JP2005248126A - Method for recovering rubber-containing polymer - Google Patents

Method for recovering rubber-containing polymer Download PDF

Info

Publication number
JP2005248126A
JP2005248126A JP2004064235A JP2004064235A JP2005248126A JP 2005248126 A JP2005248126 A JP 2005248126A JP 2004064235 A JP2004064235 A JP 2004064235A JP 2004064235 A JP2004064235 A JP 2004064235A JP 2005248126 A JP2005248126 A JP 2005248126A
Authority
JP
Japan
Prior art keywords
rubber
containing polymer
recovered
powder
polymer latex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004064235A
Other languages
Japanese (ja)
Inventor
Seiji Tamai
清二 玉井
Shigeo Ii
茂雄 伊井
Kazunori Takahashi
和則 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon A&L Inc
Original Assignee
Nippon A&L Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon A&L Inc filed Critical Nippon A&L Inc
Priority to JP2004064235A priority Critical patent/JP2005248126A/en
Publication of JP2005248126A publication Critical patent/JP2005248126A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To recover polymer particles having excellent powder characteristics such as blocking resistance from a polymer latex having a high rubber content. <P>SOLUTION: The method for recovering a rubber-containing polymer is carried out as follows. The polymer particles are recovered from the rubber-containing polymer latex and the rubber-containing polymer has ≥50% rubber content therein, ≤0°C glass transition temperature in a rubber part and ≥60% sphericity of the recovered powder. The rubber-containing polymer latex to be recovered is especially preferably brought into contact with a flocculant in a flow through type tubular apparatus in which at least one static type element is mounted and recovered. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は乳化重合などで得られるゴム含有重合体ラテックスから重合体を回収する方法に関する。詳しくは耐ブロッキング性などの粉体特性に優れた重合体粒子を回収する方法に関する。   The present invention relates to a method for recovering a polymer from a rubber-containing polymer latex obtained by emulsion polymerization or the like. Specifically, the present invention relates to a method for recovering polymer particles having excellent powder characteristics such as blocking resistance.

乳化重合などで得られるゴム含有重合体ラテックスから重合体を回収する方法として、重合体ラテックスに凝固剤を添加して凝固させた後、脱水・乾燥して粉末状の重合体を得る方法が従来より行なわれている。この従来の方法において、重合体ラテックスの凝固は、所望の粒径に見合った温度の熱水を満たした凝固槽に、重合体ラテックスと凝固剤水溶液とを供給し、該凝固槽内にて攪拌することによって行なわれる。
しかしながら、従来の方法では回収される重合体粒子の粒径分布が広く微粉粒子が多く存在し、重合体粒子の形状も凹凸があり、歪であるため、(1)微粉粒子が多く、粒子の形状が歪であるため、保管時の積載による荷重でブロッキングを発生する、(2)脱水工程での脱水性が悪い、(3)分離・乾燥工程で微粉粒子が目詰まりして生産性が低下する、(4)微粉粒子による粉塵爆発を防止するための設備が必要となる、(5)押出し機に投入する際に微粒子が飛散したり、パウダーがホッパー内でブリッジングして押出し機内にフィードしない、(6)嵩密度が小さくなって大きな貯蔵容積が必要となる等の不具合がある。
例えば、特許文献1(特開平9−59390号公報)には、凝固槽内で凝固温度、凝固剤濃度、最大攪拌速度、凝固時間を特定することにより粒度分布や平均真球度を制御する方法を提案しているが、重合体中のゴム含有量が高くなると嵩比重が大きくならないという問題があった。また、特許文献2(特開2000−86730号公報)には、噴霧乾燥方式により粉体特性良好なグラフト共重合体が得られているが、この方式では乳化剤、凝固剤等を回収重合体から除去するための洗浄効率が低く、不純物が回収重合体中に残存し、最終製品の品質を低下させるという欠点があった。
特開平9−59390号公報 特開2000−86730号公報
As a method for recovering a polymer from a rubber-containing polymer latex obtained by emulsion polymerization or the like, a method of obtaining a powdery polymer by adding a coagulant to the polymer latex and coagulating it, and then dehydrating and drying the polymer latex Has been done more. In this conventional method, the polymer latex is coagulated by supplying the polymer latex and the aqueous coagulant solution to a coagulation tank filled with hot water at a temperature suitable for the desired particle size, and stirring in the coagulation tank. It is done by doing.
However, in the conventional method, the recovered polymer particles have a wide particle size distribution and there are many fine powder particles, and the shape of the polymer particles is uneven and distorted. Therefore, (1) there are many fine powder particles, Since the shape is distorted, blocking occurs due to the load caused by loading during storage. (2) Poor dehydration in the dehydration process. (3) Fine particles clogged in the separation / drying process, resulting in decreased productivity. (4) Equipment to prevent dust explosion caused by fine powder particles is required. (5) Fine particles are scattered when fed into the extruder, or powder is bridged in the hopper and fed into the extruder. (6) There is a problem that the bulk density is reduced and a large storage volume is required.
For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 9-59390) discloses a method for controlling the particle size distribution and average sphericity by specifying the coagulation temperature, coagulant concentration, maximum stirring speed, and coagulation time in the coagulation tank. However, when the rubber content in the polymer increases, there is a problem that the bulk specific gravity does not increase. In Patent Document 2 (Japanese Patent Laid-Open No. 2000-86730), a graft copolymer having good powder properties is obtained by a spray drying method. In this method, an emulsifier, a coagulant and the like are removed from a recovered polymer. The cleaning efficiency for removal was low, and impurities remained in the recovered polymer, resulting in the deterioration of the quality of the final product.
JP-A-9-59390 JP 2000-86730 A

