JP2005248260A - Vacuum deposition system - Google Patents

Vacuum deposition system Download PDF

Info

Publication number
JP2005248260A
JP2005248260A JP2004061052A JP2004061052A JP2005248260A JP 2005248260 A JP2005248260 A JP 2005248260A JP 2004061052 A JP2004061052 A JP 2004061052A JP 2004061052 A JP2004061052 A JP 2004061052A JP 2005248260 A JP2005248260 A JP 2005248260A
Authority
JP
Japan
Prior art keywords
substrate
holder
substrate holder
holes
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004061052A
Other languages
Japanese (ja)
Inventor
Akinobu Horie
江 昭 延 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2004061052A priority Critical patent/JP2005248260A/en
Publication of JP2005248260A publication Critical patent/JP2005248260A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum deposition system capable of improving a throughput. <P>SOLUTION: Substrate holders 21A, 21B, 21C, and 21D where holes and substrates are alternately provided on the same radius at the same intervals, and a dummy holder 27 provided with a plurality of holes on the same radius at the intervals double the above intervals are fitted to a supporting stem 22, so as to be stacked in such a manner that the dummy holder 27 is located at the side of a crucible 7. They are rotated around the supporting stem 22 in such a manner that the substrate in each substrate holder communicates with each hole in the dummy holder 27 successively, and film deposition to the substrate fitted to each substrate holder is performed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、複数の基板を取り付けた基板ホルダを備えた真空蒸着装置に関する。   The present invention relates to a vacuum deposition apparatus provided with a substrate holder to which a plurality of substrates are attached.

真空蒸着装置は、光学レンズの反射防止膜等、幅広く成膜に使われている。     Vacuum deposition apparatuses are widely used for film formation, such as an antireflection film for optical lenses.

真空蒸着装置は、真空チャンバ内に置かれた蒸発材料を加熱蒸発させ、蒸発粒子を基板に付着させるもので、加熱方法には、抵抗加熱によって蒸発材料を加熱蒸発させる方法や、電子ビーム加熱により蒸発材料を加熱蒸発させる方法等があり、蒸着方法には、蒸発粒子をそのまま基板に付着させる方法や、蒸発粒子をイオン化して付着させる方法等がある。   The vacuum deposition apparatus heats and evaporates the evaporation material placed in the vacuum chamber, and attaches the evaporated particles to the substrate. The heating method includes a method of heating and evaporating the evaporation material by resistance heating, or an electron beam heating. There are a method of evaporating the evaporation material by heating, and a vapor deposition method includes a method of directly attaching the evaporated particles to the substrate, a method of ionizing and attaching the evaporated particles, and the like.

図1は真空蒸着装置の1概略例を示したものである。   FIG. 1 shows one schematic example of a vacuum deposition apparatus.

図中1は真空チャンバで、排気通路2を通じて真空ポンプ3により排気されるように成っている。   In the figure, reference numeral 1 denotes a vacuum chamber which is evacuated by a vacuum pump 3 through an exhaust passage 2.

真空チャンバ1の上壁中央には、複数の基板4(4a,4b,4c,……)がセットされた基板ホルダ5が取り付けられている。   A substrate holder 5 in which a plurality of substrates 4 (4a, 4b, 4c,...) Are set is attached to the center of the upper wall of the vacuum chamber 1.

基板ホルダ5の下方のチャンバ底壁には、蒸発材料6を収容した坩堝7が設置されている。   On the bottom wall of the chamber below the substrate holder 5, a crucible 7 containing the evaporation material 6 is installed.

8は電子銃で、該電子銃は、ここからの電子ビームが偏向器(図示せず)により270゜偏向され、坩堝7に収容された蒸発材料6を衝撃加熱する位置に配設されている。尚、電子銃8と坩堝7に収容された蒸発材料6との間には、電子銃8から発生し、偏向器(図示せず)で270゜偏向された電子ビームEBで蒸発材料上を走査させるための走査用コイル(図示せず)が設けられている。   An electron gun 8 is disposed at a position where the electron beam from the electron gun is deflected 270 ° by a deflector (not shown) and the evaporation material 6 accommodated in the crucible 7 is impact-heated. . Incidentally, between the electron gun 8 and the evaporating material 6 accommodated in the crucible 7, the evaporating material is scanned by the electron beam EB generated from the electron gun 8 and deflected 270 ° by a deflector (not shown). A scanning coil (not shown) is provided.

9は、坩堝7からの蒸発粒子の基板ホルダ5方向への飛散を遮蔽することが出来るシャッタで、支持棒10及び回転軸11を介してモータ等から成る駆動機構12により回転可能に取り付けられている。尚、13はホルダ支持軸である。   Reference numeral 9 denotes a shutter capable of blocking the scattering of evaporated particles from the crucible 7 toward the substrate holder 5, and is rotatably attached by a drive mechanism 12 including a motor or the like via a support rod 10 and a rotation shaft 11. Yes. Reference numeral 13 denotes a holder support shaft.

