JPH07268017A - Production of thermoplastic polymer powder - Google Patents

Production of thermoplastic polymer powder

Info

Publication number
JPH07268017A
JPH07268017A JP6063783A JP6378394A JPH07268017A JP H07268017 A JPH07268017 A JP H07268017A JP 6063783 A JP6063783 A JP 6063783A JP 6378394 A JP6378394 A JP 6378394A JP H07268017 A JPH07268017 A JP H07268017A
Authority
JP
Japan
Prior art keywords
polymer
powder
thermoplastic polymer
temperature
latex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6063783A
Other languages
Japanese (ja)
Inventor
Harumoto Sato
晴基 佐藤
Masaki Sugihara
昌樹 杉原
Wataru Hatano
渉 波多野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP6063783A priority Critical patent/JPH07268017A/en
Publication of JPH07268017A publication Critical patent/JPH07268017A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To obtain a thermoplastic polymer powder having a sharp particle diameter distribution and a high bulk specific gravity by solidifying a latex of a thermoplastic polymer having a Tg of a specified temperature or higher under specified conditions to form a powder and heating the powder at a specified temperature. CONSTITUTION:A latex of a thermoplastic polymer having a Tg (A) of 40 deg.C or higher and obtained by emulsion polymerization is mixed with a coagulant to coagulate the polymer in an amount of 40-80wt.% based on the whole polymer in the latex, and the coagulant is further added to complete coagulation. The obtained coagulated slurry is solidified in a temperature range from Tg (A) -10 deg.C to Tg (A) +10 deg.C, dewatered and dried, and the dry polymer powder is heated at a temperature of Tgmax +(10 to 80 deg.C) to produce the objective powder. Tg (A) is represented by the formula [wherein (n) is the number of monomer species forming the polymer A; W1, W2..., Wn are each the weight fraction of each monomer (i) (i=1, 2, ..., n) in the polymer A; and Tg1, Tg2 ..., Tgn are each the glass transition temperature ( deg.C) of each monomer], and Tgmax is the highest glass transition temperature among those of the polymers obtained from the monomers.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は粒径分布がシャープで且
つ高嵩比重を有する熱可塑性重合体粉末の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thermoplastic polymer powder having a sharp particle size distribution and a high bulk specific gravity.

【0002】[0002]

【従来の技術】従来より熱可塑性重合体粉末の粉体特性
を向上させる方法が種々検討されている。例えば、凝析
操作を工夫した方法として重合体ラテックスを特定の凝
析剤濃度で凝析させる方法(特開昭60−217224
号公報)や凝固剤の添加を2段階以上で行う方法(特開
昭59−91100号公報)、シード凝集させた後焼結
させる方法(特開昭62−236829号公報、特開昭
63−165438号公報)がある。
2. Description of the Related Art Various methods for improving the powder characteristics of thermoplastic polymer powders have hitherto been studied. For example, a method in which a polymer latex is coagulated with a specific coagulant concentration as a method of devising a coagulation operation (Japanese Patent Laid-Open No. 217224/1985).
Japanese Unexamined Patent Publication No. 62-236829) and a method of adding a coagulant in two or more steps (Japanese Unexamined Patent Publication No. 59-91100), and a method of performing seed aggregation and then sintering (Japanese Unexamined Patent Publication No. 62-236829, Japanese Unexamined Patent Publication No. 63- 165438).

【0003】また、凝固後の操作として粉体改質用の重
合体や無機微粉体を添加することにより嵩比重を向上さ
せる方法(特開昭55−90520号公報、特開昭58
−1742号公報、特開昭64−26663号公報)が
提案されている。
Further, as a procedure after solidification, a method for improving bulk specific gravity by adding a polymer for powder modification or an inorganic fine powder (Japanese Patent Laid-Open Nos. 55-90520 and 58-58).
-1742 and Japanese Patent Laid-Open No. 64-26663) have been proposed.

【0004】[0004]

【発明が解決しようとする課題】しかし、特定の凝析剤
濃度で凝析させる方法はゴム含有グラフト共重合体を対
象とした方法であり、ガラス転移温度の高い硬質の重合
体では嵩比重を向上させることはできない。凝固剤の添
加を2段階以上で行う方法についても同様であり、球状
の粒子ができたとしても高嵩比重の粉粒体を得ることは
できない。またこの2つの方法は、1段目の析出量やp
Hを制御してもラテックス中に存在する界面活性剤の種
類・量等により、全く凝析が起こらない場合や局部的に
凝析が完結して、良好な粉粒状重合体が得られないとい
う欠点を有している。
However, the method of coagulating with a specific coagulant concentration is a method for a rubber-containing graft copolymer, and a hard polymer having a high glass transition temperature has a large bulk specific gravity. It cannot be improved. The same applies to the method in which the coagulant is added in two or more steps, and even if spherical particles are formed, it is not possible to obtain a granular material having a high bulk specific gravity. In addition, these two methods use the first stage precipitation amount and p
Even if H is controlled, depending on the type and amount of the surfactant present in the latex, if no coagulation occurs or the coagulation is locally completed, a good powdery polymer cannot be obtained. It has drawbacks.

