JP6347976B2 - Hydrogen gas sensor and hydrogen gas detection method - Google Patents

Hydrogen gas sensor and hydrogen gas detection method Download PDF

Info

Publication number
JP6347976B2
JP6347976B2 JP2014072567A JP2014072567A JP6347976B2 JP 6347976 B2 JP6347976 B2 JP 6347976B2 JP 2014072567 A JP2014072567 A JP 2014072567A JP 2014072567 A JP2014072567 A JP 2014072567A JP 6347976 B2 JP6347976 B2 JP 6347976B2
Authority
JP
Japan
Prior art keywords
gas
hydrogen gas
detection
hydrogen
partial pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014072567A
Other languages
Japanese (ja)
Other versions
JP2015194407A (en
Inventor
鈴木 健吾
健吾 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Cosmos Electric Co Ltd
Original Assignee
New Cosmos Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Cosmos Electric Co Ltd filed Critical New Cosmos Electric Co Ltd
Priority to JP2014072567A priority Critical patent/JP6347976B2/en
Publication of JP2015194407A publication Critical patent/JP2015194407A/en
Application granted granted Critical
Publication of JP6347976B2 publication Critical patent/JP6347976B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ガス感応部と、前記ガス感応部に接続された検知電極とを備えたガス検知素子と、前記検知電極が検知した前記ガス感応部の抵抗値の変化に基づいて、水素ガスを検知する検知回路を備えた水素ガスセンサ及び水素ガス検知方法に関する。   The present invention relates to a gas detection element comprising a gas sensitive part, a detection electrode connected to the gas sensitive part, and hydrogen gas based on a change in resistance value of the gas sensitive part detected by the detection electrode. The present invention relates to a hydrogen gas sensor provided with a detection circuit for detection and a hydrogen gas detection method.

従来より、水素は、常温で無色・無味・無臭で、ガスの中でも最も軽い気体であり、拡散性・還元性に優れる等の性質を持つことから、半導体産業、エレクトロニクス産業、化学産業等の分野や、宇宙ロケットの燃料用等の宇宙工学の分野で広く使用されている。
このような分野において、水素は、効率の観点から液化させた状態で輸送、貯蔵することが行われている。しかし、液体水素の沸点は−250℃以下と低いため、周囲環境の熱により容易に気化してしまう。これを防止するために、液体水素のタンクは、液体水素の容器の周囲に、真空断熱層を備えた構造となっている。また、さらに真空断熱層の外殻に窒素もしくは液体窒素が充填された三重殻構造のタンクもある。
Conventionally, hydrogen is colorless, tasteless and odorless at room temperature, and is the lightest gas among gases, and has excellent properties such as diffusibility and reducibility, so it can be used in fields such as the semiconductor industry, electronics industry, and chemical industry. It is widely used in the field of space engineering such as for space rocket fuel.
In such a field, hydrogen is transported and stored in a liquefied state from the viewpoint of efficiency. However, since the boiling point of liquid hydrogen is as low as −250 ° C. or less, it is easily vaporized by the heat of the surrounding environment. In order to prevent this, the liquid hydrogen tank has a structure including a vacuum heat insulating layer around the liquid hydrogen container. There is also a triple-shell tank in which the outer shell of the vacuum heat insulating layer is filled with nitrogen or liquid nitrogen.

水素は空気よりも熱伝導率が約7倍と高く、熱を伝え易いので、前記真空断熱層に前記容器内の液体水素が微量でも漏洩したら、気化した水素によって前記真空断熱層の断熱性能が低下し、前記容器に外部の熱が伝導されて、前記容器内の液体水素が気化(ボイルオフ)する虞がある。
このような虞を回避するために、前記真空断熱層への水素の漏洩を早期に検知して、水素の漏洩があった場合には前記真空断熱層の排気を行う等の手段を早急に講じる必要がある。
Hydrogen has a thermal conductivity about 7 times higher than that of air and is easy to transfer heat. Therefore, if even a small amount of liquid hydrogen leaks into the vacuum heat insulation layer, the heat insulation performance of the vacuum heat insulation layer is reduced by the vaporized hydrogen. There is a risk that external heat is conducted to the container and liquid hydrogen in the container is vaporized (boiled off).
In order to avoid such a risk, the leakage of hydrogen to the vacuum insulation layer is detected at an early stage, and if there is a leakage of hydrogen, measures such as exhausting the vacuum insulation layer immediately are taken. There is a need.

一方、前記真空断熱層にタンク外の空気等が流入した場合の対策はそれほど急を要さない。なぜなら前記容器の外壁は極低温であり、外部から微量の空気の流入があったとしても、前記外壁で液化されるので、前記真空断熱層の断熱性能が急激に低下することはないからである。   On the other hand, the countermeasure when air outside the tank flows into the vacuum heat insulation layer is not so urgent. This is because the outer wall of the container is at a very low temperature, and even if a small amount of air flows in from the outside, it is liquefied by the outer wall, so that the heat insulating performance of the vacuum heat insulating layer does not rapidly decrease. .

液体水素のボイルオフの危険を早期に回避する観点から前記真空断熱層内で、すなわち真空中で水素ガスを選択的に検知する技術が求められている。
また、宇宙輸送分野や有人宇宙飛行分野でも安全性を高めるために宇宙空間で、すなわち真空中で水素ガスを選択的に検知する技術が求められている。
なお、これらの用途では、大気圧から1×10-3Torrの圧力範囲で水素ガスを選択的に検知することを求められている。
From the viewpoint of avoiding the danger of boil-off of liquid hydrogen at an early stage, a technique for selectively detecting hydrogen gas in the vacuum heat insulating layer, that is, in a vacuum, is required.
Further, in the space transportation field and the manned space flight field, a technique for selectively detecting hydrogen gas in outer space, that is, in vacuum, is required in order to enhance safety.
In these applications, it is required to selectively detect hydrogen gas in a pressure range from atmospheric pressure to 1 × 10 −3 Torr.

一般的なガスセンサとしては、接触燃焼式ガスセンサ、半導体式ガスセンサ、MOSFET型ガスセンサ等がある。しかし、これらのガスセンサは、素子の表面での水素ガスのような還元性ガスの酸化反応を利用する原理であるため、真空中、すなわち低酸素分圧の環境下では機能しない。
その他のガスセンサとして、超音波式ガスセンサ、気体熱伝導式ガスセンサ、紫外線レーザーを光源に用いてラマン散乱を利用する方式のガスセンサがある。しかし、超音波式ガスセンサは、真空中では超音波が伝播しない。気体熱伝導式ガスセンサは、0.1Torr以下の圧力範囲では、気体分子の平均自由行程が素子サイズよりも大きくなってしまい、気体分子による素子の熱移動効率が低下してしまう。紫外線レーザーを光源に用いてラマン散乱を利用する方式のものでは、真空中は分子密度が低く、散乱強度が低下してしまう。つまり、いずれも真空中での使用に適したものではない。
Common gas sensors include a catalytic combustion type gas sensor, a semiconductor type gas sensor, a MOSFET type gas sensor, and the like. However, these gas sensors are based on the principle of utilizing an oxidation reaction of a reducing gas such as hydrogen gas on the surface of the element, and therefore do not function in a vacuum, that is, in a low oxygen partial pressure environment.
As other gas sensors, there are an ultrasonic gas sensor, a gas heat conduction gas sensor, and a gas sensor using Raman scattering using an ultraviolet laser as a light source. However, the ultrasonic gas sensor does not propagate ultrasonic waves in a vacuum. In the gas heat conduction type gas sensor, in the pressure range of 0.1 Torr or less, the mean free path of gas molecules becomes larger than the element size, and the heat transfer efficiency of the elements due to the gas molecules decreases. In a system using an ultraviolet laser as a light source and utilizing Raman scattering, the molecular density is low in vacuum and the scattering intensity is reduced. That is, none is suitable for use in a vacuum.

一方、真空中の気体分子(ガス)を検知するものとして真空計がある。
真空計は、機械的な現象に基づいて圧力を測定する隔膜式真空計等、気体の輸送現象に基づいて圧力を測定するピラニ真空計、熱電対式真空計等、気体の電離現象に基づいて圧力を測定するペニング真空計、電離真空計、質量分析計等と、圧力を測定する原理によって分類されており、各真空計は、それぞれの原理に基づいて計測可能な圧力範囲が限定され、用途・目的に応じて使い分けられている。なお、各真空計の原理と特徴は一般的に良く知られた技術であるため、先行技術文献は記載しない。
On the other hand, there is a vacuum gauge for detecting gas molecules (gas) in vacuum.
Vacuum gauges are based on gas ionization phenomena, such as diaphragm vacuum gauges that measure pressure based on mechanical phenomena, Pirani vacuum gauges that measure pressure based on gas transport phenomena, thermocouple vacuum gauges, etc. It is classified according to the principle of measuring pressure, such as Penning vacuum gauge, ionization vacuum gauge, mass spectrometer, etc. that measure pressure, each vacuum gauge is limited in the pressure range that can be measured based on the respective principle,・ Used properly according to purpose. Since the principle and characteristics of each vacuum gauge are generally well-known techniques, prior art documents are not described.

