JP2005251770A - Manufacturing method of anisotropic conductive connector - Google Patents

Manufacturing method of anisotropic conductive connector Download PDF

Info

Publication number
JP2005251770A
JP2005251770A JP2005162919A JP2005162919A JP2005251770A JP 2005251770 A JP2005251770 A JP 2005251770A JP 2005162919 A JP2005162919 A JP 2005162919A JP 2005162919 A JP2005162919 A JP 2005162919A JP 2005251770 A JP2005251770 A JP 2005251770A
Authority
JP
Japan
Prior art keywords
conductive
film
stack
anisotropic conductive
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005162919A
Other languages
Japanese (ja)
Inventor
Fumiteru Asai
文輝 浅井
Kazuo Ouchi
一男 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2005162919A priority Critical patent/JP2005251770A/en
Publication of JP2005251770A publication Critical patent/JP2005251770A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an anisotropic conductive connector for efficiently manufacturing the anisotropic conductive connector that has high connection reliability of a connected object and a structure in which axes of a plurality of conductive passages penetrating in the thickness direction of a film substrate have an angle with respect to the perpendicular of the main surface of the film substrate. <P>SOLUTION: A roll-like material formed by integrating an insulating film and a conductive filament on a core material is separated from the core material, this is cut to form a flat plate material, and then a plurality of films 10A having conductive filaments are cut out of the flat plate material. Next, the plurality of films with the conductive filaments are stacked such that conductive filaments 2 between the adjacent films are mutually parallel, the obtained stacked body is heated and pressurized, and the obtained block is cut in predetermined thickness, along a plane crossing the conductive filaments 2 with an angle. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は異方導電性コネクタの製造方法に関し、詳しくは、導通路がフィルム基板の厚み方向に傾斜して貫通した構造の異方導電性コネクタの製造方法に関する。   The present invention relates to a method for manufacturing an anisotropic conductive connector, and more particularly to a method for manufacturing an anisotropic conductive connector having a structure in which a conduction path is inclined and penetrated in the thickness direction of a film substrate.

近年、半導体素子(ICチップ)等の電子部品と回路基板間を電気的に接続するために異方導電性コネクタが広く使用されている。異方導電性コネクタは、従来、絶縁性フィルム中に導電性微粒子を分散させて形成したものが知られていたが、この異方導電性コネクタは、構造上、ファインピッチ化した接続対象物との接続が難しいという問題や、接続対象物の端子、例えば、半導体素子の電極等を凸状(バンプ状)にしなければならないという問題がある。そこで、かかる問題を解消できるもの、すなわち、ファインピッチかつバンプレス化に対応し得る異方導電性コネクタとして、本件出願人は、国際公開公報WO98/07216に絶縁性フィルム基板中に複数の導通路を互いに絶縁してフィルム基板の厚み方向に貫通させた異方導電性コネクタ(フィルム)を提案している。   In recent years, anisotropic conductive connectors have been widely used to electrically connect electronic components such as semiconductor elements (IC chips) and circuit boards. Conventionally, anisotropic conductive connectors have been known to be formed by dispersing conductive fine particles in an insulating film, but this anisotropic conductive connector is structurally connected with a fine pitch connection object. There is a problem that it is difficult to connect, and a terminal of a connection object, for example, an electrode of a semiconductor element or the like must be convex (bump shape). Therefore, as an anisotropic conductive connector capable of solving such problems, that is, a fine pitch and bumpless, the present applicant has disclosed a plurality of conductive paths in an insulating film substrate in International Publication No. WO 98/07216. An anisotropic conductive connector (film) has been proposed in which are insulated from each other and penetrated in the thickness direction of the film substrate.

ところで、異方導電性コネクタは大きく分けて次の二つの用途で使用されている。一つは、異方導電性コネクタを半導体素子等の電子部品と回路基板間に介在させて両者に熱圧着して、電子部品と回路基板を電気的かつ機械的に接続する、所謂、実装用コネクタとしての用途である。もう一つは、半導体素子等の電子部品の機能検査において、異方導電性コネクタを電子部品と回路基板間に挿入して両者に圧接し、電子部品と回路基板を検査可能に導通させる、所謂、検査用コネクタとしての用途である。   By the way, anisotropic conductive connectors are roughly used in the following two applications. One is a so-called mounting type, in which an anisotropic conductive connector is interposed between an electronic component such as a semiconductor element and a circuit board and thermocompression bonded to both to electrically and mechanically connect the electronic component and the circuit board. It is used as a connector. The other is in the functional inspection of electronic components such as semiconductor elements, an anisotropically conductive connector is inserted between the electronic component and the circuit board and pressed against both, so that the electronic component and the circuit board are electrically connected so as to be inspected. It is used as a connector for inspection.

異方導電性コネクタを検査用コネクタとして使用するのは、電子部品の機能検査を、電子部品を回路基板に実装した後に行っていたのでは、電子部品が不良であった場合に、良品である回路基板も共に処分されることとなり、回路基板の歩留まりが低下し、金額的な損失も大きくなってしまうためである。   An anisotropic conductive connector is used as an inspection connector because the electronic component is inspected after the electronic component is mounted on the circuit board. If the electronic component is defective, it is a non-defective product. This is because the circuit board is also disposed of, the yield of the circuit board is lowered, and the amount of money is increased.

半導体素子等の電子部品の検査においては、端子の損傷や端子の変形を防ぐために、異方導電性コネクタを、より低い圧力で、電子部品および回路基板に接触させる必要がある。そこで、本件出願人は、上記国際公開公報WO98/07216において、フィルム基板の厚み方向に貫通する複数の導通路をその軸心がフィルム基板の主面の垂線に対して角度を成すように配置させた構造の異方導電性コネクタを提案している。すなわち、フィルム基板の厚み方向に貫通する複数の導通路を一定方向に傾斜した状態にすることによって、回路基板上に異方導電性コネクタを介して電子部品を載せ、電子部品をその上方から押圧した場合に、導通路がしなり、電子部品および回路基板に加わる圧力が減少する。   In the inspection of an electronic component such as a semiconductor element, it is necessary to bring the anisotropic conductive connector into contact with the electronic component and the circuit board with a lower pressure in order to prevent damage to the terminal and deformation of the terminal. Therefore, the present applicant, in the above-mentioned International Publication No. WO98 / 07216, arranges a plurality of conductive paths penetrating in the thickness direction of the film substrate so that the axis thereof forms an angle with respect to the normal of the main surface of the film substrate. An anisotropic conductive connector with a different structure is proposed. That is, by placing a plurality of conduction paths that penetrate in the thickness direction of the film substrate in a state inclined in a certain direction, the electronic component is placed on the circuit substrate via the anisotropic conductive connector, and the electronic component is pressed from above. In this case, the conduction path is broken, and the pressure applied to the electronic component and the circuit board is reduced.

このような異方導電性コネクタは、従来、上記国際公開公報WO98/07216に記載の方法、すなわち、芯材に絶縁導線(絶縁性樹脂層で被覆した金属線)を多重に巻線し、互いに分離できないように被覆層同士を結合させた巻線ブロックを作製し、このブロックを各絶縁導線(金属線)に対して角度を成す面を切断面として、所望のフィルム厚みにスライス(切断)する方法で作製していた。しかし、かかる従来の製造方法は、絶縁導線を多重に巻線することから、巻線ブロック内での絶縁導線(金属線)の巻線方向が一定方向に揃いにくい。従って、巻線ブロックを切断して得られる異方導電性コネクタ内の複数の導通路の傾斜方向が一様とならず、異方導電性コネクタを押圧した時の導通路のしなる方向がばらついて、そのために異方導電性コネクタ内における接続対象物(回路基板、半導体素子)との接触圧のばらつきが大きくなり(均一性が低下し)、接続対象物との接続信頼性が低下する場合がある。また、巻線ブロックを切断する際、切断面の垂線に対して絶縁導線(金属線)が角度をなすように切断面を設定して(すなわち、ブロックの軸心を切断刃に対して斜めに傾けてセットして)切断を行うが、このようにしてブロックを切断すると、切り出されて得られる複数枚の異方導電性コネクタのフィルムサイズ(大きさ)がばらつき、フィルムサイズを統一するにはそのための後加工を行わなければならない。従って、所望のサイズの異方導電性コネクタを効率良く製造できないという問題がある。   Such an anisotropic conductive connector has conventionally been manufactured by the method described in the above-mentioned International Publication WO98 / 07216, that is, by winding multiple insulation conductive wires (metal wires coated with an insulating resin layer) around the core material, A winding block in which the coating layers are joined so as not to be separated is manufactured, and this block is sliced (cut) to a desired film thickness with a plane that forms an angle with respect to each insulated conductor (metal wire) as a cut surface. It was produced by the method. However, in the conventional manufacturing method, since the insulated conductors are wound in multiple layers, the winding directions of the insulated conductors (metal wires) in the winding block are not easily aligned in a certain direction. Therefore, the direction of inclination of the plurality of conductive paths in the anisotropic conductive connector obtained by cutting the winding block is not uniform, and the direction in which the conductive paths form when the anisotropic conductive connector is pressed varies. Therefore, when the variation in contact pressure with the connection object (circuit board, semiconductor element) in the anisotropic conductive connector increases (decrease in uniformity), the connection reliability with the connection object decreases. There is. Also, when cutting the winding block, set the cutting surface so that the insulated conductor (metal wire) forms an angle with respect to the perpendicular to the cutting surface (that is, the block axis is oblique to the cutting blade) When the block is cut in this way, the film size (size) of multiple anisotropically conductive connectors obtained by cutting out varies, and to unify the film size Therefore, post-processing must be performed. Therefore, there is a problem that an anisotropic conductive connector having a desired size cannot be efficiently manufactured.

上記事情に鑑み、本発明は、フィルム基板の厚み方向に貫通する複数の導通路の軸心がフィルム基板の主面の垂線に対して角度を成す構造の異方導電性コネクタであって、複数の導通路間の傾斜方向(導通路のしなる方向)のばらつきが小さく、接続対象物に対して高い接続信頼性が得られる異方導電性コネクタを、効率良く製造できる異方導電性コネクタの製造方法を提供することを目的とする。
また、かかる複数の導通路間の傾斜方向(導通路のしなる方向)のばらつきが小さく、接続対象物に対して高い接続信頼性が得られる異方導電性コネクタを、所望のフィルムサイズに、効率良く製造できる、異方導電性コネクタの製造方法を提供することを目的とする。
In view of the above circumstances, the present invention is an anisotropic conductive connector having a structure in which the axes of a plurality of conduction paths penetrating in the thickness direction of a film substrate form an angle with respect to a normal to the main surface of the film substrate. An anisotropic conductive connector that can efficiently manufacture an anisotropic conductive connector that has a small variation in the inclination direction between the conductive paths (direction in which the conductive path is formed) and that provides high connection reliability with respect to an object to be connected. An object is to provide a manufacturing method.
In addition, an anisotropic conductive connector that has a small variation in the direction of inclination between the plurality of conductive paths (direction in which the conductive paths are formed) and that provides high connection reliability with respect to a connection target, has a desired film size. It aims at providing the manufacturing method of the anisotropically conductive connector which can be manufactured efficiently.