【0005】粉体改質用の重合体や無機微粉体を添加す
る方法は、重合体粉末の表面を改質することにより、粒
子群の充填構造を密にして嵩比重を上昇させる方法であ
る。従って、個々の粒子内部の空隙に関してはなんら着
目しておらず、このため、嵩比重が充分に向上した熱可
塑性重合体粉末を得るのが困難であった。
The method of adding a polymer or inorganic fine powder for powder modification is a method of modifying the surface of the polymer powder to make the packing structure of the particle groups denser and increase the bulk specific gravity. . Therefore, no attention was paid to the voids inside the individual particles, and thus it was difficult to obtain a thermoplastic polymer powder having a sufficiently improved bulk specific gravity.

【0006】シード凝集させた後焼結させる方法は、凝
固操作が複雑で、また粒径が1mm以下の場合には凝固
後の分離が難しいという問題がある。
The method of sintering seeds after agglomeration has a problem that the solidification operation is complicated, and if the particle size is 1 mm or less, separation after solidification is difficult.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記課題
を解決することを目的として鋭意検討した結果、特定の
工程を、特定の温度条件に制御することによって、粒径
分布がシャープで高嵩比重を有する熱可塑性重合体粉末
が得られることを見い出し本発明に到達した。
Means for Solving the Problems As a result of intensive studies aimed at solving the above-mentioned problems, the present inventors have found that by controlling a specific process under a specific temperature condition, a sharp particle size distribution can be obtained. The present invention has been accomplished by finding that a thermoplastic polymer powder having a high bulk specific gravity can be obtained.

【0008】本発明の要旨は、乳化重合により得られた
ガラス転移温度Tg(A)が40℃以上である熱可塑性
重合体(A)のラテックスから重合体粉末を回収するに
際し、 1)凝析剤を用いてラテックス中の全重合体に対し40
〜80重量%の重合体を凝析させ、 2)さらに凝析剤を添加して凝析を完結させ、 3)得られた凝析スラリーを(Tg(A)−10)〜
(Tg(A)+40)℃で示す温度範囲で固化した後脱
水・乾燥させ、 4)乾燥した重合体粉末をさらに(Tgmax+10)〜
(Tgmax+80)℃で示す温度範囲で加熱することを
特徴とする熱可塑性重合体粉末の製造方法にある。
The gist of the present invention is to recover polymer powder from a latex of a thermoplastic polymer (A) having a glass transition temperature Tg (A) of 40 ° C. or higher obtained by emulsion polymerization, 1) coagulation 40% based on the total polymer in the latex
-80% by weight of the polymer is coagulated, 2) a coagulant is further added to complete the coagulation, and 3) the obtained coagulated slurry is (Tg (A) -10)-
(Tg (A) +40) ° C., solidified, dehydrated and dried in the temperature range shown in 4), and 4) the dried polymer powder is further added to (Tgmax + 10) to
It is a method for producing a thermoplastic polymer powder, which comprises heating within a temperature range indicated by (Tgmax + 80) ° C.

【0009】 Tg(A)=W1×Tg1+W2×Tg2+・・・+Wn×Tgn−−(X) [ここで、nは熱可塑性重合体(A)を形成する単量体
の数であり、W1、W2・・・Wnは各単量体i(i=
1、2・・・、n)の重合体(A)中の重量分率を表
し、Tg1、Tg2・・・、Tgnは各単量体iから成る
重合体のガラス転移温度(℃)を表す。] Tgmax:熱可塑性重合体(A)を形成する単量体から
得られる重合体の中で最も高い温度を示すガラス転移温
度。
Tg (A) = W 1 × Tg 1 + W 2 × Tg 2 + ... + W n × Tg n- (X) [where n is a unit amount forming the thermoplastic polymer (A)] Is the number of the body, and W 1 , W 2 ... W n are each monomer i (i =
1, 2, represents the polymer (A) weight fraction in n), Tg 1, Tg 2 ···, Tg n is the glass transition temperature of the polymer composed of the monomer i (° C. ) Represents. ] Tgmax: Glass transition temperature showing the highest temperature among the polymers obtained from the monomers forming the thermoplastic polymer (A).

【0010】以下、本発明についてさらに詳しく説明す
る。
The present invention will be described in more detail below.

