JP2005251754A - 半導体装置の検査方法及び検査装置 - Google Patents

半導体装置の検査方法及び検査装置 Download PDF

Info

Publication number
JP2005251754A
JP2005251754A JP2005105597A JP2005105597A JP2005251754A JP 2005251754 A JP2005251754 A JP 2005251754A JP 2005105597 A JP2005105597 A JP 2005105597A JP 2005105597 A JP2005105597 A JP 2005105597A JP 2005251754 A JP2005251754 A JP 2005251754A
Authority
JP
Japan
Prior art keywords
electron beam
semiconductor device
image
pattern
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005105597A
Other languages
English (en)
Inventor
Mari Nozoe
真理 野副
Hiroyuki Shinada
博之 品田
Katsuhiro Kuroda
勝広 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005105597A priority Critical patent/JP2005251754A/ja
Publication of JP2005251754A publication Critical patent/JP2005251754A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

【課題】半導体装置回路パターンを加工する際に生ずる微細な凹凸に起因した高周波成分のノイズを除去することにより、欠陥検出感度・検査結果の信頼性を向上する。
【解決手段】半導体装置を加工する際に生じた凹凸に応じて、対物レンズ11の作用により半導体装置28へ照射する電子線の径を変える、あるいは対物レンズ11や試料台14の高さを調整することで半導体装置28上の焦点位置にオフセットをかける。また、画像処理演算部24での画像処理時画素サイズを半導体装置加工面の凹凸に応じて変える。
【選択図】図3