本発明はゴム含有重合体ラテックスから、耐ブロッキング性などの粉体特性に優れた重合体粒子を回収することを目的とする。 An object of the present invention is to recover polymer particles excellent in powder characteristics such as blocking resistance from a rubber-containing polymer latex.

本発明者らは、前記の課題に鑑み鋭意研究した結果、ゴム含有重合体中のゴム含有量が50%以上であり、かつゴム部分のガラス転移温度が0℃以下であり、さらに回収した粉体の球状化率が60%以上であるゴム含有重合体が、かかる課題を解決できることを見出し、本発明に到達したものである。
すなわち、本発明は乳化重合によって製造されたゴム含有重合体中のゴム含有量が50%以上であり、かつゴム部分のガラス転移温度が0℃以下であり、さらに回収した粉体の球状化率が60%以上であるゴム含有重合体を得るにあたり、特に回収すべきゴム含有重合体ラテックスと凝集剤を少なくとも1個の静止型エレメントが装着されている流通式管型装置内で接触させることにより、当該重合体を回収することができるものである。
As a result of intensive studies in view of the above problems, the present inventors have found that the rubber content in the rubber-containing polymer is 50% or more, the glass transition temperature of the rubber part is 0 ° C. or less, and the recovered powder It has been found that a rubber-containing polymer having a spheroidizing ratio of 60% or more can solve such a problem, and has reached the present invention.
That is, in the present invention, the rubber content in the rubber-containing polymer produced by emulsion polymerization is 50% or more, the glass transition temperature of the rubber part is 0 ° C. or less, and the spheroidization rate of the recovered powder In order to obtain a rubber-containing polymer having a content of 60% or more, particularly by bringing the rubber-containing polymer latex to be recovered and the flocculant into contact with each other in a flow-through tubular apparatus equipped with at least one stationary element. The polymer can be recovered.

本発明は、耐ブロッキング性などの粉体特性に優れた重合体粒子を回収することができ、これにより、保管時の積載によるブロッキングを改良でき、また脱水工程での脱水性を改善し、分離・乾燥工程での微粉粒子の目詰まりを防止し、さらに、押出機に投入する際の微粒子の飛散やパウダーのホッパー内でのブリッジングを防止し、嵩密度が大きくなることで貯蔵容積を増やせるという効果を奏する。 The present invention can recover polymer particles excellent in powder characteristics such as blocking resistance, thereby improving blocking due to loading during storage, and improving dehydration in the dehydration process, thereby separating the particles.・ Prevents clogging of fine particles in the drying process, and prevents scattering of fine particles and bridging of powder in the hopper when it is put into the extruder, increasing the storage density by increasing the bulk density. There is an effect.