この様な構成の真空蒸着装置で基板上に成膜を行う場合、先ず、真空チャンバ1内を真空ポンプ3により真空排気する。   When a film is formed on a substrate with the vacuum vapor deposition apparatus having such a configuration, first, the vacuum chamber 1 is evacuated by a vacuum pump 3.

真空チャンバ1内が所定の真空度に達したら、電子銃8を作動させる。この時、既に、シャッタ駆動機構12の作動によりシャッタ9は坩堝7と基板4との間、即ち、遮蔽位置に来ている。   When the inside of the vacuum chamber 1 reaches a predetermined degree of vacuum, the electron gun 8 is operated. At this time, the shutter 9 has already come between the crucible 7 and the substrate 4, that is, at the shielding position by the operation of the shutter driving mechanism 12.

電子銃8の作動により、該電子銃からの電子ビームEBは偏向器(図示せず)により270゜偏向され、坩堝7に収容されている蒸発材料6に当たる。そして、走査コイル(図示せず)の働きにより、電子ビームEBは該蒸発材料6上を走査する。尚、電子銃8はフィラメント,グリッド及びアノードから成り、フィラメントから発生した電子ビームは、グリッドを介して一定の開き角でアノードを通過し、偏向器などの構造の工夫により、蒸発材料6の溶融面が所定の高さにある時に、その溶融表面上で一定の径のスポット状断面を成して当たるように成っている。この時のスポット径を基準スポット径と称す。   By the operation of the electron gun 8, the electron beam EB from the electron gun is deflected 270 ° by a deflector (not shown) and strikes the evaporation material 6 accommodated in the crucible 7. The electron beam EB scans the evaporation material 6 by the action of a scanning coil (not shown). The electron gun 8 is composed of a filament, a grid, and an anode, and an electron beam generated from the filament passes through the anode at a constant opening angle via the grid, and the evaporation material 6 is melted by devising a structure such as a deflector. When the surface is at a predetermined height, a spot-shaped cross section with a constant diameter is formed on the molten surface. The spot diameter at this time is referred to as a reference spot diameter.

この電子ビームの衝撃により、蒸発材料は加熱され、やがて蒸発を始める。
この蒸発が安定したら、シャッタ駆動機構12の作動により、シャッタ9は坩堝7と基板4を結ぶライン上から大きく外れた位置に回転移動する。
Due to the impact of the electron beam, the evaporation material is heated and eventually evaporates.
When this evaporation is stabilized, the shutter 9 is rotated and moved to a position greatly deviated from the line connecting the crucible 7 and the substrate 4 by the operation of the shutter drive mechanism 12.

該移動により、坩堝7からの蒸発粒子は基板4に到達し、これらの表面に薄膜状に付着する。   By this movement, the evaporated particles from the crucible 7 reach the substrate 4 and adhere to these surfaces in the form of a thin film.

図2は、図1のA−A断面を示すもので、基板を取り付けた基板ホルダ5を示している。
成膜を行う前に、基板4a,4b,4c,……を基板ホルダ5の表面にセットし、基板ホルダをチャンバ1の上壁に設置されているホルダ支持軸13に取り付ける。そして、上記操作により、各基板に成膜を行う。
FIG. 2 is a cross-sectional view taken along the line AA of FIG. 1 and shows a substrate holder 5 to which a substrate is attached.
Prior to film formation, the substrates 4 a, 4 b, 4 c,... Are set on the surface of the substrate holder 5, and the substrate holder is attached to the holder support shaft 13 installed on the upper wall of the chamber 1. Then, a film is formed on each substrate by the above operation.

所定の成膜が終了すると、チャンバ1内を大気圧に戻し、基板ホルダ5をホルダ支持軸13から取り外す。そして、基板ホルダ5に新しい基板をセットし、基板ホルダをホルダ支持軸13に取り付け、各基板に成膜を行う。以後同様な操作を繰り返して多数の基板への成膜を行う。
特開平5−230633号公報 特開平11−200018号公報 特開平5−279851号公報 特開平10−135146号公報
When the predetermined film formation is completed, the inside of the chamber 1 is returned to atmospheric pressure, and the substrate holder 5 is removed from the holder support shaft 13. Then, a new substrate is set on the substrate holder 5, the substrate holder is attached to the holder support shaft 13, and a film is formed on each substrate. Thereafter, the same operation is repeated to form a film on a large number of substrates.
JP-A-5-230633 Japanese Patent Laid-Open No. 11-200018 JP-A-5-279851 JP-A-10-135146

