JP2005308403A - Hydrogen detector - Google Patents

Hydrogen detector Download PDF

Info

Publication number
JP2005308403A
JP2005308403A JP2004121795A JP2004121795A JP2005308403A JP 2005308403 A JP2005308403 A JP 2005308403A JP 2004121795 A JP2004121795 A JP 2004121795A JP 2004121795 A JP2004121795 A JP 2004121795A JP 2005308403 A JP2005308403 A JP 2005308403A
Authority
JP
Japan
Prior art keywords
hydrogen
temperature
detection element
absorbent material
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004121795A
Other languages
Japanese (ja)
Inventor
Takeaki Shimada
毅昭 島田
Taiichi Ono
泰一 小野
Toshiaki Konno
敏明 紺野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Alps Alpine Co Ltd
Original Assignee
Honda Motor Co Ltd
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Alps Electric Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2004121795A priority Critical patent/JP2005308403A/en
Publication of JP2005308403A publication Critical patent/JP2005308403A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen detector for accurately detecting the concentration of gaseous hydrogen contained in gas by utilizing a hydrogen absorbent material highly selective about hydrogen. <P>SOLUTION: This hydrogen detector 11 is characterized by being equipped with the hydrogen absorbent material 12 for reversibly absorbing/discharging hydrogen, a temperature detection means 15 for detecting the temperature of the absorbent material 12, a state change detection means 14 with electrodes 13a and 13b disposed on both ends thereof in their thickness direction for detecting a state change corresponding to the absorption/discharge of hydrogen with the absorbent material 12 kept at a constant temperature, and a current passing means for passing a DC current through the absorbent material 12 disposed on a surface of one electrode 13a. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、気体中の水素濃度を検出する水素検出装置に関する。   The present invention relates to a hydrogen detector that detects a hydrogen concentration in a gas.

従来、水素吸蔵合金(水素吸収材)を利用して水素を検出する水素センサとして、基板の一方の面に水素吸蔵合金を固着し他方の面に水晶振動子を取り付け、水素吸蔵合金が水素を吸蔵した際の重量増大により生じる水晶振動子の周波数変動を検出し、検出した周波数変動の大きさに基づいて水素吸蔵量を検知する水素ガスセンサ(例えば、特許文献1参照)が知られている。この水素ガスセンサにおいては、水素吸蔵量に応じた重量増大の変化率が大きいほど水素濃度を精度良く検知することができる。
特開平2−110341号公報
Conventionally, as a hydrogen sensor that detects hydrogen using a hydrogen storage alloy (hydrogen absorbing material), a hydrogen storage alloy is fixed to one surface of a substrate and a crystal unit is attached to the other surface. There is known a hydrogen gas sensor (for example, see Patent Document 1) that detects a frequency fluctuation of a crystal resonator caused by an increase in weight at the time of occlusion and detects a hydrogen occlusion amount based on the magnitude of the detected frequency fluctuation. In this hydrogen gas sensor, the hydrogen concentration can be detected more accurately as the rate of change in weight increase according to the hydrogen storage amount is larger.
JP-A-2-110341

ところで、従来の水素ガスセンサにおいては、水素吸蔵合金を水素センサとして利用する場合、水素吸蔵合金を一定温度に保持した状態とする必要がある。このとき、水晶振動子をヒータに組み込むと、振動の対象となる物体の重量が増加することによって水晶振動子で水素吸蔵合金の状態変化量を計測する精度が悪化する。そのため、振動の対象となる物体の重量を増加させないように、ヒータを水晶振動子の下方に離間させて配置し間接的に水晶振動子を加熱している。しかし、水晶振動子をヒータで間接的に加熱することで、水晶振動子の温度管理を精度よく行うことができなくなってしまう。
本発明は上記事情に鑑みてなされたもので、水素に対する選択性が高い水素吸収材を利用して、気体中に含まれる水素ガスの濃度を精度良く検出することが可能な水素検出装置を提供することを目的とする。
By the way, in the conventional hydrogen gas sensor, when using a hydrogen storage alloy as a hydrogen sensor, it is necessary to keep the hydrogen storage alloy at a constant temperature. At this time, if the crystal resonator is incorporated in the heater, the accuracy of measuring the state change amount of the hydrogen storage alloy by the crystal resonator deteriorates due to an increase in the weight of the object to be vibrated. Therefore, in order not to increase the weight of the object to be vibrated, the heater is disposed separately below the crystal unit to indirectly heat the crystal unit. However, by indirectly heating the crystal unit with a heater, it becomes impossible to accurately control the temperature of the crystal unit.
The present invention has been made in view of the above circumstances, and provides a hydrogen detection apparatus capable of accurately detecting the concentration of hydrogen gas contained in a gas by using a hydrogen absorber having high selectivity for hydrogen. The purpose is to do.