本発明の回収方法が適用されるゴム含有重合体ラテックスとしては、乳化重合により作られる重合体ラテックスを挙げることができる。例えば、ブタジエンゴム(BR)、スチレン−ブタジエンゴム(SBR)、アクリロニトリル−ブタジエンゴム(NBR)、アクリルゴム等のガラス転移点が0℃以下であるゴム状重合体にアクリロニトリル、スチレン、α−メチルスチレン、メチルメタアクリレート等の共重合可能なモノマーをグラフト重合してなるゴム含有重合体ラテックスであり、該ゴム状重合体の含有量が50%以上であるゴム含有重合体ラテックスを挙げることができる。   Examples of the rubber-containing polymer latex to which the recovery method of the present invention is applied include a polymer latex produced by emulsion polymerization. For example, acrylonitrile, styrene, α-methylstyrene is added to a rubbery polymer having a glass transition point of 0 ° C. or lower, such as butadiene rubber (BR), styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR), acrylic rubber and the like. A rubber-containing polymer latex obtained by graft polymerization of a copolymerizable monomer such as methyl methacrylate, and the content of the rubber-like polymer is 50% or more.

また、本発明にて回収されたゴム含有重合体粉体の球状化率は60%以上であることが必要であり、この球状化率が60%未満では、粒子形状が不定形になり、耐ブロッキング性が悪化し、押出機に投入する際にホッパー内でブリッジングを引き起こす等の問題が発生するため好ましくない。
なお、回収された粉体の球状化率を60%以上とする方法として、特に下記に示すような流通式管型装置を使用することが望ましい。
In addition, the spheroidization rate of the rubber-containing polymer powder recovered in the present invention is required to be 60% or more. When the spheroidization rate is less than 60%, the particle shape becomes indefinite, It is not preferable because the blocking property is deteriorated and problems such as bridging occur in the hopper when being fed into the extruder.
In addition, it is desirable to use a flow-through tubular apparatus as shown below as a method for setting the spheroidization rate of the collected powder to 60% or more.

また、本発明の回収方法で用いられる凝固剤としては、重合体ラテックスの凝固に通常用いられているものを使用できる。例えば、塩酸、硫酸、リン酸、硝酸等の無機酸、酢酸、蟻酸等の有機酸、これらの酸の金属塩(例えば、塩化カルシウム、塩化アルミニウム、硫酸アルミニウム、硫酸マグネシウム等の無機塩、酢酸カルシウム、酢酸アルミニウム等)を挙げることができる。   Further, as the coagulant used in the recovery method of the present invention, those usually used for coagulation of polymer latex can be used. For example, inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid and nitric acid, organic acids such as acetic acid and formic acid, metal salts of these acids (for example, inorganic salts such as calcium chloride, aluminum chloride, aluminum sulfate and magnesium sulfate, calcium acetate , Aluminum acetate, etc.).

本発明の回収方法で用いられる流通式管型装置としては、少なくとも1個の静止型エレメントが装着されていることが必要であるが、その一例として図1に示すような流通式管型装置が好適である。   As a flow-through tubular device used in the recovery method of the present invention, it is necessary that at least one stationary element is mounted. As an example, a flow-through tubular device as shown in FIG. Is preferred.

該流通式管型装置内の内部温度については、スチームの導入あるいは、ゴム含有重合体ラテックス及び凝固剤を加熱することによって上昇することができる。設定温度はゴム含有重合体ラテックスによって適宜選択されるが、例えば50℃以上である。   The internal temperature in the flow-through tubular apparatus can be increased by introducing steam or heating the rubber-containing polymer latex and the coagulant. The set temperature is appropriately selected depending on the rubber-containing polymer latex, and is, for example, 50 ° C. or higher.

