャパシタ用活性炭は、キャパシタ用電極を形成したときに高容量、低抵抗、長寿命の電気二重層キャパシタを製造することができる。本発明のキャパシタ用活性炭からは、従来の電気二重層キャパシタの電極材料と同様に、従来公知の方法を用いて電気二重層キャパシタの製造を行うことができる。   The capacitor activated carbon of the present invention can produce an electric double layer capacitor having a high capacity, a low resistance and a long life when a capacitor electrode is formed. From the activated carbon for a capacitor according to the present invention, an electric double layer capacitor can be produced by using a conventionally known method, similarly to the electrode material of a conventional electric double layer capacitor.

たとえば、本発明のキャパシタ用活性炭と導電材と結着剤とを所定の割合で配合して混練し、その混練物を圧延して電極板を製造する。そして、二枚の電極板を電解液とともにセパレータを介した状態でケース内に封入することで製造することができる。   For example, the activated carbon for a capacitor of the present invention, a conductive material, and a binder are blended at a predetermined ratio and kneaded, and the kneaded product is rolled to produce an electrode plate. And it can manufacture by enclosing two electrode plates in a case in the state which interposed the separator with electrolyte solution.

以下、実施例を用いて本発明を説明する。   Hereinafter, the present invention will be described using examples.

本発明の実施例として、キャパシタ用活性炭を製造した。   As an example of the present invention, activated carbon for capacitors was manufactured.

(実施例)
まず、1000〜2000ppmでFeを含有する石炭を選別した。ここで、石炭中のFe含有量は、蛍光X線分析装置(PHILIPS社製、商品名:PW−1480)を用いて測定された。
(Example)
First, coal containing Fe at 1000 to 2000 ppm was selected. Here, the Fe content in the coal was measured using a fluorescent X-ray analyzer (trade name: PW-1480, manufactured by PHILIPS).

また、選別された石炭の揮発分および灰分は、揮発分:10wt%、灰分:2wt%であった。なお、揮発分および灰分は、JIS M8812に規定された方法により測定された。   Moreover, the volatile matter and ash content of the selected coal were volatile matter: 10 wt% and ash content: 2 wt%. The volatile content and ash content were measured by the method defined in JIS M8812.

選別された石炭は、十分に炭化していた。そして、選別された石炭は、粒径が100〜300μmとなるように篩別された。   The selected coal was fully carbonized. And the selected coal was sieved so that a particle size might be set to 100-300 micrometers.

その後、選別された石炭は、アルカリ薬品による賦活処理が施された。賦活処理としては、石炭の2倍等量のKOHとともに混合し、窒素ガス雰囲気下で800℃で4時間の加熱処理(カリウム賦活処理)が施された。   Thereafter, the selected coal was subjected to activation treatment with alkaline chemicals. As the activation treatment, it was mixed with KOH equivalent to twice the amount of coal, and subjected to a heat treatment (potassium activation treatment) at 800 ° C. for 4 hours in a nitrogen gas atmosphere.

賦活処理により得られた活性炭を排水中のカリウム(K)量が10000ppm以下となるまで水洗した。   The activated carbon obtained by the activation treatment was washed with water until the amount of potassium (K) in the wastewater was 10000 ppm or less.

以上の処理により、本実施例のキャパシタ用活性炭が製造された。   The activated carbon for a capacitor of this example was manufactured by the above treatment.

本実施例のキャパシタ用活性炭の細孔分布、平均粒径、BET比表面積、細孔容積およびFe含有量を測定した。細孔分布、BET比表面積および細孔容積の測定は、粉流体測定装置(ユアサアイオニクス株式会社製、商品名NOVA−3000)を用いて行われ、測定結果は図1に示した。平均粒径の測定結果は、10μmであった。細孔容積は、1.16mL/gであった。BET比表面積の測定は、2450m2/gであった。キャパシタ用活性炭のFe含有量は、上記粘結性のない石炭のFe含有量の測定と同様にして行われ、1800ppmであった。 The pore distribution, average particle diameter, BET specific surface area, pore volume and Fe content of the activated carbon for capacitors of this example were measured. The pore distribution, BET specific surface area, and pore volume were measured using a powder fluid measuring device (manufactured by Yuasa Ionics Co., Ltd., trade name: NOVA-3000), and the measurement results are shown in FIG. The measurement result of the average particle diameter was 10 μm. The pore volume was 1.16 mL / g. The measurement of the BET specific surface area was 2450 m 2 / g. The Fe content of the activated carbon for a capacitor was 1800 ppm as measured in the same manner as the measurement of the Fe content of coal having no caking properties.