上記目的を達成するために、本発明は以下の特徴を有する。
(1)フィルム基板の厚み方向に貫通する複数の導通路の軸心がフィルム基板の主面の垂線に対して角度を成す構造の異方導電性コネクタを製造する方法であって、芯材の外周に絶縁性フィルムを巻き、次いで該絶縁性フィルムの外周に導電性線材を一定ピッチで螺旋状に巻くか、若しくは、芯材の外周に導電性線材を一定ピッチで螺旋状に巻き、次いで該導電性線材を覆うように絶縁性フィルムを巻いた後、加熱および加圧を施して、絶縁性フィルムと導電性線材とを芯材上で一体化させ、次に、当該絶縁性フィルムと導電性線材とが一体化して得られたロール状物を芯材から外し、これを切開して平板状物とした後、該平板状物から複数枚の導電性線材付きフィルムを切り出し、次に、該複数枚の導電性線材付きフィルムを隣り合うフィルム間の導電性線材が互いに平行となるように積み重ね、得られた積重体に加熱および加圧を施して、複数枚の導電性線材付きフィルムが一体化したブロックを作成し、次に、当該ブロックを導電性線材と角度を成して交差する平面を断面として所定のフィルム厚さに切断して異方導電性コネクタを得ることを特徴とする異方導電性コネクタの製造方法。
(2)複数枚の導電性線材付きフィルムを、絶縁性フィルムの主面が直線状の一辺を有する形状で、かつ、複数の導電性線材の軸心が、該直線状の一辺に対して所定の傾斜角を成すように切り出すとともに、複数枚の導電性線材付きフィルムを隣り合う絶縁性フィルムの直線状の一辺が平行に重なるように積み重ねて積重体を形成し、さらに、積重体から得られるブロックを絶縁性フィルムの主面の直線状の一辺より由来する当該ブロックの直線状の端辺と直交する平面を断面として所定のフィルム厚さに切断することを特徴とする上記(1)記載の異方導電性コネクタの製造方法。
(3)芯材に巻き付けた絶縁性フィルムと導電性線材を、芯材とともに減圧または真空状態を形成し得る空間内に配置し、当該空間内を減圧または真空状態にした後、加熱および加圧を施して、芯材上で絶縁性フィルムと導電性線材とを一体化することを特徴とする上記(1)または(2)記載の異方導電性コネクタの製造方法。
(4)前記減圧または真空状態を形成し得る空間が、可撓性フィルムからなる袋体の内部空間である上記(3)記載の異方導電性コネクタの製造方法。
(5)前記減圧または真空状態を形成し得る空間内に、圧縮気体を導入することによって、前記加圧を行うことを特徴とする上記(3)または(4)記載の異方導電性コネクタの製造方法。
(6)積重体を減圧または真空状態を形成し得る空間内に配置し、当該空間内を減圧または真空状態にした後、積重体に加熱および加圧を施すことを特徴とする上記(1)〜(5)のいずれかに記載の異方導電性コネクタの製造方法。
(7)減圧または真空状態を形成しうる空間が、可撓性フィルムからなる袋体の内部空間である請求項6記載の異方導電性コネクタの製造方法。
(8)積重体を、該積重体を収容した時にその内側面と該積重体の側面との間に若干の隙間が形成される程度の大きさの耐熱性の箱体内に収容し、当該耐熱性の箱体とともに積重体を可撓性フィルムからなる袋体の内部空間に配置し、当該空間内を減圧または真空状態にした後、積重体に加熱および加圧を施すことを特徴とする上記(6)記載の異方導電性コネクタの製造方法。
In order to achieve the above object, the present invention has the following features.
(1) A method of manufacturing an anisotropic conductive connector having a structure in which axes of a plurality of conduction paths penetrating in a thickness direction of a film substrate form an angle with respect to a normal to a main surface of the film substrate, An insulating film is wound around the outer periphery, and then a conductive wire is wound spirally around the periphery of the insulating film at a constant pitch, or a conductive wire is wound around the outer periphery of the core material at a constant pitch, After winding the insulating film so as to cover the conductive wire, heat and pressure are applied to integrate the insulating film and the conductive wire on the core, and then the insulating film and the conductive After removing the roll-like material obtained by integrating with the wire from the core material, cutting it into a flat plate, cut out a plurality of films with conductive wires from the flat plate, Adhere multiple films with conductive wire adjacent to each other. The conductive wires between the two layers are stacked so that they are parallel to each other, and the resulting stack is heated and pressurized to create a block in which a plurality of films with conductive wires are integrated. A method for manufacturing an anisotropic conductive connector, wherein an anisotropic conductive connector is obtained by cutting a block into a predetermined film thickness with a plane intersecting the conductive wire at an angle as a cross section.
(2) A plurality of films with conductive wires are shaped so that the main surface of the insulating film has a straight side, and the axes of the plurality of conductive wires are predetermined with respect to the straight side. And a plurality of films with conductive wires are stacked so that the linear sides of adjacent insulating films are stacked in parallel to form a stack, and further obtained from the stack The block according to (1) above, wherein the block is cut into a predetermined film thickness with a plane perpendicular to the linear end side of the block derived from the linear side of the main surface of the insulating film as a cross section. Manufacturing method of anisotropic conductive connector.
(3) The insulating film and the conductive wire wound around the core material are placed in a space where a vacuum or vacuum state can be formed together with the core material, and the space is reduced in pressure or vacuum, and then heated and pressurized. And manufacturing the anisotropic conductive connector according to (1) or (2) above, wherein the insulating film and the conductive wire are integrated on the core.
(4) The method for manufacturing an anisotropic conductive connector according to (3), wherein the space capable of forming the reduced pressure or vacuum state is an internal space of a bag body made of a flexible film.
(5) The anisotropic conductive connector according to (3) or (4), wherein the pressurization is performed by introducing a compressed gas into a space where the reduced pressure or vacuum state can be formed. Production method.
(6) The above (1), wherein the stack is disposed in a space where a reduced pressure or a vacuum state can be formed, and the stack is heated and pressurized after being reduced in pressure or vacuum. The manufacturing method of the anisotropically conductive connector in any one of-(5).
(7) The method for manufacturing an anisotropic conductive connector according to claim 6, wherein the space capable of forming a reduced pressure or vacuum state is an internal space of a bag body made of a flexible film.
(8) The stack is stored in a heat-resistant box having a size such that a slight gap is formed between the inner surface of the stack and the side of the stack. The stack is placed in an internal space of a bag made of a flexible film together with a conductive box, and the space is depressurized or vacuumed, and then heated and pressurized to the stack. (6) The method for producing an anisotropic conductive connector according to (6).

本明細書中において、「フィルム基板の主面」とはフィルム基板の厚み方向両端の面を意味し、「絶縁性フィルムの主面」とは絶縁性フィルムの厚み方向両端の面を意味する。なお、特に断り無く「フィルム基板の面」や「絶縁性フィルムの面」という場合、それは「フィルム基板の主面」、「絶縁性フィルムの主面」を意味している。   In this specification, “the main surface of the film substrate” means the surfaces at both ends in the thickness direction of the film substrate, and “the main surface of the insulating film” means the surfaces at both ends in the thickness direction of the insulating film. It should be noted that the terms “film substrate surface” and “insulating film surface” refer to “film substrate main surface” and “insulating film main surface” unless otherwise specified.

以下、本発明を図面を参照しながら詳しく説明する。
本発明で製造する異方導電性コネクタは、図11(a)および図11(b)に示す、フィルム基板50の厚み方向(図11(b)中の矢印A方向)に貫通する複数の導通路51を、その軸心L10がフィルム基板50の主面50a(50b)の垂線L20に対して角度(α)を成すように配置した構造の異方導電性コネクタ60である。ここで、図11(a)は平面図、図11(b)は図(a)中のXIb−XIb線の断面図である。また、図中、D1、D2は当該異方導電性コネクタ内における導通路51の直交する第1および第2の方向(フィルム基板50の主面50a内の矢印Xの方向と矢印Yの方向)のピッチである。
Hereinafter, the present invention will be described in detail with reference to the drawings.
The anisotropically conductive connector manufactured by the present invention has a plurality of conductors penetrating in the thickness direction of the film substrate 50 (the direction of arrow A in FIG. 11B) shown in FIGS. 11A and 11B. This is an anisotropic conductive connector 60 having a structure in which the passage 51 is arranged such that its axis L10 forms an angle (α) with respect to the perpendicular L20 of the main surface 50a (50b) of the film substrate 50. Here, FIG. 11A is a plan view, and FIG. 11B is a cross-sectional view taken along line XIb-XIb in FIG. In the drawing, D1 and D2 are first and second directions perpendicular to the conduction path 51 in the anisotropic conductive connector (the direction of the arrow X and the direction of the arrow Y in the main surface 50a of the film substrate 50). Is the pitch.

複数の導通路51(の軸心L10)がフィルム基板50の主面50aの垂線L20と成す角度(α)は、一般に、導通路51がしなることによる、接続対象物(電子部品、回路基板等)への圧力の減少効果が十分に得られるように5度以上が好ましく、また、あまり角度が大きすぎると、電気的に接続させるべき2つの接続対象物(例えば、電子部品および回路基板)との間の位置調整(オフセット)が必要になるので、当該角度は45度以下が好ましい。   The angle (α) formed by the plurality of conduction paths 51 (axial center L10) with the perpendicular L20 of the main surface 50a of the film substrate 50 is generally a connection object (electronic component, circuit board) due to the bending of the conduction paths 51. Is preferably 5 degrees or more so that the effect of reducing the pressure on the two is sufficiently obtained, and if the angle is too large, two objects to be electrically connected (for example, an electronic component and a circuit board) Therefore, the angle is preferably 45 degrees or less.

本発明で製造する異方導電性コネクタは、特に検査用コネクタとして好ましいものであり、フィルム基板50の厚みは、一般に20〜1000μm程度であり、好ましくは50〜500μm程度である。また、導通路の断面形状は円形、多角形またはその他の形状でもよく、特に制限されないが、接続対象物(の端子)との接続信頼性の点から円形が好適である。また、その径(太さ)は接続対象物(の端子)との接続信頼性、導通路自体の導電性(電気抵抗)等の点から、一般に断面形状が円形の場合で直径が10〜80μm程度が好ましく、特に好ましくは12〜60μm程度であり、断面形状が多角形やその他の形状の場合は、その断面が上記範囲内の直径の円の面積に相当する面積となる径(太さ)とするのが適当である。また、導通路51のピッチ(図中、D1およびD2)は、それぞれ、接続対象物(の端子)との接続信頼性および異方導電性コネクタの変形性(柔軟性)の点から、一般に20〜200μmが好ましく、特に好ましくは20〜150μmである。   The anisotropically conductive connector manufactured by the present invention is particularly preferable as an inspection connector, and the thickness of the film substrate 50 is generally about 20 to 1000 μm, preferably about 50 to 500 μm. The cross-sectional shape of the conduction path may be circular, polygonal, or other shapes, and is not particularly limited. However, a circular shape is preferable from the viewpoint of connection reliability with the connection target (terminal). In addition, the diameter (thickness) is generally 10 to 80 μm when the cross-sectional shape is circular in terms of connection reliability with the connection object (terminal), conductivity of the conduction path itself (electric resistance), and the like. The diameter is preferably about 12 to 60 μm, and when the cross-sectional shape is a polygon or other shapes, the diameter (thickness) of which the cross-section is an area corresponding to the area of a circle having a diameter within the above range Is appropriate. Further, the pitch of the conduction paths 51 (D1 and D2 in the figure) is generally 20 from the viewpoint of connection reliability with the connection target (terminals) and deformability (flexibility) of the anisotropic conductive connector, respectively. -200 micrometers is preferable, Most preferably, it is 20-150 micrometers.

本発明はこのような複数の導通路51(の軸心L10)をフィルム基板50の主面50aの垂線L20に対して角度を成すように配置した構造(すなわち、フィルム基板の厚み方向に複数の導通路を貫通させ、かつ、複数の導通路を所定方向に所定角度で傾斜させた構造)の異方導電性コネクタ60を製造する方法であり、基本的に、以下に説明する第1工程(複数枚の導電性線材付きフィルムを作成する工程)、第2工程(複数枚の導電性線材付きフィルムが一体化したブロックを作成する工程)および第3工程(ブロックを切断する工程)を含む。   In the present invention, such a plurality of conducting paths 51 (axial centers L10) are arranged so as to form an angle with respect to the perpendicular L20 of the main surface 50a of the film substrate 50 (that is, a plurality of conductive paths 51 in the thickness direction of the film substrate). This is a method of manufacturing an anisotropic conductive connector 60 having a structure in which a conductive path is penetrated and a plurality of conductive paths are inclined at a predetermined angle in a predetermined direction. Basically, a first step (described below) Including a step of creating a plurality of films with conductive wires, a second step (step of creating a block in which a plurality of films with conductive wires are integrated), and a third step (step of cutting the block).