また、該流通式管型装置を通過した後は、加温槽を設けるなどすることにより、シンタリング効果によってより一層粉体特性に優れた重合体粒子を生成させることが可能となる。また加温槽の設定温度はゴム含有重合体ラテックスによって適宜選択されるが、例えば70℃以上である。 In addition, after passing through the flow-through tubular apparatus, by providing a heating tank, it is possible to generate polymer particles having further excellent powder characteristics due to a sintering effect. Moreover, although the preset temperature of a heating tank is suitably selected by rubber-containing polymer latex, it is 70 degreeC or more, for example.

また、得られた凝固スラリーは、真空脱水法、プレス脱水法、遠心脱水法等で脱水処理され、その後、並行流回分式乾燥機、流動乾燥機、真空乾燥機等を用い乾燥し、ゴム含有重合体を粉末として単離することができる。 The obtained coagulated slurry is dehydrated by vacuum dehydration, press dehydration, centrifugal dehydration, etc., and then dried using a parallel flow batch dryer, fluid dryer, vacuum dryer, etc., and contains rubber. The polymer can be isolated as a powder.

〔実施例〕
本発明をさらに具体的に説明するために以下に実施例及び比較例を挙げて説明する。しかし、これらによって本発明は何ら制限されるものではない。なお、部および%は重量に基づくものである。
〔Example〕
In order to describe the present invention more specifically, examples and comparative examples will be described below. However, the present invention is not limited by these. Parts and% are based on weight.

−ゴム含有重合体ラテックスの調整−
ゴム含有重合体ラテックス(a−1−1):窒素置換した反応器にポリブタジエンラテックス(重量平均粒子径0.3μm、ゲル含有量85%、ガラス転移温度−80℃)50部(固形分)、水140部、エチレンジアミン四酢酸二ナトリウム塩0.1部、硫酸第1鉄0.001部、ナトリウムホルムアルデヒドスルホキシレート0.4部を入れ、65℃に加熱後、アクリロニトリル15部、スチレン35部からなる混合物およびオレイン酸カリウム1.0部、キュメンハイドロパーオキサイド0.2部からなる混合物をそれぞれ3時間に亘り連続的に添加し、更に65℃で2時間重合して、固形分41.1%のゴム含有重合体ラテックス(a−1−1)を得た。
-Preparation of rubber-containing polymer latex-
Rubber-containing polymer latex (a-1-1): 50 parts (solid content) of polybutadiene latex (weight average particle size 0.3 μm, gel content 85%, glass transition temperature −80 ° C.) in a nitrogen-substituted reactor. 140 parts of water, 0.1 part of ethylenediaminetetraacetic acid disodium salt, 0.001 part of ferrous sulfate, 0.4 part of sodium formaldehyde sulfoxylate, heated to 65 ° C, then 15 parts of acrylonitrile and 35 parts of styrene And a mixture consisting of 1.0 part of potassium oleate and 0.2 part of cumene hydroperoxide were continuously added over 3 hours, respectively, and further polymerized at 65 ° C. for 2 hours to obtain a solid content of 41.1%. The rubber-containing polymer latex (a-1-1) was obtained.

ゴム含有重合体ラテックス(a−1−2):窒素置換した反応器にポリブタジエンラテックス(重量平均粒子径0.2μm、ゲル含有量90%、ガラス転移温度−80℃)70部(固形分)、スチレン8部、メタクリル酸メチル22部、およびナトリウムホルムアルデヒドスルホキシレート0.2部、キュメンハイドロパーオキサイド0.1部に変更した以外は(a−1−1)と同様にして、固形分41.2%のゴム含有重合体ラテックス(a−1−2)を得た。 Rubber-containing polymer latex (a-1-2): 70 parts (solid content) of polybutadiene latex (weight average particle size 0.2 μm, gel content 90%, glass transition temperature −80 ° C.) in a nitrogen-substituted reactor. Solid content 41. Similar to (a-1-1) except for changing to 8 parts of styrene, 22 parts of methyl methacrylate, 0.2 part of sodium formaldehyde sulfoxylate and 0.1 part of cumene hydroperoxide. A 2% rubber-containing polymer latex (a-1-2) was obtained.