【0011】本発明における熱可塑性重合体(A)を形
成する単量体としては、例えばブタジエン、イソプロピ
レン、クロロプロピレン等のジエン系単量体;ブチルア
クリレート、オクチルアクリレート等のアクリル酸アル
キルエステル系単量体;メチルメタクリレート、エチル
メタクリレート等のメタクリル酸アルキルエステル系単
量体;アクリロニトリル、メタアクリロニトリル等のシ
アン化ビニル系単量体;スチレン、ジクロロスチレン、
α−メチルスチレン等の芳香族ビニル系単量体;塩化ビ
ニル、臭化ビニル等のハロゲン化ビニル系単量体;エチ
レングリコール等グリコール単量体;ジメチルシロキサ
ン等種々の共重合可能な単量体が挙げられ、これらは2
種類以上を併用することもできる。
As the monomer forming the thermoplastic polymer (A) in the present invention, for example, a diene-based monomer such as butadiene, isopropylene or chloropropylene; an acrylic acid alkyl ester-based such as butyl acrylate or octyl acrylate. Monomers; methacrylic acid alkyl ester-based monomers such as methyl methacrylate and ethyl methacrylate; vinyl cyanide-based monomers such as acrylonitrile and methacrylonitrile; styrene, dichlorostyrene,
Aromatic vinyl monomers such as α-methylstyrene; Vinyl halide monomers such as vinyl chloride and vinyl bromide; Glycol monomers such as ethylene glycol; Various copolymerizable monomers such as dimethylsiloxane And these are 2
It is also possible to use more than one type.

【0012】本発明における熱可塑性重合体(A)とし
ては、式(X)に示されるTg(A)が40℃以上のも
のが用いられる。
As the thermoplastic polymer (A) in the present invention, one having Tg (A) represented by the formula (X) of 40 ° C. or higher is used.

【0013】本発明における乳化重合方法は通常行われ
ている方法でよく、開始剤及びその他の重合助剤等に関
しては特に制限はなく、通常使用されているものでよ
い。
The emulsion polymerization method in the present invention may be a commonly used method, and the initiator and other polymerization aids are not particularly limited, and may be those usually used.

【0014】本発明では重合体ラテックスの凝析を上述
の第1段目の凝析条件で行うことにより、酸に対して安
定な界面活性剤による乳化状態保持作用と酸の乳化状態
破壊作用を調節することができ、粒径分布のシャープな
粉粒状重合体を得ることができる。熱可塑性重合体ラテ
ックスに凝析剤を添加すると、該ラテックスの乳化状態
が破壊され該ラテックスに乳化分散していた微細な重合
体粒子が凝集して凝集体粒子(以下、凝析粒子とい
う。)を形成する。
In the present invention, coagulation of the polymer latex is carried out under the above-mentioned first stage coagulation condition, whereby the acid-stable surface active agent maintains the emulsified state and destroys the emulsified state. It can be adjusted, and a powdery granular polymer having a sharp particle size distribution can be obtained. When a coagulant is added to the thermoplastic polymer latex, the emulsion state of the latex is destroyed, and the fine polymer particles that have been emulsified and dispersed in the latex aggregate to aggregate particles (hereinafter referred to as coagulated particles). To form.

【0015】使用する凝析剤としては、例えば塩酸、硫
酸、リン酸等の無機酸、ギ酸、酢酸等の有機酸が該当
し、これらを単独又は混合して用いられる。
Examples of the coagulant used include inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid, and organic acids such as formic acid and acetic acid, which may be used alone or in combination.

【0016】1段目の凝析として、ラテックス中の全重
合体に対し40〜80重量%の重合体を凝析させる必要
がある。ここで凝析した重合体量は、凝析スラリーを東
洋濾紙No.131(JIS P3801の第3種)で
濾過し、濾液中の重合体濃度を測定して得られた未凝析
重合体量より換算した。凝析した重合体量が40重量%
未満では凝析完結時に多くの重合体ラテックスが乳化状
態破壊作用が強い状態で凝析してしまい、粒径分布のシ
ャープな粉粒状重合体を得ることが困難になり好ましく
ない。また、80重量%を超える場合は乳化状態破壊作
用が強すぎるために、粒径分布のシャープな粉粒状重合
体を得ることが難しい。
As the first stage coagulation, it is necessary to coagulate 40 to 80% by weight of the total polymer in the latex. The amount of polymer coagulated here was obtained by comparing the coagulated slurry with Toyo Filter Paper No. It was filtered through 131 (JIS P3801, Type 3), and the polymer concentration in the filtrate was measured and converted from the amount of uncoagulated polymer obtained. 40% by weight of coagulated polymer
If the amount is less than the above, many polymer latices will be coagulated in the state where the emulsion state breaking action is strong when the coagulation is completed, and it will be difficult to obtain a powdery granular polymer having a sharp particle size distribution, which is not preferable. On the other hand, if it exceeds 80% by weight, the effect of destroying the emulsion state is too strong, and it is difficult to obtain a powdery polymer having a sharp particle size distribution.