[第1工程(複数枚の導電性線材付きフィルムを作成する工程)]
図1(a)に示すように、芯材4の外周に絶縁性フィルム1を巻き、次いで該絶縁性フィルム1の外周に1本の導電性線材2を一定ピッチで螺旋状に巻き付けて(若しくは、これとは逆に、芯材4の外周に先に1本の導電性線材2を一定ピッチで螺旋状に巻き、次いで該導電性線材2を覆うように絶縁性フィルム1を巻き付けて)、巻重物5(図1(b))を作成する。ここで、巻線は、横型整列巻線機等の公知の巻線装置で行うことができる。次に、この巻重物5(図1(b))に加熱および加圧を施して、芯材4上で絶縁性フィルム1と導電性線材2とを一体化させ、次いで、芯材4から絶縁性フィルム1と導電性線材2とが一体化したロール状物を外して、該ロール状物の一部を切断して平板状物6(図2)に展開し、さらに該平板状物6を裁断して、複数枚の導電性線材付きフィルムを切り出す。
図3(a)および図3(b)はこの複数枚の導電性線材付きフィルムの具体例である。図3(a)の導電性線材付きフィルム10Aは、平板状物6(図2)から、絶縁性フィルム1の主面1aが矩形となり、導電性線材2(の軸心)の方向が絶縁性フィルム1の矩形の主面1aの所定の一辺(直線状の一辺)に対して傾斜するように切り出したものであり、図3(b)の導電性線材付きフィルム10Bは、平板状物6(図2)から、絶縁性フィルム1の主面1aが矩形となり、導電性線材2(の軸心)の方向が絶縁性フィルム1の矩形の主面1aの辺(四辺)に対して平行および直交するように切り出したものである。なお、図2中の2点鎖線は、図3(a)の導電性線材付きフィルム10Aを切り出す際の裁断線を示している。
[First step (step of creating a plurality of films with conductive wire)]
As shown in FIG. 1A, the insulating film 1 is wound around the outer periphery of the core material 4, and then one conductive wire 2 is wound around the outer periphery of the insulating film 1 in a spiral shape at a constant pitch (or On the contrary, one conductive wire 2 is first wound spirally at a constant pitch around the outer periphery of the core material 4, and then the insulating film 1 is wrapped so as to cover the conductive wire 2). A roll 5 (FIG. 1B) is created. Here, the winding can be performed by a known winding apparatus such as a horizontal alignment winding machine. Next, the wound material 5 (FIG. 1B) is heated and pressurized to integrate the insulating film 1 and the conductive wire 2 on the core material 4, and then from the core material 4. The roll-like product in which the insulating film 1 and the conductive wire 2 are integrated is removed, a part of the roll-like product is cut and developed into a flat product 6 (FIG. 2), and the flat product 6 is further removed. Is cut out, and a plurality of films with conductive wires are cut out.
FIG. 3A and FIG. 3B are specific examples of the plurality of films with conductive wires. In the film 10A with a conductive wire in FIG. 3A, the main surface 1a of the insulating film 1 is rectangular from the flat plate 6 (FIG. 2), and the direction of the conductive wire 2 (its axis) is insulating. The film 10B with the conductive wire in FIG. 3B is cut out so as to be inclined with respect to a predetermined one side (one side of the straight line) of the rectangular main surface 1a of the film 1. 2), the main surface 1a of the insulating film 1 is rectangular, and the direction of the conductive wire 2 (the axis thereof) is parallel and orthogonal to the sides (four sides) of the rectangular main surface 1a of the insulating film 1. It is cut out as follows. In addition, the dashed-two dotted line in FIG. 2 has shown the cutting line at the time of cutting out the film 10A with an electroconductive wire of FIG. 3 (a).

上記図3(a)の導電性線材付きフィルム10Aは、最終的に製造する異方導電性コネクタ60(図11)における導通路51(の軸心L10)のフィルム基板50の主面50aの垂線L20と成す角度(α)を、当該導電性線材付きフィルム10Aにおける導電性線材2(の軸心)の傾斜角度(絶縁性フィルム1の主面1aにおける所定の直線状の一辺に対する傾斜角度(α1))を規定することによって予め設定しておくことを意図したものであり、当該導電性線材付きフィルム10Aを用いることによって、後の第3工程(複数枚の導電性線材付きフィルムが一体化したブロックを切断する工程)において、ブロックの所定の直線状の端辺(絶縁性フィルム1の主面1aの直線状の一辺より由来する一辺)と直交する平面を断面として切断するだけで、角度(α)で複数の導通路51が傾斜した異方導電性コネクタ60(図11)を得ることができる。
一方、図3(b)の導電性線材付きフィルム10Bを用いる場合、後の第3工程において、ブロックを切断する際に、切断面の垂線に対して導電性線材2(の軸心)が前記の角度(α)をなすように切断面を設定することによって、角度(α)で複数の導通路51が傾斜した異方導電性コネクタ60(図11)を得ることができる。
The film 10A with conductive wire in FIG. 3 (a) is perpendicular to the main surface 50a of the film substrate 50 of the conduction path 51 (axis L10) in the anisotropically conductive connector 60 (FIG. 11) to be finally manufactured. The angle (α) formed with L20 is the inclination angle of the conductive wire 2 (the axis thereof) in the film 10A with the conductive wire (the inclination angle (α1) with respect to a predetermined linear side of the main surface 1a of the insulating film 1). )) Is intended to be set in advance, and by using the conductive wire-attached film 10A, the subsequent third step (a plurality of conductive wire-attached films are integrated). In the step of cutting the block), a plane perpendicular to the predetermined linear end side of the block (one side derived from one side of the main surface 1a of the insulating film 1) is cut as a cross section. It is possible to obtain the anisotropic conductive connector 60 (FIG. 11) in which the plurality of conduction paths 51 are inclined at an angle (α) simply by cutting off.
On the other hand, when using the film 10B with the conductive wire of FIG. 3B, when cutting the block in the subsequent third step, the conductive wire 2 (the axis thereof) is perpendicular to the perpendicular of the cut surface. By setting the cut surface so as to form the angle (α), the anisotropic conductive connector 60 (FIG. 11) in which the plurality of conduction paths 51 are inclined at the angle (α) can be obtained.

図4は上記導電性線材付きフィルム10Aの拡大図(図4(a)は斜視図、図4(b)は断面図、図4(c)は平面図である。)であり、当該導電性線材付きフィルム10Aにおいては、絶縁性フィルム1の矩形の主面1aに、一定ピッチ(d2)で互いに平行に並んだ複数の導電性線材2が固着し、複数の導電性線材2(の各軸心L1)が絶縁性フィルム1の主面1aの所定の直線状の一辺L2に対して所定の傾斜角(α1)を成し、かつ、主面1aと平行に位置している。ここで「所定の傾斜角(α1)を成す」とは、図4(c)に示すように、絶縁性フィルムの主面1aをその鉛直上方からみたときに、導電性線材の軸心L1と直線状の一辺L2とが所定の鋭角で交差していることを意味する(すなわち、直交や平行でない。)。該所定の傾斜角(α1)は、上記説明したように、製造すべき異方導電性コネクタ(図11)の導通路51(の軸心L10)がフィルム基板50の主面50a(50b)の垂線L20と成す角度(α)に充当する。   FIG. 4 is an enlarged view (FIG. 4 (a) is a perspective view, FIG. 4 (b) is a sectional view, and FIG. 4 (c) is a plan view) of the film 10A with a conductive wire. In the film with wire rod 10A, a plurality of conductive wire rods 2 arranged in parallel with each other at a constant pitch (d2) are fixed to the rectangular main surface 1a of the insulating film 1, and the plurality of conductive wire rods 2 (each axis thereof). The center L1) forms a predetermined inclination angle (α1) with respect to a predetermined linear side L2 of the main surface 1a of the insulating film 1 and is positioned in parallel with the main surface 1a. Here, “to form a predetermined inclination angle (α1)”, as shown in FIG. 4C, is the axis L1 of the conductive wire when the main surface 1a of the insulating film is viewed from vertically above. It means that the straight side L2 intersects at a predetermined acute angle (that is, not orthogonal or parallel). As described above, the predetermined inclination angle (α1) is such that the conduction path 51 (the axis L10) of the anisotropic conductive connector (FIG. 11) to be manufactured is on the main surface 50a (50b) of the film substrate 50. Applicable to the angle (α) formed with the perpendicular L20.

絶縁性フィルム1は異方導電性コネクタ60(図11)のフィルム基板50を構成するものであり、従って、該絶縁性フィルム1の材料としては、従来から異方導電性コネクタのフィルム基板に用いられている公知の材料が使用される。すなわち、それ自体がそのままの状態で接着性を示すか、あるいはそのままの状態では接着性を示さないが、少なくとも加圧または加熱によって接着可能となる材料であり、例えば、熱可塑性ポリイミド樹脂、エポキシ樹脂、ポリエーテルイミド樹脂、ポリアミド樹脂、シリコーン樹脂、フェノキシ樹脂、アクリル樹脂、ポリカルボジイミド樹脂、フッ素樹脂、ポリエステル樹脂、ポリウレタン樹脂等の熱可塑性または熱硬化性樹脂;ポリウレタン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー等の熱可塑性エラストマー;等が挙げられる。これらの樹脂やエラストマーはいずれかを単独でもあるいは2種以上を混合して使用してもよい。また、これらの樹脂やエラストマーには、各種の充填剤、可塑剤等あるいはゴム材料を添加してもよい。充填剤としては、例えば、SiO2、Al23、可塑剤としては、例えばTCP(リン酸トリクレシル)、DOP(フタル酸ジオクチル)、ゴム材料としては、例えばNBS(アクリロニトリルブタジエンゴム)、SBS(ポリスチレン−ポリブチレン−ポリスチレン)等が挙げられる。 The insulating film 1 constitutes the film substrate 50 of the anisotropic conductive connector 60 (FIG. 11). Therefore, the material of the insulating film 1 is conventionally used for the film substrate of the anisotropic conductive connector. Known materials are used. That is, the material itself exhibits adhesiveness as it is or does not exhibit adhesiveness as it is, but is a material that can be bonded at least by pressure or heating, for example, a thermoplastic polyimide resin, an epoxy resin , Polyetherimide resins, polyamide resins, silicone resins, phenoxy resins, acrylic resins, polycarbodiimide resins, fluororesins, polyester resins, polyurethane resins, and other thermoplastic or thermosetting resins; polyurethane thermoplastic elastomers, polyester thermoplastics And thermoplastic elastomers such as elastomers and polyamide-based thermoplastic elastomers. Any of these resins and elastomers may be used alone or in admixture of two or more. In addition, various fillers, plasticizers, or rubber materials may be added to these resins and elastomers. Examples of the filler include SiO 2 and Al 2 O 3. Examples of the plasticizer include TCP (tricresyl phosphate) and DOP (dioctyl phthalate). Examples of the rubber material include NBS (acrylonitrile butadiene rubber) and SBS ( Polystyrene-polybutylene-polystyrene) and the like.

また、絶縁性フィルム1の厚みは、異方導電性コネクタの導通路のフィルム基板内における一方の方向のピッチ(図11中の第1方向のピッチ(D1))を決定する主要素であり、一般に20〜200μm程度、好ましくは20〜150μm程度である。   Moreover, the thickness of the insulating film 1 is a main element that determines the pitch in one direction (pitch (D1) in the first direction in FIG. 11) in the film substrate of the conductive path of the anisotropic conductive connector, Generally, it is about 20-200 micrometers, Preferably it is about 20-150 micrometers.

導電性線材2は異方導電性コネクタ60(図11)の導通路51を構成するものであり、該導電性線材2には導電性材料からなる線状体、または、該導電性材料からなる線状体に絶縁被覆を施した、所謂、絶縁導線が使用される。導電性材料からなる線状体としては、電気伝導性の点から、金、銅、アルミニウム、ステンレス、ニッケル等から選ばれる少なくとも1種の金属(合金を含む)からなる金属線が使用され、また、絶縁導線を使用する場合、被覆に使用する材料としては、上記絶縁性フィルム1の材料として例示したものと同じものが挙げられる。   The conductive wire 2 constitutes a conduction path 51 of the anisotropic conductive connector 60 (FIG. 11), and the conductive wire 2 is made of a linear body made of a conductive material or made of the conductive material. A so-called insulated conductor, in which a linear body is provided with an insulation coating, is used. As the linear body made of a conductive material, a metal wire made of at least one metal (including an alloy) selected from gold, copper, aluminum, stainless steel, nickel, etc. is used from the viewpoint of electrical conductivity. In the case of using an insulated conductor, examples of the material used for the coating include the same materials as those exemplified as the material of the insulating film 1.