Description

本発明は半導体装置の製造方法に係わり、特に半導体装置のパターン検査技術に関する。
ウエハ上に形成された回路パターンの欠陥を検査する方法については、光学画像を用いて複数のLSIの同種の回路パターンを比較する方法と、電子線像を用いて回路パターンを比較する方法が報告されている。以下にその内容を記す。光学画像を用いた方法では、特開平3-160348号公報、特開平3-167456号公報に記載されているように、基板上の光学照明された領域を時間遅延積分センサで結像し、その画像と予め入力されている設計特性を比較することにより欠陥を検出する方式や、特開昭61-82107号公報に記載されているように、画像取得時の画像劣化をモニタしそれを画像検出時に補正することにより安定した光学画像での比較検査を行う方法が報告されている。電子線を応用するパターンの比較検査装置としては、特開平5-258703号公報に記載されているように、電子線を導電性基板(X線マスク等)に照射し、発生する二次電子・反射電子・透過電子のいずれかを検出し、その信号から形成された画像を比較検査することにより欠陥を自動検出するシステムが報告されている。同様の内容が、J. Vac. Sci. Tech. B, Vol. 9, No.6, pp. 3005 - 3009(1991)、J. Vac. Sci. Tech. B, Vol. 10, No.6, pp. 2511 - 2515(1992)等に報告されている。又、電子線像を用いたパターン検査としては、特開7-231022に連続した試料台上のウエハに電子線を連続照射し、入力した画像を時間遅れの隣接繰り返しパターンの画像と比較検査する方法が記載されている。特開昭59-160948号公報にはウエハ上基準座標と試料台座標のずれを計算し電子線偏向を補正することにより画像歪みを無くし、電子線画像を比較検査する方法が記載されている。他に、特開平4-337235号公報には基準画像とチャージアップレベルを比較することにより欠陥を検出する方式の電子線を用いたパターン検査方法、特開59-13482および特開昭62-161044号公報には基準となるパターン設計データと電子線画像を比較して欠陥を検出する方式のパターン検査方法が記載されている。
特開平3-160348号公報
特開平3-167456号公報
上記従来技術の光学式検査方式を用いて、微細構造の半導体装置の製造過程におけるパターンの欠陥を検査した場合、光学的に透過材質でかつ検査に用いる光学波長と屈折率に依存した光学距離が十分小さいシリコン酸化膜や、感光性レジスト材料等の残渣は検出できず、又、線状で短辺の幅が光学系の分解能以下となるエッチング残りや、微小導通孔の非開口不良の検出が困難であった。これらの不良を検査するため、白色光等に比べ波長が短く空間分解能が高い電子線を利用し、電子線画像を比較する方式の検査技術が検討された。その結果、白色光等では分解能以下で見えなかった誤差要因、すなわち回路パターン形成時に生じた加工面の高周波数成分の凹凸等が、光に比べ分解能の高い電子線で検査することにより顕著に見られるようになった。しかし、電子線像を用いたパターン欠陥検査においてはこの高周波数成分の凹凸がノイズ成分となる。従来の方式で比較検査を行ったところ、ノイズ成分が大きくなったため、誤検出を避けるために、画像信号における欠陥とノイズを弁別するしきい値を変えざるを得ないということを見出した。本発明の目的は、電子線を用いて検査した際に生ずるノイズの影響、すなわち半導体装置加工時に生じた回路パターン加工面の凹凸が電子線像に与える影響を抑え、それによって欠陥検査時の誤検出を低減することにより、欠陥検出の精度を向上することにある。
上記目的を達成するため、本発明に係わる半導体装置の検査方法は、電子線像を形成する際に、その画像の空間分解能を、回路パターン加工面の高周波成分の凹凸と同等あるいはそれ以下に調整することを特徴とするものである。画像の分解能を調整するための手段について以下具体的にに述べる。
第1の手段は、電子線を収束するためのレンズを用いて、試料表面における電子線の径を、回路パターン加工面の高周波成分の凹凸と同等あるいはそれ以上に調整することを特徴としている。電子線像の分解能は、電子線径に依存しているので、電子線径を大きくすることにより分解能を下げることができる。通常半導体装置の加工において、問題となる欠陥のサイズはパターン最小線幅の1/2から1/3程度であり、これ以下のサイズのパターン加工面の凹凸は許容される。従って、電子線像の分解能が問題となる欠陥のサイズと同等あるいはそれよりも多少小さくなるように、例えばパターン最小線幅の1/2から1/3に電子線の径を調整することにより、半導体装置加工時に発生したパターン加工面の凹凸が電子線像に与える影響を低減することが可能となる。
第2の手段は、電子線を収束する際、通常は試料半導体装置の表面で最も電子線の径が小さくなるように焦点合せを行うのに対し、この焦点位置を均等にずらすことにより、実質的に試料に照射される電子線の径を調整することを特徴とする方法である。焦点位置をずらす方法はさらに2つの方法で行うことができる。まず、電子線を収束する際に、レンズの作用により電子線径の最も小さくなる位置を試料表面の上方あるいは下方に一様にずらすことにより、電子線の径を調整する方法である。もう一つの方法は、電子線の収束位置は一定にしておき、試料台を上方あるいは下方に動かし、電子線径の最も小さくなる位置から一様に離れた高さに試料の位置を調整するというものである。いずれの方法においても、焦点位置を調整することにより、実質的に試料に照射される電子線の径を調整することになるので、前述のように、電子線像の分解能が問題となる欠陥のサイズと同等あるいは多少小さくなるように電子線の径を調整することにより、半導体装置加工時に発生したパターン加工面の凹凸が電子線像に与える影響を低減することが可能となる。
