JP2005249405A - Hydrogen detector - Google Patents

Hydrogen detector Download PDF

Info

Publication number
JP2005249405A
JP2005249405A JP2004056194A JP2004056194A JP2005249405A JP 2005249405 A JP2005249405 A JP 2005249405A JP 2004056194 A JP2004056194 A JP 2004056194A JP 2004056194 A JP2004056194 A JP 2004056194A JP 2005249405 A JP2005249405 A JP 2005249405A
Authority
JP
Japan
Prior art keywords
hydrogen
detection
change
temperature
detection elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004056194A
Other languages
Japanese (ja)
Inventor
Takeaki Shimada
毅昭 島田
Yoshio Nuitani
芳雄 縫谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004056194A priority Critical patent/JP2005249405A/en
Publication of JP2005249405A publication Critical patent/JP2005249405A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen detector constituted so as to use a hydrogen occluding alloy, having high selectivity with respect to hydrogen to easily defect the concentration of hydrogen gas contained in gas. <P>SOLUTION: First and second detection elements 11 and 12 comprising the hydrogen occluding alloy which are mutually different in the temperature change characteristics of hydrogen occluding pressure are set so that a state change (e.g., volume expansion, generation of heat, weight increase and the like), caused at the occlusion of hydrogen or a state change (e.g., volume contraction, absorption of heat, weight lowering and the like) becomes different from each other. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、気体中の水素濃度を検出する水素検出装置に関する。   The present invention relates to a hydrogen detector that detects a hydrogen concentration in a gas.

従来、例えば、水素吸蔵合金を利用して水素を検出する装置として、基板の一方の面に水素吸蔵合金を固着し他方の面に歪ゲージを取り付け、水素吸蔵合金が水素を吸蔵した際の体積膨張により生じる基板の歪みを歪ゲージで検出し、検出した歪の大きさに基づいて水素吸蔵量を検知する水素検出装置(例えば、特許文献1参照)が知られている。
特開平10−73530号公報
Conventionally, for example, as a device for detecting hydrogen using a hydrogen storage alloy, the volume when hydrogen storage alloy has occluded hydrogen by attaching a hydrogen storage alloy to one surface of the substrate and attaching a strain gauge to the other surface. 2. Description of the Related Art A hydrogen detection device (see, for example, Patent Document 1) that detects strain of a substrate caused by expansion with a strain gauge and detects a hydrogen storage amount based on the detected strain magnitude is known.
Japanese Patent Laid-Open No. 10-73530

しかしながら、上記従来技術の一例に係る水素検出装置においては、例えば水素吸蔵合金を利用した機器(例えば、水素吸蔵合金タンク)に併設することにより、該機器に貯蔵された相対的に高濃度の水素量を検出することには適しているが、ガス中の水素濃度を相対的に広範囲の濃度範囲に亘って精度良く検出することは困難であるという問題がある。
本発明は上記事情に鑑みてなされたもので、水素に対する選択性が高い水素吸蔵合金を利用して、気体中に含まれる水素ガスの濃度を容易に精度良く検出することが可能な水素検出装置を提供することを目的とする。
However, in the hydrogen detection device according to the above-described prior art, for example, by providing a hydrogen storage alloy (for example, a hydrogen storage alloy tank) together with a hydrogen storage alloy, a relatively high concentration hydrogen stored in the device is provided. Although suitable for detecting the amount, there is a problem that it is difficult to accurately detect the hydrogen concentration in the gas over a relatively wide concentration range.
The present invention has been made in view of the above circumstances, and a hydrogen detector capable of easily and accurately detecting the concentration of hydrogen gas contained in a gas by using a hydrogen storage alloy having high selectivity for hydrogen. The purpose is to provide.