(比較例1)
15ppmでFeを含有する石炭を実施例と同様に処理して本比較例のキャパシタ用活性炭が製造された。
(Comparative Example 1)
Coal containing Fe at 15 ppm was treated in the same manner as in the example, to produce activated carbon for capacitors of this comparative example.

また、原料の石炭の揮発分および灰分は、揮発分:25wt%、灰分:5wt%であった。なお、揮発分および灰分は、JIS M8812に規定された方法により測定された。   Moreover, the volatile matter and ash content of the raw material coal were volatile content: 25 wt% and ash content: 5 wt%. The volatile content and ash content were measured by the method defined in JIS M8812.

本比較例のキャパシタ用活性炭は、平均粒径:9μm、細孔容積:1.02mL/g、BET比表面積:2300m2/g、Fe含有量:15ppmであった。また、細孔分布の測定結果を図1にあわせて示した。 The activated carbon for capacitors of this comparative example had an average particle size: 9 μm, a pore volume: 1.02 mL / g, a BET specific surface area: 2300 m 2 / g, and an Fe content: 15 ppm. The measurement results of the pore distribution are also shown in FIG.

(比較例2)
鉄アセチルアセトナート3.65gを石油系メソフェーズピッチ30gに配合し,それらを乳鉢を用いて十分に粉砕混合した。混合物に大気気流中、480℃、90分間の不融化処理を施した。混合物は融解し、冷却により塊状を呈したのでその塊状物を粉砕して粉末を得た。この粉末は、Feを1300ppmで含有している。
(Comparative Example 2)
3.65 g of iron acetylacetonate was blended with 30 g of petroleum mesophase pitch, and they were sufficiently pulverized and mixed using a mortar. The mixture was infusibilized at 480 ° C. for 90 minutes in an air stream. The mixture melted and formed a lump by cooling. The lump was pulverized to obtain a powder. This powder contains Fe at 1300 ppm.

また、この粉末の揮発分および灰分は、揮発分:30wt%、灰分:2wt%であった。なお、揮発分および灰分は、JIS M8812に規定された方法により測定された。   The volatile matter and ash content of this powder were volatile content: 30 wt% and ash content: 2 wt%. The volatile content and ash content were measured by the method defined in JIS M8812.

粉砕して得られた粉末に窒素気流中、700℃、1時間の炭化処理を施して炭化物を得た。   The powder obtained by pulverization was carbonized at 700 ° C. for 1 hour in a nitrogen stream to obtain a carbide.

得られた炭化物粉末にその重量の2倍量のKOHを混合し、その混合物に窒素気流中、800℃、5時間のアルカリ賦活処理(カリウム賦活処理)を施して活性炭を得た。   The resulting carbide powder was mixed with KOH twice the weight thereof, and the mixture was subjected to an alkali activation treatment (potassium activation treatment) at 800 ° C. for 5 hours in a nitrogen stream to obtain activated carbon.

次いで活性炭に酸洗、水洗、ろ過および乾燥を順次施した。   The activated carbon was then pickled, washed with water, filtered and dried in sequence.

以上の手順により本比較例のキャパシタ用活性炭が得られた。   The activated carbon for capacitors of this comparative example was obtained by the above procedure.