【0017】また本発明を実施するにあたり凝析粒子の
析出状態を安定に制御するため、必要であれば上記重合
体ラテックス中に硫酸エステル系及び/又はスルホン酸
系アニオン界面活性剤が熱可塑性重合体100重量部当
たり、0.05〜0.2重量部存在することが好まし
い。該界面活性剤のうち硫酸エステル系アニオン界面活
性剤としては、例えば高級アルコール硫酸エステル塩、
ポリオキシエチレンアルキル硫酸エステル塩等があげら
れ、スルホン酸系アニオン界面活性剤としては、例えば
アルキルスルホン酸塩、アルキルベンゼンスルホン酸
塩、アルキルスルホコハク酸塩、アルキルジフェニルエ
ーテルスルホン酸塩等があげられる。該界面活性剤は重
合前、重合中、重合後いずれの時期に添加されてもかま
わない。
In the practice of the present invention, in order to stably control the precipitation state of coagulated particles, if necessary, a sulfuric acid ester-based and / or sulfonic acid-based anionic surfactant is added to the polymer latex in the thermoplastic polymer. It is preferably present in an amount of 0.05 to 0.2 parts by weight per 100 parts by weight of the coalescence. Among the surfactants, examples of the sulfate ester type anionic surfactant include higher alcohol sulfate ester salts,
Examples thereof include polyoxyethylene alkyl sulfate ester salts, and examples of the sulfonic acid type anionic surfactant include alkyl sulfonates, alkylbenzene sulfonates, alkyl sulfosuccinates, alkyl diphenyl ether sulfonates, and the like. The surfactant may be added before the polymerization, during the polymerization, or at any time after the polymerization.

【0018】また、第2段目の凝析では凝析粒子を完全
に析出させる。この時凝析スラリーのpHを2以上にす
ることが好ましい。凝析スラリーのpHが2未満の場合
は製品粉体の熱安定性が悪化するため好ましくなく、ア
ルカリ性薬剤等でpHを2〜4程度に中和することが望
ましい。
In the second stage coagulation, coagulated particles are completely precipitated. At this time, the pH of the coagulated slurry is preferably set to 2 or more. When the pH of the coagulation slurry is less than 2, it is not preferable because the thermal stability of the product powder is deteriorated, and it is desirable to neutralize the pH to about 2 to 4 with an alkaline chemical or the like.

【0019】得られた凝析スラリーは凝析粒子の保形力
を高め、後の工程等で壊れにくくするために(Tg
(A)−10)〜(Tg(A)+40)℃の温度範囲で
熱処理し、その後脱水・乾燥させる。固化温度を熱可塑
性重合体のガラス転移温度Tg(A)付近以上まで上げ
ると凝析粒子の融着が進み堅固な粒子として回収するこ
とできる。また熱処理時間等を長くすると融着が進み、
脱水時の含水率をさらに低減することができる。
The coagulated slurry thus obtained enhances the shape-retaining power of coagulated particles and makes it hard to break in the subsequent steps (Tg
Heat treatment is performed in a temperature range of (A) -10) to (Tg (A) +40) ° C., and then dehydration / drying is performed. When the solidification temperature is raised to around the glass transition temperature Tg (A) of the thermoplastic polymer or more, the coagulated particles are fused and can be recovered as solid particles. Also, if the heat treatment time etc. is lengthened, fusion will proceed,
The water content during dehydration can be further reduced.