本発明は、上記課題を解決するため、以下の手段を採用する。すなわち請求項1に記載の発明に係る水素検出装置(例えば実施形態における水素検出装置11)は、可逆的に水素を吸収し放出する水素吸収材(例えば実施形態における検出素子12)と、前記水素吸収材の温度を検出する温度検出手段(例えば実施形態における温度センサ15)と、電極(例えば実施形態における電極13a,13b)を厚さ方向の両端に配置し前記水素吸収材を一定温度に保持した状態で前記水素吸収材の水素の吸収および放出に応じた状態変化を検出する状態変化検出手段(例えば実施形態における水晶振動子14)と、前記電極の一方(例えば実施形態における電極13a)の表面に配置された前記水素吸収材に直流電流を流す通電手段(例えば実施形態における導線23,24、外部電源Pおよび制御装置20)とを備えたことを特徴とする。
本発明によれば、このような構成において、直流電流を流すことによって水素吸収材が直接加熱されるため、応答性に優れた温度調整が可能となる。
また、水素吸収材を直接加熱するため、水素吸収材を加熱するためのヒータを新たに設置する必要がない。
さらに、水素吸収材自体がヒータとして機能するため、状態変化検出手段の重量を増加させることがなく、したがって、状態変化検出手段で水素吸収材の状態変化量を計測する精度の悪化を防止することとなる。
The present invention employs the following means in order to solve the above problems. That is, a hydrogen detection device according to the invention described in claim 1 (for example, the hydrogen detection device 11 in the embodiment) includes a hydrogen absorbing material (for example, the detection element 12 in the embodiment) that reversibly absorbs and releases hydrogen, and the hydrogen. Temperature detecting means for detecting the temperature of the absorbent material (for example, the temperature sensor 15 in the embodiment) and electrodes (for example, the electrodes 13a and 13b in the embodiment) are arranged at both ends in the thickness direction to keep the hydrogen absorbent material at a constant temperature. A state change detecting means (for example, the quartz crystal resonator 14 in the embodiment) for detecting a state change in accordance with absorption and release of hydrogen of the hydrogen absorbing material, and one of the electrodes (for example, the electrode 13a in the embodiment). Current-carrying means (for example, conducting wires 23 and 24, external power supply P, and control device 20 in the embodiment) for supplying a direct current to the hydrogen absorbing material disposed on the surface Characterized by comprising and.
According to the present invention, in such a configuration, since the hydrogen absorbing material is directly heated by passing a direct current, temperature adjustment with excellent responsiveness is possible.
Further, since the hydrogen absorbing material is directly heated, there is no need to newly install a heater for heating the hydrogen absorbing material.
Furthermore, since the hydrogen absorbing material itself functions as a heater, it does not increase the weight of the state change detecting means, and therefore prevents deterioration of the accuracy of measuring the state change amount of the hydrogen absorbing material by the state change detecting means. It becomes.

請求項2に記載の発明に係る水素検出装置において、前記状態変化検出手段は、水晶振動子であることを特徴とする。
本発明によれば、水素の吸収および放出に応じて水素吸収材に生じる状態変化を水晶振動子に生じる周波数変動として精度良く検出することができる。
The hydrogen detection apparatus according to claim 2 is characterized in that the state change detection means is a crystal resonator.
According to the present invention, it is possible to accurately detect a change in state that occurs in the hydrogen absorbing material in response to absorption and release of hydrogen as a frequency variation that occurs in the crystal resonator.