上記課題を解決して係る目的を達成するために、請求項1に記載の発明の水素検出装置は、同一温度における水素吸蔵圧が互いに異なる水素吸蔵合金からなる複数の検出素子(例えば、実施の形態での第1および第2検出素子11,12)と、前記各検出素子が水素を吸蔵した際の状態変化を検出する検出手段(例えば、実施の形態での水晶振動子14)と、総ての前記検出素子をほぼ同一温度に制御する温度制御手段(例えば、実施の形態でのペルチェ素子16)とを備え、前記各検出素子は、水素を吸蔵した際に互いに異なる状態変化(例えば、実施の形態での重量変化)を発生させることを特徴としている。   In order to solve the above problems and achieve the object, the hydrogen detector of the invention according to claim 1 includes a plurality of detection elements (for example, implementation elements) made of hydrogen storage alloys having different hydrogen storage pressures at the same temperature. First and second detection elements 11 and 12) in the form, detection means for detecting a change in state when each of the detection elements occludes hydrogen (for example, the crystal resonator 14 in the embodiment), Temperature detecting means (for example, the Peltier element 16 in the embodiment) for controlling all the detecting elements to substantially the same temperature, and each detecting element has a different state change (for example, when hydrogen is occluded) (for example, (Weight change in the embodiment) is generated.

上記構成の水素検出装置によれば、検出素子を構成する水素吸蔵合金は、この水素検出装置の雰囲気の水素分圧が温度に応じた所定の水素吸蔵圧よりも低いときには水素の吸蔵が抑制され、雰囲気の水素分圧が温度に応じた所定の水素吸蔵圧に達すると水素吸蔵を開始する。そして、水素吸蔵合金は水素を吸蔵すると体積や温度や重量等の状態量が変化するので、この変化を検出手段によって検出することにより、検出素子が水素を吸蔵したことを検知することができる。そして、温度制御手段によって、複数の検出素子の温度を総てほぼ同一温度に制御すると、各検出素子を構成する水素吸蔵合金が互いに水素吸蔵圧の温度変化特性を異にすることから、どの検出素子が水素を吸蔵しているかによって、水素検出装置の雰囲気の水素濃度範囲を容易に精度良く検知することができる。
しかも、各検出素子毎に水素を吸蔵した際に発生する状態変化が互いに異なる状態変化となるように設定されていることで、例えば何れかの検出素子に劣化等の異常が生じて水素の吸蔵が困難となった場合には、正常状態においては発生しない状態変化が検出されることになり、劣化等の異常状態の発生の有無に加えて、異常が生じた検出素子がどの検出素子であるかを検知することができる。
According to the hydrogen detection device having the above configuration, the hydrogen storage alloy constituting the detection element suppresses hydrogen storage when the hydrogen partial pressure in the atmosphere of the hydrogen detection device is lower than a predetermined hydrogen storage pressure corresponding to the temperature. When the hydrogen partial pressure in the atmosphere reaches a predetermined hydrogen storage pressure corresponding to the temperature, hydrogen storage is started. When the hydrogen storage alloy stores hydrogen, state quantities such as volume, temperature, and weight change. Therefore, the detection element can detect that the detection element has stored hydrogen by detecting this change. When the temperature of the plurality of detection elements is controlled to be almost the same temperature by the temperature control means, the hydrogen storage alloys constituting each detection element have different temperature change characteristics of the hydrogen storage pressure. Depending on whether the element occludes hydrogen, the hydrogen concentration range of the atmosphere of the hydrogen detector can be detected easily and accurately.
In addition, since the state change that occurs when hydrogen is occluded for each detection element is set to be different from each other, for example, an abnormality such as deterioration occurs in any one of the detection elements, so that hydrogen is occluded. When it becomes difficult to detect a change in the state that does not occur in the normal state, in addition to the occurrence of an abnormal state such as deterioration, which detection element is the detection element in which the abnormality has occurred Can be detected.

請求項1に記載の発明の水素検出装置によれば、各検出素子の劣化等の異常状態の発生有無を容易に検知することができる。   According to the hydrogen detector of the first aspect of the present invention, it is possible to easily detect whether or not an abnormal state such as deterioration of each detection element has occurred.