さて、上記した様に、基板交換の際、チャンバ1を大気圧に戻し、チャンバ1を開けた状態で、成膜の終了した基板4がセットされている基板ホルダ5をホルダ支持軸13から外し、新しい基板4をセットした基板ホルダ5をホルダ支持軸13に取り付ける操作を行っている。チャンバ1を開けた状態にしておくと、その間に、チャンバ内に入り込む空気と空気中に含まれている水分の量が多くなり、チャンバ1内を所定の真空状態にするまでに可成りの時間がかかってしまう(当然のことながら、不十分な真空度で成膜を行うと、成膜の質が低下するばかりか、各基板の成膜状態が異なってしまう)。従って、基板交換の回数が多くなるに従い、基板成膜のスループットが低下する。   As described above, when replacing the substrate, the chamber 1 is returned to atmospheric pressure, and the substrate holder 5 on which the substrate 4 on which film formation has been completed is set is removed from the holder support shaft 13 with the chamber 1 opened. The operation of attaching the substrate holder 5 on which the new substrate 4 is set to the holder support shaft 13 is performed. If the chamber 1 is left open, the amount of air that enters the chamber and the amount of moisture contained in the air increases during that time, and a considerable time is required until the inside of the chamber 1 is brought into a predetermined vacuum state. (As a matter of course, when the film is formed at an insufficient degree of vacuum, not only the quality of the film is deteriorated, but also the film formation state of each substrate is different.) Therefore, as the number of substrate exchanges increases, the substrate deposition throughput decreases.

本発明は、この様な問題を解決する新規な真空蒸着装置を提供することを目的とする。   An object of this invention is to provide the novel vacuum evaporation apparatus which solves such a problem.

本発明の真空蒸着装置は、蒸発源からの蒸発粒子を、支持軸に取り付けられた基板ホルダに設けられた複数の基板に付着させるように成した真空蒸着装置において、同一半径上に同一間隔で孔と基板取り付け穴が交互に複数設けられた複数の基板ホルダと、前記半径と同じ大きさの半径上に複数の孔が前記基板ホルダでの孔と基板取り付け穴の間隔の2倍の間隔で設けられたダミーホルダを、該ダミーホルダが蒸発源側に位置する様に、中心を合わせて重ねて支持軸に取り付けると共に、前記各基板ホルダを支持軸の周りに個々に回転可能に成したことを特徴とする。   The vacuum deposition apparatus of the present invention is a vacuum deposition apparatus configured to attach evaporated particles from an evaporation source to a plurality of substrates provided on a substrate holder attached to a support shaft. A plurality of substrate holders in which a plurality of holes and substrate mounting holes are alternately provided, and a plurality of holes on a radius of the same size as the radius at a distance twice as large as a distance between the holes in the substrate holder and the substrate mounting holes The provided dummy holders are mounted on the support shaft so that the dummy holders are positioned on the evaporation source side, and the substrate holders are individually rotatable around the support shaft. And

本発明によれば、チャンバ内を成膜のために1度真空状態にすると、その真空状態において、著しく多くの枚数の基板に対して成膜を行うことが出来るので、基板交換の回数が著しく減り、基板成膜のスループットが著しく向上する。   According to the present invention, when the chamber is evacuated once for film formation, film formation can be performed on a very large number of substrates in the vacuum state. The throughput of substrate deposition is significantly improved.

又、最初の基板ホルダにセットされた成膜前の基板はダミーホルダによって覆われており、二枚目以降の基板ホルダにセットされている基板はダミーホルダと前方に備えられている他の基板ホルダによって覆われているので、成膜前の処理における汚染が防止される。   The substrate before film formation set in the first substrate holder is covered with a dummy holder, and the substrates set in the second and subsequent substrate holders are covered with the dummy holder and other substrate holders provided in front. Since it is covered, contamination in the process before film formation is prevented.

以下、図面を参照して本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図3は本発明の真空蒸着装置の概略例を示したものである。図中、図1で使用した記号と同一記号の付されたものは同一構成要素を示す。   FIG. 3 shows a schematic example of the vacuum vapor deposition apparatus of the present invention. In the figure, the same reference numerals as those used in FIG. 1 denote the same components.