しかし、これらの真空計は気相中のガス分子の密度を捕らえてはいるが、質量分析計を除けばガスの種類を区別して検知するものではない。また、質量分析計は、使用できる圧力範囲が、1×10-5Torr以下の高真空の圧力範囲に限定される。 However, these vacuum gauges capture the density of gas molecules in the gas phase, but they do not detect the type of gas separately except for a mass spectrometer. Further, the usable pressure range of the mass spectrometer is limited to a high vacuum pressure range of 1 × 10 −5 Torr or less.

以上説明のように、1台でさまざまな圧力範囲において水素ガスを選択的に検知できるセンサは存在しない。   As described above, there is no sensor that can selectively detect hydrogen gas in various pressure ranges with a single unit.

本発明は、上記課題に鑑みてなされたものであり、単純な構造でありながら、圧力に依存せずにさまざまな圧力範囲で、水素ガスを高感度に選択的に検知可能な水素ガスセンサ及び水素ガス検知方法を提供することを目的とする。   The present invention has been made in view of the above problems, and has a simple structure and a hydrogen gas sensor and hydrogen that can selectively detect hydrogen gas with high sensitivity in various pressure ranges without depending on pressure. An object is to provide a gas detection method.

上記課題を解決するため、本発明による水素ガスセンサの第一の特徴構成は、ガス感応部と、前記ガス感応部に接続された検知電極とを備えたガス検知素子と、前記検知電極が検知した前記ガス感応部の抵抗値の変化に基づいて、酸素分圧が一定である検知空間で水素ガスを検知する検知回路を備えた水素ガスセンサであって、前記ガス感応部は、酸化物イオン伝導性と電子伝導性の両方を備える金属酸化物のみで構成され、前記検知回路は、前記酸素分圧と水素分圧の分圧比の変化に応じて変化する前記ガス感応部の抵抗値の変化に基づいて前記水素ガスを検知する検知部を備えている点にある。   In order to solve the above problems, a first characteristic configuration of a hydrogen gas sensor according to the present invention is a gas sensing element including a gas sensitive part and a sensing electrode connected to the gas sensitive part, and the sensing electrode senses A hydrogen gas sensor comprising a detection circuit for detecting hydrogen gas in a detection space in which an oxygen partial pressure is constant based on a change in the resistance value of the gas sensitive portion, wherein the gas sensitive portion has oxide ion conductivity. The detection circuit is based on a change in the resistance value of the gas sensitive part that changes in accordance with a change in the partial pressure ratio between the oxygen partial pressure and the hydrogen partial pressure. And a detector for detecting the hydrogen gas.

発明者の鋭意研究によって、酸化セリウムやイットリア安定化ジルコニアのような、酸化物イオン伝導性と電子伝導性の両方の性質を持つ混合伝導性の金属酸化物と被検知ガスである水素ガスとの間では、前記金属酸化物のバルク中の格子酸素が水素ガスに供給されるバルク制御型の反応が進行し、前記金属酸化物の抵抗値が低抵抗の状態となる特性が見出された。   Through inventor's diligent research, mixed conductive metal oxides such as cerium oxide and yttria-stabilized zirconia, which have both oxide ion conductivity and electron conductivity properties, and hydrogen gas as the gas to be detected In the meantime, it was found that a bulk control type reaction in which lattice oxygen in the bulk of the metal oxide is supplied to hydrogen gas proceeds, and the resistance value of the metal oxide is in a low resistance state.

酸化物イオン伝導性と電子伝導性の両方の性質を持つ混合伝導性の金属酸化物の一例である酸化セリウムは、不定比化合物であり、周囲の酸素濃度(分圧)に応じて結晶格子内の酸素を吸蔵・放出する特性を持ち、検知空間中に酸素を放出することで生じる酸素空孔が酸化物イオンの移動を促して、電子伝導性が変化する。   Cerium oxide, an example of a mixed-conducting metal oxide that has both oxide ion conductivity and electron conductivity, is a non-stoichiometric compound, and it is in the crystal lattice depending on the surrounding oxygen concentration (partial pressure). The oxygen vacancies generated by releasing oxygen into the detection space promote the movement of oxide ions and change the electron conductivity.

このとき、検知空間に水素ガスのような還元性の高い物質が存在すると、水素ガスの吸着によって酸化セリウムの電荷移動が容易になって電子伝導性が飛躍的に変化する。酸化セリウムの表面に水素ガスが吸着すると水素ガスと酸化セリウムの結晶格子内の酸素空孔が酸素原子を引き合うことで見かけ上酸素空孔が増加して、電子の移動が容易となるからである。   At this time, if a highly reducible substance such as hydrogen gas exists in the detection space, the charge transfer of cerium oxide is facilitated by the adsorption of the hydrogen gas, and the electron conductivity changes drastically. This is because when hydrogen gas is adsorbed on the surface of cerium oxide, oxygen vacancies in the crystal lattice of hydrogen gas and cerium oxide attract oxygen atoms, which apparently increases the oxygen vacancies and facilitates the movement of electrons. .

このように、酸化セリウムのように酸化物イオン伝導性と電子伝導性の両方の性質を持つ混合伝導性の金属酸化物は、水素ガスとの接触によって生じた酸化物イオンの移動が電子伝導性に反映されるので、ガス検知素子のガス感応部として都合がよい。   In this way, mixed oxide metal oxides that have both oxide ion conductivity and electron conductivity properties, such as cerium oxide, have electronic conductivity due to the movement of oxide ions caused by contact with hydrogen gas. Therefore, it is convenient as a gas sensitive part of the gas detection element.

つまり、前記金属酸化物のみを成分としてガス感応部を構成したガス検知素子に検知回路を接続し、前記検知回路に備えた検知部で、酸素分圧と水素分圧の分圧比の変化に応じて変化する前記ガス感応部の抵抗値の変化をモニタすることで、検知空間の水素ガスを検知することができる。
以上のように、単純な構造でありながら、水素ガスを高感度に選択的に検知可能な水素ガスセンサが実現できる。
That is, a detection circuit is connected to a gas detection element that constitutes a gas sensitive part using only the metal oxide as a component, and the detection part provided in the detection circuit responds to a change in the partial pressure ratio of oxygen partial pressure and hydrogen partial pressure. By monitoring the change in the resistance value of the gas sensitive part that changes in this manner, the hydrogen gas in the detection space can be detected.
As described above, a hydrogen gas sensor capable of selectively detecting hydrogen gas with high sensitivity can be realized with a simple structure.

同第二の特徴構成は、前記検知回路は、予め前記分圧比に対応する水素ガス濃度テーブルが格納された濃度記憶部と、前記分圧比に基づいて検知した水素ガスの濃度を算出する濃度算出部を備えている点にある。   The second characteristic configuration is that the detection circuit calculates a concentration of hydrogen gas detected based on the concentration storage unit in which a hydrogen gas concentration table corresponding to the partial pressure ratio is stored in advance, and the partial pressure ratio. The point is that it has a part.

一定の分圧で酸素が存在する検知空間での、水素分圧比に対する抵抗値の傾きは、酸素分圧比の影響を受ける。つまり、抵抗値と、水素分圧/酸素分圧との間には比例関係がある。従って、濃度記憶部に、予め前記分圧比に対応する水素ガス濃度テーブルを持っておくことで、前記ガス感応部の抵抗値の変化から水素ガス濃度を算出することができる。   The slope of the resistance value relative to the hydrogen partial pressure ratio in the detection space where oxygen is present at a constant partial pressure is affected by the oxygen partial pressure ratio. That is, there is a proportional relationship between the resistance value and the hydrogen partial pressure / oxygen partial pressure. Accordingly, the hydrogen gas concentration can be calculated from the change in the resistance value of the gas sensitive unit by previously having a hydrogen gas concentration table corresponding to the partial pressure ratio in the concentration storage unit.