【0020】ガラス転移温度Tg(A)が40℃以上で
ある熱可塑性重合体では固化処理だけでは十分な嵩比重
を達成し得る凝析粒子自体の融着は進みにくい。これに
対して、この乾燥した重合体粉末を(Tgmax+10)
〜(Tgmax+80)℃の温度範囲でさらに加熱するこ
とにより嵩比重の高い熱可塑性重合体粉末を得ることが
できる。乾燥後の凝析粒子に熱を加えて融着を進めるた
め温度条件として、熱可塑性重合体を構成する単量体か
ら得られる重合体の中で最も高い温度を示す成分のガラ
ス転移温度(Tgmax)以上にすることが好ましい。
(Tgmax+10)℃未満であると凝析粒子を構成する
微細粒子の融着が充分でなく満足な嵩比重を得ることが
できない。また、(Tgmax+80)℃を越えた温度で
加熱すると、融着力が強すぎて凝析粒子同士が一体化し
てしまい好ましくない。加熱範囲がTgmax以上が好ま
しい理由として、乾燥した凝析粒子を融着させるには熱
可塑性重合体を構成するすべての成分がゴム状であるこ
とが必要であるためと考えられる。
In the case of a thermoplastic polymer having a glass transition temperature Tg (A) of 40 ° C. or higher, it is difficult to fuse the coagulated particles themselves which can achieve a sufficient bulk specific gravity only by solidification treatment. On the other hand, this dried polymer powder (Tgmax + 10)
By further heating in the temperature range of to (Tgmax + 80) ° C, a thermoplastic polymer powder having a high bulk specific gravity can be obtained. As a temperature condition for applying heat to the coagulated particles after drying to promote fusion, the glass transition temperature (Tgmax of the component showing the highest temperature among the polymers obtained from the monomers constituting the thermoplastic polymer) ) Or more is preferable.
If it is lower than (Tgmax + 10) ° C., the fusion of the fine particles constituting the coagulated particles is not sufficient and a satisfactory bulk specific gravity cannot be obtained. In addition, heating at a temperature exceeding (Tgmax + 80) ° C. is not preferable, because the cohesive force is too strong and the coagulated particles are integrated with each other. It is considered that the reason why the heating range is preferably Tgmax or more is that all the components constituting the thermoplastic polymer must be rubbery in order to fuse the dried coagulated particles.

【0021】加熱して熱可塑性重合体の融着を進める
と、凝析粒子同士も融着するため、重合体粉末はブロッ
ク状となる。このブロック状物は簡単に元の凝析粒子単
位に解砕されるが、加熱条件が強すぎると嵩比重は上が
るものの解砕が困難となる場合がある。この場合は凝析
粒子同士の融着を防ぐためにあらかじめ粉体改質用の無
機化合物を添加しておいてもよい。粉体改質用の無機化
合物としてはSi、Mg、Al、Ca、Ba、Zn及び
Tiからなる群より選ばれた1種又は2種以上の元素の
酸化物、塩化物、水酸化物、炭酸塩及び硫酸塩の単独又
はそれらの混合物が挙げられ、その具体例としては、例
えば、SiO2、MgO、Mg(OH)2、MgCO3
Al23、Al(OH)3、Al2(CO33、CaO、
CaCO3、TiO2、タルク、クレー、けいそう土、メ
タケイ酸カルシウム等が挙げられる。これらの無機化合
物は平均粒径が10μm以下が好ましく、凝析以降、乾
燥粉の加熱融着工程前までの工程で添加すればよい。
When the fusion of the thermoplastic polymer is promoted by heating, the coagulated particles are also fused, so that the polymer powder becomes a block. This block-like material is easily crushed to the original coagulated particle unit, but if the heating conditions are too strong, the crushing may become difficult although the bulk specific gravity increases. In this case, an inorganic compound for powder modification may be added in advance in order to prevent fusion of the coagulated particles. As the inorganic compound for powder modification, oxides, chlorides, hydroxides, carbonates of one or more elements selected from the group consisting of Si, Mg, Al, Ca, Ba, Zn and Ti are used. Examples thereof include salts and sulfates, or a mixture thereof. Specific examples thereof include SiO 2 , MgO, Mg (OH) 2 , MgCO 3 ,
Al 2 O 3 , Al (OH) 3 , Al 2 (CO 3 ) 3 , CaO,
Examples thereof include CaCO 3 , TiO 2 , talc, clay, diatomaceous earth, and calcium metasilicate. These inorganic compounds preferably have an average particle size of 10 μm or less, and may be added in a step after coagulation and before the step of heat-drying the dry powder.

【0022】本発明の実施に使用される代表的な装置を
図1を参照しながら説明する。重合体ラテックスは定量
ポンプ(1)から、凝析剤は定量ポンプ(2)から第1
槽(4)に送られる。重合体の回収率を高めるために追
加する凝析剤は定量ポンプ(3)から第2槽(5)に送
られる。スラリーを第3槽(6)で熱処理した後、図示
していないがさらに水洗、脱水、乾燥し、粉粒状重合体
を得る。
A representative apparatus used to practice the present invention will be described with reference to FIG. Polymer latex from metering pump (1), coagulant from metering pump (2)
It is sent to the tank (4). The coagulant added to increase the recovery rate of the polymer is sent from the metering pump (3) to the second tank (5). After the slurry is heat-treated in the third tank (6), it is further washed with water, dehydrated and dried, although not shown, to obtain a powdery polymer.

【0023】[0023]

【実施例】以下、実施例に基づき本発明をさらに詳しく
説明するが、本発明はこれらの実施例によって何ら限定
されるものではない。なお、実施例は図1に示す装置を
用いて凝析を行った。
The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited by these examples. In the examples, the apparatus shown in FIG. 1 was used for coagulation.