導電性材料からなる線状体の断面形状は、先述の導通路の断面形状であり、円形、多角形またはその他の形状でもよく、特に限定されないが、円形が好適である。また、該線状体の径(太さ)は、先述の導通路の径(太さ)であり、断面形状が円形の場合で直径が10〜80μm程度が好ましく、特に好ましくは12〜60μm程度であり、断面形状が多角形やその他の形状の場合は、その断面が上記範囲内の直径の円の面積に相当する面積となる径(太さ)である。絶縁導線を使用する場合の、絶縁被覆の厚みは、導体(線状体)間の絶縁性を確保する点や絶縁性フィルムとの密着性の点および絶縁導線の取り扱い作業性(後述の巻線作業の作業性)等の点から、一般に0.5〜10μm程度、好ましくは1〜5μm程度である。
また、導電性線材付きフィルムにおける絶縁性フィルム1の主面1a上での導電性線材2の配置間隔(すなわち、図4(b)および図4(c)中のピッチ(d2))は、異方導電性コネクタ60(図11)の導通路のフィルム基板内における他方の方向(図11中の第2方向のピッチ(D2))に充当するものであり、先述のD2の範囲内で適宜設定される。
The cross-sectional shape of the linear body made of the conductive material is the above-described cross-sectional shape of the conduction path, and may be circular, polygonal, or other shapes, and is not particularly limited, but is preferably circular. Further, the diameter (thickness) of the linear body is the diameter (thickness) of the conductive path described above, and when the cross-sectional shape is circular, the diameter is preferably about 10 to 80 μm, particularly preferably about 12 to 60 μm. When the cross-sectional shape is a polygon or other shapes, the cross-section has a diameter (thickness) that corresponds to the area of a circle having a diameter within the above range. When using insulated conductors, the thickness of the insulation coating depends on the point of ensuring insulation between conductors (linear bodies), adhesion to the insulation film, and handling workability of insulated conductors (windings described below) From the viewpoint of workability, etc., it is generally about 0.5 to 10 μm, preferably about 1 to 5 μm.
In addition, the arrangement interval of the conductive wires 2 on the main surface 1a of the insulating film 1 in the film with conductive wires (that is, the pitch (d2) in FIGS. 4B and 4C) is different. This is applied to the other direction (pitch (D2) in the second direction in FIG. 11) in the film substrate of the conductive path of the conductive connector 60 (FIG. 11), and is set appropriately within the range of D2 described above. Is done.

当該第1工程における芯材4上で絶縁性フィルム1と導電性線材2とを一体化するための加熱および加圧における加熱温度および加圧力は、導電性線材2および絶縁性フィルム1を構成する材料によっても異なるが(なお、導電性線材2として絶縁導線を使用した場合、導電性線材2が絶縁性フィルム1に固着しやすくなる。)、加熱温度は、一般に、50〜250℃程度、好ましくは100〜200℃程度である。また、加圧力は一般に2〜30kgf/cm2程度、好ましくは3〜20kgf/cm2程度である。 The heating temperature and pressure in heating and pressurization for integrating the insulating film 1 and the conductive wire 2 on the core 4 in the first step constitute the conductive wire 2 and the insulating film 1. Although it differs depending on the material (in addition, when an insulated conductor is used as the conductive wire 2, the conductive wire 2 is easily fixed to the insulating film 1), the heating temperature is generally about 50 to 250 ° C., preferably Is about 100-200 ° C. Also, pressure is generally 2~30kgf / cm 2 or so, preferably 3~20kgf / cm 2 approximately.

なお、芯材4に絶縁性フィルム1および導電性線材2を巻き付けて得られた巻重物5(図1(b))を、そのまま(すなわち、絶縁性フィルム1および導電性線材2を芯材4とともに)減圧または真空状態を形成し得る空間内に配置し、当該空間内を減圧または真空状態にし、しかる後に、当該加熱および加圧を行うのが好ましい。すなわち、加熱および加圧を行う前に、巻重物5(図1(b))を減圧または真空下に置くことによって、芯材4、絶縁性フィルム1および導電性線材2の相互間の空隙を効果的に減少させることができ、製造される異方導電性コネクタの耐久性(導通路の保持力)が向上する。ここで減圧とは常圧より小さい圧力であり、概ね、(常圧−0.6MPa)以下の圧力を意味し、真空とは減圧のうちでも、特に(常圧−0.9MPa)以下の圧力を意味する。なお、空隙を効率的に除去する観点から、真空下で加熱および加圧を施すのがより好ましい。また、減圧または真空状態を形成するための方法は特に限定されないが、作業性の点からポンプ(真空ポンプ)による吸引が好ましい。   The wound material 5 (FIG. 1B) obtained by winding the insulating film 1 and the conductive wire 2 around the core material 4 is used as it is (that is, the insulating film 1 and the conductive wire 2 are used as the core material). It is preferable to arrange in a space where a reduced pressure or vacuum state can be formed (with 4), to make the space in a reduced pressure or vacuum state, and then perform the heating and pressurization. That is, before heating and pressurization, the wound material 5 (FIG. 1 (b)) is placed under reduced pressure or under vacuum, whereby the gaps between the core material 4, the insulating film 1 and the conductive wire 2 are obtained. Can be effectively reduced, and the durability (holding power of the conductive path) of the manufactured anisotropically conductive connector is improved. Here, the reduced pressure is a pressure smaller than the normal pressure, and generally means a pressure of (normal pressure−0.6 MPa) or less, and the vacuum is a pressure of (normal pressure−0.9 MPa) or less even in the reduced pressure. Means. In addition, it is more preferable to heat and pressurize in a vacuum from a viewpoint of removing a space | gap efficiently. The method for forming a reduced pressure or vacuum state is not particularly limited, but suction by a pump (vacuum pump) is preferable from the viewpoint of workability.

上記減圧または真空状態を形成し得る空間とは、例えば、剛性の箱体(すなわち、減圧または真空状態を形成した時に、それ自体が変形せず、その形状を保持し得る剛性を備えた箱体)の内部空間や、柔軟性のフィルムからなる袋体の内部空間等が挙げられる。剛性の箱体の材料としては、例えば、鉄、アルミニウム、ステンレス、炭素鋼、青銅等の金属、ポリエチレン、ポリウレタン、アクリル樹脂、ポリアミド、ポリカーボネート等のプラスチック等が挙げられる。また、柔軟性のフィルムには、アルミニウム等の金属フィルム、ナイロンフィルム、ポリエステルフィルム、ポリエチレンフィルム、ポリイミドフィルム等のプラスチックフィルム、ポリエチレンフィルム等にアルミニウムフィルム等をラミネートしたラミネートフィルム等を使用できる。
柔軟性のフィルムからなる袋体を使用すれば、その内部空間を真空状態にした場合、袋体が巻重物5に密着するので、空隙をより効果的に除去することができる。
The space capable of forming the reduced pressure or vacuum state is, for example, a rigid box (that is, a box body having rigidity capable of maintaining its shape without being deformed itself when the reduced pressure or vacuum state is formed. ) And an internal space of a bag made of a flexible film. Examples of the material of the rigid box include metals such as iron, aluminum, stainless steel, carbon steel, and bronze, and plastics such as polyethylene, polyurethane, acrylic resin, polyamide, and polycarbonate. As the flexible film, a metal film such as aluminum, a nylon film, a polyester film, a polyethylene film, a plastic film such as a polyimide film, a laminate film obtained by laminating an aluminum film or the like on a polyethylene film, or the like can be used.
If a bag made of a flexible film is used, when the internal space is evacuated, the bag closely adheres to the wound material 5, so that the voids can be more effectively removed.

また、当該加熱および加圧を行う際の加圧においては、導電性線材の巻線状態(ピッチ、巻線方向等)が乱れないよう、芯材に対して均一な圧力が加わるのが好ましく、かかる観点から、上記の空間(減圧または真空状態を形成し得る空間)内に圧縮気体を導入する方法が好適である。この圧縮気体を導入する方法の場合、圧縮気体に窒素ガス等の不活性ガスを使用すれば、導電性線材の酸化を抑制でき、より好ましい。   In addition, in the pressurization when performing the heating and pressurization, it is preferable to apply a uniform pressure to the core material so that the winding state (pitch, winding direction, etc.) of the conductive wire is not disturbed, From such a viewpoint, a method of introducing a compressed gas into the above-described space (a space where a reduced pressure or a vacuum state can be formed) is preferable. In the case of this method of introducing a compressed gas, it is more preferable to use an inert gas such as nitrogen gas as the compressed gas because oxidation of the conductive wire can be suppressed.

[第2工程(複数枚の導電性線材付きフィルムが一体化したブロックを作成する工程)]
該第2工程は、前記第1工程で作成した複数枚の導電性線材付きフィルムを隣り合うフィルムの導電性線材2間が互いに平行となるように積み重ね、得られた積重体に加熱および加圧を施して、複数枚の導電性線材付きフィルムが一体化したブロックを作成する工程である。かかる加熱および加圧は、隣り合う導電性線材付きフィルム間において、少なくとも、絶縁性フィルムを導電性線材に融着させる処理であり、好ましくは、絶縁性フィルムが導電性線材に融着し、かつ、絶縁性フィルム同士が融着するように加熱および加圧を行う。
上記の加熱および加圧処理において、加熱温度は一般に絶縁性フィルムを構成する樹脂(エラストマー)の軟化点〜300℃程度(具体的には50〜300℃)の範囲で選択される。なお、絶縁性フィルム1に熱硬化性樹脂を使用した場合には、硬化温度よりも低い温度で加熱するのが好ましい。また、加圧力は一般に5〜30kgf/cm2程度、好ましくは5〜20kgf/cm2程度である。
[Second step (step of creating a block in which a plurality of films with conductive wires are integrated)]
In the second step, the plurality of films with conductive wires prepared in the first step are stacked so that the conductive wires 2 of adjacent films are parallel to each other, and the resulting stack is heated and pressed. To create a block in which a plurality of films with conductive wires are integrated. Such heating and pressurization is a process of fusing at least the insulating film to the conductive wire between the adjacent films with the conductive wire, preferably the insulating film is fused to the conductive wire, and Then, heating and pressurization are performed so that the insulating films are fused.
In the above heating and pressurizing treatment, the heating temperature is generally selected in the range of the softening point of the resin (elastomer) constituting the insulating film to about 300 ° C. (specifically, 50 to 300 ° C.). In addition, when a thermosetting resin is used for the insulating film 1, it is preferable to heat at a temperature lower than the curing temperature. Also, pressure is generally 5~30kgf / cm 2 or so, preferably 5~20kgf / cm 2 approximately.

図5〜図7は、前記の複数の導電性線材2(の軸心L1)を絶縁性フィルム1の主面1aの所定の直線状の一辺L2に対して角度(α1)で傾斜させた導電性線材付きフィルム10A(図3(a)、図4)を、隣り合う絶縁性フィルム1の直線状の一辺L2が平行に重なるように積み重ね(図5)、このようにして得られた積重体20(図6)に加熱および加圧を施して、ブロック30(図7)を作成した様子を示している。   5 to 7 show a conductive structure in which the plurality of conductive wires 2 (the axis L1 thereof) are inclined at an angle (α1) with respect to a predetermined linear side L2 of the main surface 1a of the insulating film 1. 10A (FIG. 3 (a), FIG. 4) with conductive wires are stacked so that the linear sides L2 of adjacent insulating films 1 overlap in parallel (FIG. 5), and the stack obtained in this way 20 shows a state in which a block 30 (FIG. 7) is created by heating and pressurizing 20 (FIG. 6).

図7に示されるように、本発明においては、当該第2工程によって、複数枚の導電性線材付きフィルム10Aが一体化し、上下(積重方向)および水平方向に互いに平行に配置された複数の導電性線材2の間に絶縁性樹脂Rが介在した構造のブロック30が形成される。   As shown in FIG. 7, in the present invention, in the second step, a plurality of films 10A with conductive wires are integrated, and a plurality of films arranged in parallel with each other in the vertical (stacking direction) and horizontal directions are arranged. A block 30 having a structure in which an insulating resin R is interposed between the conductive wires 2 is formed.

なお、ブロック内における、導電性線材付きフィルム10Aの積重方向(図6中の矢印B1方向)に対応する方向(図7中の矢印B2方向)における導電性線材2の間隔(図7中のd1)は、異方導電性コネクタ60(図11)の導通路51のフィルム基板内における一方の方向(図11中の第1方向のピッチ(D1))に充当する。すなわち、絶縁性フィルム1の厚み(導電性線材2に絶縁導線を使用する場合は、絶縁性フィルム1の厚みと絶縁導線の絶縁性樹脂による被覆層の厚み)、および、当該工程での加熱および加圧処理の条件(温度、圧力)によって、異方導電性コネクタ60(図11)の導通路51のフィルム基板内における一方の方向(第1方向)のピッチ(図11中のD1)が決定される。   In addition, the space | interval (in FIG. 7) of the conductive wire 2 in the direction (arrow B2 direction in FIG. 7) corresponding to the stacking direction (arrow B1 direction in FIG. 6) of the film 10A with a conductive wire in a block. d1) is applied to one direction (pitch (D1) in the first direction in FIG. 11) in the film substrate of the conductive path 51 of the anisotropic conductive connector 60 (FIG. 11). That is, the thickness of the insulating film 1 (when using an insulated conductor for the conductive wire 2, the thickness of the insulating film 1 and the thickness of the insulating resin coating layer), and heating and The pitch (D1 in FIG. 11) in one direction (first direction) in the film substrate of the conductive path 51 of the anisotropic conductive connector 60 (FIG. 11) is determined by the conditions (temperature, pressure) of the pressure treatment. Is done.