以下、本発明の水素検出装置の一実施形態について添付図面を参照しながら説明する。
本実施の形態による水素検出装置10は、例えば図1に示すように、複数(例えば、2つ)の第1および第2検出素子11,12と、一対の電極13a,13bにより両側から挟み込まれた水晶振動子14と、内部温度センサ15と、ペルチェ素子16と、伝熱材17と、撥水フィルタ18と、外部温度センサ19と、制御装置20とを備えて構成されている。
そして、検査対象ガスが導入される開口部を有する箱型の筐体21の内部がガス検出室として形成され、この筐体21の内部に、各検出素子11,12と、一対の電極13a,13bを備える水晶振動子14と、内部温度センサ15と、ペルチェ素子16と、伝熱材17と、撥水フィルタ18とが収容され、筐体21の外部に外部温度センサ19と、制御装置20とが配置されている。
Hereinafter, an embodiment of the hydrogen detector of the present invention will be described with reference to the accompanying drawings.
A hydrogen detection apparatus 10 according to the present embodiment is sandwiched from both sides by a plurality (for example, two) of first and second detection elements 11 and 12 and a pair of electrodes 13a and 13b, as shown in FIG. The crystal resonator 14, the internal temperature sensor 15, the Peltier element 16, the heat transfer material 17, the water repellent filter 18, the external temperature sensor 19, and the control device 20 are configured.
And the inside of the box-shaped housing | casing 21 which has the opening part into which test object gas is introduce | transduced is formed as a gas detection chamber, and inside this housing | casing 21, each detection element 11 and 12 and a pair of electrode 13a, The quartz crystal resonator 14 provided with 13b, the internal temperature sensor 15, the Peltier element 16, the heat transfer material 17, and the water repellent filter 18 are accommodated, and the external temperature sensor 19 and the control device 20 are provided outside the housing 21. And are arranged.

第1および第2検出素子11,12は、互いに水素吸蔵圧の温度変化特性を異にする水素吸蔵合金からなり、所定の作動温度(例えば、100℃等)での第1検出素子11の水素吸蔵圧(例えば、0.005atm)は、第2検出素子12の水素吸蔵圧(例えば、0.01atm)よりも低い値に設定されており、これらの水素吸蔵圧は、大気中における水素分圧と水素濃度との対応関係から、互いに異なる水素濃度に対応するように設定されている。(例えば、水素分圧0.005atm、0.01atmはそれぞれ、水素濃度0.5%、1.0%に相当する。)
さらに、第1および第2検出素子11,12は、水素を吸蔵した際に発生する状態変化(例えば、体積膨張、発熱、重量増大等)あるいは吸蔵した水素を放出する際に発生する状態変化(例えば、体積収縮、吸熱、重量低下等)が互いに異なる状態変化となるように設定されている。例えば、検査対象ガスの水素分圧が0.005atm以上で且つ0.01atm未満の状態で第1検出素子11が水素を吸蔵した場合に重量が増分Δmだけ増大するのに対して、検査対象ガスの水素分圧が0.01atm以上の状態で第2検出素子12が水素を吸蔵した場合の重量は3倍の増分3Δmだけ増大するようになっている。
そして、第1および第2検出素子11,12は、例えば焼結、圧着、溶射、接着等の耐熱性を有する適宜の接合方法により水晶振動子14の一方の電極13aの表面上に接合されている。
The first and second detection elements 11 and 12 are made of hydrogen storage alloys having different temperature change characteristics of the hydrogen storage pressure, and the hydrogen of the first detection element 11 at a predetermined operating temperature (for example, 100 ° C.). The occlusion pressure (for example, 0.005 atm) is set to a value lower than the hydrogen occlusion pressure (for example, 0.01 atm) of the second detection element 12, and these hydrogen occlusion pressures are the hydrogen partial pressure in the atmosphere. Is set to correspond to different hydrogen concentrations. (For example, hydrogen partial pressures of 0.005 atm and 0.01 atm correspond to hydrogen concentrations of 0.5% and 1.0%, respectively.)
Furthermore, the first and second detection elements 11 and 12 change state (for example, volume expansion, heat generation, weight increase, etc.) that occurs when hydrogen is occluded, or change in state that occurs when occluded hydrogen is released (for example, For example, volume shrinkage, endotherm, weight reduction, etc.) are set to be different from each other. For example, when the first detection element 11 occludes hydrogen when the hydrogen partial pressure of the gas to be inspected is 0.005 atm or more and less than 0.01 atm, the weight increases by an increment Δm, whereas the gas to be inspected is increased. When the second detection element 12 occludes hydrogen in a state where the hydrogen partial pressure is 0.01 atm or more, the weight increases by a three-fold increment 3Δm.
The first and second detection elements 11 and 12 are bonded onto the surface of the one electrode 13a of the crystal resonator 14 by an appropriate bonding method having heat resistance such as sintering, pressure bonding, thermal spraying, and adhesion. Yes.