第3の手段は、二次電子あるいは反射電子を検出し、電子線像を形成した後、且つ比較処理を行う前に、画像をフィルタリングする際の画素数を調整することにより、画像処理部に記憶された電子線像の分解能を調整する方法である。画像をフィルタリングする際の画素数を広げることにより、電子線像における高周波成分が低減する。従って、通常半導体装置の加工において問題となる欠陥のサイズよりも小さいサイズの画像信号は、フィルタリングにより例えば平均化されるようにフィルタリング時の画素数を設定することにより、半導体装置加工時に発生したパターン加工面の凹凸の画像信号が比較時の電子線画像信号に与える影響を低減することが可能となる。
上記の検査方法を実現するため、本発明に係わる半導体装置の検査装置の構成は、試料から二次電子あるいは反射電子を励起するための電子線源と、電子線を収束するためのレンズと、試料を搭載する試料台と、電子線の走査方向を制御するための偏向器と、試料上電子線の焦点位置をモニタするための光学系と、二次電子あるいは反射電子を検出する検出器と、検出された信号を比較処理する画像処理部を備えた半導体装置の検査装置において、検出した電子線信号に基づき、画像分解能を調整する機能を備えたことを特徴とするものである。画像分解能を調整するための手段として、以下に本発明に係わる半導体装置の検査装置について具体的に説明する。まず、検出した二次電子あるいは反射電子の信号レベルに基づき、レンズに与える電圧を変え、電子線を収束する位置を変える機能を搭載していることを特徴とするものである。また、試料台が上下に駆動する機構を有し、モニタされている合焦点位置に対して試料の高さを一様にずらす機能を有することを特徴とするものである。さらに、画像処理部において、信号レベルに基づき、パラメータとして画像処理時のフィルタリングサイズを変える機能を有することを特徴とするものである。
上記検査方法と上記検査装置を用いて、各種半導体装置に対して適切な電子線径あるいは焦点位置、画像処理のフィルタリングサイズを設定するためには、まず、検査対象となるパターンサイズや検出したい欠陥サイズを設定しておき、本データを参照しながら検査前に予め、電子線径あるいは焦点位置、処理画素サイズを変えて試料半導体装置の二次電子線像あるいは反射電子線像を取り込み、隣接する同一回路パターンの画像を比較し、その画像の差信号レベルがある所定の範囲内となるように上記各種パラメータを設定することにより可能となる。
これらの手段を用いて、製造過程における半導体装置を検査することにより、各々の工程の半導体装置について、プロセス加工によって生じた加工面の凹凸の程度に応じて、この凹凸が検査時の誤検出とならないように適切な検査条件が求められるため、検査結果における誤検出が低減する。これにより、従来問題となっていた検査中に発生する誤検出が低減することから、高精度な検査が可能となる。
本発明によって得られる代表的な効果を以下に簡単に説明する。
(1)被検査半導体装置に電子線を照射し、被検査半導体装置から発生する二次電子あるいは反射電子を検出して画像を形成し比較する検査方法および検査装置において、被検査半導体装置に生じたプロセス加工起因の凹凸の程度に応じて電子線の径を変えることにより、従来技術では誤検出を多発し検査が困難であった電子線像での半導体装置の微細構造におけるパターンの欠陥が誤検出なしで可能となる。
(2)同様に、被検査半導体装置に生じたプロセス加工起因の凹凸の程度に応じて電子線を照射する際の焦点位置を変えることにより、実質上被検査半導体装置表面での電子線の径を変え、従来技術では誤検出を多発し検査が困難であった電子線像での半導体装置の微細構造におけるパターンの欠陥が誤検出なしで可能となる。
(3)記憶装置に取り込んだ被検査半導体装置について、被検査半導体装置に生じたプロセス加工起因の凹凸の程度に応じて、画像処理部においてフィルタリングサイズを変えることにより、従来技術では誤検出を多発し検査が困難であった電子線像での半導体装置の微細構造におけるパターンの欠陥が誤検出なしで可能となる。
(4)上記に述べた効果により、被検査半導体装置のプロセス加工による表面凹凸を誤検出する頻度が低減され、高精度な欠陥検出が可能となる。
(5)上記に述べた効果により、本発明の装置および検査方法を半導体装置に適用することにより、半導体装置の不慮の不良や未知のトラブルを発生即時に検出でき、不良多発を未然に防ぐことが可能となる。
(6)半導体装置の不良が未然に防ぐことが可能になるため、半導体装置の歩留りが向上し、その結果、新製品の開発効率が向上し、且つ製造コストが削減できる。
(7)同時に、上記効果により半導体装置の不良が低減するので、半導体装置の信頼性が向上する。
以下、本発明の実施例の検査方法、および装置の一例について、図面を参照しながら詳細に説明する。
(実施例1)
本発明の第1の実施例を図1〜図11により説明する。
半導体装置の製造プロセスは、図1に示すように多数のパターン形成工程を繰り返している。一つのパターン形成工程は大まかに、成膜、レジスト塗布、感光、現像、エッチング、レジスト除去、洗浄の各ステップにより構成されている。この各ステップによってウエハ上に回路パターンを形成していくのだが、パターンを加工する際に、図2に示すように加工面に凹凸が形成される。例えば感光・現像の工程では、定在波の影響等により加工端面に凹凸1を生ずる場合がある。また、エッチング工程のように膜を削る工程では加工面に生成物が付着したり、表面が滑らかにならず、細かな凹凸2を生ずる場合がある。さらに、スパッタリングやCVD等成膜の工程でも、温度その他の条件により成膜表面に細かな凹凸3を生ずる場合がある。以下、このような凹凸が生じた半導体装置の検査方法について順に記述する。
まず、本発明の検査方法および検査装置は、当該検査工程の試料半導体装置に電子線を照射し、電子線を照射された試料半導体装置から発生した二次電子あるいは反射電子を検出し、画像を形成する。この画像を異なる場所あるいは異なる試料の同一工程同一パターン箇所の画像と比較するとこにより、パターンの形状欠陥を抽出するものである。図3に本方式の検査装置の構成図を示し、検査装置の概要と検査方法を説明する。