実施例1
図1に示す流通式管型装置の内径が25mm、長さ200mmで静止型エレメントがスケヤータイプで6個装着された流通式管型装置を用い、ゴム含有重合体ラテックス(a−1−1)100部(固形分)と凝固剤として0.4%硫酸水溶液をゴム含有重合体(固形分)あたり0.7部(硫酸有効量)を管型装置内で80℃で接触するようにそれぞれ加温し連続的に送液した。管型装置から連続的に排出されたスラリーを95℃に加温された加温槽でシンタリングした後、得られたスラリーを遠心脱水、流動乾燥してゴム含有重合体の粉末(A−1)を得た。
Example 1
The flow-type tubular apparatus shown in FIG. 1 is a rubber-containing polymer latex (a-1-1) 100 using a flow-type tubular apparatus having an inner diameter of 25 mm, a length of 200 mm, and six stationary elements mounted on a scaler type. Part (solid content) and 0.4% sulfuric acid aqueous solution as a coagulant are heated in such a way that 0.7 parts (effective amount of sulfuric acid) per rubber-containing polymer (solid content) are brought into contact with each other at 80 ° C. in a tubular apparatus. The solution was continuously fed. The slurry continuously discharged from the tubular apparatus was sintered in a heating bath heated to 95 ° C., and the resulting slurry was subjected to centrifugal dehydration and fluid drying to obtain a rubber-containing polymer powder (A-1 )

実施例2
図1に示す流通式管型装置の内径が25mm、長さ200mmで静止型エレメントがスケヤータイプで10個装着された流通式管型装置を用い、ゴム含有重合体ラテックス(a−1−2)100部(固形分)と凝固剤として3%硫酸マグネシウム水溶液をゴム含有重合体(固形分)あたり5部(硫酸マグネシウム有効量)を管型装置内で85℃で接触するようにそれぞれ加温し連続的に送液した。管型装置から連続的に排出されたスラリーを90℃に加温された加温槽でシンタリングした後、得られたスラリーを遠心脱水、流動乾燥してゴム含有重合体の粉末(A−2)を得た。
Example 2
The flow-through tubular apparatus shown in FIG. 1 is a rubber-containing polymer latex (a-1-2) 100 using a flow-through tubular apparatus having an inner diameter of 25 mm, a length of 200 mm, and 10 stationary elements mounted on a scaler type. Part (solid content) and 3% magnesium sulfate aqueous solution as a coagulant are continuously heated to 5 parts (magnesium sulfate effective amount) per rubber-containing polymer (solid content) at 85 ° C. in a tubular apparatus. Liquid was sent. The slurry continuously discharged from the tube-type apparatus was sintered in a heating tank heated to 90 ° C., and the resulting slurry was subjected to centrifugal dehydration and fluid drying to obtain a rubber-containing polymer powder (A-2 )

比較例1
攪拌機付き凝固槽を用い、ゴム含有重合体ラテックス(a−1−1)100部(固形分)と凝固剤として0.4%硫酸水溶液をゴム含有重合体(固形分)あたり0.7部(硫酸有効量)を凝固槽内で80℃で接触するようにそれぞれ加温し連続的に送液した。凝固槽から連続的に排出されたスラリーを95℃に加温された加温槽でシンタリングした後、得られたスラリーを遠心脱水、流動乾燥してゴム含有重合体の粉末(B−1)を得た。
Comparative Example 1
Using a coagulation tank with a stirrer, 100 parts (solid content) of rubber-containing polymer latex (a-1-1) and 0.4 part of a 0.4% sulfuric acid aqueous solution as a coagulant per rubber-containing polymer (solid content) ( (Effective amount of sulfuric acid) was heated in a coagulation tank at 80 ° C. and continuously fed. The slurry continuously discharged from the coagulation tank was sintered in a heating tank heated to 95 ° C., and the resulting slurry was subjected to centrifugal dehydration and fluid drying to obtain a rubber-containing polymer powder (B-1). Got.