本発明による水素ガス検知方法の特徴構成は、酸素分圧が一定である検知空間で水素ガスを検知する水素ガス検知方法であって、前記検知空間に酸化物イオン伝導性と電子伝導性の両方を備える金属酸化物のみで構成されたガス感応部と前記ガス感応部に接続された検知電極とを備えたガス検知素子の、前記検知電極が検知した前記ガス感応部の抵抗値を検知する工程と、前記抵抗値の変化に基づいて、水素ガスを検知する工程を備えている点にあり、上記ガス検知方法によれば、圧力に依存せずにさまざまな圧力範囲において水素ガスを選択的に検知できるようになった。   A characteristic configuration of the hydrogen gas detection method according to the present invention is a hydrogen gas detection method for detecting hydrogen gas in a detection space where the oxygen partial pressure is constant, and both the oxide ion conductivity and the electron conductivity are detected in the detection space. Detecting a resistance value of the gas sensitive part detected by the detection electrode of a gas detection element comprising a gas sensitive part comprising only a metal oxide and a detection electrode connected to the gas sensitive part And a step of detecting hydrogen gas based on the change in the resistance value. According to the gas detection method, hydrogen gas is selectively selected in various pressure ranges without depending on pressure. It became possible to detect.

ガス検知素子の説明図Illustration of gas detection element 水素ガスセンサの説明図Illustration of hydrogen gas sensor ヒータ制御回路の説明図Explanatory diagram of heater control circuit 真空中のセンサ温度とセンサ抵抗値との関係を示すグラフGraph showing the relationship between sensor temperature and sensor resistance in vacuum 気圧とヒータ電流値及びヒータ温度との関係を示すグラフGraph showing the relationship between air pressure, heater current value and heater temperature 実験装置の説明図Explanatory drawing of experimental equipment 各気体の気圧とセンサ抵抗との関係を示すグラフGraph showing the relationship between atmospheric pressure and sensor resistance of each gas 各気圧における水素分圧とセンサ抵抗値との関係を示すグラフGraph showing the relationship between hydrogen partial pressure and sensor resistance at each atmospheric pressure 各酸素分圧における水素分圧とセンサ抵抗値との関係を示すグラフGraph showing the relationship between hydrogen partial pressure and sensor resistance at each oxygen partial pressure 各酸素分圧における水素分圧と酸素分圧の分圧比とセンサ抵抗値との関係を示すグラフThe graph which shows the relationship between the partial pressure ratio of hydrogen partial pressure and oxygen partial pressure, and sensor resistance value in each oxygen partial pressure 大気圧下で酸素濃度が異なる場合の水素濃度とセンサ抵抗値との関係を示すグラフGraph showing the relationship between hydrogen concentration and sensor resistance when oxygen concentration is different under atmospheric pressure

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明による水素ガスセンサ100が備えるガス検知素子1の概略図である。
ガス検知素子1は、絶縁基板3の上面に形成された一対の検知電極4a、4bと、検知電極4a、4bを被覆するように設けられた酸化物イオン伝導性と電子伝導性の両方を備える金属酸化物の一例である酸化セリウムのみを成分として構成されるガス感応層2と、絶縁基板3の下面には薄膜ヒータ5を備え、検知電極4が検知したガス感応層2の抵抗値の変化に基づいて、被検知ガスとしての水素ガスを検知するものである。
FIG. 1 is a schematic view of a gas detection element 1 provided in a hydrogen gas sensor 100 according to the present invention.
The gas detection element 1 includes a pair of detection electrodes 4a and 4b formed on the upper surface of the insulating substrate 3, and both oxide ion conductivity and electron conductivity provided so as to cover the detection electrodes 4a and 4b. A gas sensitive layer 2 composed only of cerium oxide, which is an example of a metal oxide, and a thin film heater 5 on the lower surface of the insulating substrate 3, and a change in the resistance value of the gas sensitive layer 2 detected by the sensing electrode 4 Based on the above, hydrogen gas as a gas to be detected is detected.

絶縁基板3は、従来の基板型のガス検知素子に用いられるものが好ましく適用でき、その大きさ、形状等は特に限定されない。また、絶縁基板3の材質は、絶縁体であればよく、例えば、アルミナ、シリカ、ガラス等が適用できる。中でもアルミナを絶縁基板3として用いることは、その表面は完全な平滑ではなく、ナノオーダーの凹凸を有するため、アンカー効果により検知電極4a、4bや薄膜ヒータ5との接合を強固にすることができ、好ましい。   The insulating substrate 3 can be preferably applied to those used in conventional substrate type gas detection elements, and the size, shape, etc. are not particularly limited. The material of the insulating substrate 3 may be an insulating material, and for example, alumina, silica, glass, etc. can be applied. Among these, the use of alumina as the insulating substrate 3 is because the surface is not completely smooth and has nano-order irregularities, and therefore, the bonding with the detection electrodes 4a and 4b and the thin film heater 5 can be strengthened by the anchor effect. ,preferable.

検知電極4a、4bは、従来のガス検知素子に用いられるものが好ましく適用できる。検知電極4a、4bの形状は特に限定されない。図1には一対の櫛型検知電極4a、4bを設けた例を図示したが、これ以外にも平行平板型、螺旋型等の任意の形状を採用することができる。また、検知電極4a、4bの材質についても、特に制限されるものではなく、例えば、白金や金等の貴金属、白金パラジウム合金等を蒸着等によって設けることができる。特に白金は非常に耐久性に優れた材料であり、検知電極4a、4bに好ましく適用することができる。   As the detection electrodes 4a and 4b, those used in conventional gas detection elements can be preferably applied. The shape of the detection electrodes 4a and 4b is not particularly limited. Although FIG. 1 shows an example in which a pair of comb-shaped detection electrodes 4a and 4b is provided, other shapes such as a parallel plate type and a spiral type can be adopted. The material of the detection electrodes 4a and 4b is not particularly limited, and for example, a noble metal such as platinum or gold, a platinum palladium alloy, or the like can be provided by vapor deposition or the like. In particular, platinum is an extremely durable material and can be preferably applied to the detection electrodes 4a and 4b.

本実施形態において、一対の検知電極4a、4bの間の電極間距離は、5から100μmとされる。ガス感応層2を構成する酸化セリウムは、高抵抗な材料であるので、従来のガス検知素子1に比べて電極間距離が短く設定されている。   In the present embodiment, the inter-electrode distance between the pair of detection electrodes 4a and 4b is 5 to 100 μm. Since cerium oxide constituting the gas sensitive layer 2 is a high resistance material, the distance between the electrodes is set shorter than that of the conventional gas sensing element 1.

ガス感応層2は、酸化セリウムのみを成分として構成され、一対の検知電極4a、4bを被覆するように設けられている。なお、ガス感応層2は、酸化物イオン伝導性と電子伝導性の両方の性質を持つ混合伝導性の金属酸化物であればよく、例えばイットリア安定化ジルコニアのみを成分として構成してもよい。   The gas sensitive layer 2 is composed of only cerium oxide as a component, and is provided so as to cover the pair of detection electrodes 4a and 4b. The gas sensitive layer 2 may be a mixed conductive metal oxide having both the properties of oxide ion conductivity and electron conductivity. For example, only yttria-stabilized zirconia may be used as a component.

ガス感応層2の厚みは、10から100μmの範囲に設定されている。ガス感応層2の厚みが薄い方が、水素ガスとガス感応層2を構成する金属酸化物との間の反応に伴うガス感応層2の抵抗値の変化が、より検知電極に近い位置で起こるため、水素ガスに対する感度を高くすることができるが、ガス感応層2の厚みを10μmより薄くしすぎると、均一な膜形成が困難となる。一方、ガス感応層2の厚みを100μmより厚くすると、膜中の内部応力の偏在と加熱ストレスによりクラックなどが発生しやすくなり、ガス感応層2内での導電性が低下するという問題が生じ得る虞がある。従って、ガス感応層の厚みを10から100μmとすることにより、感度及び耐久性のいずれをも向上させることができる。   The thickness of the gas sensitive layer 2 is set in the range of 10 to 100 μm. When the thickness of the gas sensitive layer 2 is smaller, a change in the resistance value of the gas sensitive layer 2 due to the reaction between hydrogen gas and the metal oxide constituting the gas sensitive layer 2 occurs at a position closer to the detection electrode. For this reason, the sensitivity to hydrogen gas can be increased, but if the thickness of the gas sensitive layer 2 is made thinner than 10 μm, uniform film formation becomes difficult. On the other hand, if the thickness of the gas sensitive layer 2 is greater than 100 μm, cracks and the like are likely to occur due to uneven distribution of internal stress in the film and heating stress, and the conductivity in the gas sensitive layer 2 may be reduced. There is a fear. Therefore, by setting the thickness of the gas sensitive layer to 10 to 100 μm, both sensitivity and durability can be improved.