【0024】実施例1 メチルメタクリレート85%とブチルアクリレート15
%を乳化重合させ共重合体ラテックス(固形分28%)
を得た。得られたラテックスの平均粒径は0.105μ
m、PHは8.0であり、ラテックス中に存在する界面
活性剤の種類及び量は表1に示す通りである。このラテ
ックスのTg(A)は81℃、Tgmaxは105℃であ
った。
Example 1 Methyl methacrylate 85% and butyl acrylate 15
Emulsion-polymerized copolymer latex (solid content 28%)
Got The average particle size of the obtained latex is 0.105μ.
m and PH are 8.0, and the type and amount of the surfactant present in the latex are as shown in Table 1. The latex had a Tg (A) of 81 ° C and a Tgmax of 105 ° C.

【0025】上記ラテックスと表1に示す種類の酸を第
1槽のpH及び凝析した重合体量(%)が表1に示す値
になるように供給した。第2槽に表1に示す種類の酸を
pHが表1に示す値になるように供給した。第3槽では
表1に示す熱処理条件で凝析スラリーを固化した。第3
槽から排出されたスラリーを水洗、脱水、乾燥し、粉粒
状重合体を得た。この重合体をさらに150℃の熱風乾
燥機の中で10分間静置させると重合体粉末はもろいブ
ロック状となった。このブロック状物を取り出し解砕し
て重合体粉末を得た。
The above latex and the acid of the type shown in Table 1 were fed so that the pH and the amount (%) of the polymer coagulated in the first tank would be the values shown in Table 1. Acids of the types shown in Table 1 were supplied to the second tank so that the pH values were as shown in Table 1. In the third tank, the coagulated slurry was solidified under the heat treatment conditions shown in Table 1. Third
The slurry discharged from the tank was washed with water, dehydrated and dried to obtain a powdery polymer. When this polymer was allowed to stand still in a hot air dryer at 150 ° C. for 10 minutes, the polymer powder became a fragile block. This block-like material was taken out and crushed to obtain a polymer powder.

【0026】得られた粉粒状重合体の粒径分布を篩分法
により測定した。また粒子の均整度を、以下に示す式よ
り求めた。
The particle size distribution of the obtained powdery granular polymer was measured by the sieving method. Further, the uniformity of the particles was obtained from the formula shown below.

【0027】N=D75/D25 (式中D75は積算重量分布曲線の75%にある粒子径
(μm)、D25は粒子群の積算重量分布曲線の25%に
ある粒子径(μm)を表わす。) また得られた粉粒状重合体の嵩比重をJIS K−67
21により測定した。
N = D 75 / D 25 (where D 75 is the particle diameter (μm) at 75% of the cumulative weight distribution curve, and D 25 is the particle diameter (μm at 25% of the cumulative weight distribution curve of the particle group). In addition, the bulk specific gravity of the obtained powdery granular polymer is determined according to JIS K-67.
21.

【0028】評価結果を表2に示す。The evaluation results are shown in Table 2.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】実施例2 後段の乾燥温度を170℃に変えた他は実施例1と同様
にして粉粒状重合体を得た。このときの粒径分布は実施
例1とほぼ同様であり、嵩比重は0.50であった。
Example 2 A powdery granular polymer was obtained in the same manner as in Example 1 except that the drying temperature in the latter stage was changed to 170 ° C. The particle size distribution at this time was almost the same as in Example 1, and the bulk specific gravity was 0.50.

【0032】実施例3 実施例1の熱可塑性重合体ラテックスを用い、1段目の
乾燥後にアエロジルR972(日本アエロジル(株))
を熱可塑性重合体100重量部に対して0.5重量部添
加した後ドライブレンドした。この粉体状重合体を、2
段目の乾燥温度を170℃に変えた以外は実施例1と同
様に処理した。乾燥後のブロックは容易に解砕可能であ
った。このときの粒径分布は実施例1とほぼ同様であ
り、嵩比重は0.50であった。
Example 3 Using the thermoplastic polymer latex of Example 1, Aerosil R972 (Nippon Aerosil Co., Ltd.) was used after the first-stage drying.
0.5 part by weight was added to 100 parts by weight of the thermoplastic polymer and dry blended. This powdery polymer is
The treatment was performed in the same manner as in Example 1 except that the drying temperature at the first stage was changed to 170 ° C. The block after drying could be easily disintegrated. The particle size distribution at this time was almost the same as in Example 1, and the bulk specific gravity was 0.50.

【0033】比較例1 2段目の乾燥温度を200℃にした他は実施例1と同様
にして処理したが、乾燥後ブロックが堅すぎたため、解
砕が困難となり粉粒状重合体を得ることができなかっ
た。
Comparative Example 1 A treatment was carried out in the same manner as in Example 1 except that the second stage drying temperature was set to 200 ° C. However, after the drying, the block was too hard to be crushed and a powdery granular polymer was obtained. I couldn't.