比較例2
攪拌機付き凝固槽を用い、ゴム含有重合体ラテックス(a−1−2)100部(固形分)と凝固剤として3%硫酸マグネシウム水溶液をゴム含有重合体(固形分)あたり5部(硫酸マグネシウム有効量)を凝固槽内で85℃で接触するようにそれぞれ加温し連続的に送液した。凝固槽から連続的に排出されたスラリーを90℃に加温された加温槽でシンタリングした後、得られたスラリーを遠心脱水、流動乾燥してゴム含有重合体の粉末(B−2)を得た。
Comparative Example 2
Using a coagulation tank with a stirrer, 100 parts of rubber-containing polymer latex (a-1-2) (solid content) and 5 parts of a 3% magnesium sulfate aqueous solution as a coagulant per rubber-containing polymer (solid content) (magnesium sulfate effective) The amount was heated to 85 ° C. in the coagulation tank and continuously fed. The slurry continuously discharged from the coagulation tank was sintered in a heating tank heated to 90 ° C., and the resulting slurry was subjected to centrifugal dehydration and fluid drying to obtain a rubber-containing polymer powder (B-2). Got.

耐ブロッキング性:得られたゴム含有重合体25gを秤量し、直径56mmの円筒状容器に入れ70℃で50gの荷重を1時間かけブロックを作り、荷重および円筒状容器を取り除いた際のパウダー上平面の最大径を求めた。数値が小さいほど耐ブロッキング性が高いことを示す。(単位:mm) Blocking resistance : 25 g of the obtained rubber-containing polymer was weighed, placed in a cylindrical container with a diameter of 56 mm, and a block was formed by applying a load of 50 g at 70 ° C. for 1 hour, and the powder and the cylindrical container were removed. The maximum diameter of the plane was determined. It shows that blocking resistance is so high that a numerical value is small. (Unit: mm)

球状化率:得られたゴム含有重合体を走査型電子顕微鏡(日本電子製:JSM−6360LA型)を用いて写真を撮影し、画像解析装置(旭化成製:IP−1000C型)を用いて球状化率を測定した。
黒鉛面積法による球状化率:100×面積/最小外接円の面積(単位:%)
Spheroidization rate : The rubber-containing polymer obtained was photographed using a scanning electron microscope (JEOL: JSM-6360LA type), and spherical using an image analyzer (Asahi Kasei: IP-1000C type). The conversion rate was measured.
Spheroidization ratio by graphite area method: 100 × area / area of minimum circumscribed circle (unit:%)

嵩密度:JIS−K−6721に基づいて測定する。(単位:g/ml) Bulk density : Measured based on JIS-K-6721. (Unit: g / ml)

微粉量:パウダー40gを株式会社セイシン企業製 音波振動式篩い分け機ソニックシフターL−200Pで8分間篩い分け、目開き75ミクロンのJIS標準篩を通過したパウダーの比率を測定する。(単位:%) Fine powder amount : 40 g of powder is screened for 8 minutes with Sonic Shifter L-200P, a sonic vibration sieving machine manufactured by Seishin Co., Ltd., and the ratio of the powder passing through a JIS standard sieve having an opening of 75 microns is measured. (unit:%)

Figure 2005248126
Figure 2005248126

上記のとおり、本発明で得られたゴム含有重合体粒子は、耐ブロッキング性などの粉体特性に優れた重合体粒子であり、粉末取り扱い時に問題を起こすことのないものである。 As described above, the rubber-containing polymer particles obtained in the present invention are polymer particles excellent in powder characteristics such as blocking resistance, and do not cause a problem when handling the powder.

流通式管型装置を示す図である。It is a figure which shows a flow-through pipe type apparatus.