本実施形態では、ガス検知素子1は、アルミナセラミックス製の絶縁基板3の上面に白金薄膜製の櫛型検知電極4a、4bを、下面に薄膜ヒータ5をスパッタ法で成膜し、検知電極4a、4b上に酸化セリウムを塗布・焼結することで一体的に製造される。
このように製造されたガス検知素子1は小型・低消費電力であり、同一空間にガス検知素子1を複数備える冗長設計が可能となる。例えば、複数のガス検知素子1のうち、一つをメインのガス検知素子1とし、他をメインのガス検知素子1の健全性を評価するために用いることができる。また、このようなガス検知素子1を真空断熱層等の真空中に設置する場合は、ガス検知素子1の故障時の取替えが困難であるため、ガス検知素子1を、予めスペアとして複数個設置することもできる。
In the present embodiment, the gas detection element 1 is formed by forming a platinum thin film comb-shaped detection electrodes 4a and 4b on the upper surface of an alumina ceramic insulating substrate 3 and forming a thin film heater 5 on the lower surface by sputtering. 4b is integrally manufactured by applying and sintering cerium oxide on 4b.
The gas detection element 1 manufactured in this way is small and has low power consumption, and a redundant design including a plurality of gas detection elements 1 in the same space is possible. For example, one of the plurality of gas detection elements 1 can be used as the main gas detection element 1 and the other can be used to evaluate the soundness of the main gas detection element 1. In addition, when installing such a gas detection element 1 in a vacuum such as a vacuum heat insulating layer, it is difficult to replace the gas detection element 1 when a failure occurs. Therefore, a plurality of gas detection elements 1 are installed in advance as spares. You can also

酸化物イオン伝導性と電子伝導性の両方を備える金属酸化物である酸化セリウムは、不定比化合物であり、周囲の酸素濃度(分圧)に応じて結晶格子内の酸素を吸蔵・放出する特性を持ち、検知空間中に酸素を放出することで生じる酸素空孔が酸化物イオンの移動を促して、電子伝導性が変化する。
このとき、検知空間に水素ガスのような還元性の高い物質が存在した場合、ガス感応層2に水素ガスが到達すると酸化セリウムの電荷移動が容易になって電子伝導性が飛躍的に変化する。
Cerium oxide, a metal oxide with both oxide ion conductivity and electron conductivity, is a non-stoichiometric compound, and has the characteristic of occluding and releasing oxygen in the crystal lattice according to the surrounding oxygen concentration (partial pressure). Oxygen vacancies generated by releasing oxygen into the detection space promote the movement of oxide ions, changing the electron conductivity.
At this time, if a highly reducible substance such as hydrogen gas exists in the detection space, the charge transfer of cerium oxide is facilitated when the hydrogen gas reaches the gas sensitive layer 2, and the electron conductivity changes drastically. .

酸化セリウムと水素ガスとの間の反応は、いわゆるバルク制御型と言われる反応機構で進行する。このバルク制御型の反応機構によれば、水素ガスとの反応がガス感応層2の表面にとどまらず、バルクにまで及ぶ。つまり、従来のガスセンサとしてよく知られている半導体式ガスセンサのように水素ガスがガス感応層2の表面に存在する吸着酸素と反応するのではなく、水素ガスが酸化セリウムのみを成分とするガス感応層2のバルク中に存在する格子酸素と反応する。この反応でバルク中に生じる酸素欠陥が拡散することにより、ガス感応層2の中を電子が流れる。   The reaction between cerium oxide and hydrogen gas proceeds by a so-called bulk control type reaction mechanism. According to this bulk control type reaction mechanism, the reaction with the hydrogen gas extends not only to the surface of the gas sensitive layer 2 but also to the bulk. That is, the hydrogen gas does not react with the adsorbed oxygen existing on the surface of the gas sensitive layer 2 as in a semiconductor gas sensor well known as a conventional gas sensor, but the hydrogen gas is a gas sensitive component containing only cerium oxide. Reacts with lattice oxygen present in the bulk of layer 2. Electrons flow in the gas sensitive layer 2 by diffusing oxygen defects generated in the bulk by this reaction.

酸化セリウム表面に水素ガスが吸着すると水素ガスと酸化セリウムの結晶格子内の酸素空孔が酸素原子を引き合うことで見かけ上酸素空孔が増加して、ガス感応層2の中で電子の移動が容易となり、つまりガス感応層2の抵抗値が低抵抗の状態となる。   When hydrogen gas is adsorbed on the surface of cerium oxide, oxygen vacancies in the crystal lattice of hydrogen gas and cerium oxide attract oxygen atoms, and oxygen vacancies appear to increase, and electrons move in the gas sensitive layer 2. It becomes easy, that is, the resistance value of the gas sensitive layer 2 is in a low resistance state.

上記のような特性に基づくと、酸化セリウムの酸化物イオン伝導性と電子伝導性は、水素ガスとの接触によって生じた酸化物イオンの移動が電子伝導性に反映されるので、ガス検知素子1の材料として都合がよい。このように、単純な構造でありながら、圧力に依存せずにさまざまな圧力範囲で、水素ガスを高感度に選択的に検知可能なガス検知素子1が実現できる。   Based on the above characteristics, the oxide ion conductivity and the electron conductivity of cerium oxide reflect the movement of oxide ions generated by contact with hydrogen gas in the electron conductivity. It is convenient as a material. As described above, the gas detection element 1 that can selectively detect the hydrogen gas with high sensitivity in various pressure ranges without depending on the pressure can be realized with a simple structure.

図2は、ガス検知素子1、検知回路10及びヒータ制御回路20を備えた水素ガスセンサ100を示している。
検知回路10は、ガス検知素子1と直列に接続された負荷抵抗R0と、ガス検知素子1と負荷抵抗R0に所定の動作電圧を印加する電源部Eと、負荷抵抗R0に並列に接続され、負荷抵抗R0に印加される動作電圧を検知する電圧計Vとを備えている。
上述のように、ガス検知素子1は、検知空間に水素ガスが存在すると、抵抗値が低抵抗となる。従って、電圧計Vによって、負荷抵抗R0に印加される動作電圧を検知することで、ガス検知素子1の抵抗値、または出力の変化を間接的に算出することができる。
FIG. 2 shows a hydrogen gas sensor 100 including the gas detection element 1, the detection circuit 10, and the heater control circuit 20.
The detection circuit 10 is connected in parallel to the load resistance R0 connected in series with the gas detection element 1, the power supply unit E that applies a predetermined operating voltage to the gas detection element 1 and the load resistance R0, and the load resistance R0. And a voltmeter V for detecting an operating voltage applied to the load resistor R0.
As described above, the gas detection element 1 has a low resistance value when hydrogen gas is present in the detection space. Therefore, by detecting the operating voltage applied to the load resistor R0 with the voltmeter V, the resistance value of the gas detection element 1 or the change in the output can be indirectly calculated.

薄膜ヒータ5は、ガス検知素子1の動作温度を維持するために設けられている。
薄膜ヒータ5の材質は、特に制限されるものではなく、例えば、白金や金等の貴金属、白金パラジウム合金等を蒸着等によって設けることができる。特に白金は非常に耐久性に優れた材料であり、薄膜ヒータ5に好ましく適用することができる。
The thin film heater 5 is provided to maintain the operating temperature of the gas detection element 1.
The material of the thin film heater 5 is not particularly limited, and for example, a noble metal such as platinum or gold, a platinum palladium alloy, or the like can be provided by vapor deposition or the like. In particular, platinum is an extremely durable material and can be preferably applied to the thin film heater 5.

図3は、薄膜ヒータ5のヒータ制御回路20を示している。ヒータ制御回路20は、ガス検知素子1の温度が200℃から1000℃の範囲、好ましくは、400℃から650℃の範囲の所定温度となるように薄膜ヒータ5を制御する。   FIG. 3 shows the heater control circuit 20 of the thin film heater 5. The heater control circuit 20 controls the thin film heater 5 so that the temperature of the gas detection element 1 becomes a predetermined temperature in the range of 200 ° C. to 1000 ° C., preferably in the range of 400 ° C. to 650 ° C.