本比較例のキャパシタ用活性炭は、平均粒径:9μm、細孔容積:1.10mL/g、BET比表面積:2400m2/g、Fe含有量:1300ppmであった。 The activated carbon for capacitors of this comparative example had an average particle size: 9 μm, a pore volume: 1.10 mL / g, a BET specific surface area: 2400 m 2 / g, and an Fe content: 1300 ppm.

(比較例3)
塩化コバルト(CoCl2)1gを約50mlの蒸留水に溶かし、この溶液にBET比表面積が3000m2/gの活性炭微粒子3gを加え、超音波洗浄機にて約4時間撹拌することにより活性炭細孔内に溶液を良くしみ込ませた。この活性炭粉末は、遷移金属を含有していない。また、この活性炭粉末は、石炭から製造された活性炭粉末であり、原料の石炭の揮発分および灰分は、揮発分:30wt%、灰分:1wt%であった。なお、揮発分および灰分は、JIS M8812に規定された方法により測定された。
(Comparative Example 3)
1 g of cobalt chloride (CoCl 2 ) is dissolved in about 50 ml of distilled water, 3 g of activated carbon fine particles having a BET specific surface area of 3000 m 2 / g are added to this solution, and the mixture is stirred with an ultrasonic cleaner for about 4 hours. The solution was well soaked inside. This activated carbon powder does not contain a transition metal. Moreover, this activated carbon powder was activated carbon powder manufactured from coal, and the volatile matter and ash content of the raw material coal were volatile content: 30 wt% and ash content: 1 wt%. The volatile content and ash content were measured by the method defined in JIS M8812.

その後、活性炭をろ過して、1モル/リットルの水酸化ナトリウム水溶液に加え、水酸化物および水酸化物が脱水した酸化物を析出させた。   Thereafter, the activated carbon was filtered and added to a 1 mol / liter aqueous sodium hydroxide solution to precipitate a hydroxide and an oxide from which the hydroxide was dehydrated.

溶液をろ過し、さらに水洗、風乾した後、乾燥器により約150℃で空気中で12時間乾燥した。   The solution was filtered, further washed with water and air-dried, and then dried in air at about 150 ° C. for 12 hours using a dryer.

以上の手順により本比較例のキャパシタ用活性炭が得られた。本比較例のキャパシタ用活性炭は、原料の活性炭の表面上にCoが担持されている。   The activated carbon for capacitors of this comparative example was obtained by the above procedure. In the activated carbon for capacitors of this comparative example, Co is supported on the surface of the activated carbon as a raw material.

本比較例の活性炭は、平均粒径:9μm、細孔容積:1.07mL/g、BET比表面積:2350m2/g、Co含有量(担持量):1600ppmであった。 The activated carbon of this comparative example had an average particle size: 9 μm, a pore volume: 1.07 mL / g, a BET specific surface area: 2350 m 2 / g, and a Co content (supported amount): 1600 ppm.

(評価)
まず、実施例および比較例のキャパシタ用活性炭を用いて電気二重層キャパシタを作成した。
(Evaluation)
First, the electric double layer capacitor was created using the activated carbon for a capacitor of an Example and a comparative example.

キャパシタ用活性炭、カーボンブラック(導電材)、PTFE(結着剤)を、重量比で80:10:10の割合で配合した配合物を十分に混練した。得られた混合物を用いて圧延を行うことにより厚さ0.1mm、面積2cm2の円形に成形し電極を製造した。 A compound in which activated carbon for capacitors, carbon black (conductive material), and PTFE (binder) were blended at a weight ratio of 80:10:10 was sufficiently kneaded. The resulting mixture was rolled to form a circle having a thickness of 0.1 mm and an area of 2 cm 2 to produce an electrode.

製造された電極を1mol/LのTEA・BF4のPC(プロピレンカーボネート)溶液(電解液)とともにコイン型セルに封入してボタン型電気二重層キャパシタを製造した。 The manufactured electrode was sealed in a coin-type cell together with a 1 mol / L TEA · BF 4 PC (propylene carbonate) solution (electrolytic solution) to produce a button-type electric double layer capacitor.