検査装置は大別して電子光学系、試料室、制御部、画像処理部より構成されている。電子光学系は電子銃4、電子線引き出し電極5、コンデンサレンズ6、ブランキング用偏向器7、走査偏向器8、絞り10、対物レンズ11により構成されている。試料室は、X−Yステージ13、回転ステージ12、位置モニタ用測長器16、被検査半導体装置高さ測定器15より構成されており、また二次電子検出器9が対物レンズ11の上方にあり,二次電子検出器9の出力信号はプリアンプ20で増幅されAD変換器21によりデジタルデータとなる。画像処理部は画像記憶部22・23、演算部24、欠陥判定部25より構成されている。取り込まれた電子線画像は、モニタ26に表示される。検査装置各部の動作命令および動作条件は、制御部27から入出力され、予め電子線加速電圧・電子線偏向幅・偏向速度・試料台移動速度・検出器の信号取り込みタイミング等々の条件が入力されている。
二次電子線画像の形成方法について以下に記す。引出電極5に電圧を印加して電子銃4から電子線を引き出す。電子線の加速は電子銃に高圧の負の電位を印加することでなされる。これにより,電子線はその電位に相当するエネルギーで試料台14の方向に進み、コンデンサレンズ6で収束され、さらに対物レンズ11により細く絞られX−Yステージ13の上に搭載された被検査半導体装置28に照射される。電子線を被検査半導体装置28に照射している間、発生した二次電子は検出器9にて検出される。検出された直後にAD変換器21にて変換・デジタル化され、画像処理部に伝送される。そして、制御部27から与えられた電子線照射位置の所望の画素サイズに対応した時間毎に、検出信号をその明るさの情報の階調値として記憶部22または23に格納する。これを繰返し、電子線照射位置と二次電子捕獲量の対応を取ることにより、被検査半導体装置12の二次元の二次電子画像を形成する。次に、実際に半導体装置を検査する方法について述べる。
検査を行う前に、検査装置内の試料台14上に設置された被検査半導体装置28のパターンがステージ移動方向と平行あるいは直交となるように、回転ステージ12により回転補正を行う。次に被検査半導体装置28の回路パターン画像より、ウエハ上チップの位置やチップ間の距離、例えばメモリセルのような繰返しパターンの繰返しピッチを予め測定し、制御部27に値を入力する。そして、ウエハ上の被検査チップおよびチップ内の被検査領域をモニタ26の画像から設定する。これが完了したら、被検査半導体装置28の検査領域の一部を実際の検査条件と全く同一条件で画像を取得し、材質や形状に依存した画像の明るさの情報およびそのばらつきの範囲を算出しテーブルにして記憶する。このテーブルを参照して検出すべき欠陥か否かを判定する条件を決定する。
上記方法により、検査領域および欠陥判定条件の設定が完了したら、検査を開始する。検査時には、被検査半導体装置28を搭載したX−Yステージ13は、X方向に連続して一定速度で移動する。この間電子線は、走査偏向器8にてY方向に直線に走査される。このようにして予め設定した被検査半導体装置28の回路パターン領域に電子線を照射し、検査領域の大きさ・形状に適した画像形成が可能になる。電子線を照射している領域あるいは位置については、X−Yステージ13に設けられた位置モニタ用測長器16、X−Yステージ13、回転ステージ12のモータ回転数、走査信号発生器17等をモニタし、それらの情報を補正制御回路19に転送することにより詳細に把握でき、且つ測定された位置ずれを補正するよう制御できる。また,被検査半導体装置28の高さを電子ビーム以外の手段でリアルタイムに測定し、電子ビームを細く絞るための対物レンズ11の焦点距離をダイナミックに補正し、常に被検査領域に焦点のあった電子ビームが照射されるようにする構成とする。本実施例では、反射光の位置の変化を計測する方法の光学式試料高さ測定器15を用いた。このようにして、被検査半導体装置28の二次電子線画像を形成し、次に検査領域について画像の信号処理・比較・欠陥抽出を行う。例えば、ウエハ上のチップ間で比較検査をする場合、チップAの該検査領域についての二次電子画像をまず記憶部22に格納し、演算部24で各種統計量を算出する。次に隣接するチップBの同一箇所・同一回路パターンを記憶部23に記憶しながら同時に、同様に演算部で各種統計処理を施す。これらの処理を施した記憶部22および記憶部23の信号を欠陥判定部25に転送し、比較して差信号を抽出し、既に求めて記憶してある欠陥判定条件を参照して欠陥とそれ以外の信号を分離する。これを繰返し、すべての検査チップ・検査領域について検査し、欠陥を検出するとともにその位置やサイズ等の情報を記憶する。
以上、電子線を用いた半導体装置の検査方法について説明してきたが、既に述べたように電子線はレンズ等の作用により細く絞ることができるため、電子線像では従来の光学画像と比較すると空間分解能が著しく向上し、回路パターンの詳細な構造の情報を得ることができる。そのため、これまでに図2で述べたように、パターン加工面に凹凸が生じた場合、隣接する同一回路パターンと被検査領域の回路パターンとで高周波数成分の微細な形状が一致しない。従って、従来方法で画像を比較すると不一致箇所が多数発生し、それが誤検出として現れるので検査結果の精度が低く、欠陥のみを検出することが困難であった。そのため、本実施例ではレンズ作用により電子線の径をパターン加工面の微小な凹凸よりも大きく、且つ検出したい欠陥サイズよりも小さくなるように調整し、電子線像を取得した。
本実施例では、例としてパターン最小線幅が0.3μmで、且つ表面がポリシリコン膜でラインパターンが形成されたエッチング・レジスト除去終了後の半導体装置を検査について述べる。一般的に、パターン加工において問題となる欠陥のサイズはパターン線幅の1/2から1/3に相当するので、本実施例では欠陥検出サイズを0.1μmと設定した。この際、パターンの側面の凹凸を詳細に観察したところ、凹凸のサイズは問題とする欠陥サイズの1/3程度であった。この半導体装置を、従来のSEMと同様である10nm以下の電子線径の場合と、0.1μmの場合で検査してみた。この際、電子線の径のみを変え、その他の電子線走査幅やX−Yステージの移動速度、また、二次電子像を取り込んだ後の信号処理・比較・欠陥判定を行う際の画素サイズは同一の条件とした。その結果、従来の電子線の径では、パターン加工面の凹凸を誤検出していたが、電子線の径を調整した場合には誤検出はほとんど検出されず、且つ欠陥も見落とすことなく検出された。