当該第2工程では、このように、複数枚の導電性線材付きフィルムの積重体に加熱および加圧を施して複数枚の導電性線材付きフィルムが一体化したブロックを作成するが、当該第2工程においても、加熱および加圧に先立って、複数枚の導電性線材付きフィルムの積重体を減圧または真空状態を形成し得る空間内に配置し、当該空間内を減圧または真空状態にし、しかる後に、当該加熱および加圧を行うのが好ましい。このようにすることで、上下に重なる導電性線材付きフィルムの間の空隙を除去でき、また、導電性線材付きフィルム内に空隙が残存している場合に、この空隙を除去することができ、好ましい。ここで減圧または真空とは、前記第1工程におけるそれと同義であり、また、減圧または真空状態を形成し得る空間も、前記の剛性の箱体の内部空間や柔軟性のフィルムからなる袋体の内部空間を用いることができる。また、減圧または真空状態を形成するための方法は特に限定されないが、前記のポンプによる吸引が作業性の点から好ましい。また、当該第2工程においても、前記第1工程と同様に、減圧または真空状態を形成するために、柔軟性のフィルムからなる袋体を使用するのが好ましい。柔軟性のフィルムからなる袋体を使用すれば、その内部空間を真空状態にした場合、袋体が積重体に密着し、積み重なった導電性線材付きフィルムの間の空隙をより効果的に除去することができる。   In the second step, as described above, the stack of the plurality of films with conductive wires is heated and pressurized to create a block in which the plurality of films with conductive wires are integrated. Also in the process, prior to heating and pressurization, a stack of a plurality of films with conductive wires is placed in a space where a reduced pressure or vacuum state can be formed, and the inside of the space is put under reduced pressure or a vacuum state, and thereafter The heating and pressurization are preferably performed. By doing in this way, it is possible to remove the gaps between the films with conductive wire that overlap vertically, and when gaps remain in the film with conductive wires, this gap can be removed, preferable. Here, the reduced pressure or vacuum is synonymous with that in the first step, and the space capable of forming the reduced pressure or vacuum state is also an internal space of the rigid box or a bag made of a flexible film. Internal space can be used. The method for forming a reduced pressure or vacuum state is not particularly limited, but suction by the pump is preferable from the viewpoint of workability. Also in the second step, as in the first step, it is preferable to use a bag made of a flexible film in order to form a reduced pressure or vacuum state. If a bag made of a flexible film is used, when the internal space is evacuated, the bag is in close contact with the stack, and the voids between the stacked films with conductive wires are more effectively removed. be able to.

また、当該第2工程での加熱および加圧処理を次のようにして行えばより好ましい結果が得られる。すなわち、図9、10に示すように、積重体20を、該積重体20を収容した時にその内面と該積重体20との間に若干の隙間が形成される程度の大きさの耐熱性の箱体であって、積重体20を出し入れするための開口41を有する箱体40内に収容し、この状態(図10の状態)のままで、積重体20を耐熱性の箱体40とともに前記した可撓性フィルムからなる袋体の内部空間に配置し、当該空間内を減圧または真空状態にした後、積重体20に加熱および加圧を施すようにすれば、加圧時の積重体20を構成する複数枚の導電性線材付きフィルム10A間の位置ずれを防止でき、製造される異方導電性コネクタにおける複数の導電性線材(導通路)の傾斜方向および傾斜角度の均一性が増す。なお、上記「若干の隙間」とは、積重体の側面と箱体の内側面との間に約0.5〜20mm程度の隙間が空くことである。また。耐熱性の箱体における「耐熱性」とは上記の加熱処理時に変形したり、軟化(溶融)することがないことを意味しており、上記耐熱性の箱体の具体例としては、アルミニウム(以下、アルミとも略称する)、鉄、ステンレス等からなる金属製の箱体、セラミックス製の箱体が挙げられる。   Further, more preferable results can be obtained if the heating and pressurizing treatment in the second step is performed as follows. That is, as shown in FIGS. 9 and 10, the stack 20 has a heat resistance of such a size that a slight gap is formed between the inner surface of the stack 20 and the stack 20 when the stack 20 is accommodated. It is a box, and it accommodates in the box 40 which has the opening 41 for taking in / out the stacking body 20, and in this state (state of FIG. 10), the stacking body 20 with the heat resistant box 40 is the above-mentioned. The stacked body 20 at the time of pressurization is disposed in the internal space of the bag body made of the flexible film, and the space 20 is depressurized or evacuated and then heated and pressurized. The positional deviation between the plurality of films 10A with conductive wires constituting the structure can be prevented, and the uniformity of the inclination direction and the inclination angle of the plurality of conductive wires (conduction paths) in the manufactured anisotropic conductive connector is increased. The “slight gap” refers to a gap of about 0.5 to 20 mm between the side surface of the stack and the inner side surface of the box. Also. “Heat resistance” in a heat-resistant box means that the heat-resistant box is not deformed or softened (melted) during the heat treatment, and specific examples of the heat-resistant box include aluminum ( Hereinafter, a metal box made of iron, stainless steel, or a ceramic box may be used.

[第3工程(ブロックを切断する工程)]
当該第3工程は、前記第2工程で作成したブロックを導電性線材と角度を成して交差する平面を断面として所定のフィルム厚さに切断して異方導電性コネクタを得る工程である。図8は前記の導電性線材2(の軸心L1)を絶縁性フィルム1の主面1aの直線状の一辺L2に対して角度(α1)で傾斜させた導電性線材付きフィルム10A(図3(a)、図4)を積重して得られたブロック30(図7)を切断している例である。
[Third step (step of cutting the block)]
The third step is a step of obtaining an anisotropic conductive connector by cutting the block created in the second step into a predetermined film thickness with a plane intersecting the conductive wire at an angle. FIG. 8 shows a conductive wire rod-attached film 10 </ b> A (FIG. 3) in which the conductive wire rod 2 (the axis L <b> 1) is inclined at an angle (α <b> 1) with respect to the linear side L <b> 2 of the main surface 1 a of the insulating film 1. This is an example in which the block 30 (FIG. 7) obtained by stacking (a) and FIG. 4) is cut.

図8では切断具3は刃物を示しているが、当該工程において、ブロックからフィルムを切り出すことができるものであれば、刃物に限定されず、各種の切断具(ワイヤーソー、スライサー、かんな、レーザー等)を使用することができる。   In FIG. 8, the cutting tool 3 shows a blade, but the cutting tool 3 is not limited to a blade as long as it can cut out a film from the block. Various cutting tools (wire saw, slicer, plane, laser, etc.) Etc.) can be used.

図8の例では、ブロック30における導電性線材付きフィルムにおける絶縁性フィルム1の主面1aの所定の直線状の一辺L2(図4〜図6参照)より由来する所定の直線状の端辺L2’に対して直交する平面30bが切断面となるようにブロック30を切断している。すなわち、導電性線材付きフィルムとして、導電性線材2(の軸心L1)を絶縁性フィルム1の主面1aの所定の直線状の一辺L2に対して角度(α1)で傾斜させた導電性線材付きフィルム10A(図3(a)、図4)を使用することで、絶縁性フィルム1の主面1aの所定の直線状の一辺L2より由来するブロック30の端辺L2’を基準に、これに対して直交する平面30bが切断面となるようにブロック30を切断することで、導電性線材付きフィルム10Aにおいて設定した導電性線材2の傾斜角度(絶縁性フィルム1の主面1aの所定の直線状の一辺L2に対する導電性線材2の軸心L1の傾斜角度(α1))がそのまま、製造される異方導電性コネクタ60(図11)における導通路51(の軸心L10)のフィルム基板50の主面50aの垂線L20に対して成す角度(α)となる。従って、切断作業において、切断面の設定が容易であり、複数の導通路が目的の傾斜角度で傾斜し、かつ、複数の導通路間の傾斜方向が均一性が高い(複数の導通路が一定の方向に揃って傾斜する)異方導電性コネクタを確実に製造することができる。また、切断して得られるフィルムサイズ(製品サイズ)が統一するため、大きく歩留まりが低下する問題もない。   In the example of FIG. 8, a predetermined linear end L2 derived from a predetermined linear one side L2 (see FIGS. 4 to 6) of the main surface 1a of the insulating film 1 in the film with the conductive wire in the block 30. The block 30 is cut so that a plane 30b perpendicular to the line 'becomes a cut surface. That is, as a film with a conductive wire, the conductive wire 2 (its axis L1) is inclined at an angle (α1) with respect to a predetermined linear side L2 of the main surface 1a of the insulating film 1. By using the attached film 10A (FIG. 3 (a), FIG. 4), the end side L2 ′ of the block 30 derived from the predetermined linear side L2 of the main surface 1a of the insulating film 1 is used as a reference. By cutting the block 30 so that the plane 30b perpendicular to the cut surface becomes a cut surface, the inclination angle of the conductive wire 2 set in the film 10A with the conductive wire (predetermined on the main surface 1a of the insulating film 1) The film substrate of the conductive path 51 (axial center L10) in the anisotropically conductive connector 60 (FIG. 11) manufactured without changing the inclination angle (α1) of the axial center L1 of the conductive wire 2 with respect to the straight side L2. 50's This is an angle (α) formed with respect to the perpendicular L20 of the main surface 50a. Therefore, in the cutting operation, it is easy to set the cut surface, the plurality of conduction paths are inclined at a target inclination angle, and the inclination direction between the plurality of conduction paths is highly uniform (the plurality of conduction paths are constant). It is possible to reliably manufacture anisotropic conductive connectors that are inclined in the same direction. Further, since the film size (product size) obtained by cutting is unified, there is no problem that the yield is greatly reduced.

一方、導電性線材付きフィルムに、導電性線材付きフィルム10B(図3(b))のような、絶縁性フィルムの主面の直線状の一辺に対して導電性線材(の軸心)を傾斜させていないものから作成したブロックから、異方導電性コネクタを切り出す場合、切断面の垂線に対して導電性線材(の軸心)の成す角度が、異方導電性コネクタ60(図11)における導通路51(の軸心L10)のフィルム基板50の主面50aの垂線L20に対して成す角度(α)と等しくなるように、導電性線材(の軸心)の方向を基準に切断面の設定を行う。   On the other hand, the conductive wire material (axial center) is inclined to the linear side of the main surface of the insulating film, such as the film 10B with conductive wire material (FIG. 3B), on the film with conductive wire material. When an anisotropic conductive connector is cut out from a block made from a non-processed block, the angle formed by the conductive wire (the axis thereof) with respect to the perpendicular to the cut surface is the same as that in the anisotropic conductive connector 60 (FIG. 11). Based on the direction of the conductive wire (axis), the cut surface of the conduction path 51 (axis L10) is equal to the angle (α) formed with respect to the perpendicular L20 of the main surface 50a of the film substrate 50. Set up.

本発明の製造方法では、上記のように、同一のピッチで平行に並ぶ複数の導電性線材(の一列)を有する複数枚の導電性線材付きフィルム(それぞれが大サイズの導電性線材付きフィルムから切り出された実質的に同一のもの)を積み重ねたブロックから異方導電性コネクタを切り出すようにしたことで、従来の絶縁導線を多重に巻線して得られる巻線ブロック内での絶縁導線(金属線)の巻線方向の不揃いにより、異方導電性コネクタにおける導通路の傾斜方向が不揃いになるという問題を防止でき、複数の導通路が所定の傾斜角度で傾斜し、かつ、複数の導通路間の傾斜方向のばらつきが小さい異方導電性コネクタを容易に製造できる。しかも、従来のような、ブロック内の線材(の軸心)の方向を考慮してブロックと切断刃の位置を調整しつつ切断したり、切断後に、切り出した異方導電性コネクタのフィルムサイズ(製品サイズ)を統一するための後加工を行う必要がないので、製造作業の煩雑さも解消することができる。従って、接続対象物(回路基板、半導体素子)への接続信頼性の高い、所望の大きさ(フィルムサイズ(製品サイズ))の異方導電性コネクタを高歩留まりに製造できる。   In the manufacturing method of the present invention, as described above, a plurality of films with conductive wires (one row) having a plurality of conductive wires arranged in parallel at the same pitch (each from a film with conductive wires having a large size). Since the anisotropic conductive connector is cut out from the block in which the cut substantially the same thing) is stacked, the insulated conductor in the winding block obtained by multiply winding the conventional insulated conductor ( Uneven winding direction of the metal wire) can prevent the problem that the direction of inclination of the conducting path in the anisotropic conductive connector is not uniform, and the plurality of conducting paths are inclined at a predetermined inclination angle and the plurality of conducting paths are inclined. An anisotropic conductive connector having a small variation in the inclination direction between the passages can be easily manufactured. Moreover, the film size of the anisotropically conductive connector cut out after the cutting, adjusting the position of the block and the cutting blade in consideration of the direction of the wire (the axis) in the block, as in the past, Since it is not necessary to perform post-processing to unify the product size, the complexity of the manufacturing operation can be eliminated. Therefore, it is possible to manufacture an anisotropic conductive connector having a desired size (film size (product size)) having high connection reliability to a connection target (circuit board, semiconductor element) with a high yield.