つづいて、作成されたボタン型電気二重層キャパシタの静電容量、内部抵抗、耐久性能を測定した。静電容量、内部抵抗、耐久性能の測定結果を表1および図2,3に示した。ここで、静電容量、内部抵抗、耐久性能の測定は、充放電装置(北斗電工社製、商品名:HJR1001SM8)を用いて行われた。   Subsequently, the capacitance, internal resistance, and durability performance of the created button type electric double layer capacitor were measured. The measurement results of capacitance, internal resistance, and durability performance are shown in Table 1 and FIGS. Here, the measurement of electrostatic capacity, internal resistance, and durability performance was performed using the charging / discharging apparatus (the Hokuto Denko company make, brand name: HJR1001SM8).

静電容量は、室温(20℃)で、電圧が2.5V、電流が2mA/cm2で5分間で2.5Vの満充電状態までCC−CV充電を行い5分間保持した後、0Vまで100%放電を行った。この放電時の放電カーブの勾配を静電容量値とした。 The capacitance is room temperature (20 ° C.), the voltage is 2.5 V, the current is 2 mA / cm 2 , and the CC-CV charge is performed for 5 minutes until the fully charged state is 2.5 V in 5 minutes. 100% discharge was performed. The slope of the discharge curve during this discharge was taken as the capacitance value.

内部抵抗は、静電容量の測定時の充放電カーブの放電開始直後の電圧がステップ状に下降するIRドロップより算出した。   The internal resistance was calculated from an IR drop in which the voltage immediately after the start of discharge of the charge / discharge curve at the time of measuring the electrostatic capacitance decreased stepwise.

耐久性能は、室温(20℃)で、電圧が2.5V、電流が2mA/cm2で5分間で2.5Vの満充電状態までCC−CV充電を行い、70℃の恒温槽中におさめ、100時間後の静電容量を測定し、0時間の静電容量からの低下率を算出し劣化率とした。このとき、0〜100時間の間の所定時間における劣化率も測定した。なお、劣化率の測定時における静電容量の測定は、上記静電容量の測定方法が用いられた。 Durability performance is room temperature (20 ° C), voltage is 2.5V, current is 2mA / cm 2 , CC-CV charge to 2.5V fully charged in 5 minutes and put in 70 ° C constant temperature bath. The capacitance after 100 hours was measured, and the rate of decrease from the 0-hour capacitance was calculated as the deterioration rate. At this time, the deterioration rate in a predetermined time between 0 and 100 hours was also measured. In addition, the measurement method of the said electrostatic capacitance was used for the measurement of the electrostatic capacitance at the time of measurement of a deterioration rate.

Figure 2005251941
表1より、実施例のキャパシタ用活性炭から製造されたキャパシタ(以下、実施例のキャパシタとする)は、比較例1のキャパシタ用活性炭から製造されたキャパシタと比較しても、性能が向上していることがわかる。すなわち、実施例のキャパシタ用活性炭は比較例1のキャパシタ用活性炭と細孔分布、細孔容積およびBET比表面積がほぼ同等であったが、これらのキャパシタ用活性炭から製造されたキャパシタにおいては性能の差が明らかである。具体的には、実施例のキャパシタは、17.1F/mlと高い静電容量、1.71Ωと低い内部抵抗値および7.0%と低い劣化率が得られたことから、高容量化、低抵抗化および長寿命化が達成できた。
Figure 2005251941
Table 1 shows that the capacitor manufactured from the activated carbon for capacitor of the example (hereinafter referred to as the capacitor of the example) has improved performance compared to the capacitor manufactured from the activated carbon for capacitor of Comparative Example 1. I understand that. That is, the capacitor activated carbon of the example had substantially the same pore distribution, pore volume, and BET specific surface area as the capacitor activated carbon of Comparative Example 1, but the capacitors manufactured from these capacitor activated carbons had the same performance. The difference is clear. Specifically, the capacitor of the example has a high capacitance of 17.1 F / ml, a low internal resistance value of 1.71 Ω, and a low deterioration rate of 7.0%. Low resistance and long life could be achieved.