図4に被検査半導体装置28における、あるパターン29と、隣接するチップにおいてパターン29と同一箇所にあるパターン30の上面図を示す。パターン29では、パターンショートが発生している。また、パターン29、パターン30とも、表面ポリシリコン膜にグレインを生じているため微小な凹凸があり、またエッチング時にラインパターンの加工端面に凹凸を生じている。図5は、電子線の径を10nmに絞ってパターン29とパターン30の二次電子画像を取り込んだ際の濃淡信号のプロファイル、およびパターン29とパターン30の画像を比較した際の差信号プロファイルを示す。図6は、電子線の径を0.1μmにして同様に二次電子線画像を取り込んだ際のプロファイル、図7は電子線の径を0.3μmにした際の同様のプロファイルである。
図5では、電子線の径をパターンやパターンの凹凸よりも非常に細く絞っているため、表面や側面に凹凸がそのまま画像濃淡信号に反映される。パターン29とパターン30で凹凸の箇所が異なるため、画像の差信号をとると(c)のようになり、パターンエッジ部に細かな、しかし濃淡信号レベルの高い信号が残り、これが誤検出となる。図6では前述の通り、電子線の径を0.1μmに調整した例である。従って、パターンの凹凸のサイズよりも約3倍程度に大きく調整したことになる。パターン29、30の画像濃淡信号プロファイルは、パターンエッジ部の濃淡の変わり目がゆるやかになるものの、高周波成分の信号が減少する。隣接する同一パターン同士で画像のプロファイルはほぼ同じになり、その差信号をとると、パターン間の信号差はなくなり、且つパターン部および欠陥部のコントラストは保たれているために誤検出はなくなるが欠陥は検出される。さらに電子線の径をパターンの凹凸よりもずっと大きく調整し検査した結果が第7図である。パターン表面およびエッジ部の凹凸の影響はなくなったものの、パターン部と下地のコントラストまでが低下してしまい、その結果パターンエッジ部が明確でなくなるため、パターン部分の認識が困難になっている。また、欠陥部と正常部のコントラストも低下するため、欠陥の検出が困難である。
これらの例より、パターン部と下地のコントラストを保ち、且つパターン表面とエッジ部の凹凸と同等あるいは多少大きくなるように電子線の径を調整して電子線像を取り込むことで、誤検出無しに欠陥が検出できるようになる。第3図より、この時の電子光学系の部分を抜粋したものを図8に示す。対物レンズ11に対物レンズ電源18を介して制御部27から条件を入力することにより、電子線の試料半導体装置28表面での径を調整し、上記図5〜図7の各条件を実現している。
これまでに述べた方法と装置を用いて、各種半導体装置に対して適切な電子線径あるいは焦点位置、画像処理のフィルタリングサイズを設定する方法について説明する。まず、検査対象となるパターンサイズや検出したい欠陥サイズをパラメータとして設定しておき、既に記載した欠陥判定基準のデータを参照しながら検査前に予め、電子線径あるいは焦点位置、処理画素サイズを変えて試料半導体装置28の電子線像を取り込み、隣接する同一
回路パターンの画像を比較し、その差画像の信号について、階調をヒストグラムをモニタする。図9にこのヒストグラムを示す。図5にも示したように、電子線像にパターンの凹凸等に起因する高周波成分のノイズが残存している場合には、差信号にもそのノイズ成分が残存するため、階調の高い領域にも低い領域と同様に信号が分布する。これに対し、これまでに述べた検査方法により、電子線像における高周波成分のノイズを低減した場合には、図6にも示したように、差信号の階調が所定レベル以下となり、その結果、ヒストグラムでは階調が低い領域で頻度が高くなる。従って、各種半導体装置の凹凸に対し、電子線径や焦点位置、画像処理フィルタサイズを適切に設定するには、上記方法で取り込んだ画像の差信号階調ヒストグラムより、差信号の階調と頻度がある所定の範囲内となるように各種パラメータを設定することにより可能となる。
このようにして、試料半導体に対して適切な電子線の径を設定し、その設定条件が対応する画像分解能あるいは欠陥検出サイズを求める方法について、図10および図11を用いて説明する。図10は、既知であり且つ複数のパターンサイズのテストパターン31のレイアウトを示している。このテストパターン31は図3にて示した検査装置の試料台14に搭載されており、各パターンの座標は既知である。各種電子線照射条件を設定した後に図10(a)のパターン箇所にステージを移動し、ステージを定速で移動しながらそのパターンの電子線像を取り込む。取り込んだ画像の濃淡信号からパターンのコントラストを求める。予め画像分解能を判定するために、画像信号のコントラストに対して、所定のしきい値を設定してある。パターン(a)のコントラストとしきい値を比較し、しきい値以上となることを確認したら、次のパターン(b)のパターン箇所へ移動する。これを繰り返し、例えば0.2μmではコントラストがしきい値以上であるが0.17μでしきい値に満たない場合には画像の分解能を0.2μmと判定する。
また、図11は、所定の幅のラインパターンに突起・欠けおよび孤立した既知のサイズの欠陥を作り込んだテストパターン32を示している。このテストパターン32も図10のテストパターン31と同様に、検査装置の試料台14に搭載されている。上記の方法と同様に、各種電子線照射条件を設定した後に図11のパターン箇所にステージを移動し、定速で移動しながらテストパターンの電子線像を取り込む。その際、ラインパターンの繰り返しピッチを予め入力しておき、隣接するラインパターン同士の画像を検査時と同じ方法で比較する。その結果欠陥として検出された箇所の座標と、実際に作り込んである欠陥の座標を比較し、検出された欠陥のサイズとその検出率を画面に表示する。これらの方法により、各種電子線照射条件を設定・変更しても、その結果画像分解能や欠陥検出サイズへの影響を定量的に把握でき、検査の精度を向上することができる。
(実施例2)
本発明の第2の実施例を図12より説明する。検査装置の詳細な構成は、第1の実施例と同じなので、ここでは省略する。