ガス感応層2を構成する酸化セリウムの電子易動度はガス検知素子1の動作温度に依存し、ガス検知素子1を高温で動作させるほど、動作抵抗値は下がり電子伝導性は上がる。しかし、ガス検知素子1の動作温度が1000℃より高いと、酸化物イオンの易動度が上がりすぎ、電子伝導性が良くなりすぎて、水素を検知したときの変化幅が十分でなくなるから好ましくない。
一方、ガス感応層2を構成する酸化セリウムの耐熱性を考慮すると、ガス検知素子1を低温で動作させるほど、動作抵抗値は上がり電子伝導性は下がるが、寿命は延びる。しかし、ガス検知素子1の動作温度が200℃より低いと、酸化物イオンの易動度が制限され、電子伝導性が低下しすぎてしまうので好ましくない。
The electron mobility of the cerium oxide constituting the gas sensitive layer 2 depends on the operating temperature of the gas sensing element 1, and the operating resistance decreases and the electron conductivity increases as the gas sensing element 1 is operated at a higher temperature. However, when the operating temperature of the gas detection element 1 is higher than 1000 ° C., it is preferable because the mobility of oxide ions is excessively increased, the electron conductivity is excessively improved, and the change width when hydrogen is detected is not sufficient. Absent.
On the other hand, considering the heat resistance of cerium oxide constituting the gas sensitive layer 2, the operating resistance value increases and the electron conductivity decreases as the gas detecting element 1 is operated at a lower temperature, but the lifetime is extended. However, if the operating temperature of the gas detection element 1 is lower than 200 ° C., the mobility of oxide ions is limited, and the electron conductivity is excessively lowered, which is not preferable.

図4は、1.2×10-4Torrの真空中において、水素ガスが存在する場合と、存在しない場合のガス検知素子1の動作温度と動作抵抗値との関係を示している。
図4からわかるように、水素ガスが存在する場合では、動作抵抗値の変化比は、動作温度が低いほど大きくなる傾向がある。また、寿命の観点からも、上記のように400℃から650℃の温度範囲が好ましく採用される。
FIG. 4 shows the relationship between the operating temperature and the operating resistance value of the gas sensing element 1 when hydrogen gas is present and when it is not present in a vacuum of 1.2 × 10 −4 Torr.
As can be seen from FIG. 4, when hydrogen gas is present, the change ratio of the operating resistance value tends to increase as the operating temperature decreases. From the viewpoint of life, a temperature range of 400 ° C. to 650 ° C. is preferably employed as described above.

ところで、検知空間の気圧が変化すると、気体の熱伝導効果が変化するため、ガス検知素子1の温度は変化する。
図5は、気圧とヒータ電流及びヒータ温度との関係を示している。
図5に示されるように、検知空間の気圧が下がると、薄膜ヒータ5の動作温度は上がる。これは、圧力が低いほど熱移動の媒体となる気体分子が減るからである。逆に、検知空間の気圧が上がると、薄膜ヒータ5の動作温度は下がる。これは、圧力が高いほど熱移動の媒体となる気体分子が増えるからである。従って、薄膜ヒータ5の動作温度をモニタすることで検知空間の気圧変化が検知できる。
By the way, when the atmospheric pressure in the detection space changes, the heat conduction effect of the gas changes, so the temperature of the gas detection element 1 changes.
FIG. 5 shows the relationship between the atmospheric pressure, the heater current, and the heater temperature.
As shown in FIG. 5, when the atmospheric pressure in the detection space decreases, the operating temperature of the thin film heater 5 increases. This is because the lower the pressure, the fewer gas molecules that serve as a heat transfer medium. Conversely, when the atmospheric pressure in the detection space increases, the operating temperature of the thin film heater 5 decreases. This is because the higher the pressure, the more gas molecules that become the heat transfer medium. Therefore, the atmospheric pressure change in the detection space can be detected by monitoring the operating temperature of the thin film heater 5.

換言すると、気圧の変化に応じて薄膜ヒータ5の動作温度が変化しないように、薄膜ヒータ5の動作抵抗値が一定となるように動作させるとすると、検知空間の気圧が下がると、薄膜ヒータ5の動作電流は少なくてよい。逆に、検知空間の気圧が上がると、薄膜ヒータ5の動作電流は増える。つまり、薄膜ヒータ5の動作電流値の変化をモニタし、別途設けた、検知空間の温度を計測する温度センサと併用して環境温度の補正を行うことで、検知空間の気圧の変化が検知できることになる。なお、薄膜ヒータ5に印加される動作電圧値をモニタしてもよい。
なお、別途併用する温度センサには、サーミスタや測温抵抗体のほか、ガス検知素子1の絶縁基板3と、同じ絶縁基板3を密閉容器内に空気または不活性ガスなどと封入したものも適用することができる。この場合、ガス検知素子1と温度センサの温度特性が近くなるため、補正が容易となる。
In other words, if the operation resistance value of the thin film heater 5 is made constant so that the operating temperature of the thin film heater 5 does not change according to the change in atmospheric pressure, the thin film heater 5 is reduced when the atmospheric pressure in the detection space decreases. The operating current may be small. Conversely, when the atmospheric pressure in the detection space increases, the operating current of the thin film heater 5 increases. That is, by monitoring the change in the operating current value of the thin film heater 5 and correcting the environmental temperature in combination with a separately provided temperature sensor for measuring the temperature of the detection space, a change in the atmospheric pressure in the detection space can be detected. become. The operating voltage value applied to the thin film heater 5 may be monitored.
In addition to the thermistor and resistance temperature detector, the temperature sensor to be used in combination also includes the insulating substrate 3 of the gas detection element 1 and the same insulating substrate 3 sealed with air or inert gas in a sealed container. can do. In this case, since the temperature characteristics of the gas detection element 1 and the temperature sensor are close, correction is easy.

図3に戻り、ヒータ制御回路20には、薄膜ヒータ5の動作抵抗値を一定に保つために、ホイートストンブリッジを備えたフィードバック回路が用いられる。
ホイートストンブリッジを構成する抵抗R1と抵抗R3とは同じ抵抗値であり、抵抗R2と薄膜ヒータ5とは同じ抵抗値である。
これら抵抗の両端の非平衡電圧をオペアンプA1に差動入力し、出力をパワートランジスタTR1のエミッタフォロワで受け、薄膜ヒータ5の抵抗値が常に抵抗R2と同じ値になるようにホイートストンブリッジに印加する動作電圧を自動的に調節する。
なお、薄膜ヒータ5に印加される動作電流または動作電圧値をモニタするモニタ部としては、薄膜ヒータ5に並列に接続された電圧計や、薄膜ヒータ5に直列に接続された電流計が用いられる。
Returning to FIG. 3, a feedback circuit having a Wheatstone bridge is used for the heater control circuit 20 in order to keep the operating resistance value of the thin film heater 5 constant.
The resistors R1 and R3 constituting the Wheatstone bridge have the same resistance value, and the resistors R2 and the thin film heater 5 have the same resistance value.
The unbalanced voltage across these resistors is differentially input to the operational amplifier A1, the output is received by the emitter follower of the power transistor TR1, and applied to the Wheatstone bridge so that the resistance value of the thin film heater 5 is always the same value as the resistor R2. Adjust the operating voltage automatically.
In addition, as a monitor part which monitors the operating current or operating voltage value applied to the thin film heater 5, a voltmeter connected in parallel to the thin film heater 5 or an ammeter connected in series to the thin film heater 5 is used. .

以上のように構成された、ガス検知素子1、検知回路10、ヒータ制御回路20を備えた水素ガスセンサ100を用いて、真空中での水素ガスの検知に関する各種実験を行った。
実験にあたり、図6に示すような、真空チャンバ30を用意した。
真空チャンバ30は約30Lの容量を有し、周囲には水素、酸素、窒素を夫々真空チャンバ30内に供給するためのリークバルブ31,32、ベントバルブ33、真空チャンバ30内を真空にするための真空ポンプ34が備えられ、内部にガス検知素子1が設置されている。
Using the hydrogen gas sensor 100 including the gas detection element 1, the detection circuit 10, and the heater control circuit 20 configured as described above, various experiments relating to detection of hydrogen gas in a vacuum were performed.
In the experiment, a vacuum chamber 30 as shown in FIG. 6 was prepared.
The vacuum chamber 30 has a capacity of about 30 L, and leaks 31 and 32 for supplying hydrogen, oxygen, and nitrogen into the vacuum chamber 30, a vent valve 33, and a vacuum in the vacuum chamber 30. The vacuum pump 34 is provided, and the gas detection element 1 is installed inside.

まず、真空中に水素ガスが存在する場合と存在しない場合のガス検知素子1の抵抗値の様子を確認する実験を行った。   First, an experiment was conducted to confirm the state of the resistance value of the gas detection element 1 when hydrogen gas is present in vacuum and when hydrogen gas is not present.