なお、以上は絶縁性フィルムの外形(主面の外形)が矩形の導電性線材付きフィルムを例示して本発明方法を説明したが、本発明において、導電性線材付きフィルムにおける絶縁性フィルムの外形は矩形以外の形状でもよい。ただし、以上の説明から理解されるように、導電性線材付きフィルムにおける絶縁性フィルムの主面が、矩形のような、導電性線材の傾斜角度を規定できる直線状の一辺を有する形状(外形)が好ましいことは言うまでもない。   In addition, although the above demonstrated the method of this invention exemplifying the film with an electrically conductive wire with the external shape (main surface external shape) of an insulating film, in this invention, the external shape of the insulating film in the film with an electrically conductive wire May have a shape other than a rectangle. However, as can be understood from the above description, the main surface of the insulating film in the film with a conductive wire has a linear shape that can define the inclination angle of the conductive wire, such as a rectangle (outer shape). It goes without saying that is preferable.

また、異方導電性コネクタは、その一般的用途(実装用コネクタ、検査用コネクタ(特に検査用コネクタ))においては、全体の形状(フィルム基板の外形)を矩形にしたものが多く使用されるので、本発明においても、ブロックをスライス(切断)するだけで当該矩形の異方導電性コネクタが得られるように、導電性線材付きフィルムにおける絶縁性フィルムの外形を矩形にするのが好ましい。   Also, anisotropic conductive connectors are often used in general applications (mounting connectors, inspection connectors (especially inspection connectors)) whose overall shape (outer shape of the film substrate) is rectangular. Therefore, also in this invention, it is preferable to make the external shape of the insulating film in a film with a conductive wire into a rectangle so that the rectangular anisotropic conductive connector can be obtained only by slicing (cutting) the block.

また、以上の記載では、本発明の製造方法を、図11に示す導通路51の配列状態が正方行列状の異方導電性コネクタ60を参照しながら説明したが、導通路51を最密状に配列した異方導電性コネクタを製造する場合には、導電性線材付きフィルムの積重体の作成において、奇数番目に積む導電性線材付きフィルムにおける各導電性線材が、偶数番目に積む導電性線材付きフィルムの導電性線材間の隙間に配置されるように、積重を行えばよい。   In the above description, the manufacturing method of the present invention has been described with reference to the anisotropic conductive connector 60 in which the arrangement state of the conduction paths 51 shown in FIG. 11 is a square matrix. In the production of a stack of films with conductive wires, each conductive wire in an odd-numbered film with conductive wires is stacked evenly. What is necessary is just to stack so that it may be arrange | positioned in the clearance gap between the conductive wire materials of an attached film.

また、本発明において、導通路の全部あるいは特定部分の導通路の端部がフィルム基板の主面から突出または窪んでいるタイプや、また、各導通路について、一方のみまたは両方がフィルム基板の主面から突出または窪んでいるタイプの異方導電性コネクタを製造する場合、前記第1〜第3工程後に、以下に記載の処理を行う。   Further, in the present invention, the whole conductive path or the end of the specific part of the conductive path protrudes or is recessed from the main surface of the film substrate, and for each conductive path, only one or both of the main paths of the film substrate are used. When manufacturing an anisotropic conductive connector of a type protruding or recessed from the surface, the following processing is performed after the first to third steps.

フィルム基板の主面から導通路の端部を突出させる場合、フィルム基板における端部を突出させるべき導通路の周囲部を選択的に除去する方法が挙げられる。具体的には、有機溶剤によるウエットエッチングやプラズマエッチング、アルゴンイオンレーザー、KrFエキシマレーザーなどによるドライエッチング等の手法を単独もしくは併用して採用される。また、上記有機溶剤はフィルム基板や絶縁導線の被覆層の材料により適宜選択されるが、例えば、ジメチルアセトアミド、ジオキサン、テトラヒドロフラン、塩化メチレン等が挙げられる。
また、メッキや蒸着によって突出させるべき導通路の端部(端面)に金属を堆積させて、突出させることもできる。かかる金属の堆積を行う場合、金属は前記の導通路を構成する金属と同じでも、異なっていてもよい。好適な例としては、例えば、無電解メッキによるNi/Au層が挙げられる。無電解メッキによるNi/Au層を設けることで、接続対象物(電子部品、回路基板等)の端子との接触抵抗を低く抑えることができる利点がある。
When projecting the end of the conductive path from the main surface of the film substrate, there is a method of selectively removing the peripheral part of the conductive path from which the end of the film substrate should be projected. Specifically, wet etching using an organic solvent, plasma etching, dry etching using an argon ion laser, a KrF excimer laser, or the like is used alone or in combination. The organic solvent is appropriately selected depending on the material of the coating layer of the film substrate or the insulated conductor, and examples thereof include dimethylacetamide, dioxane, tetrahydrofuran, and methylene chloride.
Further, metal can be deposited and projected at the end (end surface) of the conductive path to be projected by plating or vapor deposition. When such metal deposition is performed, the metal may be the same as or different from the metal constituting the conductive path. A suitable example is a Ni / Au layer formed by electroless plating. By providing the Ni / Au layer by electroless plating, there is an advantage that the contact resistance with the terminal of the connection object (electronic component, circuit board, etc.) can be kept low.

導通路をフィルム基板の面から窪ませる方法としては、フィルム基板の面に露出する導通路のみを選択的に除去する方法が採用され、具体的には、酸あるいはアルカリによるケミカルエッチングが採用される。   As a method for indenting the conduction path from the surface of the film substrate, a method of selectively removing only the conduction path exposed on the surface of the film substrate is employed, and specifically, chemical etching using acid or alkali is employed. .

導通路の突出量(フィルム基板の主面から導通路先端面までの高さ)は一般に5〜60μmの範囲から選択される。   The protruding amount of the conductive path (height from the main surface of the film substrate to the leading surface of the conductive path) is generally selected from the range of 5 to 60 μm.

本発明で製造する異方導電性コネクタは、検査用コネクタとして特に好ましいものであり、この点から、構造全体としての弾性率が0〜50℃において5〜100MPaであるものが好ましく、5〜70MPaであるものが特に好ましい。当該構造全体としての弾性率は、動的粘弾性測定装置(DMS210、セイコーインスツルメンツ社製)を用いて測定される。測定条件は、異方導電性コネクタのフィルム基板の面が拡張する方向のうちの一方向に対し、引張りモードで、一定の周波数(10Hz)で、温度を5℃/分で昇温させ−30℃〜250℃での測定とする。測定時に入力する試料の厚みは、異方導電性コネクタ60(図11)におけるフィルム基板の厚み(図11中の符号T)とする。   The anisotropic conductive connector produced in the present invention is particularly preferable as a connector for inspection. From this point, the elastic modulus of the entire structure is preferably 5 to 100 MPa at 0 to 50 ° C., and preferably 5 to 70 MPa. Are particularly preferred. The elastic modulus of the entire structure is measured using a dynamic viscoelasticity measuring device (DMS210, manufactured by Seiko Instruments Inc.). The measurement condition is that the temperature is raised at 5 ° C./min at a constant frequency (10 Hz) in a tensile mode with respect to one direction in which the surface of the film substrate of the anisotropic conductive connector expands −30. It is set as the measurement in ° C-250 ° C. The thickness of the sample input at the time of measurement is the thickness of the film substrate in the anisotropic conductive connector 60 (FIG. 11) (symbol T in FIG. 11).

異方導電性コネクタ60(図11)の構造全体の弾性率を決定する要素としては、導通路51の材料、太さ(径)、断面形状、傾斜角度およびピッチ等、並びに、フィルム基板の材料や厚み等である。従って、本発明の異方導電性コネクタの製造方法においては、これらの値を調整して、得られる異方導電性コネクタの構造全体としての弾性率を、上記の−30〜250℃の範囲内における0〜50℃において5〜70MPaとなるように設定するのが好ましい。   Elements that determine the elastic modulus of the entire structure of the anisotropic conductive connector 60 (FIG. 11) include the material of the conduction path 51, the thickness (diameter), the cross-sectional shape, the inclination angle, the pitch, and the like, and the material of the film substrate And thickness. Therefore, in the method for manufacturing the anisotropic conductive connector of the present invention, by adjusting these values, the elastic modulus of the entire structure of the anisotropic conductive connector obtained is within the range of −30 to 250 ° C. It is preferable to set the pressure at 5 to 70 MPa at 0 to 50 ° C.

以下、実施例及び比較例を記載して、本発明をより詳しく説明する。
(実施例1)
直径320mm、長さ270mmのアルミ製円筒形コアを横型整列巻き線機HPW−02型(日特エンジニアリング(株)製)に取付け、離型フィルムとして50μm厚のフッ素樹脂フィルム、その上にゴム硬度75度、100μm厚の熱可塑性ポリウレタンエラストマー(エスマーURS、日本マタイ(株)製、軟化点60℃)からなるフィルムを1層巻いた後、29μmφの耐熱ポリウレタン被覆線(25μmφの銅線に耐熱ポリウレタンを2μm厚みで被覆したもの)を巻線間隔(ピッチ)100μmで250mm巻いた。そして、さらに該巻線した線材を覆うように離型フィルムとして50μm厚のフッ素樹脂フィルムを巻き、さらにその外側に当て板として1mm厚のアルミ板をコアの円筒形状に沿って配置した。
Hereinafter, the present invention will be described in more detail by describing examples and comparative examples.
(Example 1)
An aluminum cylindrical core with a diameter of 320 mm and a length of 270 mm is attached to a horizontal alignment winding machine HPW-02 (manufactured by Nittoku Engineering Co., Ltd.), a 50 μm-thick fluororesin film as a release film, and rubber hardness on it One layer of a film made of a thermoplastic polyurethane elastomer (Esmer URS, manufactured by Nippon Matai Co., Ltd., softening point 60 ° C.) having a thickness of 75 ° and 100 μm is wound, and then a 29 μmφ heat-resistant polyurethane-coated wire (25 μmφ copper wire is coated with heat-resistant polyurethane) Was coated with a thickness of 2 μm) and wound 250 mm at a winding interval (pitch) of 100 μm. Further, a fluororesin film having a thickness of 50 μm was wound as a release film so as to cover the wound wire rod, and an aluminum plate having a thickness of 1 mm as a backing plate was further arranged along the cylindrical shape of the core.

1000mm×1530mmのサイズで、厚みが80μmの耐熱性ナイロンフィルム(WL8400−003−60−1000−SHT9、エアテック社製、軟化点:220℃)とシールテープGS213(エアテック社製)とによって、真空空間を形成可能な袋体を作成し、この袋体の中に、上記のコア、フィルムおよび線材からなる巻状物と当て板とを一体にした状態で配置し、フィルム空間部を密閉状態にして、真空ホース(真空ポンプに接続)で吸引し、フィルム空間部を真空状態とした。そして、該真空状態を保ちながらかかる巻状物および当て板を収容した袋体を、加熱加圧処理可能なオートクレーブ装置(芦田製作所株式会社製)に投入した。該投入後、コアの温度が155℃(管内温度:200℃)となるように管内を加熱するとともに、管内の圧力が10kgf/cm2となるように窒素ガスにて加圧し、コアの温度および管内圧力が目標値に到達した後、約30分間保持して冷却し、温度が70℃に達した後、圧力を開放した。 A heat-resistant nylon film (WL8400-003-60-1000-SHT9, manufactured by Airtech, softening point: 220 ° C.) having a size of 1000 mm × 1530 mm and a thickness of 80 μm and a seal tape GS213 (made by Airtech) A bag body that can be formed is prepared, and in the bag body, the above-described core, film, and wire wound material and a backing plate are arranged in an integrated state, and the film space is sealed. The film space was vacuumed by suction with a vacuum hose (connected to a vacuum pump). And the bag body which accommodated this winding and the contact plate, maintaining this vacuum state, was thrown into the autoclave apparatus (made by Iwata Manufacturing Co., Ltd.) which can be heated and pressurized. After the charging, the inside of the tube is heated so that the core temperature becomes 155 ° C. (inside tube temperature: 200 ° C.), and pressurized with nitrogen gas so that the pressure in the tube becomes 10 kgf / cm 2. After the pressure in the tube reached the target value, the tube was held for about 30 minutes for cooling. After the temperature reached 70 ° C., the pressure was released.