被検査半導体装置にプロセス加工を施した際に、パターン加工面に凹凸が生じた場合、第1の実施例では、対物レンズ11の作用により被検査半導体装置28に照射される電子線の径を変える方法を採用していた。これに対し、本実施例では合焦点位置を試料表面からずらすという方法を採用している。予め電子光学系を設計する際に、各種電子線照射条件を設定した際の合焦点位置におけるレンズ条件、焦点位置をずらすレンズ条件を記憶しておく。試料の高さ位置は、被検査半導体装置28の表面に例えば白色光を照射し、その反射光の位置の変化を計測する方法によりリアルタイムに測定している。通常は、常に試料表面が合焦点となるよう、電子線の合焦点位置をこの試料高さ測定結果から対物レンズの条件へフィードバックしているが、合焦点の条件ではプロセス加工起因の凹凸を誤検出してしまう場合には、例えば合焦点位置から0.5μmずらした高さに焦点が合うように、対物レンズ条件を補正する。焦点位置をずらすことにより、実質的に被検査半導体装置28に照射される電子線の径が変わるため、実施例1で得たのと同様の効果を得ることができる。また、焦点位置を調整するのに、対物レンズの作用ではなく、試料台14の高さを調整する方法を用いることもできる。本実施例では焦点位置は白色光等を照射し、その反射光をの位置変化を検出することにより、リアルタイムに計測している。この場合には、対物レンズ11の条件は固定とし、被検査半導体装置28が設置された試料台14の高さ方向の位置を移動することにより常に試料表面高さが合焦点位置から一定となるようにオフセット高さを設定している。この方法にて、上記対物レンズ条件を変える場合と同様に合焦点位置から焦点を均一にずらした高さになるように、試料台14の位置を調整する。その結果、実質的に被検査半導体装置28に照射される電子線の径が変わるため、実施例1で得たのと同様の効果を得ることができる。このようにして被検査半導体装置28におけるパターン表面あるいは加工面の凹凸に対応して、誤検出が発生せず且つ欠陥検出性能を損なわない焦点位置あるいは試料高さを求める。適切な条件を求めるために、実施例1で述べた方法と同様で、焦点位置を変えて被検査半導体装置を検査し、取り込んだ2つの箇所における同一回路パターンの二次電子像およびその濃淡信号のプロファイル、さらに2箇所の回路パターンの画像を比較した際の差信号プロファイルより、パターン部と下地のコントラストを保ち、且つ誤検出が無くなる条件を求める。また、上記内容にて適切な焦点位置条件を設定した後に、それに対応する画像分解能および欠陥検出サイズを求める方法についても、第1の実施例と同様であるのでここでは省略する。
(実施例3)
本発明の第3の実施例を図13を用いて説明する。本実施例では、図3の検査装置を用いて、被検査半導体装置の二次電子線画像と取り込み、記憶装置に画像情報を記憶した後に、各種データ処理する際のフィルタサイズを変えることにより、パターン表面や加工面の凹凸の影響を低減するという方法である。図13は、取り込んだ画像に対する設定画素サイズと、各画素サイズにおける比較画像の信号レベルを示している。被検査半導体装置に生じたパターン表面や加工面の凹凸に対して、設定画素サイズが非常に小さいと、隣接する同一パターン箇所の画像と比較する際に、凹凸が生じている箇所が異なるため、誤検出の原因となる。そこで、第1の実施例にて述べた方法で試料半導体装置の二次電子線画像を取り込み記憶した後に、各種統計量を算出したりフィルタリングする際の画素サイズを試料半導体の凹凸のサイズと同等はそれ以上のサイズに設定する。具体的には、例えば画像取り込み時の画素サイズが0.1μmであるのに対し、処理時にまず周囲1画素ずつを含んだ3×3画素の平均値をとり、その画素のデータとする。これにより、画像をあたかも0.3μmの電子線で取り込んだと同じ効果を得ることができる。欠陥判定比較を行う際の画素サイズは、取り込み時と同じ0.1μmにしてあるので、欠陥検出サイズには影響を与えない。このようにして、上記第1の実施例と同様の方法で、被検査半導体装置におけるプロセス加工起因のパターン表面あるいは加工面の凹凸に応じて画像データ処理前に見かけ上の画素サイズを大きくし、欠陥判定時には所定の画素サイズで処理することにより、パターン表面あるいは加工面の凹凸による誤検出を無くし、高感度で欠陥を検出できるようになる。本実施例についても、その後の分解能・欠陥検出感度の評価方法は第1の実施例と同様であるのでここでは省略する。
以上、本発明の代表的な装置の構成および、被検査半導体装置の表面あるいは加工面の凹凸の程度に応じて試料に照射する電子線の径や試料の高さを調整し、その条件にて二次電子像を形成し、その画像から半導体装置上の欠陥を自動的に検出する検査方法および検査装置の一部の実施例について説明してきたが、本発明の範囲を逸脱しない範囲で、請求項目に掲げた複数の特徴を組み合わせた検査方法および検査装置についても同様である。
半導体装置の製造プロセスフローを示す図 製造過程途中における半導体装置のパターン加工面の模式図 電子線を用いた半導体装置の自動欠陥検査装置の構成図 半導体装置回路パターンの上面図 回路パターンの濃淡信号のプロファイルを示す図 回路パターンの濃淡信号のプロファイルを示す図 回路パターンの濃淡信号のプロファイルを示す図 電子線径を調整することを示す図 電子線像の差画像の階調を示すヒストグラム図 画像分解能評価用テストパターンの上面図と検出信号図 欠陥検出感度評価用テストパターンの上面図と検出結果の分布図 焦点位置と試料高さを調整する方式を示す図 電子線画像処理時のフィルタリングサイズを説明する図
符号の説明
1……露光工程等で発生したパターンの凹凸
2……エッチング工程等で発生したパターンの凹凸
3……成膜等で発生したパターン表面の凹凸
4……電子銃
5……引き出し電極
6……コンデンサレンズ
7……ブランキング用偏向器
8……走査偏向器
9……二次電子検出器
10…絞り
11…対物レンズ
12…回転ステージ
13…X−Yステージ
14…試料台
15…光学式試料高さ測定器
16…位置モニタ用測長器
17…走査信号発生器
18…対物レンズ電源
19…補正制御回路
20…アンプ
21…AD変換器
22…画像記憶部
23…画像記憶部
24…演算部
25…欠陥判定部
26…モニタ
27…制御部
28…被検査半導体装置
29…回路パターン
30…隣接チップの回路パターン
31…テストパターン
32…テストパターン。