略板状の水晶振動子14は、この水晶振動子14を励振させるための一対の電極13a,13bにより厚さ方向の両側から挟み込まれ、一方の電極13aの表面上に接合された第1および第2検出素子11,12の状態変化に応じた水晶振動子14の共振周波数の変化が電気信号として一対の電極13a,13bを介して制御装置20に出力される。   The substantially plate-shaped crystal resonator 14 is sandwiched from both sides in the thickness direction by a pair of electrodes 13a and 13b for exciting the crystal resonator 14, and is bonded to the surface of one electrode 13a. A change in the resonance frequency of the crystal resonator 14 according to a change in the state of the second detection elements 11 and 12 is output as an electric signal to the control device 20 via the pair of electrodes 13a and 13b.

水晶振動子14の他方の電極13bの表面上には、例えばサーミスタ等の内部温度センサ15が配置され、さらに、この内部温度センサ15と、筐体21の内壁面上に配置された伝熱材17とによって両側から挟み込まれるようにして、各検出素子11,12を略同一温度に保持するための温度保持装置としてのペルチェ素子16が配置されている。
ペルチェ素子16は、制御装置20による通電制御に応じて吸熱または放熱することで、各検出素子11,12の温度を所定の作動温度に設定する。そして、内部温度センサ15により検出された内部温度T1の検出値は制御装置20に出力されている。
An internal temperature sensor 15 such as a thermistor is disposed on the surface of the other electrode 13 b of the crystal resonator 14. Further, the internal temperature sensor 15 and a heat transfer material disposed on the inner wall surface of the housing 21. 17, a Peltier element 16 is disposed as a temperature holding device for holding the detection elements 11 and 12 at substantially the same temperature.
The Peltier element 16 sets the temperature of each of the detection elements 11 and 12 to a predetermined operating temperature by absorbing or radiating heat according to energization control by the control device 20. The detected value of the internal temperature T 1 detected by the internal temperature sensor 15 is output to the control device 20.

なお、伝熱材17が配置された筐体21の外面上には複数の放熱フィン22,…,22が備えられている。
また、筐体21の開口部には、検査対象ガスを透過可能であって、検査対象ガス中に含まれる水分の透過を規制する撥水フィルタ18が備えられている。
また、筐体21外部の外部温度センサ19により検出された外部温度T2の検出値は制御装置20に出力されている。
A plurality of heat radiation fins 22,..., 22 are provided on the outer surface of the housing 21 in which the heat transfer material 17 is disposed.
In addition, the opening of the housing 21 is provided with a water repellent filter 18 that can transmit the gas to be inspected and restricts the permeation of moisture contained in the gas to be inspected.
Further, the detected value of the external temperature T2 detected by the external temperature sensor 19 outside the housing 21 is output to the control device 20.