この後、オートクレーブから、コア、フィルムおよび線材からなる巻状物を収容した袋体を取出し、該袋体から該巻状物を取り出してコアを外し、熱可塑性ウレタンエラストマーフィルムと耐熱ウレタン被覆線とが一体化したロール状ブロックを得た。   After that, the bag containing the wound product composed of the core, film and wire is taken out from the autoclave, the wound product is taken out from the bag, the core is removed, and the thermoplastic urethane elastomer film and the heat-resistant urethane coated wire are removed. The roll-shaped block which integrated was obtained.

次に、前記ロール状ブロックの一辺を切断して平板状物とし、トムソン刃にて、該平板状物から、サイズが120mm×62mmの長方形の熱可塑性ウレタンエラストマーフィルムの主面に、ピッチ100μmで互いに平行に並ぶ複数の耐熱ウレタン被覆線が、図4(c)の状態、すなわち、熱可塑性ウレタンエラストマーフィルムの直線状の一辺L2に対して傾斜角(α1)15度で配列し、固着した状態の線材付きフィルムを22枚切り出した。次に、該22枚の線材付きフィルムを、図5に示すように、鉛直方向に積み上げ、この積重体を、図9、10に示すように、アルミニウム製の箱に入れた。
なお、上記アルミ製の箱には、積重体をそのまま内部へ入れることのできる開口を上面に有し、積重体を完全に収容できる深さを有し、その内側面と積重体の側面(熱可塑性ウレタンエラストマーフィルムの側面)との間に1.5mm隙間が形成される、全体が直方体の箱を用いた。
Next, one side of the roll-shaped block is cut into a flat plate, and with a Thomson blade, from the flat plate to the main surface of a rectangular thermoplastic urethane elastomer film having a size of 120 mm × 62 mm, the pitch is 100 μm. A plurality of heat-resistant urethane-coated wires arranged in parallel with each other are arranged in the state shown in FIG. 4C, that is, in a state where they are arranged and fixed at an inclination angle (α1) of 15 degrees with respect to the linear side L2 of the thermoplastic urethane elastomer film. 22 films with a wire rod were cut out. Next, the 22 films with wire rods were stacked in the vertical direction as shown in FIG. 5, and the stack was put in an aluminum box as shown in FIGS.
The aluminum box has an opening on the top surface through which the stack can be put into the interior as it is, has a depth that can completely accommodate the stack, and has an inner surface and a side surface of the stack (heat A box having a rectangular parallelepiped shape, in which a gap of 1.5 mm is formed with the side surface of the plastic urethane elastomer film, was used.

次に、上記アルミ製の箱の上面の開口から10mm厚、120×62mmサイズのアルミ板を箱体内に入れ、前記積重体の最上面に載せた。そして、この状態で積重体を収容したアルミ製の箱を、前記で使用した真空空間が形成可能なナイロンフィルムからなる袋体の内部に入れ、フィルム空間部を真空状態とし、該真空状態を保ちながら、加熱加圧処理可能なオートクレーブ装置(芦田製作所株式会社製)に投入し、アルミ製の箱の温度が175℃(管内温度が200℃)となるように加熱し、また、管内の圧力が15kgf/cm2となるように窒素ガスにて加圧した。管内温度および圧力が目標値に到達した後、管内を冷却した。これによって、積重体が一体化したブロックが形成された。 Next, an aluminum plate having a thickness of 10 mm and a size of 120 × 62 mm was placed in the box from the opening on the upper surface of the aluminum box and placed on the uppermost surface of the stack. In this state, the aluminum box containing the stack is placed inside a bag made of nylon film that can form the vacuum space used above, and the film space is kept in a vacuum state, and the vacuum state is maintained. However, it is put into an autoclave apparatus (manufactured by Iwata Manufacturing Co., Ltd.) capable of heat and pressure treatment, and heated so that the temperature of the aluminum box is 175 ° C. (the temperature in the tube is 200 ° C.). Pressurization was performed with nitrogen gas so as to be 15 kgf / cm 2 . After the tube temperature and pressure reached the target values, the tube was cooled. As a result, a block in which the stack was integrated was formed.

上記作成したブロックを、ワイヤーソー(F−600型、株式会社安永製)で、当該ブロックの所定の端辺(熱可塑性ウレタンエラストマーフィルムの直線状の一辺L2より由来する端辺)に対して切断面が直交する方向となるように、所定のフィルム厚さにスライスして、フィルム基板の厚みが100μm、サイズが120mm×60mmの異方導電性コネクタを200枚切り出した。   The created block is cut with a wire saw (F-600, manufactured by Yasunaga Co., Ltd.) with respect to a predetermined end of the block (an end derived from the linear side L2 of the thermoplastic urethane elastomer film). 200 anisotropically conductive connectors having a film substrate thickness of 100 μm and a size of 120 mm × 60 mm were cut out so that the planes were orthogonal to each other.

上記得られた200枚の異方導電性コネクタから任意に5枚をサンプリングし、各々について、異方導電性コネクタの断面2方向から測長顕微鏡(オリンパス工業社製)で導通路の傾斜方向と傾斜角度のばらつきをそれぞれ調べた。すなわち、フィルム基板の主面と直交する方向に切った第1断面と、フィルム基板の主面と平行に切った第2断面を測長顕微鏡で観察した。その結果、第2断面の観察から断面に在る全ての導通路について傾斜方向のばらつき(傾斜方向の角度ばらつき)は0.15度であり、第1断面の観察から傾斜角度のばらつきは0.22度であることが分かった。   From the 200 anisotropically conductive connectors obtained above, 5 samples are arbitrarily sampled, and for each, from the two cross-sectional directions of the anisotropically conductive connector, the length of the conduction path is determined with a length measuring microscope (manufactured by Olympus Corporation). The variation of the tilt angle was examined respectively. That is, the first cross section cut in the direction orthogonal to the main surface of the film substrate and the second cross section cut in parallel to the main surface of the film substrate were observed with a length measuring microscope. As a result, the variation in the tilt direction (angle variation in the tilt direction) for all the conductive paths in the cross section from the observation of the second cross section is 0.15 degrees, and the variation in the tilt angle from the observation of the first cross section is 0. It was found to be 22 degrees.

(比較例1)
25μmφの銅線に上記実施例で使用した熱可塑性ポリウレタンエラストマーを2μm厚で被覆した絶縁導線を、巻線装置を用いて、全長(巻き幅)640mm、断面形状160mm×160mm正方形の角柱状プラスチック芯材に整列巻きを行い線材を最密充填して、1層当たりの平均巻き数3500ターン、巻き層数150層(=層の厚さ約12mm)の巻線コイルを形成した。得られたロール状の巻線コイルを、約150℃に加熱しながら、10kgf/cm2で加圧し、熱可塑性ポリウレタンエラストマーを融着させ、室温まで冷却して、巻き付けた線材が互いに一体化した巻線コイルブロックを得た。この巻線コイルブロックを、バンドソーで、巻き付けられた線材と傾斜角15度を成す面を断面としてブロック状にスライスし、サイズが120mm×180mm、厚さが10mmの異方導電性フィルムの前段階のブロックを得た。得られたブロックをワイヤーソーでスライスし、外径寸法を仕上げて、サイズが10mm×120mm、厚さが100μmの異方導電性コネクタを2800枚作製した。
(Comparative Example 1)
Using a winding device, a 25 μmφ copper wire coated with a 2 μm thick thermoplastic polyurethane elastomer used in the above example is used to form a prismatic plastic core having a total length (winding width) of 640 mm and a cross-sectional shape of 160 mm × 160 mm square. The material was aligned and wound to form a winding coil having the average number of windings per layer of 3500 turns and a winding number of 150 layers (= layer thickness of about 12 mm). The obtained rolled coil was heated to about 150 ° C. and pressurized with 10 kgf / cm 2 to fuse the thermoplastic polyurethane elastomer, cooled to room temperature, and the wound wires were integrated with each other. A wound coil block was obtained. This winding coil block is sliced into a block shape with a band saw as a cross section with a surface that forms an inclination angle of 15 degrees with a wound wire rod, and is a front stage of an anisotropic conductive film having a size of 120 mm × 180 mm and a thickness of 10 mm Got the block. The obtained block was sliced with a wire saw, the outer diameter was finished, and 2800 anisotropic conductive connectors having a size of 10 mm × 120 mm and a thickness of 100 μm were produced.

上記得られた2800枚の異方導電性コネクタから、任意に5枚をサンプリングし、各々について、上記実施例と同様にして、異方導電性コネクタの断面2方向から測長顕微鏡で導通路の傾斜方向と傾斜角度のばらつきをそれぞれ調べた。その結果、傾斜方向のばらつき(傾斜方向の角度ばらつき)は0.45度で、傾斜角度のばらつきは0.35度であった。   From the 2800 anisotropic conductive connectors obtained above, 5 samples were arbitrarily sampled, and each of the conductive paths of the anisotropic conductive connectors was measured with a length measuring microscope from two cross-sectional directions of the anisotropic conductive connectors in the same manner as in the above embodiment. The variation of the tilt direction and tilt angle was examined respectively. As a result, the variation in the tilt direction (angle variation in the tilt direction) was 0.45 degrees, and the variation in the tilt angle was 0.35 degrees.

上記実施例1および比較例1で作製した異方導電性コネクタを用いて以下に記載の電子部品と回路基板間の接続試験(導通試験)を行った。   Using the anisotropic conductive connectors prepared in Example 1 and Comparative Example 1, a connection test (continuity test) between the electronic component and the circuit board described below was performed.

〔評価用電子部品の仕様〕
部品サイズ:9.6mm×7.0mm×1.65mm(厚み)
電極サイズ:1.0mm×0.8mm
電極数:12個
電極配置における中間ピッチ:1.8mm
[Specifications of evaluation electronic components]
Component size: 9.6 mm x 7.0 mm x 1.65 mm (thickness)
Electrode size: 1.0mm x 0.8mm
Number of electrodes: 12 Intermediate pitch in electrode arrangement: 1.8 mm

〔評価用回路基板の仕様〕
基材:ガラスエポキシ基材(FR−4)
回路パターンを含む全体厚み:1mm
回路パターンの回路幅と間隔部分の幅との比:(1.0mm:0.8mm)
[Evaluation circuit board specifications]
Base material: Glass epoxy base material (FR-4)
Total thickness including circuit pattern: 1mm
Ratio of the circuit width of the circuit pattern to the width of the interval portion: (1.0 mm: 0.8 mm)

〔評価方法〕
上記評価用電子部品と評価用回路基板間に異方導電性コネクタを介在させ、電子部品側より接触荷重25Nを加えて、電子部品の全端子(電極)が回路基板との間で導通するか(すなわち、全点導通するか)をみる。そして、この試験を10回繰り返す。
〔Evaluation methods〕
Whether an anisotropic conductive connector is interposed between the evaluation electronic component and the evaluation circuit board, and a contact load of 25 N is applied from the electronic component side so that all terminals (electrodes) of the electronic component are electrically connected to the circuit board. (That is, whether all the points conduct). This test is then repeated 10 times.

〔結果〕
比較例1の異方導電性コネクタを使用した場合、10回の試験で全点導通したのは8回であった。これに対し、実施例1の異方導電性コネクタを使用した場合、10回の試験で、10回とも全点導通した。
この結果から、本発明の製造方法により得られる異方導電性コネクタは、複数の導通路間の傾斜方向(導通路のしなる方向)のばらつきが小さく、接続対象物との接触性が良好で、接続信頼性の高い異方導電性コネクタであることが分かる。
〔result〕
When the anisotropic conductive connector of Comparative Example 1 was used, it was conducted 8 times at all points in 10 tests. On the other hand, when the anisotropic conductive connector of Example 1 was used, all points were conducted 10 times in 10 tests.
From this result, the anisotropic conductive connector obtained by the manufacturing method of the present invention has a small variation in the inclination direction between the plurality of conduction paths (direction of the conduction path), and has good contact with the connection object. It can be seen that this is an anisotropic conductive connector with high connection reliability.