また、実施例のキャパシタ用活性炭は、原料にFeを担持して製造された比較例2のキャパシタ用活性炭および賦活後に後工程で担持した比較例3のキャパシタ用活性炭とFe含有量、細孔容積およびBET比表面積がほぼ同等であったが、これらのキャパシタ用活性炭から製造されたキャパシタにおいては性能の差が明らかである。具体的には、実施例のキャパシタ用活性炭から製造されたキャパシタは、17.1F/mlと高い静電容量および7.0%と低い劣化率が得られたことから、高容量、長寿命が実現されている。   In addition, the activated carbon for capacitor of the example is the activated carbon for capacitor of Comparative Example 2 manufactured by supporting Fe as a raw material, the activated carbon for capacitor of Comparative Example 3 supported in the post-activation after activation, the Fe content, the pore volume. Although the BET specific surface areas were almost the same, the difference in performance was obvious in the capacitors manufactured from these activated carbons for capacitors. Specifically, the capacitor manufactured from the activated carbon for the capacitor of the example has a high capacitance of 17.1 F / ml and a low deterioration rate of 7.0%, and thus has a high capacity and a long life. It has been realized.

上記したように、実施例のキャパシタ用活性炭は、電気二重層キャパシタを形成したときに高容量化、低抵抗化、長寿命化を実現できる。すなわち、特性に優れた電気二重層キャパシタを実現できる効果を有する。   As described above, the activated carbon for a capacitor according to the embodiment can realize high capacity, low resistance, and long life when an electric double layer capacitor is formed. That is, the electric double layer capacitor having excellent characteristics can be realized.

実施例及び比較例1〜3のキャパシタ用活性炭の細孔分布を示した線図である。It is the diagram which showed the pore distribution of the activated carbon for capacitors of an Example and Comparative Examples 1-3. 実施例及び比較例のキャパシタ用活性炭から製造された電気二重層キャパシタの静電容量と内部抵抗値を示したグラフである。It is the graph which showed the electrostatic capacitance and internal resistance value of the electric double layer capacitor manufactured from the activated carbon for capacitors of an Example and a comparative example. 実施例及び比較例のキャパシタ用活性炭から製造された電気二重層キャパシタの耐久性能の測定結果を示したグラフである。It is the graph which showed the measurement result of the endurance performance of the electric double layer capacitor manufactured from the activated carbon for capacitors of an example and a comparative example.

Claims (4)

遷移金属を200ppm以上含んだ石炭から製造されてなり、平均粒径が1〜50μm、BET比表面積が2000m2/g以上、細孔容積が1mL/g以上でありかつ200〜10000ppmで遷移金属を含有したことを特徴とするキャパシタ用活性炭。 It is manufactured from coal containing 200 ppm or more of transition metal, has an average particle size of 1 to 50 μm, a BET specific surface area of 2000 m 2 / g or more, a pore volume of 1 mL / g or more, and a transition metal of 200 to 10,000 ppm. Capacitor activated carbon characterized by containing. 前記遷移金属は鉄(Fe)である請求項1記載のキャパシタ用活性炭。 The activated carbon for capacitors according to claim 1, wherein the transition metal is iron (Fe). 揮発分が20wt%以下の石炭から製造された請求項1、2記載のキャパシタ用活性炭。 The activated carbon for a capacitor according to claim 1, which is produced from coal having a volatile content of 20 wt% or less. 灰分が5wt%以下の石炭から製造された請求項1〜3に記載のキャパシタ用活性炭。


The activated carbon for a capacitor according to claim 1, wherein the activated carbon is produced from coal having an ash content of 5 wt% or less.