本実施の形態による水素検出装置10は上記構成を備えており、次に、この水素検出装置10の動作について説明する。
各検出素子11,12を構成する水素吸蔵合金は、ガス検出室とされる筐体21内部の雰囲気の水素分圧が温度に応じた各水素吸蔵圧よりも低いときには水素の吸蔵が抑制され、水素分圧が温度に応じた各水素吸蔵圧に達すると水素の吸蔵を開始する。そして、水素吸蔵合金は水素を吸蔵すると重量が増大するので、水晶振動子14の共振周波数の変化が制御装置20によって検出される。
ここで、各検出素子11,12の温度を所定の作動温度となるように制御すると、各検出素子11,12を構成する水素吸蔵合金は互いに水素吸蔵圧の温度変化特性を異にすることから、何れの検出素子11,12が水素を吸蔵しているかに応じて、検出される水晶振動子14の共振周波数の変化が異なり、この共振周波数の変化に基づき、雰囲気の水素濃度がどの濃度範囲にあるかを検知することができる。
The hydrogen detection device 10 according to the present embodiment has the above-described configuration. Next, the operation of the hydrogen detection device 10 will be described.
The hydrogen storage alloy constituting each of the detection elements 11 and 12 suppresses the storage of hydrogen when the hydrogen partial pressure of the atmosphere inside the casing 21 serving as the gas detection chamber is lower than each hydrogen storage pressure corresponding to the temperature, When the hydrogen partial pressure reaches each hydrogen storage pressure corresponding to the temperature, storage of hydrogen starts. Since the hydrogen storage alloy increases in weight when storing hydrogen, a change in the resonance frequency of the crystal resonator 14 is detected by the control device 20.
Here, if the temperature of each of the detection elements 11 and 12 is controlled to be a predetermined operating temperature, the hydrogen storage alloys constituting each of the detection elements 11 and 12 have different temperature change characteristics of the hydrogen storage pressure. Depending on which of the detection elements 11 and 12 occludes hydrogen, the change in the resonance frequency of the crystal resonator 14 to be detected differs, and based on this change in the resonance frequency, the concentration range of the hydrogen concentration in the atmosphere Can be detected.

例えば図2に示すように、各検出素子11,12の温度が所定の作動温度(例えば、100°C等)に保持されている状態において、雰囲気の水素分圧が各検出素子11,12の水素吸蔵圧(例えば、0.005atm,0.01atm)に満たない場合には、各検出素子11,12は水素を吸蔵せず、水素検出装置10の重量変化はゼロであるから水晶振動子14の共振周波数の変化はゼロとなって、雰囲気の水素濃度は0.5%未満であると検知される。   For example, as shown in FIG. 2, in a state where the temperature of each of the detection elements 11 and 12 is maintained at a predetermined operating temperature (for example, 100 ° C. or the like), the hydrogen partial pressure of the atmosphere is When the hydrogen storage pressure (for example, 0.005 atm, 0.01 atm) is not satisfied, each of the detection elements 11 and 12 does not store hydrogen, and the weight change of the hydrogen detection device 10 is zero, so that the crystal resonator 14 It is detected that the change in the resonance frequency is zero and the hydrogen concentration in the atmosphere is less than 0.5%.

そして、雰囲気の水素分圧が第1検出素子11の水素吸蔵圧(例えば、0.005atm)以上で且つ第2検出素子12の水素吸蔵圧(例えば、0.01atm)未満の場合には、第1検出素子11のみが水素を吸蔵し、水素検出装置10の重量が増分Δmだけ増大する。この重量増大に応じた水晶振動子14の共振周波数の変化が検出されることで、雰囲気の水素濃度は0.5%以上1.0%未満であると検知される。   When the hydrogen partial pressure in the atmosphere is equal to or higher than the hydrogen storage pressure (for example, 0.005 atm) of the first detection element 11 and less than the hydrogen storage pressure (for example, 0.01 atm) of the second detection element 12, Only one detection element 11 occludes hydrogen, and the weight of the hydrogen detection device 10 increases by an increment Δm. By detecting a change in the resonance frequency of the crystal resonator 14 according to the increase in weight, it is detected that the hydrogen concentration in the atmosphere is 0.5% or more and less than 1.0%.

さらに、雰囲気の水素分圧が第2検出素子12の水素吸蔵圧(例えば、0.01atm)以上の場合には、第1検出素子11に加えて第2検出素子12が水素を吸蔵し、水素検出装置10の重量が、さらに増分3Δmだけ増大することで、重量変化の積算量は増分4Δmとなる。この重量増大に応じた水晶振動子14の共振周波数の変化が検出されることで、雰囲気の水素濃度は1.0%以上であると検知される。   Further, when the hydrogen partial pressure in the atmosphere is equal to or higher than the hydrogen occlusion pressure (for example, 0.01 atm) of the second detection element 12, the second detection element 12 occludes hydrogen in addition to the first detection element 11. As the weight of the detection device 10 further increases by an increment of 3Δm, the integrated amount of the weight change becomes an increment of 4Δm. By detecting a change in the resonance frequency of the crystal resonator 14 according to the increase in weight, it is detected that the hydrogen concentration in the atmosphere is 1.0% or more.