図3に示す真空蒸着装置においては、複数枚、例えば4枚の基板ホルダ21A(第1基板ホルダ),21B(第2基板ホルダ),21C(第3基板ホルダ),21D(第4基板ホルダ)が互いに平行、且つ、独立に回転可能に、重なる様に支持軸22に取り付けられている。これらの基板ホルダは、同一の大きさと構造の円板形状を成しており、図4(図4の(b)は図4の(a)のB−B断面を示す)に示す様に、同一半径上、90度おきに基板23a,23b,23c,23dが取り付けられており、各基板の中間位置に孔24a,24b,24c,24dが開けられている。尚、図4の(b)に示す様に、基板ホルダの基板が取り付けられる部分には基板より少し径の大きく、基板の厚さより少し深めの穴25a,25b,25c,25d(25bは図示されていない)が形成されており、その穴の底面に基板が取り付けられる様に成っている。尚、図3において26は軸受けである。   In the vacuum deposition apparatus shown in FIG. 3, a plurality of, for example, four substrate holders 21A (first substrate holder), 21B (second substrate holder), 21C (third substrate holder), 21D (fourth substrate holder). Are attached to the support shaft 22 so as to overlap each other and to be rotatable independently of each other. These substrate holders have a disk shape of the same size and structure, and as shown in FIG. 4 (FIG. 4 (b) shows a BB cross section of FIG. 4 (a)), Substrates 23a, 23b, 23c, and 23d are attached every 90 degrees on the same radius, and holes 24a, 24b, 24c, and 24d are formed at intermediate positions of the respective substrates. As shown in FIG. 4B, the holes 25a, 25b, 25c, and 25d (25b are shown in the figure) are slightly larger in diameter than the substrate and slightly deeper than the thickness of the substrate. Is formed so that the substrate can be attached to the bottom of the hole. In FIG. 3, reference numeral 26 denotes a bearing.

第1基板ホルダ21Aの前(蒸発源側)にはダミーホルダ27が支持軸22に取り付けられている。このダミーホルダは図5に示す様に、前記基板ホルダと同一の大きさの円板形状を成しており、同一半径上、90度おきに孔28a,28b,28c,28dが開けられている。   A dummy holder 27 is attached to the support shaft 22 in front of the first substrate holder 21A (on the evaporation source side). As shown in FIG. 5, the dummy holder has a disk shape having the same size as the substrate holder, and holes 28a, 28b, 28c, and 28d are opened every 90 degrees on the same radius.

図6(図6の(b)は図6の(a)のC−C断面を示す)は前記各基板ホルダ21A,21B,21C,21Dの駆動機構の概略を示したものである。基板ホルダ(21A,21B,21C,21D)の各側面には歯が形成されており、各側面の歯に噛み合うように、歯車29A,29B,29C,29Dが配設されている。30A,30B,30C,30Dは各歯車29A,29B,29C,29Dの回転軸で、それぞれ、チャンバ1の外で、モータ31A,31B,31C,31Dの回転軸と繋がっている。32は各モータを駆動する為の制御装置である。   FIG. 6 (FIG. 6 (b) shows a CC cross section of FIG. 6 (a)) shows an outline of the drive mechanism of each of the substrate holders 21A, 21B, 21C, 21D. Teeth are formed on each side of the substrate holder (21A, 21B, 21C, 21D), and gears 29A, 29B, 29C, 29D are arranged so as to mesh with the teeth on each side. 30A, 30B, 30C, and 30D are rotation shafts of the gears 29A, 29B, 29C, and 29D, and are connected to the rotation shafts of the motors 31A, 31B, 31C, and 31D outside the chamber 1, respectively. Reference numeral 32 denotes a control device for driving each motor.

この様な構成の真空蒸着装置の動作を次に説明する。   Next, the operation of the vacuum deposition apparatus having such a configuration will be described.

先ず、真空チャンバ1内を真空ポンプ3により真空排気する。   First, the vacuum chamber 1 is evacuated by the vacuum pump 3.

真空チャンバ1内が所定の真空度に達したら、電子銃8を作動させる。この時、既に、シャッタ駆動機構12の作動によりシャッタ9は坩堝7と基板との間、即ち、遮蔽位置に来ている。   When the inside of the vacuum chamber 1 reaches a predetermined degree of vacuum, the electron gun 8 is operated. At this time, the shutter 9 has already come between the crucible 7 and the substrate, that is, in the shielding position by the operation of the shutter driving mechanism 12.

電子銃8の作動により、該電子銃からの電子ビームEBは偏向器(図示せず)により270゜偏向され、坩堝7に収容されている蒸発材料6に当たる。そして、走査コイル(図示せず)の働きにより、電子ビームEBは該蒸発材料6上を走査する。   By the operation of the electron gun 8, the electron beam EB from the electron gun is deflected 270 ° by a deflector (not shown) and strikes the evaporation material 6 accommodated in the crucible 7. The electron beam EB scans the evaporation material 6 by the action of a scanning coil (not shown).

この電子ビームの衝撃により、蒸発材料は加熱され蒸発を始め、やがて蒸発が安定する。   Due to the impact of the electron beam, the evaporation material is heated and starts to evaporate, and eventually the evaporation is stabilized.

この様な蒸発状態の少し前、或いは同時、或いは少し後に、次の(1),(2)の操作を行う。   The following operations (1) and (2) are performed slightly before, simultaneously with, or slightly after such an evaporation state.