Claims (11)

  1. 電子線を試料に照射し、形成された電子線像を比較することにより回路パターンの欠陥を検出することを特徴とする半導体装置の検査方法であって、検出した電子線信号のうち所定範囲の周波数成分の信号レベルに基づき電子線像の分解能を変えることを特徴とする半導体装置の検査方法。
  2. 前記半導体装置の検査方法において、試料に照射する電子線の径を変えることにより、電子線像の分解能を変えることを特徴とする請求項1の半導体装置の検査方法。
  3. 前記半導体の検査方法において、レンズの作用により電子線の径を変えることを特徴とする請求項2の半導体装置の検査方法。
  4. 前記半導体装置の検査方法において、試料に照射する電子線の焦点位置を均等にずらすことにより、電子線像の分解能を変えることを特徴とする請求項1の半導体装置の検査方法。
  5. 前記半導体装置の検査方法において、レンズの作用により焦点位置を均等にずらすことを特徴とする請求項4の半導体装置の検査方法。
  6. 前記半導体装置の検査方法において、試料台の位置を変えることにより焦点位置を均等にずらすことを特徴とする請求項4の半導体装置の検査方法。
  7. 前記半導体装置の検査方法において、電子線像を比較処理する際のフィルタサイズを変えることにより、画像処理時の電子線像の分解能を変えることを特徴とする請求項1の半導体装置の検査方法。
  8. 試料から二次電子あるいは反射電子を励起する電子線源と、電子線を収束するためのレンズと、前記試料を載置する試料台と、電子線の走査方向を制御するための偏向器と、試料上電子線の焦点位置をモニタするための光学系と、前記二次電子あるいは反射電子を検出する検出器と、検出された信号を比較処理する画像処理部を備えた半導体装置の検査装置であって、検出した電子線信号に基づき、所定範囲の周波数成分の信号レベルを調整するために、画像分解能を調整する機能を備えた半導体装置の検査装置。
  9. 前記半導体装置の検査装置において、レンズにより電子線集光位置を変えることにより分解能を調整する機能を有することを特徴とする請求項8の半導体装置の検査装置。
  10. 前記半導体装置の検査装置において、試料台を上下に移動することにより、分解能を調整する機能を有することを特徴とする請求項8の半導体装置の検査装置。
  11. 前記半導体装置の検査装置において、画像処理部における信号処理のフィルタサイズを変えることにより、画像処理時の画像分解能を調整する機能を有することを特徴とする請求項8の半導体装置の検査装置。
JP2005105597A 2005-04-01 2005-04-01 半導体装置の検査方法及び検査装置 Withdrawn JP2005251754A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005105597A JP2005251754A (ja) 2005-04-01 2005-04-01 半導体装置の検査方法及び検査装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005105597A JP2005251754A (ja) 2005-04-01 2005-04-01 半導体装置の検査方法及び検査装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8104910A Division JPH09288989A (ja) 1996-04-25 1996-04-25 半導体装置の検査方法及び検査装置