ここで、第1および第2検出素子11,12は、水素を吸蔵した際に発生する重量増大の各増分が互いに異なる値(つまり、Δmと3Δm)となるように設定されていることから、水晶振動子14の共振周波数の変化を検出することによって、各検出素子11,12の状態、より具体的には、第1検出素子12が正常であるか否かを検知することができる。
例えば、第1検出素子11に劣化等の異常が生じて水素の吸蔵が困難となった場合には、雰囲気の水素分圧が第1検出素子11の水素吸蔵圧(例えば、0.005atm)以上で且つ第2検出素子12の水素吸蔵圧(例えば、0.01atm)未満となった場合であっても、各検出素子11,12は水素を吸蔵せず、水素検出装置10の重量変化はゼロであるから水晶振動子14の共振周波数の変化はゼロとなって、雰囲気の水素濃度は0.5%未満であると検知される。この後、雰囲気の水素分圧が第2検出素子12の水素吸蔵圧(例えば、0.01atm)以上となって、第2検出素子12が水素を吸蔵し、水素検出装置10の重量が増分3Δmだけ増大すると、例えば図2示す破線のように、重量変化の積算量が、第1検出素子11の正常状態においてはあり得ない値である増分3Δmとなる。この重量増大に応じた水晶振動子14の共振周波数の変化が検出されることで、第1検出素子11に劣化等の異常が生じていると検知される。
Here, the first and second detection elements 11 and 12 are set so that the increments of the weight increase generated when hydrogen is occluded are different from each other (that is, Δm and 3Δm). By detecting a change in the resonance frequency of the crystal resonator 14, it is possible to detect the state of each of the detection elements 11 and 12, more specifically, whether or not the first detection element 12 is normal.
For example, when an abnormality such as deterioration occurs in the first detection element 11 and it becomes difficult to occlude hydrogen, the hydrogen partial pressure of the atmosphere is equal to or higher than the hydrogen occlusion pressure of the first detection element 11 (for example, 0.005 atm). Even when the hydrogen storage pressure of the second detection element 12 is less than 0.01 atm (for example, 0.01 atm), the detection elements 11 and 12 do not store hydrogen, and the weight change of the hydrogen detection device 10 is zero. Therefore, the change in the resonance frequency of the crystal unit 14 becomes zero, and the hydrogen concentration in the atmosphere is detected to be less than 0.5%. Thereafter, the hydrogen partial pressure in the atmosphere becomes equal to or higher than the hydrogen occlusion pressure (for example, 0.01 atm) of the second detection element 12, the second detection element 12 occludes hydrogen, and the weight of the hydrogen detection device 10 increases by 3Δm. For example, as shown by a broken line in FIG. 2, the integrated amount of weight change becomes an increment 3Δm, which is a value that is impossible in the normal state of the first detection element 11. By detecting a change in the resonance frequency of the crystal resonator 14 according to the increase in weight, it is detected that an abnormality such as deterioration has occurred in the first detection element 11.