(1)制御装置32から、各モータ31A,31B,31C,31Dに駆動信号を送り、歯車29A,29B,29C,29Dを介して各基板ホルダ21A,21B,21C,21Dを回転させ、図7の(a)に示す様に、各基板ホルダの4つの孔(24a,24b,24c,24d)がダミーホルダ27の4つの孔(28a,28b,28c,28d)と完全に重なるようにする。   (1) A drive signal is sent from the control device 32 to each of the motors 31A, 31B, 31C, 31D, and the substrate holders 21A, 21B, 21C, 21D are rotated via the gears 29A, 29B, 29C, 29D. As shown in (a), the four holes (24a, 24b, 24c, 24d) of each substrate holder are completely overlapped with the four holes (28a, 28b, 28c, 28d) of the dummy holder 27.

(2)制御装置32から、モータ31Aに駆動信号を送り、歯車29Aを介して第1基板ホルダ21Aを例えば時計方向に45゜回転させ、図7の(b)に示す様に、第1基板ホルダ21Aの4つの基板(23a,23b,23c,23d)がダミーホルダ27の4つの孔(28a,28b,28c,28d)と完全に重なるようにする。
この状態において、シャッタ駆動機構12の作動により、シャッタ9を坩堝7と基板を結ぶライン上から大きく外れた位置に回転移動させ、坩堝7からの蒸発粒子をダミーホルダ27の孔(28a,28b,28c,28d)を通過させて第1基板ホルダ21Aの基板(23a,23b,23c,23d)に薄膜状に付着させる。所定の時間付着させたら、シャッタ駆動機構12の作動によりシャッタ9を坩堝7と基板との間に持って来る。
(2) A drive signal is sent from the control device 32 to the motor 31A, and the first substrate holder 21A is rotated, for example, by 45 ° clockwise via the gear 29A. As shown in FIG. The four substrates (23a, 23b, 23c, 23d) of the holder 21A are completely overlapped with the four holes (28a, 28b, 28c, 28d) of the dummy holder 27.
In this state, by operating the shutter drive mechanism 12, the shutter 9 is rotated and moved to a position greatly deviated from the line connecting the crucible 7 and the substrate, and the evaporated particles from the crucible 7 are moved to the holes (28a, 28b, 28c) of the dummy holder 27. , 28d) and is attached to the substrate (23a, 23b, 23c, 23d) of the first substrate holder 21A in a thin film shape. When attached for a predetermined time, the shutter 9 is brought between the crucible 7 and the substrate by the operation of the shutter drive mechanism 12.

次に、制御装置32から、モータ31A及びモータ31Bに駆動信号を送り、歯車29Aを介して第1基板ホルダ21Aを半時計方向に45゜,歯車29Bを介して第2基板ホルダ21Bを時計方向に45゜それぞれ回転させ、図7の(c)に示す様に、第1基板ホルダ21Aの4つの孔(24a,24b,24c,24d)と第2基板ホルダ21Bの4つの基板(23a,23b,23c,23d)が、それぞれ、ダミーホルダ27の4つの孔(28a,28b,28c,28d)完全に重なるようにする。   Next, a drive signal is sent from the control device 32 to the motor 31A and the motor 31B, the first substrate holder 21A is rotated 45 ° counterclockwise via the gear 29A, and the second substrate holder 21B is rotated clockwise via the gear 29B. 7 °, and as shown in FIG. 7C, the four holes (24a, 24b, 24c, 24d) of the first substrate holder 21A and the four substrates (23a, 23b) of the second substrate holder 21B. , 23c, 23d) so that the four holes (28a, 28b, 28c, 28d) of the dummy holder 27 completely overlap each other.

この状態において、シャッタ駆動機構12の作動により、シャッタ9を坩堝7と基板を結ぶライン上から大きく外れた位置に回転移動させ、坩堝7からの蒸発粒子をダミーホルダ27の孔(28a,28b,28c,28d)と第1基板ホルダ21Aの4つの孔(24a,24b,24c,24d)を通過させ第2基板ホルダ21Bの基板(23a,23b,23c,23d)に薄膜状に付着させる。所定の時間付着させたら、シャッタ駆動機構12の作動によりシャッタ9を坩堝7と基板との間に持って来る。   In this state, by operating the shutter drive mechanism 12, the shutter 9 is rotated and moved to a position greatly deviated from the line connecting the crucible 7 and the substrate, and the evaporated particles from the crucible 7 are moved to the holes (28a, 28b, 28c) of the dummy holder 27. 28d) and the four holes (24a, 24b, 24c, 24d) of the first substrate holder 21A are passed through and attached to the substrates (23a, 23b, 23c, 23d) of the second substrate holder 21B in a thin film shape. When attached for a predetermined time, the shutter 9 is brought between the crucible 7 and the substrate by the operation of the shutter drive mechanism 12.