以上の説明により明らかなように、本発明によれば、複数の導通路間の傾斜方向(導通路のしなる方向)のばらつきが小さく、接続対象物との接触性が良好で、接続対象物との間で高い接続信頼性が得られる異方導電性コネクタを、効率良く製造することができる。さらに、かかる接続対象物との間で高い接続信頼性が得られる異方導電性コネクタを、所望のフィルムサイズに、高歩留まりに製造することができる。   As is clear from the above description, according to the present invention, the variation in the inclination direction (direction in which the conduction path is formed) between the plurality of conduction paths is small, the contact property with the connection object is good, and the connection object is obtained. It is possible to efficiently manufacture an anisotropic conductive connector that can obtain high connection reliability. Furthermore, an anisotropic conductive connector that can obtain high connection reliability with such a connection object can be manufactured in a desired film size and with a high yield.

本発明の第1工程において、芯材に絶縁性フィルムを巻き付け、さらに導電性線材を巻き付ける作業の斜視図(図(a))と当該作業で得られた巻重物の斜視図(図(b))である。In the first step of the present invention, a perspective view (FIG. (A)) of an operation of winding an insulating film around a core material and further winding a conductive wire, and a perspective view of a wound material obtained by the operation (FIG. (B) )). 絶縁性フィルムと導電性線材とが一体化してなるロール状物を展開して得られた平板状物の平面図である。It is a top view of the flat material obtained by expand | deploying the roll-shaped material formed by integrating an insulating film and an electroconductive wire. 図3(a)および図3(b)は平板状物を裁断して得られた複数枚の導電性線材付きフィルムの平面図である。FIG. 3A and FIG. 3B are plan views of a plurality of films with conductive wires obtained by cutting a flat plate. 導電性線材付きフィルムの斜視図(図1(a))、断面図(図1(b))および平面図(図1(c))である。It is a perspective view (Drawing 1 (a)), a sectional view (Drawing 1 (b)), and a top view (Drawing 1 (c)) of a film with an electroconductive wire. 導電性線材付きフィルム(図4)を積重する作業を示す斜視図である。It is a perspective view which shows the operation | work which piles up a film with an electroconductive wire (FIG. 4). 導電性線材付きフィルム(図4)を積重して得られた積重体の斜視図である。FIG. 5 is a perspective view of a stack obtained by stacking films with conductive wires (FIG. 4). 積重体(図6)を加熱および加圧により一体化したブロックの斜視図である。It is a perspective view of the block which integrated the stacking body (FIG. 6) by heating and pressurization. ブロック(図7)からフィルムを切り出す作業の斜視図である。It is a perspective view of the operation | work which cuts out a film from a block (FIG. 7). 積重体(図6)を耐熱性の箱体に入れる様子を示す斜視図である。It is a perspective view which shows a mode that a stacked body (FIG. 6) is put into a heat resistant box. 積重体(図6)が耐熱性の箱体に収容された状態を示す斜視図である。It is a perspective view which shows the state in which the stack (FIG. 6) was accommodated in the heat resistant box. 本発明で製造する異方導電性コネクタの平面図(図11(a))と断面図(図11(b))である。It is a top view (Drawing 11 (a)) and a sectional view (Drawing 11 (b)) of an anisotropic conductive connector manufactured by the present invention.

符号の説明Explanation of symbols

1 絶縁性フィルム
1a 絶縁性フィルムの主面
2 導電性線材
L1 導電性線材の軸心
L2 直線状の一辺
α1 傾斜角
10A、10B 導電性線材付きフィルム
DESCRIPTION OF SYMBOLS 1 Insulating film 1a Main surface of insulating film 2 Conductive wire L1 Axis center of conductive wire L2 Straight side α1 Inclination angle 10A, 10B Film with conductive wire

Claims (8)

フィルム基板の厚み方向に貫通する複数の導通路の軸心がフィルム基板の主面の垂線に対して角度を成す構造の異方導電性コネクタを製造する方法であって、芯材の外周に絶縁性フィルムを巻き、次いで該絶縁性フィルムの外周に導電性線材を一定ピッチで螺旋状に巻くか、若しくは、芯材の外周に導電性線材を一定ピッチで螺旋状に巻き、次いで該導電性線材を覆うように絶縁性フィルムを巻いた後、加熱および加圧を施して、絶縁性フィルムと導電性線材とを芯材上で一体化させ、次に、当該絶縁性フィルムと導電性線材とが一体化して得られたロール状物を芯材から外し、これを切開して平板状物とした後、該平板状物から複数枚の導電性線材付きフィルムを切り出し、次に、該複数枚の導電性線材付きフィルムを隣り合うフィルム間の導電性線材が互いに平行となるように積み重ね、得られた積重体に加熱および加圧を施して、複数枚の導電性線材付きフィルムが一体化したブロックを作成し、次に、当該ブロックを導電性線材と角度を成して交差する平面を断面として所定のフィルム厚さに切断して異方導電性コネクタを得ることを特徴とする異方導電性コネクタの製造方法。 A method of manufacturing an anisotropic conductive connector having a structure in which the axes of a plurality of conduction paths penetrating in the thickness direction of a film substrate form an angle with respect to a perpendicular to the main surface of the film substrate, and is insulated on the outer periphery of a core material A conductive film is wound, and then a conductive wire is spirally wound around the outer periphery of the insulating film at a constant pitch, or a conductive wire is wound around the outer periphery of the core material at a constant pitch, and then the conductive wire is wound After winding the insulating film so as to cover, heat and pressure are applied to integrate the insulating film and the conductive wire on the core, and then the insulating film and the conductive wire are The roll-like product obtained by the integration is removed from the core material, and this is cut into a flat product, and then a plurality of films with conductive wires are cut out from the flat product. Between films adjacent to each other with a conductive wire The conductive wires are stacked so that they are parallel to each other, and the resulting stack is heated and pressurized to create a block in which a plurality of films with conductive wires are integrated. A method for manufacturing an anisotropic conductive connector, wherein an anisotropic conductive connector is obtained by cutting a plane that intersects with a conductive wire at an angle to a predetermined film thickness. 複数枚の導電性線材付きフィルムを、絶縁性フィルムの主面が直線状の一辺を有する形状で、かつ、複数の導電性線材の軸心が、該直線状の一辺に対して所定の傾斜角を成すように切り出すとともに、複数枚の導電性線材付きフィルムを隣り合う絶縁性フィルムの直線状の一辺が平行に重なるように積み重ねて積重体を形成し、さらに、積重体から得られるブロックを絶縁性フィルムの主面の直線状の一辺より由来する当該ブロックの直線状の端辺と直交する平面を断面として所定のフィルム厚さに切断することを特徴とする請求項1記載の異方導電性コネクタの製造方法。 The plurality of films with conductive wires are shaped so that the main surface of the insulating film has a straight side, and the axis of the plurality of conductive wires has a predetermined inclination angle with respect to the straight side. In addition, a plurality of films with conductive wires are stacked so that the linear sides of adjacent insulating films are stacked in parallel to form a stack, and the blocks obtained from the stack are further insulated. The anisotropic conductivity according to claim 1, wherein the anisotropic conductive film is cut to a predetermined film thickness with a cross section taken as a cross section of a plane perpendicular to the linear end side of the block derived from one linear side of the main surface of the conductive film. A method for manufacturing a connector. 芯材に巻き付けた絶縁性フィルムと導電性線材を、芯材とともに減圧または真空状態を形成し得る空間内に配置し、当該空間内を減圧または真空状態にした後、加熱および加圧を施して、芯材上で絶縁性フィルムと導電性線材とを一体化することを特徴とする請求項1または2記載の異方導電性コネクタの製造方法。 The insulating film and the conductive wire wound around the core material are placed in a space where a reduced pressure or vacuum state can be formed together with the core material, and the space is reduced in pressure or vacuum, and then heated and pressurized. The method for manufacturing an anisotropic conductive connector according to claim 1, wherein the insulating film and the conductive wire are integrated on the core material. 前記減圧または真空状態を形成し得る空間が、可撓性フィルムからなる袋体の内部空間である請求項3記載の異方導電性コネクタの製造方法。 The method for manufacturing an anisotropic conductive connector according to claim 3, wherein the space capable of forming the reduced pressure or vacuum state is an internal space of a bag body made of a flexible film. 前記減圧または真空状態を形成し得る空間内に、圧縮気体を導入することによって、前記加圧を行うことを特徴とする請求項3または4記載の異方導電性コネクタの製造方法。 The method for manufacturing an anisotropic conductive connector according to claim 3 or 4, wherein the pressurization is performed by introducing a compressed gas into a space where the reduced pressure or vacuum state can be formed. 積重体を減圧または真空状態を形成し得る空間内に配置し、当該空間内を減圧または真空状態にした後、積重体に加熱および加圧を施すことを特徴とする請求項1〜5のいずれかに記載の異方導電性コネクタの製造方法。 6. The stack according to claim 1, wherein the stack is disposed in a space where a reduced pressure or vacuum state can be formed, and the stack is heated and pressurized after being reduced in pressure or vacuum. A method for manufacturing the anisotropically conductive connector according to claim 1. 減圧または真空状態を形成しうる空間が、可撓性フィルムからなる袋体の内部空間である請求項6記載の異方導電性コネクタの製造方法。 The method for manufacturing an anisotropic conductive connector according to claim 6, wherein the space capable of forming a reduced pressure or a vacuum state is an internal space of a bag body made of a flexible film. 積重体を、該積重体を収容した時にその内側面と該積重体の側面との間に若干の隙間が形成される程度の大きさの耐熱性の箱体内に収容し、当該耐熱性の箱体とともに積重体を可撓性フィルムからなる袋体の内部空間に配置し、当該空間内を減圧または真空状態にした後、積重体に加熱および加圧を施すことを特徴とする請求項6記載の異方導電性コネクタの製造方法。 The stack is accommodated in a heat-resistant box having a size such that a slight gap is formed between the inner surface of the stack and the side of the stack. The stack is placed in an internal space of a bag made of a flexible film together with the body, and the stack is heated and pressurized after being reduced in pressure or vacuum. Method for manufacturing an anisotropic conductive connector.
JP2005162919A 2005-06-02 2005-06-02 Manufacturing method of anisotropic conductive connector Pending JP2005251770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005162919A JP2005251770A (en) 2005-06-02 2005-06-02 Manufacturing method of anisotropic conductive connector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005162919A JP2005251770A (en) 2005-06-02 2005-06-02 Manufacturing method of anisotropic conductive connector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001262006A Division JP3713451B2 (en) 2001-08-30 2001-08-30 Method for manufacturing anisotropic conductive connector

Publications (1)

Publication Number Publication Date
JP2005251770A true JP2005251770A (en) 2005-09-15

Family

ID=35032004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005162919A Pending JP2005251770A (en) 2005-06-02 2005-06-02 Manufacturing method of anisotropic conductive connector

Country Status (1)

Country Link
JP (1) JP2005251770A (en)

Similar Documents

Publication Publication Date Title
US7156669B2 (en) Anisotropic conductive film
KR100478060B1 (en) Anisotropic conductive film and method for manufacturing the same
US11637406B2 (en) Electrical connector and method for producing same
JP4522604B2 (en) Anisotropic conductive film
JP6560156B2 (en) Anisotropic conductive sheet and manufacturing method thereof
JP2009200113A (en) Shield wiring circuit board
KR20190133154A (en) Electrical connector and its manufacturing method
JP2005085634A (en) Anisotropic conductive film and its manufacturing method
JP2011043377A (en) Contact structure for inspection
JP2000221209A (en) Method for inspecting semiconductor element and anisotropic conductive film therefor
JP2002042921A (en) Method of producing anisotropic conductive film, and anisotropic conductive film
JP2010177592A (en) Electronic component built-in substrate, manufacturing method thereof, and inspection method therefor
JP2000294043A (en) Anisotropic conductive connector
JP3713451B2 (en) Method for manufacturing anisotropic conductive connector
JP2002124319A (en) Anisotropic conductive film and inspection method of semiconductor element or electronic component using same
CN114731002A (en) Sheet-like connector, sheet module, electrical inspection device, and electrical inspection method
JP4231335B2 (en) Inspection method for electronic components
JP2005251770A (en) Manufacturing method of anisotropic conductive connector
JP2005135772A (en) Manufacturing method of anisotropic conductive film
JP2008140574A (en) Sheet form connector, and its manufacturing method
KR100917489B1 (en) Method for producing an anisotropic conductive connector
JP2006108039A (en) Anisotropic conductive connector
US20040079474A1 (en) Production method of anisotropic conductive connector
JP2004356036A (en) Anisotropic conductive short connector and inspection method using the same
JP2001006770A (en) Anisotropic conductive film

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050622

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071114

A131 Notification of reasons for refusal

Effective date: 20071127

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080325