なお、制御装置20により通電制御が行われるペルチェ素子16は、各検出素子11,12の温度を所定の作動温度に設定することに加えて、内部温度T1を外部温度T2よりも高く設定する。
例えば図3に示すステップS01において、制御装置20は内部温度T1が外部温度T2よりも高いか否かを判定する。
この判定結果が「NO」の場合には、ステップS02に進み、ペルチェ素子16が発熱状態となるように通電を行う、または、吸熱状態のペルチェ素子16への通電を停止して、内部温度T1の上昇を促し、一連の処理を終了する。
一方、この判定結果が「YES」の場合には、ステップS03に進み、ペルチェ素子16に対する通電状態を維持して、一連の処理を終了する。
このように、内部温度T1を外部温度T2よりも高く設定することによって、外部から筐体21内部のガス検出室内に流入した検査対象ガス中の水分がガス検出室内で凝結することを防止し、例えば凝結水の生成によって水素検出装置10の重量増大が生じてしまうことを防止することができる。
Note that the Peltier element 16 that is energized and controlled by the control device 20 sets the internal temperature T1 higher than the external temperature T2 in addition to setting the temperature of each of the detection elements 11 and 12 to a predetermined operating temperature.
For example, in step S01 shown in FIG. 3, the control device 20 determines whether or not the internal temperature T1 is higher than the external temperature T2.
If the determination result is “NO”, the process proceeds to step S02, and energization is performed so that the Peltier element 16 is in a heat generation state, or energization to the endothermic Peltier element 16 is stopped, and the internal temperature T1 To end the series of processing.
On the other hand, if this determination is “YES”, the flow proceeds to step S 03, the energized state of the Peltier element 16 is maintained, and the series of processes is terminated.
In this way, by setting the internal temperature T1 higher than the external temperature T2, it is possible to prevent moisture in the gas to be inspected flowing from the outside into the gas detection chamber inside the housing 21 from condensing in the gas detection chamber, For example, it is possible to prevent an increase in the weight of the hydrogen detector 10 due to the generation of condensed water.

上述したように、本実施の形態による水素検出装置10によれば、水素検出装置10の雰囲気の水素濃度範囲を容易に精度良く検知することができることに加えて、第1および第2検出素子11,12は、水素を吸蔵した際に発生する状態変化(例えば、体積膨張、発熱、重量増大等)あるいは吸蔵した水素を放出する際に発生する状態変化(例えば、体積収縮、吸熱、重量低下等)が互いに異なる状態変化となるように設定されていることから、例えば第1検出素子11に劣化等の異常が生じて水素の吸蔵が困難となった場合には、正常状態においては発生しない状態変化が検出されることになり、劣化等の異常状態の発生の有無に加えて、異常が生じた検出素子がどの検出素子であるかを検知することができる。   As described above, according to the hydrogen detection device 10 according to the present embodiment, in addition to being able to easily and accurately detect the hydrogen concentration range of the atmosphere of the hydrogen detection device 10, the first and second detection elements 11. , 12 are state changes that occur when hydrogen is occluded (eg, volume expansion, heat generation, weight increase, etc.) or state changes that occur when occluded hydrogen is released (eg, volume shrinkage, heat absorption, weight loss, etc.) ) Are set to be in different state changes, for example, when abnormality such as deterioration occurs in the first detection element 11 and it becomes difficult to occlude hydrogen, a state that does not occur in a normal state A change is detected, and in addition to the presence or absence of an abnormal state such as deterioration, it is possible to detect which detection element is the detection element in which the abnormality has occurred.

なお、上述した実施の形態においては、2つの第1および第2検出素子11,12を備えるとしたが、これに限定されず、2つ以上であればいくつであってもよく、検出素子の数が多いほど、検知可能な濃度範囲を詳細に設定することができる。
また、上述した実施の形態においては、水晶振動子14により各検出素子11、12の重量変化を検出するとしたが、これに限定されず、例えば歪ゲージ等によって体積変化を検出してもよいし、温度センサにより温度変化を検出してもよい。
In the above-described embodiment, the two first and second detection elements 11 and 12 are provided. However, the present invention is not limited to this. As the number increases, the detectable density range can be set in detail.
In the above-described embodiment, the change in the weight of each of the detection elements 11 and 12 is detected by the crystal resonator 14. However, the present invention is not limited to this. For example, the change in volume may be detected by a strain gauge or the like. The temperature change may be detected by a temperature sensor.

本発明の一実施形態に係る水素検出装置の構成図である。It is a block diagram of the hydrogen detection apparatus which concerns on one Embodiment of this invention. 図1に示す水素検出装置の重量変化と水素濃度との関係の一例を示すグラフ図である。It is a graph which shows an example of the relationship between the weight change of the hydrogen detection apparatus shown in FIG. 1, and hydrogen concentration. 図1に示す水素検出装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the hydrogen detection apparatus shown in FIG.