次に、制御装置32から、モータ31B及びモータ31Cに駆動信号を送り、歯車29Bを介して第2基板ホルダ21Bを半時計方向に45゜,歯車29Cを介して第3基板ホルダ21Cを時計方向に45゜それぞれ回転させ、図7の(d)に示す様に、第1基板ホルダ21Aの4つの孔(24a,24b,24c,24d)、第2基板ホルダ21Bの4つの孔(24a,24b,24c,24d)及び第3基板ホルダ21Cの4つの基板(23a,23b,23c,23d)が、それぞれ、ダミーホルダ27の4つの孔(28a,28b,28c,28d)完全に重なるようにする。   Next, a drive signal is sent from the control device 32 to the motor 31B and the motor 31C, the second substrate holder 21B is rotated 45 ° counterclockwise via the gear 29B, and the third substrate holder 21C is rotated clockwise via the gear 29C. 7 °, and as shown in FIG. 7D, the four holes (24a, 24b, 24c, 24d) of the first substrate holder 21A and the four holes (24a, 24b) of the second substrate holder 21B. 24c, 24d) and the four substrates (23a, 23b, 23c, 23d) of the third substrate holder 21C completely overlap the four holes (28a, 28b, 28c, 28d) of the dummy holder 27, respectively.

この状態において、シャッタ駆動機構12の作動により、シャッタ9を坩堝7と基板を結ぶライン上から大きく外れた位置に回転移動させ、坩堝7からの蒸発粒子をダミーホルダ27の孔(28a,28b,28c,28d)、第1基板ホルダ21Aの4つの孔(24a,24b,24c,24d)及び第2基板ホルダ21Bの4つの孔(24a,24b,24c,24d)を通過させ第3基板ホルダ21Cの基板(23a,23b,23c,23d)に薄膜状に付着させる。所定の時間付着させたら、シャッタ駆動機構12の作動によりシャッタ9を坩堝7と基板との間に持って来る。   In this state, by operating the shutter drive mechanism 12, the shutter 9 is rotated and moved to a position greatly deviated from the line connecting the crucible 7 and the substrate, and the evaporated particles from the crucible 7 are moved to the holes (28a, 28b, 28c) of the dummy holder 27. 28d), the four holes (24a, 24b, 24c, 24d) of the first substrate holder 21A and the four holes (24a, 24b, 24c, 24d) of the second substrate holder 21B are allowed to pass through the third substrate holder 21C. A thin film is attached to the substrates (23a, 23b, 23c, 23d). When attached for a predetermined time, the shutter 9 is brought between the crucible 7 and the substrate by the operation of the shutter drive mechanism 12.

次に、制御装置32から、モータ31C及びモータ31Dに駆動信号を送り、歯車29Cを介して第3基板ホルダ21Cを半時計方向に45゜,歯車29Dを介して第4基板ホルダ21Dを時計方向に45゜それぞれ回転させ、図7の(e)に示す様に、第1基板ホルダ21Aの4つの孔(24a,24b,24c,24d)、第2基板ホルダ21Bの4つの孔(24a,24b,24c,24d)、第3基板ホルダ21Cの4つの孔(24a,24b,24c,24d)及び第4基板ホルダ21Dの4つの基板(23a,23b,23c,23d)が、それぞれ、ダミーホルダ27の4つの孔(28a,28b,28c,28d)完全に重なるようにする。   Next, a drive signal is sent from the control device 32 to the motor 31C and the motor 31D, the third substrate holder 21C is rotated 45 ° counterclockwise via the gear 29C, and the fourth substrate holder 21D is rotated clockwise via the gear 29D. 7 °, and as shown in FIG. 7E, the four holes (24a, 24b, 24c, 24d) of the first substrate holder 21A and the four holes (24a, 24b) of the second substrate holder 21B. 24c, 24d), the four holes (24a, 24b, 24c, 24d) of the third substrate holder 21C and the four substrates (23a, 23b, 23c, 23d) of the fourth substrate holder 21D, respectively, of the dummy holder 27 Four holes (28a, 28b, 28c, 28d) are made to completely overlap.

この状態において、シャッタ駆動機構12の作動により、シャッタ9を坩堝7と基板を結ぶライン上から大きく外れた位置に回転移動させ、坩堝7からの蒸発粒子をダミーホルダ27の孔(28a,28b,28c,28d)、第1基板ホルダ21Aの4つの孔(24a,24b,24c,24d)、第2基板ホルダ21Bの4つの孔(24a,24b,24c,24d)及び第3基板ホルダ21Cの4つの孔(24a,24b,24c,24d)を通過させ第4基板ホルダ21Dの基板(23a,23b,23c,23d)に薄膜状に付着させる。所定の時間付着させたら、シャッタ駆動機構12の作動によりシャッタ9を坩堝7と基板との間に持って来る。   In this state, by operating the shutter drive mechanism 12, the shutter 9 is rotated and moved to a position greatly deviated from the line connecting the crucible 7 and the substrate, and the evaporated particles from the crucible 7 are moved to the holes (28a, 28b, 28c) of the dummy holder 27. 28d), four holes (24a, 24b, 24c, 24d) of the first substrate holder 21A, four holes (24a, 24b, 24c, 24d) of the second substrate holder 21B, and four of the third substrate holder 21C. The holes (24a, 24b, 24c, 24d) are passed through and attached to the substrate (23a, 23b, 23c, 23d) of the fourth substrate holder 21D in the form of a thin film. When attached for a predetermined time, the shutter 9 is brought between the crucible 7 and the substrate by the operation of the shutter drive mechanism 12.