該実験では、真空チャンバ30内に空気を供給した後に、真空ポンプ34を起動し約1×102Torrから1×10-5Torrまで減圧したときのガス検知素子1の抵抗値RAと、真空チャンバ30内に酸素を供給した後に、真空ポンプ34を起動し約1Torrから1×10-5Torrまで減圧したときのガス検知素子1の抵抗値ROと、真空チャンバ30内に窒素を供給した後に、真空ポンプ34を起動し約1Torrから1×10-5Torrまで減圧したときのガス検知素子1の抵抗値RNと、真空チャンバ30内に水素ガスを供給した後に、真空ポンプ34を起動し約1Torrから1×10-5Torrまで減圧したときのガス検知素子1の抵抗値RHを取得した。その結果を図7に示す。 In the experiment, after supplying air into the vacuum chamber 30, the resistance value RA of the gas detection element 1 when the vacuum pump 34 is started and the pressure is reduced from about 1 × 10 2 Torr to 1 × 10 −5 Torr, After supplying oxygen into the vacuum chamber 30, the vacuum pump 34 is started and the resistance value R O of the gas detection element 1 when the pressure is reduced from about 1 Torr to 1 × 10 −5 Torr and nitrogen is supplied into the vacuum chamber 30. after, the resistance value R N of the gas sensing element 1 when the vacuum from about 1Torr start the vacuum pump 34 to 1 × 10 -5 Torr, after supplying the hydrogen gas into the vacuum chamber 30, a vacuum pump 34 The resistance value RH of the gas detection element 1 was obtained when the operation was started and the pressure was reduced from about 1 Torr to 1 × 10 −5 Torr. The result is shown in FIG.

図7からわかるように、真空中では、抵抗値RAは徐々に低下していることがわかる。これは、周囲の酸素濃度(分圧)に応じてガス感応層2を構成する酸化セリウムの結晶格子内の酸素が放出され、その結果生じる酸素空孔が酸化物イオンの移動が促された結果だと考えられる。
同様の傾向は、真空チャンバ30内に酸素を供給したときの抵抗値RO、及び窒素を供給したときの抵抗値RNでも確認できた。なお、抵抗値RA、抵抗値RO、抵抗値RNの比較から、ガス感応層2は酸素にも応答していることがわかる。
一方、真空チャンバ30内に水素ガスを供給したときの抵抗値RHは、抵抗値RA、抵抗値RO、抵抗値RNに比べて、約1/100以下まで大きく低下し、この傾向は、真空チャンバ30内が1×10-5Torrまで減圧するまで維持されることが確認できた。
これは、ガス感応層2を構成する酸化セリウムの表面で水素ガスが酸化しているのではなく、酸化セリウムへの水素ガスの吸着によって格子内酸素が引き付けられて、酸素空孔の移動が容易になった結果だと考えられる。
As can be seen from FIG. 7, the resistance value RA gradually decreases in a vacuum. This is because oxygen in the crystal lattice of cerium oxide constituting the gas sensitive layer 2 is released according to the surrounding oxygen concentration (partial pressure), and the resulting oxygen vacancies promote the movement of oxide ions. It is thought that.
Similar trends were confirmed even resistance R O, and the resistance value R N when the supply nitrogen when oxygen was supplied to the vacuum chamber 30. The resistance value R A, the resistance value R O, from a comparison of the resistance value R N, the gas-sensitive layer 2 it can be seen that also in response to the oxygen.
On the other hand, the resistance value R H when supplying hydrogen gas into the vacuum chamber 30, the resistance R A, the resistance value R O, as compared with the resistance value R N, and greatly reduced to about 1/100, the tendency It was confirmed that the inside of the vacuum chamber 30 was maintained until the pressure was reduced to 1 × 10 −5 Torr.
This is because the hydrogen gas is not oxidized on the surface of the cerium oxide constituting the gas sensitive layer 2, but oxygen in the lattice is attracted by the adsorption of the hydrogen gas to the cerium oxide, and the movement of oxygen vacancies is easy. This is considered to be the result.

上述のようにガス感応層2を構成する酸化セリウムの電子伝導性は、環境中の酸素に影響される。そこで、水素分圧に対する抵抗値特性の酸素の影響評価を目的として、真空チャンバ30内に窒素を供給し、無酸素下で水素分圧比を変化させたときの電気抵抗値の傾向を確認する実験を行った。   As described above, the electronic conductivity of cerium oxide constituting the gas sensitive layer 2 is influenced by oxygen in the environment. Therefore, for the purpose of evaluating the influence of oxygen on the resistance value characteristic with respect to the hydrogen partial pressure, an experiment for confirming the tendency of the electric resistance value when nitrogen is supplied into the vacuum chamber 30 and the hydrogen partial pressure ratio is changed under no oxygen. Went.

該実験では、真空ポンプ34を起動しながら真空チャンバ30内にリークバルブ31から窒素を供給し、所定の平衡圧力(1×10-2Torr)に調整した。
次に、リークバルブ32から水素ガスを段階的に所定の条件(水素分圧比約1%、約4%、51%、83%)となるように供給し、圧力が安定したときの抵抗値を取得した。
異なる圧力条件(1×10-3Torr、1×10-4Torr)についても夫々同様の実験を行った。なお、平衡圧力が1×10-3Torrであるときは、リークバルブ32から水素ガスを段階的に所定の条件(水素分圧比3.8%、35%、66%、83%)となるように供給し、圧力が安定したときの抵抗値を取得した。また、平衡圧力が1×104Torrであるときは、リークバルブ32から水素ガスを段階的に所定の条件(水素分圧比9%、33%、53%、68%、80%)となるように供給し、圧力が安定したときの抵抗値を取得した。その結果を図8に示す。
In this experiment, nitrogen was supplied from the leak valve 31 into the vacuum chamber 30 while starting the vacuum pump 34, and the pressure was adjusted to a predetermined equilibrium pressure (1 × 10 −2 Torr).
Next, hydrogen gas is supplied from the leak valve 32 step by step so that the predetermined conditions (hydrogen partial pressure ratios of about 1%, about 4%, 51%, 83%) are obtained, and the resistance value when the pressure is stabilized is I got it.
The same experiment was performed under different pressure conditions (1 × 10 −3 Torr, 1 × 10 −4 Torr). When the equilibrium pressure is 1 × 10 −3 Torr, hydrogen gas is supplied from the leak valve 32 in a stepwise manner (hydrogen partial pressure ratios of 3.8%, 35%, 66%, 83%). The resistance value was obtained when the pressure was stabilized. When the equilibrium pressure is 1 × 10 4 Torr, hydrogen gas is supplied from the leak valve 32 in a stepwise manner (hydrogen partial pressure ratio 9%, 33%, 53%, 68%, 80%). The resistance value was obtained when the pressure was stabilized. The result is shown in FIG.

図8からわかるように、無酸素状態である窒素バランス環境下では、水位分圧比が低くても、水素ガスが存在しない場合に比べて、抵抗値の大きな変化が確認される。そして、水素分圧比に対する抵抗値は、1×10-2Torr、1×10-3Torr、1×10-4Torrの各圧力条件にかかわらず略一致し、酸素が存在しなければ、高感度に水素ガスに反応していることがわかる。
なお、1×10-3Torrの圧力条件のデータをもとに近似式で外挿により求めた水素ガスの検知限界濃度は、1000ppm以下と見積もられる。
酸化セリウムのみを成分として構成されたガス感応層2を備えるガス検知素子1では、真空中では、水素ガスの吸着に伴う電子伝導度変化を利用するため、高感度に水素ガスを検知することができる。
As can be seen from FIG. 8, in a nitrogen balance environment that is in an oxygen-free state, even if the water level partial pressure ratio is low, a large change in resistance value is confirmed as compared with the case where hydrogen gas is not present. The resistance values with respect to the hydrogen partial pressure ratio are substantially the same regardless of the pressure conditions of 1 × 10 −2 Torr, 1 × 10 −3 Torr, and 1 × 10 −4 Torr. It can be seen that it reacts with hydrogen gas.
Note that the detection limit concentration of hydrogen gas obtained by extrapolation with an approximate expression based on the pressure condition data of 1 × 10 −3 Torr is estimated to be 1000 ppm or less.
In the gas detection element 1 including the gas sensitive layer 2 composed of only cerium oxide as a component, the change in electron conductivity accompanying the adsorption of hydrogen gas is used in a vacuum, so that the hydrogen gas can be detected with high sensitivity. it can.

次に、一定の真空環境下での、酸素分圧比の違いが、水素ガスの検知に与える影響を確認する実験を行った。
抵抗値への酸素分圧比の影響評価を目的として、真空チャンバ30内に窒素と異なる分圧比となるように酸素を供給し、各酸素分圧比において水素分圧比を変化させたときの電気抵抗値の傾向を確認する実験を行った。
Next, an experiment was conducted to confirm the influence of the difference in oxygen partial pressure ratio on the detection of hydrogen gas under a certain vacuum environment.
For the purpose of evaluating the influence of the oxygen partial pressure ratio on the resistance value, oxygen is supplied into the vacuum chamber 30 so as to have a partial pressure ratio different from that of nitrogen, and the electric resistance value when the hydrogen partial pressure ratio is changed at each oxygen partial pressure ratio. An experiment was conducted to confirm the tendency.