Publications (1)

Publication Number Publication Date
JP2005251754A true JP2005251754A (ja) 2005-09-15

Family

ID=35031988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005105597A Withdrawn JP2005251754A (ja) 2005-04-01 2005-04-01 半導体装置の検査方法及び検査装置

Country Status (1)

Country Link
JP (1) JP2005251754A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8086022B2 (en) 2007-07-25 2011-12-27 Hitachi High-Technologies Corporation Electron beam inspection system and an image generation method for an electron beam inspection system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8086022B2 (en) 2007-07-25 2011-12-27 Hitachi High-Technologies Corporation Electron beam inspection system and an image generation method for an electron beam inspection system

Similar Documents

Publication Publication Date Title
US6703850B2 (en) Method of inspecting circuit pattern and inspecting instrument
US7019294B2 (en) Inspection method and apparatus using charged particle beam
US7211797B2 (en) Inspection method and inspection system using charged particle beam
JP2006332296A (ja) 電子ビーム応用回路パターン検査における焦点補正方法
US20050082476A1 (en) Electron beam inspection method and apparatus and semiconductor manufacturing method and its manufacturing line utilizing the same
JP3841024B2 (ja) 立体形状測定装置及びエッチングの条件出し方法
CN111316173A (zh) 使用装置检验系统的叠加误差的测量
JP6255448B2 (ja) 荷電粒子線装置の装置条件設定方法、および荷電粒子線装置
JP2003215060A (ja) パターン検査方法及び検査装置
KR102102018B1 (ko) 다이별 검사를 위한 오토포커스 시스템 및 방법
JP4235284B2 (ja) パターン検査装置およびその方法
JP2012059984A (ja) マスク検査装置及び露光用マスク製造装置
TW201913230A (zh) 圖案測定方法、及圖案測定裝置
JP5174863B2 (ja) 画像取得条件設定装置、及びコンピュータプログラム
JP4078257B2 (ja) 試料寸法測定方法及び荷電粒子線装置
US7075074B2 (en) Electron beam inspection apparatus and method for testing an operation state of an electron beam inspection apparatus
JP6088337B2 (ja) パターン検査方法及びパターン検査装置
JP6033325B2 (ja) 半導体検査装置、及び荷電粒子線を用いた検査方法
JPH09288989A (ja) 半導体装置の検査方法及び検査装置
JP2005251754A (ja) 半導体装置の検査方法及び検査装置
JP2005251753A (ja) 半導体装置の検査方法及び検査装置
JP3765988B2 (ja) 電子線式外観検査装置
JP3876668B2 (ja) 電子線を用いた外観検査装置
JPH05215696A (ja) 欠陥検査方法および装置
JP4924931B2 (ja) ステンシルマスクの検査方法および装置

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060421

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060427

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060427