請求項3に記載の発明に係る水素検出装置において、前記水素吸収材は、前記電極の一方の表面の一端から他端に向かって蛇行するように配置されていることを特徴とする。
本発明によれば、水素吸収材を電極の一方の表面の一端から他端に向かって蛇行するように配置することによって、電極の一方の表面に配置された水素吸収材の長さが長くなる。そのため、水素吸収材に直流電流を流したときの水素吸収材のジュール損による発熱量が大きくなり、水素吸収材の加熱効率が向上することとなる。
The hydrogen detector according to claim 3, wherein the hydrogen absorber is arranged to meander from one end of one surface of the electrode toward the other end.
According to the present invention, the length of the hydrogen absorbing material arranged on one surface of the electrode is increased by arranging the hydrogen absorbing material so as to meander from one end of the one surface of the electrode to the other end. . Therefore, the amount of heat generated by Joule loss of the hydrogen absorbent when a direct current is passed through the hydrogen absorbent increases, and the heating efficiency of the hydrogen absorbent is improved.

請求項1に記載の発明に係る水素検出装置によれば、応答性に優れた温度調整が可能となるので、水素吸収材の温度管理を容易に行うことができる。また、水素吸収材を加熱するためのヒータを新たに設置する必要がないので、水素検出装置に設けられる構成部品点数を削減することができる。さらに、状態変化検出手段の重量を増加させることがないので、状態変化検出手段で水素吸収材の状態変化量を計測する精度の悪化を防止することができ、気体中に含まれる水素ガスの濃度を精度良く検出することができる。   According to the hydrogen detector according to the first aspect of the present invention, temperature adjustment with excellent responsiveness is possible, so that the temperature control of the hydrogen absorbent can be easily performed. In addition, since it is not necessary to newly install a heater for heating the hydrogen absorbing material, the number of components provided in the hydrogen detection device can be reduced. Furthermore, since the weight of the state change detecting means is not increased, it is possible to prevent deterioration in accuracy of measuring the state change amount of the hydrogen absorbent by the state change detecting means, and the concentration of hydrogen gas contained in the gas. Can be detected with high accuracy.

また、請求項2に記載の発明に係る水素検出装置によれば、水素の吸収および放出に応じて水素吸収材に生じる状態変化を精度良く検出することができる。
また、請求項3に記載の発明に係る水素検出装置によれば、水素吸収材に直流電流を流したときの水素吸収材のジュール損による発熱量が大きくなり、水素吸収材の加熱効率が向上することとなるので、状態変化検出手段で水素吸収材の状態変化量を計測する精度の悪化を防止することができ、気体中に含まれる水素ガスの濃度を精度良く検出することができる。
In addition, according to the hydrogen detector according to the second aspect of the present invention, it is possible to accurately detect a state change that occurs in the hydrogen absorbing material in accordance with the absorption and release of hydrogen.
According to the hydrogen detector of the invention described in claim 3, the amount of heat generated by the Joule loss of the hydrogen absorbing material when a direct current is passed through the hydrogen absorbing material increases, and the heating efficiency of the hydrogen absorbing material is improved. As a result, it is possible to prevent deterioration of the accuracy of measuring the state change amount of the hydrogen absorbent by the state change detection means, and to accurately detect the concentration of hydrogen gas contained in the gas.

以下、本発明の水素検出装置の一実施形態について添付図面を参照しながら説明する。
本実施の形態による水素検出装置11は、例えば図1に示すように、水素吸収材としての検出素子12と、一対の電極13a,13bにより両側から挟み込まれた状態変化検出手段としての水晶振動子14と、温度検出手段としての温度センサ15と、制御装置20とを備えて構成されている。
そして、検査対象ガスが導入される開口部を有する箱型の筐体21の内部がガス検出室として形成され、この筐体21の内部に、検出素子12と、一対の電極13a,13bを備える水晶振動子14と、温度センサ15とが収容され、筐体21の外部に制御装置20が配置されている。
Hereinafter, an embodiment of the hydrogen detector of the present invention will be described with reference to the accompanying drawings.
For example, as shown in FIG. 1, a hydrogen detector 11 according to this embodiment includes a detection element 12 as a hydrogen absorber and a crystal resonator as a state change detection means sandwiched between a pair of electrodes 13a and 13b. 14, a temperature sensor 15 as temperature detection means, and a control device 20.
And the inside of the box-shaped housing | casing 21 which has the opening part into which inspection object gas is introduce | transduced is formed as a gas detection chamber, and the detection element 12 and a pair of electrode 13a, 13b are provided in this housing | casing 21 inside. The crystal resonator 14 and the temperature sensor 15 are accommodated, and the control device 20 is disposed outside the housing 21.