符号の説明Explanation of symbols

1:凝固剤水溶液投入口
2:ゴム含有重合体ラテックス投入口
3:流通式管型装置
4:静止型エレメント
5:加温槽
6:脱水機
7:乾燥機
8:重合体粉末取出し口
1: Coagulant aqueous solution inlet 2: Rubber-containing polymer latex inlet 3: Flow-through tube device 4: Stationary element 5: Heating tank 6: Dehydrator 7: Dryer 8: Polymer powder outlet

Claims (2)

ゴム含有重合体ラテックスから重合体粒子を回収する重合体の回収方法であって、ゴム含有重合体中のゴム含有量が50%以上であり、かつゴム部分のガラス転移温度が0℃以下であり、さらに回収した粉体の球状化率が60%以上となるよう回収してなることを特徴とするゴム含有重合体の回収方法。 A polymer recovery method for recovering polymer particles from a rubber-containing polymer latex, wherein the rubber content in the rubber-containing polymer is 50% or more and the glass transition temperature of the rubber part is 0 ° C or less. And a method for recovering a rubber-containing polymer, wherein the recovered powder is recovered so that the spheroidization rate is 60% or more. 回収すべきゴム含有重合体ラテックスと凝集剤を少なくとも1個の静止型エレメントが装着されている流通式管型装置内で接触し、回収することを特徴とする請求項1記載のゴム含有重合体の回収方法。
2. The rubber-containing polymer according to claim 1, wherein the rubber-containing polymer latex to be recovered and the flocculant are brought into contact with each other in a flow-through tubular apparatus equipped with at least one stationary element and recovered. Recovery method.
JP2004064235A 2004-03-08 2004-03-08 Method for recovering rubber-containing polymer Pending JP2005248126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004064235A JP2005248126A (en) 2004-03-08 2004-03-08 Method for recovering rubber-containing polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004064235A JP2005248126A (en) 2004-03-08 2004-03-08 Method for recovering rubber-containing polymer

Publications (1)

Publication Number Publication Date
JP2005248126A true JP2005248126A (en) 2005-09-15

Family

ID=35028912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004064235A Pending JP2005248126A (en) 2004-03-08 2004-03-08 Method for recovering rubber-containing polymer

Country Status (1)

Country Link
JP (1) JP2005248126A (en)

Similar Documents

Publication Publication Date Title
JP4809361B2 (en) Method for producing polymer latex resin powder
JP4747090B2 (en) Method for producing emulsion polymerization latex agglomerated particles
JP5064221B2 (en) Method for producing coagulated latex particles
JP6502920B2 (en) Method for producing emulsion polymerization latex agglomerated particles, emulsion polymerization latex aggregate, and emulsion polymerization latex agglomerated particles
JP2005248126A (en) Method for recovering rubber-containing polymer
JP5078361B2 (en) Thermoplastic resin composition
WO2004076538A1 (en) Polymer particle composition and process for producing the same
JP4676216B2 (en) Polymer recovery method from polymer latex
JPH09286815A (en) Method for recovering polymer from latex
JP2000026526A (en) Production of polymer latex
KR100381929B1 (en) Process and apparatus for continuously producing polymer latex into granules
JP6600437B1 (en) Method for producing rubber-reinforced thermoplastic resin powder
JPH0959390A (en) Spherical polymer particle and its production
JPS5991103A (en) Recovery of thermoplastic resin
JP2897490B2 (en) Method for producing ethylenically unsaturated nitrile-conjugated diene copolymer rubber
KR100199092B1 (en) Method of thermoplastic powder
JP2888937B2 (en) Method for producing a powdery mixture of thermoplastic polymers
JPH1180495A (en) Preparation of rubber-modified vinyl polymer
JPH07138314A (en) Method for coagulating polymeric latex
KR100337761B1 (en) Solidification Method of Polymer Latex
JPS5827802B2 (en) Method for continuously recovering polymer from polymer latex
JPH07268017A (en) Production of thermoplastic polymer powder
JP2017061645A (en) Method for producing coagulated latex particles
CN110869420A (en) Method for producing rubber-reinforced styrene resin powder, and rubber-reinforced styrene resin powder
JPH0873520A (en) Production of coagulated particle from polymer latex