この様にして、全ての基板ホルダに取り付けられた全ての基板の成膜が終了したら、チャンバ1内を大気圧に戻し、全ての基板ホルダ21A,21B,21C,21Dを支持軸22から取り外す。そして、各基板ホルダに新しい基板をセットし、各基板ホルダを支持軸22に取り付け、各基板に成膜を行う。以後同様な操作を繰り返して多数の基板への成膜を行う。   In this way, when the deposition of all the substrates attached to all the substrate holders is completed, the inside of the chamber 1 is returned to the atmospheric pressure, and all the substrate holders 21A, 21B, 21C, and 21D are removed from the support shaft 22. Then, a new substrate is set in each substrate holder, each substrate holder is attached to the support shaft 22, and film formation is performed on each substrate. Thereafter, the same operation is repeated to form a film on a large number of substrates.

尚、本発明は、上記図3〜図6で説明した構造のものに限定されない。例えば、前記例では、基板と孔の組数が4組設けられた基板ホルダを4枚使用し、4の自乗、即ち16枚の基板の成膜を行うものを示したが、基板と孔の組数が5組設けられた基板ホルダを5枚使用し、5の自乗、即ち25枚の基板の成膜を行うものでも良い。即ち、N組(N≧2である正の整数)の基板と孔を有するN枚の基板ホルダを使用して、Nの自乗の枚数の基板に成膜を行うもので良く、Nが大きいほど、スループットが向上する。   The present invention is not limited to the structure described with reference to FIGS. For example, in the above example, four substrate holders with four sets of substrates and holes are used, and a square of 4, that is, 16 substrates are formed. It is also possible to use five substrate holders provided with five sets and to form a square of 5, that is, to form 25 substrates. That is, it is possible to use N substrate holders having N sets (N ≧ 2) and N substrate holders having holes, and to form a film on a number of squares of N. , Improve throughput.

真空蒸着装置の一概略例を示している。1 shows a schematic example of a vacuum deposition apparatus. 従来の基板ホルダの一概略例を示している。1 shows a schematic example of a conventional substrate holder. 本発明の真空蒸着装置の一概略例を示している。1 shows a schematic example of a vacuum evaporation apparatus according to the present invention. 本発明の基板ホルダの一概略例を示している。1 shows a schematic example of a substrate holder of the present invention. 図3に示す真空蒸着装置に使用されているダミーホルダの一概略例を示している。4 shows a schematic example of a dummy holder used in the vacuum evaporation apparatus shown in FIG. 図3に示す真空蒸着装置に使用されている各基板ホルダの駆動機構の概略を示したものである。It shows the outline of the drive mechanism of each substrate holder used for the vacuum evaporation system shown in FIG. 本発明の真空蒸着装置の動作の説明に使用される各基板ホルダの動きを示したものである。The movement of each substrate holder used for description of operation | movement of the vacuum evaporation system of this invention is shown.

符号の説明Explanation of symbols

1…真空チャンバ
2…排気通路
3…真空ポンプ
4…基板
5…基板ホルダ
6…蒸発材料
7…坩堝
8…電子銃
9…シャッタ
10…支持棒
11…回転軸
12…シャッタ駆動機構
13…ホルダ支持軸
21A…第1基板ホルダ
21B…第2基板ホルダ
21C…第3基板ホルダ
21D…第4基板ホルダ
22…支持軸
23a,23b,23c,23d…基板
24a,24b,24c,24d…孔
25a,25b,25c,25d…穴
26…軸受け
27…ダミーホルダ
28a,28b,28c,28d…孔
29A,29B,29C,29D…歯車
30A,30B,30C,30D…回転軸
31A,31B,31C,31D…モータ
32…制御装置
DESCRIPTION OF SYMBOLS 1 ... Vacuum chamber 2 ... Exhaust passage 3 ... Vacuum pump 4 ... Substrate 5 ... Substrate holder 6 ... Evaporation material 7 ... Crucible 8 ... Electron gun 9 ... Shutter 10 ... Support rod 11 ... Rotating shaft 12 ... Shutter drive mechanism 13 ... Holder support Axis 21A ... first substrate holder 21B ... second substrate holder 21C ... third substrate holder 21D ... fourth substrate holder 22 ... support shafts 23a, 23b, 23c, 23d ... substrates 24a, 24b, 24c, 24d ... holes 25a, 25b , 25c, 25d ... hole 26 ... bearing 27 ... dummy holder 28a, 28b, 28c, 28d ... hole 29A, 29B, 29C, 29D ... gears 30A, 30B, 30C, 30D ... rotating shafts 31A, 31B, 31C, 31D ... motor 32 …Control device