検出素子12は、所定の水素吸蔵圧の温度変化特性を有する水素吸蔵合金からなる細幅の平板であり、例えば内部に貫通した微細な空間を有するAB系水素吸蔵合金である。この検出素子12は、図2に示すように、細幅の平板が一方の電極13aの表面の一端から他端に向かって蛇行するように配置されている。この検出素子12において、所定の作動温度(例えば、100℃等)での水素吸蔵圧(例えば、0.005atm)は、大気中における水素分圧と水素濃度との対応関係から、所定の水素濃度に対応するように設定されている(例えば、水素分圧0.005atmは水素濃度0.5%に相当する)。 Detecting element 12 is a flat narrow consisting of hydrogen absorbing alloy having a temperature change characteristic of a given hydrogen storage pressure, such as AB 5 type hydrogen storage alloy having a fine space penetrates therein. As shown in FIG. 2, the detection element 12 is arranged so that a narrow flat plate meanders from one end of the surface of one electrode 13a to the other end. In this detection element 12, the hydrogen storage pressure (for example, 0.005 atm) at a predetermined operating temperature (for example, 100 ° C.) is determined based on the relationship between the hydrogen partial pressure and the hydrogen concentration in the atmosphere. (For example, a hydrogen partial pressure of 0.005 atm corresponds to a hydrogen concentration of 0.5%).

さらに、検出素子12は、水素を吸蔵した際に発生する状態変化(例えば、体積膨張、発熱、重量増大等)あるいは吸蔵した水素を放出する際に発生する状態変化(例えば、体積収縮、吸熱、重量低下等)が所定の状態変化となるように設定されている。例えば、検査対象ガスの水素分圧が所定分圧(例えば、0.005atm)以上の状態で検出素子12が水素を吸蔵した場合に重量が増分Δmだけ増大するようになっている。
そして、検出素子12は、例えば焼結、圧着、溶射、接着等の耐熱性を有する適宜の接合方法により一方の電極13aの表面上に接合されている。
Further, the detection element 12 changes in a state that occurs when hydrogen is occluded (for example, volume expansion, heat generation, weight increase, etc.) or changes in a state that occurs when the occluded hydrogen is released (for example, volume contraction, endotherm, (Weight reduction, etc.) is set to be a predetermined state change. For example, when the detection element 12 occludes hydrogen when the hydrogen partial pressure of the inspection target gas is equal to or higher than a predetermined partial pressure (for example, 0.005 atm), the weight increases by an increment Δm.
The detection element 12 is bonded onto the surface of the one electrode 13a by an appropriate bonding method having heat resistance such as sintering, pressure bonding, thermal spraying, and adhesion.

温度センサ15は、検出素子12の上部に設けられ、制御装置20を介して通電されている。制御装置20は、この温度センサ15の温度変化に応じた抵抗値の変化を検出することによって、検出素子12の温度を検出する。
略板状の水晶振動子14は、この水晶振動子14を励振させるための一対の電極13a,13bにより厚さ方向の両側から挟み込まれ、すなわち、一方の電極13aは、検出素子12と水晶振動子14との間に配置されている。この水晶振動子14は、電極13a,13bに交流電流を印加することによって、検出素子12の状態変化に応じた水晶振動子14の共振周波数の変化が電気信号として一対の電極13a,13bを介して制御装置20に出力される。
The temperature sensor 15 is provided above the detection element 12 and is energized via the control device 20. The control device 20 detects the temperature of the detection element 12 by detecting a change in the resistance value according to the temperature change of the temperature sensor 15.
The substantially plate-shaped crystal resonator 14 is sandwiched from both sides in the thickness direction by a pair of electrodes 13a and 13b for exciting the crystal resonator 14, that is, one electrode 13a is connected to the detection element 12 and the crystal vibration. It is arranged between the child 14. In this crystal resonator 14, by applying an alternating current to the electrodes 13 a and 13 b, a change in the resonance frequency of the crystal resonator 14 according to a change in the state of the detection element 12 is transmitted as an electrical signal via the pair of electrodes 13 a and 13 b. To the control device 20.