該実験では、真空ポンプ34を起動しながら真空チャンバ30内にリークバルブ31から各酸素濃度(酸素分圧比1%、5%、10%、50%)の窒素を供給して、所定の平衡圧力(1×10-3Torr)に調整した。
次に、リークバルブ32から水素ガスを段階的に所定の条件となるように供給し、圧力が安定したときの抵抗値を取得した。その結果を図9に示す。
In this experiment, nitrogen of each oxygen concentration (oxygen partial pressure ratio 1%, 5%, 10%, 50%) is supplied from the leak valve 31 into the vacuum chamber 30 while the vacuum pump 34 is started, and a predetermined equilibrium pressure is obtained. It adjusted to (1 * 10 < -3 > Torr).
Next, hydrogen gas was supplied from the leak valve 32 step by step so as to satisfy a predetermined condition, and a resistance value when the pressure was stabilized was obtained. The result is shown in FIG.

図9からわかるように、各酸素分圧比の環境下での水素ガスに対する抵抗値を比較した結果、水素分圧比に対する抵抗値の傾きは、酸素分圧比の影響を受けることが確認された。   As can be seen from FIG. 9, as a result of comparing the resistance value against hydrogen gas under the environment of each oxygen partial pressure ratio, it was confirmed that the slope of the resistance value relative to the hydrogen partial pressure ratio is affected by the oxygen partial pressure ratio.

そこで、図10に示すように、抵抗値と、水素分圧/酸素分圧との相関を確認すると、両者は比例関係にあることが確認された。つまり、抵抗値は、水素分圧と酸素分圧の分圧比に依存することがわかる。   Therefore, as shown in FIG. 10, when the correlation between the resistance value and the hydrogen partial pressure / oxygen partial pressure was confirmed, it was confirmed that they were in a proportional relationship. That is, the resistance value depends on the partial pressure ratio between the hydrogen partial pressure and the oxygen partial pressure.

図9と図10に示した結果から、一定温度に保たれたガス感応層2の抵抗値は、全圧には依存せずに酸素分圧と水素分圧によって決まることがわかる。全圧に依存しないのであれば、大気圧下でも同様の抵抗変化が得られることになる。そこで、大気圧下での抵抗値と水素濃度の関係を確認する実験を行った。実験方法は、窒素バランス中で酸素濃度(分圧)が0.1%または1.0%になるように調整し、そこに水素を注入して水素濃度(分圧)を変化させたときの抵抗値を取得した。その結果を図11に示す。   From the results shown in FIGS. 9 and 10, it can be seen that the resistance value of the gas sensitive layer 2 maintained at a constant temperature is determined by the oxygen partial pressure and the hydrogen partial pressure without depending on the total pressure. If it does not depend on the total pressure, the same resistance change can be obtained even under atmospheric pressure. Therefore, an experiment was conducted to confirm the relationship between the resistance value at atmospheric pressure and the hydrogen concentration. The experimental method is that when the oxygen concentration (partial pressure) is adjusted to 0.1% or 1.0% in the nitrogen balance, and hydrogen is injected there to change the hydrogen concentration (partial pressure). The resistance value was obtained. The result is shown in FIG.

図11からわかるように、水素濃度と抵抗値との関係は、水素濃度がある閾値を境に急激に変化する特性を持ち、酸素濃度が高い方が抵抗値が急激に低下するときの水素濃度も高くなることがわかる。この抵抗値が急激に低下して以降の水素濃度が高い領域の特性は、1×10-2Torrの真空中で確認した傾向と一致しており、大気圧でも同様の特性を示すことの裏づけとなる。この結果より抵抗値は、環境中の酸素分圧(濃度)と水素分圧(濃度)によって決まり、全圧には依存しないことがわかる。 As can be seen from FIG. 11, the relationship between the hydrogen concentration and the resistance value has a characteristic that the hydrogen concentration changes abruptly with a certain threshold as a boundary, and the hydrogen concentration at which the resistance value rapidly decreases as the oxygen concentration increases. It can be seen that it becomes higher. The characteristics of the region where the hydrogen concentration is high after the resistance value suddenly decreases are consistent with the tendency confirmed in a vacuum of 1 × 10 −2 Torr, and support that the same characteristics are exhibited even at atmospheric pressure. It becomes. From this result, it is understood that the resistance value is determined by the oxygen partial pressure (concentration) and the hydrogen partial pressure (concentration) in the environment and does not depend on the total pressure.

検知回路10に備えた電圧計Vをモニタすることによって、酸素分圧と水素分圧の分圧比の変化に応じて変化するガス感応層2の抵抗値の変化に基づいて水素ガスを検知することができる。即ち電圧計Vが検知部を構成する。   By detecting the voltmeter V provided in the detection circuit 10, hydrogen gas is detected based on the change in the resistance value of the gas sensitive layer 2 that changes according to the change in the partial pressure ratio between the oxygen partial pressure and the hydrogen partial pressure. Can do. That is, the voltmeter V constitutes a detection unit.

さらに、検知回路10に、予め前記分圧比に対応する水素ガス濃度テーブルが格納された濃度記憶部と、前記分圧比に基づいて水素ガス濃度を算出する濃度算出部を備えておくと、前記分圧比に基づいて水素ガス濃度を算出することができる。   Further, if the detection circuit 10 includes a concentration storage unit that stores a hydrogen gas concentration table corresponding to the partial pressure ratio in advance and a concentration calculation unit that calculates a hydrogen gas concentration based on the partial pressure ratio, The hydrogen gas concentration can be calculated based on the pressure ratio.

ところで、検知空間の気圧に応じて、ガス感応層2の抵抗値は変化する。例えば、大気中では、真空中であるときよりガス感応層2の抵抗値は高い。従って、センサに直列に配置する負荷抵抗が同じ抵抗値であると、電圧計Vによりモニタされる電圧の変化幅が異なり、水素ガスの検知が困難になる。
そこで、ガス検知素子1と直列に接続された負荷抵抗R0として可変型のものを採用しておき、真空中と大気中とで検知回路10の負荷抵抗R0の抵抗値を切り替えることで、電圧計Vによって検知する電圧の変化幅を変更することができる。
例えば、真空中であるときは1kΩに変更し、大気中であるときは500kΩに変更することで、0から4%vol%の範囲で水素を精度良く検知することができる。
Incidentally, the resistance value of the gas sensitive layer 2 changes according to the atmospheric pressure of the detection space. For example, the resistance value of the gas sensitive layer 2 is higher in the atmosphere than in a vacuum. Therefore, if the load resistances arranged in series with the sensor have the same resistance value, the change width of the voltage monitored by the voltmeter V is different, and it becomes difficult to detect hydrogen gas.
Therefore, a variable type is adopted as the load resistance R0 connected in series with the gas detection element 1, and the voltmeter is switched by switching the resistance value of the load resistance R0 of the detection circuit 10 between the vacuum and the atmosphere. The change width of the voltage detected by V can be changed.
For example, by changing to 1 kΩ when in a vacuum, and changing to 500 kΩ when in the air, hydrogen can be detected accurately in the range of 0 to 4% vol%.

負荷抵抗R0の抵抗値の切替のトリガとなる気圧の変化は、薄膜ヒータ5のヒータ制御回路20に連動させることができる。
つまり、薄膜ヒータ5に並列に接続された電圧計や、薄膜ヒータ5に直列に接続された電流計をモニタすることで、気圧の変化が検知できる。
The change in atmospheric pressure that triggers switching of the resistance value of the load resistor R0 can be linked to the heater control circuit 20 of the thin film heater 5.
That is, by monitoring a voltmeter connected in parallel to the thin film heater 5 or an ammeter connected in series to the thin film heater 5, a change in atmospheric pressure can be detected.

このように検知された気圧の変化に基づいて、負荷抵抗R0の抵抗値を切り替える抵抗切替部を備え、該抵抗切替部によって、負荷抵抗R0の抵抗値の切替のトリガとなる所定の気圧閾値、例えば1Torrに対応する電流値や電圧値を予め設定しておき、前記電流値や電圧値が、気圧が前記所定の気圧閾値未満であることを示すと抵抗値を下げ、所定の気圧閾値以上であることを示すと抵抗値を上げるように制御すればよい。なお、所定の気圧閾値は一つでもよいし、複数であってもよい。気圧に応じて好ましい抵抗値を算出しておき、検知空間の気圧に応じて、前記抵抗値を変化させることで、常に被検知ガスの検知感度を最適なものに調整することができる。   A resistance switching unit that switches the resistance value of the load resistor R0 based on the change in the atmospheric pressure detected in this way, and a predetermined atmospheric pressure threshold value that triggers switching of the resistance value of the load resistor R0 by the resistance switching unit, For example, a current value or voltage value corresponding to 1 Torr is set in advance, and when the current value or voltage value indicates that the atmospheric pressure is less than the predetermined atmospheric pressure threshold, the resistance value is decreased, If it shows that there exists, it should just control to raise resistance value. Note that the predetermined atmospheric pressure threshold value may be one or plural. By calculating a preferable resistance value in accordance with the atmospheric pressure and changing the resistance value in accordance with the atmospheric pressure of the detection space, the detection sensitivity of the gas to be detected can always be adjusted to an optimum value.