【0034】比較例2 2段目の乾燥温度を100℃、60分に変えた他は実施
例1と同様にして処理し、粉粒状重合体を得た。このと
きの粒径分布は実施例1とほぼ同様であったが、嵩比重
は0.38であった。
Comparative Example 2 A powdery granular polymer was obtained by the same treatment as in Example 1 except that the second stage drying temperature was changed to 100 ° C. for 60 minutes. The particle size distribution at this time was almost the same as in Example 1, but the bulk specific gravity was 0.38.

【0035】実施例4 固化温度を98℃に変えた他は実施例1と同様にして処
理し、粉粒状重合体を得た。このときの粒径分布は実施
例1とほぼ同様であったが、脱水後の含水率は35%に
減少し、嵩比重は1段目の乾燥後で0.39、2段目の
乾燥後で0.47であった。
Example 4 A powdery polymer was obtained by the same procedure as in Example 1 except that the solidifying temperature was changed to 98 ° C. The particle size distribution at this time was almost the same as in Example 1, but the water content after dehydration was reduced to 35%, and the bulk specific gravity was 0.39 after the first-stage drying and after the second-stage drying. Was 0.47.

【0036】比較例3 固化温度を70℃に変えた他は実施例1と同様にして処
理し、粉粒状重合体を得た。脱水後に粒子が崩れて微粉
の発生が認められた。1段目の乾燥後に粒径分布を測定
した結果、105μm以下の割合が22.3%と増加し
ていた。
Comparative Example 3 A powdery polymer was obtained by treating in the same manner as in Example 1 except that the solidification temperature was changed to 70 ° C. Particles collapsed after dehydration and generation of fine powder was observed. As a result of measuring the particle size distribution after drying the first step, the proportion of 105 μm or less was increased to 22.3%.

【0037】[0037]

【発明の効果】本発明によれば、ガラス転移温度が40
℃以上である熱可塑性重合体ラテックスを特定の条件で
凝固を行い、通常よりも高い温度で乾燥することによっ
て、粒径分布のシャープな嵩比重の高い粉粒状重合体を
得ることができる。
According to the present invention, the glass transition temperature is 40.
A powdery granular polymer having a sharp particle size distribution and a high bulk specific gravity can be obtained by coagulating a thermoplastic polymer latex having a temperature of not less than 0 ° C. under specific conditions and drying at a temperature higher than usual.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に使用される装置例である。FIG. 1 is an example of a device used in the present invention.

【符号の説明】[Explanation of symbols]

1 定量ポンプ 2 定量ポンプ 3 定量ポンプ 4 第1槽 5 第2槽 6 第3槽 1 metering pump 2 metering pump 3 metering pump 4 1st tank 5 2nd tank 6 3rd tank

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 乳化重合により得られたガラス転移温度
Tg(A)が40℃以上である熱可塑性重合体(A)の
ラテックスから重合体粉末を回収するに際し、1)凝析
剤を用いてラテックス中の全重合体に対し40〜80重
量%の重合体を凝析させ、 2)さらに凝析剤を添加して凝析を完結させ、 3)得られた凝析スラリーを(Tg(A)−10)〜
(Tg(A)+40)℃で示す温度範囲で固化した後脱
水・乾燥させ、 4)乾燥した重合体粉末をさらに(Tgmax+10)〜
(Tgmax+80)℃で示す温度範囲で加熱することを
特徴とする熱可塑性重合体粉末の製造方法。 Tg(A)=W1×Tg1+W2×Tg2+・・・+Wn×Tgn−−(X) [ここで、nは熱可塑性重合体(A)を形成する単量体
の数であり、W1、W2・・・Wnは各単量体i(i=
1、2・・・、n)の重合体(A)中の重量分率を表
し、Tg1、Tg2・・・、Tgnは各単量体iから成る
重合体のガラス転移温度(℃)を表す。] Tgmax:熱可塑性重合体(A)を形成する単量体から
得られる重合体の中で最も高い温度を示すガラス転移温
度。
1. When recovering a polymer powder from a latex of a thermoplastic polymer (A) having a glass transition temperature Tg (A) of 40 ° C. or higher obtained by emulsion polymerization, 1) a coagulant is used. 40 to 80% by weight of the polymer in the latex is coagulated, 2) a coagulant is further added to complete the coagulation, and 3) the resulting coagulated slurry is treated with (Tg (A ) -10) ~
(Tg (A) +40) ° C., solidified, dehydrated and dried in the temperature range shown in 4), and 4) the dried polymer powder is further added to (Tgmax + 10) to
A method for producing a thermoplastic polymer powder, which comprises heating within a temperature range of (Tgmax + 80) ° C. Tg (A) = W 1 × Tg 1 + W 2 × Tg 2 + ... + W n × Tg n −− (X) [where n is the number of monomers forming the thermoplastic polymer (A)] And W 1 , W 2 ... W n are each monomer i (i =
1, 2, represents the polymer (A) weight fraction in n), Tg 1, Tg 2 ···, Tg n is the glass transition temperature of the polymer composed of the monomer i (° C. ) Represents. ] Tgmax: Glass transition temperature showing the highest temperature among the polymers obtained from the monomers forming the thermoplastic polymer (A).
【請求項2】 (Tgmax+10)〜(Tgmax+80)
℃で示す温度範囲で加熱する前に、無機化合物を重合体
粉末100重量部に対し0.1〜10重量部添加するこ
とを特徴とする請求項1記載の熱可塑性重合体粉末の製
造方法。
2. (Tgmax + 10) to (Tgmax + 80)
The method for producing a thermoplastic polymer powder according to claim 1, wherein the inorganic compound is added in an amount of 0.1 to 10 parts by weight with respect to 100 parts by weight of the polymer powder before heating in the temperature range shown in ° C.
JP6063783A 1994-03-31 1994-03-31 Production of thermoplastic polymer powder Pending JPH07268017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6063783A JPH07268017A (en) 1994-03-31 1994-03-31 Production of thermoplastic polymer powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6063783A JPH07268017A (en) 1994-03-31 1994-03-31 Production of thermoplastic polymer powder