符号の説明Explanation of symbols

10 水素検出装置
11 第1検出素子
12 第2検出素子
14 水晶振動子(検出手段)
16 ペルチェ素子(温度制御手段)

DESCRIPTION OF SYMBOLS 10 Hydrogen detection apparatus 11 1st detection element 12 2nd detection element 14 Crystal oscillator (detection means)
16 Peltier element (temperature control means)

Claims (1)

同一温度における水素吸蔵圧が互いに異なる水素吸蔵合金からなる複数の検出素子と、
前記各検出素子が水素を吸蔵した際の状態変化を検出する検出手段と、
総ての前記検出素子をほぼ同一温度に制御する温度制御手段とを備え、
前記各検出素子は、水素を吸蔵した際に互いに異なる状態変化を発生させることを特徴とする水素検出装置。

A plurality of detection elements made of hydrogen storage alloys having different hydrogen storage pressures at the same temperature;
Detection means for detecting a change in state when each of the detection elements occludes hydrogen;
Temperature control means for controlling all the detection elements to substantially the same temperature,
Each of the detection elements generates a different state change when hydrogen is occluded.

JP2004056194A 2004-03-01 2004-03-01 Hydrogen detector Withdrawn JP2005249405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004056194A JP2005249405A (en) 2004-03-01 2004-03-01 Hydrogen detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004056194A JP2005249405A (en) 2004-03-01 2004-03-01 Hydrogen detector

Publications (1)

Publication Number Publication Date
JP2005249405A true JP2005249405A (en) 2005-09-15

Family

ID=35030032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004056194A Withdrawn JP2005249405A (en) 2004-03-01 2004-03-01 Hydrogen detector

Country Status (1)

Country Link
JP (1) JP2005249405A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101550290B1 (en) * 2014-05-19 2015-09-07 한국표준과학연구원 Hydrogen leakage inspection System and method using Quartz crystal microbalance
JP2020159998A (en) * 2019-03-28 2020-10-01 株式会社豊田中央研究所 Hydrogen amount sensor, hydrogen amount measurement device, and hydrogen storage and release system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101550290B1 (en) * 2014-05-19 2015-09-07 한국표준과학연구원 Hydrogen leakage inspection System and method using Quartz crystal microbalance
JP2020159998A (en) * 2019-03-28 2020-10-01 株式会社豊田中央研究所 Hydrogen amount sensor, hydrogen amount measurement device, and hydrogen storage and release system

Similar Documents

Publication Publication Date Title
US7988351B2 (en) Device comprising a piezoelectric resonator element, method for producing the same and method for outputting a signal depending on a resonant frequency
US20160282213A1 (en) Sediment state estimating apparatus, sediment state estimating method, and sediment state estimating system
US20190242289A1 (en) Heat insulating pipe system and processing system
JP2016148525A (en) Airtightness inspection device
JP5926519B2 (en) Gas detector
WO2017010075A1 (en) Method and device for determining service life of double pipe for liquefied hydrogen
JP2010019732A (en) Gas sensor
JP2005249405A (en) Hydrogen detector
JP4164019B2 (en) Combustible gas detector
JP6355448B2 (en) Gas sensor
JP3746778B2 (en) Gas sensor control device
US20120204623A1 (en) Gas detector
JP2604228B2 (en) Hydrogen gas sensor
JP6748000B2 (en) Pressure sensor
JP6347976B2 (en) Hydrogen gas sensor and hydrogen gas detection method
JP2005257394A (en) Hydrogen detection device
JP4919609B2 (en) Power supply device using fuel cell
JP2005308404A (en) Hydrogen detector
JPH03272444A (en) Hydrogen gas sensor
JP2008128635A (en) Electronic cooled-type semiconductor x-ray detector
RU2334979C1 (en) Device for measurement of hydrogen content in liquids and gases
JP4852283B2 (en) Gas sensor
JP2005308403A (en) Hydrogen detector
JP2004336053A (en) Cap sealing type micro sensor and method for checking hermeticity of the same
JP4859423B2 (en) Vacuum processing apparatus and impurity monitoring method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070501