Claims (4)

蒸発源からの蒸発粒子を、支持軸に取り付けられた基板ホルダに設けられた複数の基板に付着させるように成した真空蒸着装置において、同一半径上に同一間隔で孔と基板取り付け穴が交互に複数設けられた複数の基板ホルダと、前記半径と同じ大きさの半径上に複数の孔が前記基板ホルダでの孔と基板取り付け穴の間隔の2倍の間隔で設けられたダミーホルダを、該ダミーホルダが蒸発源側に位置する様に、中心を合わせて重ねて支持軸に取り付けると共に、前記各基板ホルダを支持軸の周りに個々に回転可能に成した真空蒸着装置。   In a vacuum vapor deposition apparatus configured to attach evaporated particles from an evaporation source to a plurality of substrates provided on a substrate holder attached to a support shaft, holes and substrate mounting holes are alternately arranged at the same interval on the same radius. A plurality of substrate holders, and a dummy holder in which a plurality of holes are provided on a radius having the same size as the radius at a distance twice as large as a distance between the hole in the substrate holder and the substrate mounting hole. A vacuum deposition apparatus in which the respective substrate holders are individually rotatable around the support shaft, and are attached to the support shaft so as to be positioned on the evaporation source side. 基板ホルダに設けられた孔と基板取り付け穴の組が2以上である請求項1記載の真空蒸着装置。   The vacuum evaporation system according to claim 1, wherein the number of holes and substrate attachment holes provided in the substrate holder is two or more. 各基板取り付け穴は基板の厚さより深く形成されており、基板が基板ホルダの表面に出ない様に収容出来るように設けられている請求項1記載の真空蒸着装置。   2. The vacuum deposition apparatus according to claim 1, wherein each substrate mounting hole is formed deeper than the thickness of the substrate, and is provided so that the substrate can be accommodated so as not to come out on the surface of the substrate holder. 各基板ホルダの側面には歯が形成され、該歯に噛み合う様に各基板ホルダに対して歯車が設けられており、該歯車は個々に回転されるように成した請求項1記載の真空蒸着装置。
2. The vacuum deposition according to claim 1, wherein teeth are formed on a side surface of each substrate holder, and a gear is provided for each substrate holder so as to mesh with the teeth, and the gears are individually rotated. apparatus.
JP2004061052A 2004-03-04 2004-03-04 Vacuum deposition system Withdrawn JP2005248260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004061052A JP2005248260A (en) 2004-03-04 2004-03-04 Vacuum deposition system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004061052A JP2005248260A (en) 2004-03-04 2004-03-04 Vacuum deposition system

Publications (1)

Publication Number Publication Date
JP2005248260A true JP2005248260A (en) 2005-09-15

Family

ID=35029021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004061052A Withdrawn JP2005248260A (en) 2004-03-04 2004-03-04 Vacuum deposition system

Country Status (1)

Country Link
JP (1) JP2005248260A (en)

Similar Documents

Publication Publication Date Title
US8802200B2 (en) Method and apparatus for cleaning organic deposition materials
US9174250B2 (en) Method and apparatus for cleaning organic deposition materials
JP4936333B2 (en) Vacuum deposition equipment
JP4899717B2 (en) Composite powder manufacturing method and composite powder manufacturing apparatus
JP2006225733A (en) Film-forming apparatus and film-forming method
US6866889B1 (en) Method and means for drill production
JP2005248260A (en) Vacuum deposition system
JP2004256843A (en) Vacuum vapor deposition apparatus
JP5005205B2 (en) Vacuum deposition equipment
JP3979745B2 (en) Film forming apparatus and thin film forming method
JP2010255059A (en) Vacuum deposition device
JPH0570931A (en) Vacuum deposition apparatus and sticking prevention plate
JP4766416B2 (en) Masking mechanism and film forming apparatus having the same
JP4242114B2 (en) Formation method of vapor deposition film
JP5179716B2 (en) Electron beam vacuum deposition method and apparatus
JPH01212761A (en) Thin film-forming equipment
EP2182087A1 (en) A vacuum vapor coating device for coating a substrate
JPH1171671A (en) Vacuum deposition device
JP4193951B2 (en) Method of depositing an antireflection film on an optical substrate
JPH05287520A (en) Film forming device
KR102005555B1 (en) A vacuum deposition apparatus using a plurality of target structures
JP2008050667A (en) Thin-film-forming apparatus
JP2000327483A (en) Deposition apparatus
KR20220122151A (en) RF ion assisted beam magnetron sputtering device
WO2006134908A1 (en) Organic evaporation system and method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605