Publications (1)

Publication Number Publication Date
JPH07268017A true JPH07268017A (en) 1995-10-17

Family

ID=13239330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6063783A Pending JPH07268017A (en) 1994-03-31 1994-03-31 Production of thermoplastic polymer powder

Country Status (1)

Country Link
JP (1) JPH07268017A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265743A (en) * 2001-03-15 2002-09-18 Mitsubishi Rayon Co Ltd Graft copolymer-based mixed powder and method for improving powder characteristics of graft copolymer
KR100385725B1 (en) * 2001-01-04 2003-05-27 주식회사 엘지화학 Multi-stage process for continuous coagulation
KR100559307B1 (en) * 1996-06-13 2006-05-25 더 굿이어 타이어 앤드 러버 캄파니 Process for finishing a resin from an emulsion polymerized latex
JP2009013318A (en) * 2007-07-06 2009-01-22 Sumitomo Chemical Co Ltd Method for producing multistage polymer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100559307B1 (en) * 1996-06-13 2006-05-25 더 굿이어 타이어 앤드 러버 캄파니 Process for finishing a resin from an emulsion polymerized latex
KR100385725B1 (en) * 2001-01-04 2003-05-27 주식회사 엘지화학 Multi-stage process for continuous coagulation
JP2002265743A (en) * 2001-03-15 2002-09-18 Mitsubishi Rayon Co Ltd Graft copolymer-based mixed powder and method for improving powder characteristics of graft copolymer
JP2009013318A (en) * 2007-07-06 2009-01-22 Sumitomo Chemical Co Ltd Method for producing multistage polymer

Similar Documents

Publication Publication Date Title
US5514772A (en) Method for producing powdery and granular polymers
JP5010465B2 (en) Method for producing coagulated latex particles
EP1908792B1 (en) Process for production of coagulated latex particles
KR20070115980A (en) Process for producing aggregated latex particle
EP1425314A1 (en) Process for preparing polymer latex resin powder
JPH07268017A (en) Production of thermoplastic polymer powder
JP5020450B2 (en) Method for producing powder linear polymer with excellent powder properties
JPH0676498B2 (en) Spherical close packing of polymeric latex particles
JP3172616B2 (en) Method for producing powdery granular polymer
JP3703124B2 (en) Method for recovering rubber-containing polymer
JP3163195B2 (en) Method for producing powdery granular polymer
JPH0457374B2 (en)
JP3163189B2 (en) Method for producing powdery granular polymer
JPH05320221A (en) Production of powdery or particulate polymer
JPH06256416A (en) Production of particulate polymer
JPH0459010B2 (en)
JPH09286815A (en) Method for recovering polymer from latex
JPH05163359A (en) Production of powdery polymer
JP2004143267A (en) Method for producing resin particle
JP2559833B2 (en) Continuous production method of powdery and granular polymer and method of controlling particle size of the polymer
JP2002275221A (en) Method for producing powdery graft copolymer
JP2007070383A (en) Method of treatment of vinyl chloride-based resin product and vinyl chloride-based resin composition obtained by the method of treatment
JP2002265743A (en) Graft copolymer-based mixed powder and method for improving powder characteristics of graft copolymer
JP3549573B2 (en) Method for producing powdery polymer
JPS62250015A (en) Recovery of polymer from copolymer latex