検出素子12の両端にはそれぞれ導線23,24が取付けられている。この導線23,24は、直流電流を印加できるように外部電源Pに接続されている。また、外部電源Pは、検出素子12の温度を制御できるように制御装置20に接続されている。なお、本発明の通電手段は、これら導線23,24、外部電源Pおよび制御装置20を備えて構成されている。   Conductive wires 23 and 24 are attached to both ends of the detection element 12, respectively. The conducting wires 23 and 24 are connected to an external power source P so that a direct current can be applied. The external power supply P is connected to the control device 20 so that the temperature of the detection element 12 can be controlled. The energizing means of the present invention comprises these conductors 23 and 24, an external power supply P, and the control device 20.

本実施の形態による水素検出装置11は上記構成を備えており、次に、この水素検出装置11の動作について説明する。
検出素子12を構成する水素吸蔵合金は、ガス検出室とされる筐体21内部の雰囲気の水素分圧が温度に応じた各水素吸蔵圧よりも低いときには水素の吸蔵が抑制され、水素分圧が温度に応じた各水素吸蔵圧に達すると水素の吸蔵を開始する。そして、水素吸蔵合金は水素を吸蔵すると重量が増大するので、水晶振動子14の共振周波数の変化が制御装置20によって検出される。
つまり、検出素子12の温度を所定の作動温度となるように制御すると、検出素子12を構成する水素吸蔵合金が水素を吸蔵しているか否かに応じて、検出される水晶振動子14の共振周波数が異なり、この共振周波数の変化に基づき、雰囲気の水素濃度がどの濃度範囲にあるかを検知することができる。
The hydrogen detection device 11 according to the present embodiment has the above-described configuration. Next, the operation of the hydrogen detection device 11 will be described.
The hydrogen storage alloy constituting the detection element 12 suppresses the storage of hydrogen when the hydrogen partial pressure of the atmosphere inside the casing 21 serving as the gas detection chamber is lower than each hydrogen storage pressure corresponding to the temperature, and the hydrogen partial pressure is reduced. Starts to store hydrogen when each hydrogen storage pressure according to the temperature is reached. Since the hydrogen storage alloy increases in weight when storing hydrogen, a change in the resonance frequency of the crystal resonator 14 is detected by the control device 20.
In other words, when the temperature of the detection element 12 is controlled to be a predetermined operating temperature, the resonance of the crystal resonator 14 to be detected depends on whether or not the hydrogen storage alloy constituting the detection element 12 stores hydrogen. The frequency is different, and based on the change in the resonance frequency, it is possible to detect in which concentration range the hydrogen concentration of the atmosphere is.

例えば、検出素子12の温度が所定の作動温度(例えば、100°C等)に保持されている状態において、雰囲気の水素分圧が検出素子12の水素吸蔵圧(例えば、0.005atm)に満たない場合には、検出素子12は水素を吸蔵せず、水素検出装置11の重量変化はゼロであるから水晶振動子14の共振周波数の変化はゼロとなって、雰囲気の水素濃度は0.5%未満であると検知される。   For example, in a state where the temperature of the detection element 12 is maintained at a predetermined operating temperature (for example, 100 ° C.), the hydrogen partial pressure of the atmosphere satisfies the hydrogen storage pressure (for example, 0.005 atm) of the detection element 12. In the case where there is not, the detection element 12 does not occlude hydrogen and the change in the weight of the hydrogen detection device 11 is zero, so the change in the resonance frequency of the crystal unit 14 is zero, and the hydrogen concentration in the atmosphere is 0.5. Detected to be less than%.

そして、雰囲気の水素分圧が検出素子12の水素吸蔵圧(例えば、0.005atm)以上の場合には、検出素子12が水素を吸蔵し、水素検出装置11の重量が増分Δmだけ増大する。この重量増大に応じた水晶振動子14の共振周波数の変化が検出されることで、雰囲気の水素濃度は0.5%以上であると検知される。   And when the hydrogen partial pressure of atmosphere is more than the hydrogen occlusion pressure (for example, 0.005 atm) of the detection element 12, the detection element 12 occludes hydrogen and the weight of the hydrogen detection apparatus 11 increases by increment (DELTA) m. By detecting a change in the resonance frequency of the crystal resonator 14 according to the increase in weight, it is detected that the hydrogen concentration in the atmosphere is 0.5% or more.

また、検出素子12をヒータとして利用し、検出素子12の温度が所定の作動温度(例えば、100°C等)に保持された状態を維持するために、制御装置20を用いて検出素子12の温度を制御する。すなわち、図3のフローチャートに示すように、検出素子12の温度を温度センサによって検出して所定の作動温度(例えば、100°C等)を下回っているか否かを判断し(ステップS11)、検出素子12の温度が所定の作動温度(例えば、100°C等)を下回った場合(ステップS11において「Yes」)、検出素子12の温度が所定の作動温度(例えば、100°C等)に到達するまで外部電源Pを作動させて検出素子12を加熱させ(ステップS12)、すでに検出素子12の温度が所定の作動温度(例えば、100°C等)に到達している場合には(ステップS11において「No」)、外部電源Pの作動を停止させる(ステップS13)。   Further, the detection element 12 is used as a heater, and the control device 20 is used to maintain the state where the temperature of the detection element 12 is maintained at a predetermined operating temperature (for example, 100 ° C.). Control the temperature. That is, as shown in the flowchart of FIG. 3, the temperature of the detection element 12 is detected by a temperature sensor to determine whether the temperature is below a predetermined operating temperature (eg, 100 ° C.) (step S11). When the temperature of the element 12 falls below a predetermined operating temperature (for example, 100 ° C. or the like) (“Yes” in step S11), the temperature of the detection element 12 reaches a predetermined operating temperature (for example, 100 ° C. or the like). The external power supply P is operated until the detection element 12 is heated (step S12), and when the temperature of the detection element 12 has already reached a predetermined operating temperature (for example, 100 ° C.) (step S11). In "No"), the operation of the external power supply P is stopped (step S13).

その後、検出素子12の温度を所定の作動温度(例えば、100°C等)に保持された状態に維持するか否かを判断し(ステップS14)、検出素子12の温度を維持する場合(ステップS14において「Yes」)、ステップS11に戻り、検出素子12の温度を温度センサによって検出して所定の作動温度(例えば、100°C等)を下回っているか否かを判断する。なお、水素検出装置11の作動を停止させる等、検出素子12の温度を所定の作動温度(例えば、100°C等)に保持された状態に維持する必要がなくなった場合(ステップS14において「No」)、このフローを終了する。   Thereafter, it is determined whether or not the temperature of the detection element 12 is maintained at a predetermined operating temperature (for example, 100 ° C. or the like) (step S14), and the temperature of the detection element 12 is maintained (step S14). In S14, “Yes”), the process returns to step S11, and the temperature of the detection element 12 is detected by the temperature sensor to determine whether or not the temperature is lower than a predetermined operating temperature (for example, 100 ° C. or the like). When it is no longer necessary to maintain the temperature of the detection element 12 at a predetermined operating temperature (for example, 100 ° C. or the like) such as when the operation of the hydrogen detector 11 is stopped (“No” in step S14) ]), This flow is finished.

以上説明したように、本発明に係る水素検出装置11によれば、検出素子12を一方の電極13aの表面に配置し、外部電源Pから直流電流を流すことによって検出素子12が直接加熱されることにより、検出素子12の温度が迅速に調整されることとなる。すなわち、応答性に優れた温度調整が可能となるので、検出素子12の温度管理を容易に行うことができる。
また、検出素子12を外部電源Pから直接加熱するため、検出素子12を加熱するためのヒータ、例えばペルチェ素子および伝熱体を新たに設置する必要がない。したがって、水素検出装置11に設けられる構成部品点数を削減することができる。
As described above, according to the hydrogen detection device 11 of the present invention, the detection element 12 is directly heated by arranging the detection element 12 on the surface of the one electrode 13a and flowing a direct current from the external power source P. As a result, the temperature of the detection element 12 is quickly adjusted. That is, since temperature adjustment with excellent responsiveness is possible, the temperature management of the detection element 12 can be easily performed.
Further, since the detection element 12 is directly heated from the external power source P, there is no need to newly install a heater for heating the detection element 12, such as a Peltier element and a heat transfer body. Therefore, the number of components provided in the hydrogen detector 11 can be reduced.

さらに、検出素子12自体がヒータとして機能するため、水晶振動子14にヒータを組み込むことによる水晶振動子14の重量の増加を回避できる。そのため、水晶振動子14の重量の増加による検出素子12の重量変化量を計測する精度の悪化を防止することとなる。したがって、気体中に含まれる水素ガスの濃度を精度良く検出することができる。
また、重量変化を検出するために水晶振動子14を用いることで、水素の吸収および放出に応じて検出素子12に生じる重量変化を水晶振動子14に生じる周波数変動として精度良く検出することができる。
Furthermore, since the detection element 12 itself functions as a heater, it is possible to avoid an increase in the weight of the crystal resonator 14 by incorporating the heater into the crystal resonator 14. Therefore, it is possible to prevent deterioration in accuracy of measuring the weight change amount of the detection element 12 due to an increase in the weight of the crystal resonator 14. Therefore, the concentration of hydrogen gas contained in the gas can be detected with high accuracy.
Further, by using the crystal resonator 14 to detect the weight change, the weight change generated in the detection element 12 in accordance with the absorption and release of hydrogen can be accurately detected as the frequency fluctuation generated in the crystal resonator 14. .

また、検出素子12を一方の電極13aの表面の一端から他端に向かって蛇行するように配置することによって、一方の電極13aの表面に配置された検出素子12の長さが長くなる。そのため、検出素子12に直流電流を流したときの検出素子12のジュール損による発熱量が大きくなり、検出素子12の加熱効率が向上することとなる。したがって、水晶振動子14で検出素子12の状態変化量を計測する精度の悪化を防止することができ、気体中に含まれる水素ガスの濃度を精度良く検出することができる。   Further, by arranging the detection element 12 so as to meander from one end of the surface of the one electrode 13a toward the other end, the length of the detection element 12 arranged on the surface of the one electrode 13a becomes long. Therefore, the amount of heat generated by Joule loss of the detection element 12 when a direct current is passed through the detection element 12 is increased, and the heating efficiency of the detection element 12 is improved. Accordingly, it is possible to prevent deterioration in accuracy of measuring the state change amount of the detection element 12 by the crystal resonator 14 and to accurately detect the concentration of hydrogen gas contained in the gas.

なお、上述した実施の形態においては、水晶振動子14により検出素子12の重量変化を検出するとしたが、これに限定されず、例えば歪ゲージ等によって体積変化を検出してもよいし、温度センサにより温度変化を検出してもよい。
また、上述した実施の形態において、検出素子12は、他方の電極13bの表面上に設けられてもよい。
また、上述した実施の形態において、温度センサ15は、検出素子12の温度の測定が可能であれば、どの位置に設けられてもよい。さらに、温度センサが検出素子12に設置されている必要はなく、検出素子12の温度の測定が可能であれば、検出素子12から離間した位置に配置されてもよい。
また、上述した実施の形態において、一方の電極13aの温度制御方法は、外部電源PをONまたはOFFするいわゆるON−OFF制御であるが、チョッパーによる制御、PID制御等、一方の電極13aの温度調節に有効な制御であれば、いずれの温度制御方法を用いてもよい。
In the above-described embodiment, the change in the weight of the detection element 12 is detected by the crystal resonator 14, but the present invention is not limited to this. For example, a change in volume may be detected by a strain gauge or the like, or a temperature sensor The temperature change may be detected by
In the embodiment described above, the detection element 12 may be provided on the surface of the other electrode 13b.
In the above-described embodiment, the temperature sensor 15 may be provided at any position as long as the temperature of the detection element 12 can be measured. Further, the temperature sensor does not need to be installed on the detection element 12 and may be arranged at a position separated from the detection element 12 as long as the temperature of the detection element 12 can be measured.
In the embodiment described above, the temperature control method for one electrode 13a is so-called ON-OFF control for turning on or off the external power supply P. However, the temperature of the one electrode 13a is controlled by chopper, PID control, or the like. Any temperature control method may be used as long as the control is effective for adjustment.

本発明の一実施形態に係る水素検出装置の構成図である。It is a block diagram of the hydrogen detection apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る水素検出装置の電極に配置された検出素子の平面図である。It is a top view of the detection element arrange | positioned at the electrode of the hydrogen detection apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る水素検出装置の一方の電極の温度を制御するフローチャートである。It is a flowchart which controls the temperature of one electrode of the hydrogen detection apparatus which concerns on one Embodiment of this invention.

符号の説明Explanation of symbols

11 水素検出装置 12 検出素子(水素吸収材) 13a,13b 電極 14 水晶振動子(状態変化検出手段) 15 温度センサ(温度検出手段) 20 制御装置(通電手段) 23,24 導線(通電手段) P 外部電源(通電手段)
DESCRIPTION OF SYMBOLS 11 Hydrogen detection apparatus 12 Detection element (hydrogen absorption material) 13a, 13b Electrode 14 Crystal oscillator (state change detection means) 15 Temperature sensor (temperature detection means) 20 Control apparatus (energization means) 23, 24 Conductor (energization means) P External power supply (energization means)

Claims (3)

可逆的に水素を吸収し放出する水素吸収材と、
前記水素吸収材の温度を検出する温度検出手段と、
電極を厚さ方向の両端に配置し前記水素吸収材を一定温度に保持した状態で前記水素吸収材の水素の吸収および放出に応じた状態変化を検出する状態変化検出手段と、
前記電極の一方の表面に配置された前記水素吸収材に直流電流を流す通電手段とを備えたことを特徴とする水素検出装置。
A hydrogen absorber that reversibly absorbs and releases hydrogen;
Temperature detecting means for detecting the temperature of the hydrogen absorbing material;
State change detection means for detecting state changes according to absorption and release of hydrogen of the hydrogen absorbent material in a state where electrodes are arranged at both ends in the thickness direction and the hydrogen absorbent material is maintained at a constant temperature;
A hydrogen detection apparatus comprising: an energization means for causing a direct current to flow through the hydrogen absorbing material disposed on one surface of the electrode.
前記状態変化検出手段は、水晶振動子であることを特徴とする請求項1記載の水素検出装置。     The hydrogen detection apparatus according to claim 1, wherein the state change detection means is a crystal resonator. 前記水素吸収材は、前記電極の一方の表面の一端から他端に向かって蛇行するように配置されていることを特徴とする請求項1または2記載の水素検出装置。     The hydrogen detection apparatus according to claim 1, wherein the hydrogen absorbing material is disposed so as to meander from one end to the other end of one surface of the electrode.
JP2004121795A 2004-04-16 2004-04-16 Hydrogen detector Withdrawn JP2005308403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004121795A JP2005308403A (en) 2004-04-16 2004-04-16 Hydrogen detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004121795A JP2005308403A (en) 2004-04-16 2004-04-16 Hydrogen detector

Publications (1)

Publication Number Publication Date
JP2005308403A true JP2005308403A (en) 2005-11-04

Family

ID=35437362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004121795A Withdrawn JP2005308403A (en) 2004-04-16 2004-04-16 Hydrogen detector

Country Status (1)

Country Link
JP (1) JP2005308403A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11119075B2 (en) * 2018-10-05 2021-09-14 Samsung Electronics Co., Ltd. Gas sensor and gas sensing method for providing self-calibration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11119075B2 (en) * 2018-10-05 2021-09-14 Samsung Electronics Co., Ltd. Gas sensor and gas sensing method for providing self-calibration

Similar Documents

Publication Publication Date Title
US7655887B2 (en) Feedback control system and method for maintaining constant resistance operation of electrically heated elements
JP5154267B2 (en) Gas detector
US20190265177A1 (en) Substance detection system and substance detection method
WO2006029356A2 (en) Thermal mass flow sensor
CN114965608A (en) Gas detection apparatus and gas detection method using the same
JP2010019732A (en) Gas sensor
JP2005308403A (en) Hydrogen detector
JP2005308404A (en) Hydrogen detector
JP2015200626A (en) gas sensor
JP6679859B2 (en) Gas detector
JP4817305B2 (en) Combustible gas sensor and combustible gas detector
JP2011215024A (en) Quartz crystal microbalance gas sensor and gas measuring method
JP5491111B2 (en) Micro sensing device
JP2005257394A (en) Hydrogen detection device
JP2005249405A (en) Hydrogen detector
JP4725429B2 (en) Atomic oscillator and temperature control method for atomic oscillator
JP2005106617A (en) Hydrogen detector
JP5076995B2 (en) Hydrogen gas sensor
JP2010019754A (en) Gas sensor
JP2007064866A (en) Gas sensor
JP3866236B2 (en) Hydrogen concentration detection method and hydrogen detector
JP5040515B2 (en) Hydrogen gas sensor
KR20130063787A (en) Heater jacket
JP4229824B2 (en) Column separator
JP2015200625A (en) Vacuum gas detection element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070703