以上のように、単純な構造でありながら、圧力に依存せずにさまざまな圧力範囲で、水素ガスを高感度に選択的に検知可能な水素ガスセンサ及び水素ガス検知方法が実現できる。   As described above, it is possible to realize a hydrogen gas sensor and a hydrogen gas detection method that can selectively detect hydrogen gas with high sensitivity in various pressure ranges without depending on pressure, although the structure is simple.

上述した実施形態は、いずれも本発明の一例であり、該記載により本発明が限定されるものではなく、各部の具体的構成は本発明の作用効果が奏される範囲で適宜変更設計可能であることはいうまでもない。   Each of the above-described embodiments is an example of the present invention, and the present invention is not limited by the description. The specific configuration of each part can be appropriately changed and designed within the range where the effects of the present invention are exhibited. Needless to say.

1 ガス検知素子
2 ガス感応層(ガス感応部)
3 絶縁基板
4 検知電極
10 検知回路
20 ヒータ制御回路
100 水素ガスセンサ
1 Gas detection element 2 Gas sensitive layer (gas sensitive part)
3 Insulating substrate 4 Detection electrode 10 Detection circuit 20 Heater control circuit 100 Hydrogen gas sensor

Claims (3)

ガス感応部と、前記ガス感応部に接続された検知電極とを備えたガス検知素子と、
前記検知電極が検知した前記ガス感応部の抵抗値の変化に基づいて、真空であり、酸素分圧が一定である検知空間で水素ガスを検知する検知回路を備えた水素ガスセンサであって、
前記ガス感応部は、酸化物イオン伝導性と電子伝導性の両方を備える金属酸化物のみで構成され、
前記検知回路は、前記酸素分圧と水素分圧の分圧比の変化に応じて変化する前記ガス感応部の抵抗値の変化に基づいて前記水素ガスを検知する検知部を備えていることを特徴とする水素ガスセンサ。
A gas sensing element comprising a gas sensitive part and a sensing electrode connected to the gas sensitive part;
A hydrogen gas sensor comprising a detection circuit that detects hydrogen gas in a detection space that is vacuum and has a constant oxygen partial pressure based on a change in the resistance value of the gas sensitive part detected by the detection electrode,
The gas sensitive part is composed only of a metal oxide having both oxide ion conductivity and electronic conductivity,
The detection circuit includes a detection unit that detects the hydrogen gas based on a change in a resistance value of the gas sensing unit that changes in accordance with a change in a partial pressure ratio between the oxygen partial pressure and the hydrogen partial pressure. A hydrogen gas sensor.
前記検知回路は、
予め前記分圧比に対応する水素ガス濃度テーブルが格納された濃度記憶部と、
前記分圧比に基づいて検知した水素ガスの濃度を算出する濃度算出部を備えていることを特徴とする請求項1に記載の水素ガスセンサ。
The detection circuit includes:
A concentration storage unit in which a hydrogen gas concentration table corresponding to the partial pressure ratio is stored in advance;
The hydrogen gas sensor according to claim 1, further comprising a concentration calculation unit that calculates a concentration of hydrogen gas detected based on the partial pressure ratio.
真空であり、酸素分圧が一定である検知空間で水素ガスを検知する水素ガス検知方法であって、
前記検知空間に酸化物イオン伝導性と電子伝導性の両方を備える金属酸化物のみで構成されたガス感応部と前記ガス感応部に接続された検知電極とを備えたガス検知素子の、前記検知電極が検知した前記ガス感応部の抵抗値を検知する工程と、
前記抵抗値の変化に基づいて、水素ガスを検知する工程を備えていることを特徴とする水素ガス検知方法。
A hydrogen gas detection method for detecting hydrogen gas in a detection space that is vacuum and has a constant oxygen partial pressure,
The detection of a gas detection element comprising a gas sensitive part composed only of a metal oxide having both oxide ion conductivity and electronic conductivity in the detection space and a detection electrode connected to the gas sensitive part Detecting a resistance value of the gas sensitive part detected by the electrode;
A hydrogen gas detection method comprising a step of detecting hydrogen gas based on a change in the resistance value.
JP2014072567A 2014-03-31 2014-03-31 Hydrogen gas sensor and hydrogen gas detection method Active JP6347976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014072567A JP6347976B2 (en) 2014-03-31 2014-03-31 Hydrogen gas sensor and hydrogen gas detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014072567A JP6347976B2 (en) 2014-03-31 2014-03-31 Hydrogen gas sensor and hydrogen gas detection method

Publications (2)

Publication Number Publication Date
JP2015194407A JP2015194407A (en) 2015-11-05
JP6347976B2 true JP6347976B2 (en) 2018-06-27

Family

ID=54433568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014072567A Active JP6347976B2 (en) 2014-03-31 2014-03-31 Hydrogen gas sensor and hydrogen gas detection method

Country Status (1)

Country Link
JP (1) JP6347976B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11686698B2 (en) 2018-05-14 2023-06-27 Canon Kabushiki Kaisha Reducing gas detection material and reducing gas detection sensor
JP7195766B2 (en) * 2018-05-14 2022-12-26 キヤノン株式会社 Reducing gas detection material and reducing gas detection sensor
WO2021002199A1 (en) * 2019-07-01 2021-01-07 東京窯業株式会社 Solid reference material and hydrogen gas sensor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9006176D0 (en) * 1990-03-19 1990-05-16 Morganite Electronic Instr Gas sensors
EP0579639B1 (en) * 1991-04-05 1999-01-13 BG plc Tin oxide gas sensors
US5670115A (en) * 1995-10-16 1997-09-23 General Motors Corporation Hydrogen sensor
US7171841B2 (en) * 2004-12-01 2007-02-06 Uchicago Argonne, Llc Ultrafast and ultrasensitive hydrogen sensors based on self-assembly monolayer promoted 2-dimensional palladium nanoclusters
JP4780654B2 (en) * 2006-02-20 2011-09-28 日本特殊陶業株式会社 Hydrogen gas sensor
JP5352049B2 (en) * 2006-09-28 2013-11-27 株式会社ミクニ Hydrogen sensor
KR101440648B1 (en) * 2006-10-12 2014-09-22 넥스테크 머티리얼스, 엘티디. Hydrogen sensitive composite material, tubular sensor for detecting hydrogen and other gases
JP5155748B2 (en) * 2008-06-20 2013-03-06 新コスモス電機株式会社 Gas detection element

Also Published As

Publication number Publication date
JP2015194407A (en) 2015-11-05

Similar Documents

Publication Publication Date Title
JP6355448B2 (en) Gas sensor
JP6168919B2 (en) Gas detection device and gas detection method
JP6656791B2 (en) Microelectrochemical sensor and operation method of microelectrochemical sensor
CN112005105B (en) Sensor for determining the thermal capacity of natural gas
JP6347976B2 (en) Hydrogen gas sensor and hydrogen gas detection method
EP2878944A1 (en) Gas detector
JP6321968B2 (en) Gas sensor element
JP6596535B2 (en) Gas sensor
US8826725B2 (en) Gas detector
KR101705542B1 (en) Device for preventing gas leak fire / explosion incident using gas sensor and method for controling the apparatus
JP2011226945A (en) Heat conduction type hydrogen gas sensor
WO2021106615A1 (en) Gas detection method and information processing device
WO2015194490A1 (en) Gas sensor
JP5166202B2 (en) Gas detector
US20080206108A1 (en) Single cell sensor for measuring the partial pressure of oxygen
JP4830714B2 (en) Anomaly detection method for thin film gas sensor
JP2015200625A (en) Vacuum gas detection element
JP5102172B2 (en) Gas detector
JP5091078B2 (en) Combustible gas detector
JP5021400B2 (en) Combustible gas detector
JP6480228B2 (en) Gas sensor
KR102605772B1 (en) How to determine the temperature of a solid electrolyte gas sensor
EP0057393B1 (en) Probe for measuring partial pressure of oxygen
JP2019132756A (en) Gas concentration detection method and gas concentration detection device
JP2009244113A (en) Gas sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180530

R150 Certificate of patent or registration of utility model

Ref document number: 6347976

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250