JP2004059519A 2004-03-03 2004-03-03 Activated carbon for capacitors Expired - Fee Related JP4401192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004059519A JP4401192B2 (en) 2004-03-03 2004-03-03 Activated carbon for capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004059519A JP4401192B2 (en) 2004-03-03 2004-03-03 Activated carbon for capacitors

Publications (2)

Publication Number Publication Date
JP2005251941A true JP2005251941A (en) 2005-09-15
JP4401192B2 JP4401192B2 (en) 2010-01-20

Family

ID=35032145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004059519A Expired - Fee Related JP4401192B2 (en) 2004-03-03 2004-03-03 Activated carbon for capacitors

Country Status (1)

Country Link
JP (1) JP4401192B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142204A (en) * 2005-11-18 2007-06-07 Gunma Univ Carbon material for electric double layer capacitor and manufacturing method
JP2007221108A (en) * 2006-01-17 2007-08-30 Japan Enviro Chemicals Ltd Active carbon and method for fabrication thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006237A1 (en) 2014-07-10 2016-01-14 パナソニックIpマネジメント株式会社 Capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007142204A (en) * 2005-11-18 2007-06-07 Gunma Univ Carbon material for electric double layer capacitor and manufacturing method
JP4667215B2 (en) * 2005-11-18 2011-04-06 国立大学法人群馬大学 Carbon material for electric double layer capacitor and manufacturing method
JP2007221108A (en) * 2006-01-17 2007-08-30 Japan Enviro Chemicals Ltd Active carbon and method for fabrication thereof

Also Published As

Publication number Publication date
JP4401192B2 (en) 2010-01-20

Similar Documents

Publication Publication Date Title
Li et al. A super-high energy density asymmetric supercapacitor based on 3D core–shell structured NiCo-layered double hydroxide@ carbon nanotube and activated polyaniline-derived carbon electrodes with commercial level mass loading
JP5041164B2 (en) Activated carbon, manufacturing method thereof, polarizable electrode, and electric double layer capacitor
JP5207338B2 (en) Porous carbon material, method for producing porous carbon material, electric double layer capacitor
JP4054746B2 (en) Electric double layer capacitor, activated carbon for the electrode, and manufacturing method thereof
JP7061107B2 (en) Carbonaceous materials and their manufacturing methods
JP2010105836A (en) Activated carbon for electric double-layer capacitor and method for manufacturing the same
JP2002104817A (en) Activated carbon, its manufacturing method, polarizable electrode and capacitor with electrical double layer
JP2011046584A (en) Method of manufacturing active carbon, and electric double layer capacitor using the active carbon prepared by the method
JPWO2018074303A1 (en) Carbonaceous material and method for producing the same
JP2005001969A (en) Production method for low-internal-resistance fine carbon powder, and electric double layer capacitor
JP6827699B2 (en) Carbon materials for capacitors and capacitors
JP2017204628A (en) Method for manufacturing active carbon for electric double layer capacitor electrode, and active carbon for electric double layer capacitor electrode manufactured thereby
JP2007112704A (en) Activated carbon, its manufacturing method and polarizable electrode and electric double-layer capacitor using the activated carbon
JP4401192B2 (en) Activated carbon for capacitors
JP2016201417A (en) Carbon material for electricity storage device electrode and method for producing the same
JP4762424B2 (en) Activated carbon, manufacturing method thereof, and electric double layer capacitor using the activated carbon
JP2006024747A (en) Carbon material for electric double-layer capacitor electrode, and its production method
CN1224123C (en) Electrochemical accumulator and its manufacturing method
JP2000228193A (en) Carbonaceous negative electrode active material for nonaqueous secondary battery and nonaqueous secondary battery
JP2005001968A (en) Production method for porous carbon
KR101743165B1 (en) iron-carbon composite for electrode of electrochemical capacitor and manufacturing method thereof, electrode composition for electrochemical capacitor
JP2007153639A (en) Activated carbon precursor, activated carbon and method for manufacturing the same, and polarizable electrode and electric double-layer capacitor
JP4096653B2 (en) Method for producing activated carbon, polarizable electrode and electric double layer capacitor
KR101580892B1 (en) Method for manufacturing manganese oxides-doped pitch-based carbon for supercapacitor
JP2006278364A (en) Polarizable electrode for electric double layer capacitor and electric double layer capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091027

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees