JP2005246580A - Method for cutting substrate - Google Patents

Method for cutting substrate Download PDF

Info

Publication number
JP2005246580A
JP2005246580A JP2004063613A JP2004063613A JP2005246580A JP 2005246580 A JP2005246580 A JP 2005246580A JP 2004063613 A JP2004063613 A JP 2004063613A JP 2004063613 A JP2004063613 A JP 2004063613A JP 2005246580 A JP2005246580 A JP 2005246580A
Authority
JP
Japan
Prior art keywords
substrate
cutting
aluminum nitride
sintered body
nitride sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004063613A
Other languages
Japanese (ja)
Inventor
Kazuhiro Yamane
一洋 山根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP2004063613A priority Critical patent/JP2005246580A/en
Publication of JP2005246580A publication Critical patent/JP2005246580A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently manufacturing a chip, in which the accuracy of its cut end part is excellent, by cutting a substrate composed of an aluminum nitride sintered body with a rotary grinding wheel. <P>SOLUTION: When the substrate composed of an aluminum nitride sintered body is cut, (a) the substrate 1 composed of an aluminum nitride sintered body is prepared, (b) a groove 2 is formed in partial depth H from the surface at the cutting position of the substrate 1 with a rotary grinding wheel α having an average abrasive particle size of less than three times the average crystal particle size of the aluminum nitride sintered body, and (c) the substrate is cut by grinding the remaining part 3 with the rotary grinding wheel β having a smaller grinding width C than the width B of the groove and an average abrasive particle size of three times or more the average crystal particle size of the aluminum nitride sintered body. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、窒化アルミニウム焼結体よりなる基板の新規な切断方法に関する。詳しくは、上記基板を切断して切断端部の精度が良好なチップを効率よく製造するための切断方法を提供するものである。   The present invention relates to a novel method for cutting a substrate made of an aluminum nitride sintered body. Specifically, the present invention provides a cutting method for efficiently producing a chip having a good cutting edge accuracy by cutting the substrate.

窒化アルミニウム、アルミナ、窒化ほう素等に代表されるセラミック材料は電気特性、光学特性、熱特性等の優れた特徴があることから広範囲に使用されている。これらのセラミック材料の中でも特に窒化アルミニウムは熱伝導性だけでなく、絶縁性、誘電特性、熱膨張特性の点で優れた特性を有することから、半導体実装用の高機能放熱基板として急速に普及しつつある。   Ceramic materials represented by aluminum nitride, alumina, boron nitride and the like are widely used because they have excellent characteristics such as electrical characteristics, optical characteristics, and thermal characteristics. Among these ceramic materials, aluminum nitride, in particular, has not only thermal conductivity, but also has excellent properties in terms of insulation, dielectric properties, and thermal expansion characteristics, so it has rapidly spread as a highly functional heat dissipation substrate for semiconductor mounting. It's getting on.

このような放熱基板は通常、次のような方法で製造される。即ち、窒化アルミニウム焼結体の表面を必要に応じて研削又は研磨して一定の面粗さに仕上げ、その表面に、金属薄膜層が形成される。かかる金属層は、Ti、Cr、Ni−Cr、TaN、Al、Mo、W、Zrなどの第1薄膜層、Ni、Ptなどの第2薄膜層、Co、Cu、Au、Ag、Pdなどの第3薄膜層をこの順序で形成することにより一般的に形成される。   Such a heat dissipation board is usually manufactured by the following method. That is, the surface of the aluminum nitride sintered body is ground or polished as necessary to finish it to a certain surface roughness, and a metal thin film layer is formed on the surface. Such a metal layer includes a first thin film layer such as Ti, Cr, Ni—Cr, TaN, Al, Mo, W, and Zr, a second thin film layer such as Ni and Pt, Co, Cu, Au, Ag, and Pd. It is generally formed by forming the third thin film layer in this order.

このようにして表面に金属薄膜層が形成された後に、必要に応じてパターニングされ、次いで、上記基板は切断分割され、最終製品の寸法、形状に仕上げられた後、金属薄膜層上に電子素子(例えばレーザーダイオード)が薄膜半田等を用いてマウントされる。   After the metal thin film layer is formed on the surface in this way, patterning is performed as necessary, and then the substrate is cut and divided to finish the final product in size and shape, and then the electronic device is formed on the metal thin film layer. (For example, a laser diode) is mounted using a thin film solder or the like.

上記基板の切断は、電子素子の小型化、高密度化につれて加工精度も近年著しい精度の向上が求められている。   In the cutting of the substrate, as the electronic elements are miniaturized and densified, the processing accuracy has been required to be significantly improved in recent years.

従来、上記窒化アルミニウム焼結体よりなる基板の切断には、回転研削砥石が一般に使用されている。この回転研削砥石を使用した切断装置は、装置自体が簡単であり加工速度も速いことから経済性が良いことが特徴である。上記研削砥石を使用して工作物を高精度で切断するための改良方法が種々提案されている。(特許文献1、2参照)。   Conventionally, a rotary grinding wheel is generally used for cutting a substrate made of the aluminum nitride sintered body. The cutting device using this rotary grinding wheel is characterized by good economic efficiency because the device itself is simple and the processing speed is high. Various improved methods for cutting a workpiece with high accuracy using the grinding wheel have been proposed. (See Patent Documents 1 and 2).

しかしながら、窒化アルミニウム焼結体のような硬質材料を回転研削砥石を使用して行なう場合は、窒化アルミニウム焼結体よりなる基板が比較的脆い部材であるため、工業的に有効な速度でこれを切断する場合には、加工の際に加工端部にカケの発生を避けることができないという問題を有する。そして、上記カケの問題は、近年、切断時の位置精度が高精度化したこと、および切断端部と電子素子のマウント位置との距離が近くなったことより、得られる半導体製品の歩留りに大きく影響を及ぼすようになった。   However, when a hard material such as an aluminum nitride sintered body is used by using a rotary grinding wheel, the substrate made of the aluminum nitride sintered body is a relatively fragile member. In the case of cutting, there is a problem that it is impossible to avoid the occurrence of chipping at the processing end during processing. In addition, the above-mentioned problem of chipping is greatly affected by the yield of semiconductor products obtained in recent years because the positional accuracy at the time of cutting has increased and the distance between the cutting end and the mounting position of the electronic element has become shorter. It came to influence.

一方、窒化アルミニウム焼結体よりなる基板は比較的硬い材料でもあるため、研削砥石の摩耗が大きく、経済性に悪影響を及ぼす。   On the other hand, since a substrate made of an aluminum nitride sintered body is also a relatively hard material, wear of the grinding wheel is great, which adversely affects the economy.

特開平 4−13552号公報JP-A-4-13552 特許第3223421号公報Japanese Patent No. 3223421

従って、本発明の目的は、窒化アルミニウム焼結体よりなる基板、特に、表面に金属薄膜層を有する基板の切断において、基板表面における切断端部のカケが低減された工業的に有利な切断方法を提供することにある。   Accordingly, an object of the present invention is to provide an industrially advantageous cutting method in which chipping at the cutting edge on the substrate surface is reduced in cutting a substrate made of an aluminum nitride sintered body, particularly a substrate having a metal thin film layer on the surface. Is to provide.

本発明者等は、上記課題を解決すべく鋭意研究を重ねてきた。その結果、従来より窒化アルミニウム焼結体よりなる基板の切断において工業的に使用されていた回転研削砥石より小さい特定の平均砥粒径を有する回転研削砥石にて該基板の一部を研削して溝を形成することにより、切断端部の欠けを抑制した切断端部が形成でき、次いで、この溝より研削幅が小さく、研削速度が速い回転研削砥石によって残部を切断することをすることによって、微小径砥粒の回転研削砥石による加工の特徴である切断端部欠けの抑制された表面部を有しながら、多大な切断時間を要しなく、更に、砥石摩耗量を少なくすることができ、本発明の目的を達成し得ることを見出し、本発明を完成するに至った。   The present inventors have intensively studied to solve the above problems. As a result, a part of the substrate is ground with a rotating grinding wheel having a specific average abrasive grain size smaller than that of a rotating grinding wheel that has been industrially used for cutting a substrate made of an aluminum nitride sintered body. By forming a groove, it is possible to form a cut end portion that suppresses chipping of the cut end portion, and then by cutting the remaining portion with a rotating grinding wheel having a grinding width smaller than this groove and a faster grinding speed, While having a surface portion in which cutting end portion chipping, which is a feature of processing with a rotating grinding wheel of minute diameter abrasive grains, has been suppressed, a great amount of cutting time is not required, and further, the wear amount of the wheel can be reduced. The inventors have found that the object of the present invention can be achieved, and have completed the present invention.

即ち、本発明は、窒化アルミニウム焼結体よりなる基板を切断するに際し、上記基板の切断位置において上記基板の表面から一部の深さまでを該窒化アルミニウム焼結体の平均結晶粒径に対して3倍未満の平均砥粒径の回転研削砥石(α)にて研削して溝を形成し、該溝の幅より研削幅が小さく且つ該窒化アルミニウム焼結体の平均結晶粒径に対して3倍以上の平均砥粒径の回転研削砥石(β)によって残部を研削して切断することを特徴とする基板の切断方法である。   That is, according to the present invention, when cutting a substrate made of an aluminum nitride sintered body, the depth from the surface of the substrate to a part of the depth at the cutting position of the substrate with respect to the average crystal grain size of the aluminum nitride sintered body. A groove is formed by grinding with a rotary grinding wheel (α) having an average abrasive grain size of less than 3 times, and the grinding width is smaller than the width of the groove and is 3 to the average crystal grain size of the aluminum nitride sintered body. A substrate cutting method characterized in that the remaining portion is ground and cut by a rotary grinding wheel (β) having an average abrasive grain size of twice or more.

本発明の基板の切断方法によれば、回転研削砥石(α)により初期の研削を行い溝を形成することで、精度の高い切断端部を表層部に確保することができ、切断により得られるチップ表面に高精度で電子部品をマウントすることが可能となる。また、その後、回転研削砥石(β)によって残部を研削して切断することにより、上記切断端部の精密性を維持した状態で、切断を工業的に有利に実施することが可能となった。即ち、回転研削砥石(α)は、精度よく研削ができる反面、砥石の摩耗が著しいが、基板の一部を研削するため、かかる摩耗を防止できる。また、その後は、研削速度が速く、しかも、砥石の摩耗速度が遅い砥石を使用するため、切断速度を十分短縮できると共に、全体の砥石の摩耗量を効果的に低減することができる。   According to the substrate cutting method of the present invention, by performing initial grinding with a rotary grinding wheel (α) to form a groove, a highly accurate cutting end can be secured on the surface layer portion and obtained by cutting. Electronic components can be mounted on the chip surface with high accuracy. In addition, after that, the remaining portion is ground and cut with a rotary grinding wheel (β), so that it is possible to industrially advantageously perform cutting while maintaining the precision of the cut end portion. In other words, the rotary grinding wheel (α) can be ground with high precision, but the grinding wheel is extremely worn. However, since a part of the substrate is ground, such wear can be prevented. Further, after that, since a grindstone having a high grinding speed and a slow grindstone wear speed is used, the cutting speed can be sufficiently shortened and the wear amount of the entire grindstone can be effectively reduced.

本発明の切断方法において、窒化アルミニウム焼結体よりなる基板は公知のものが特に制限なく使用される。そのうち、特に、窒化アルミニウム焼結体を構成する結晶の平均粒径が1〜10μm程度のものに対して本発明の切断方法は特に有効である。また、かかる結晶粒径を有するものは、基板表面の研磨による精度も上げることができるため本発明において好適である。   In the cutting method of the present invention, a known substrate made of an aluminum nitride sintered body is used without particular limitation. Among them, the cutting method of the present invention is particularly effective particularly for crystals having an average particle diameter of about 1 to 10 μm constituting the aluminum nitride sintered body. Also, those having such a crystal grain size are suitable in the present invention because the accuracy by polishing the substrate surface can be increased.

また、基板の形状は特に制限されるものではないが、加工が容易であるという観点から、その厚さは50μm〜5cm、特に100μm〜2cmであるのが好適である。   The shape of the substrate is not particularly limited, but from the viewpoint of easy processing, the thickness is preferably 50 μm to 5 cm, particularly 100 μm to 2 cm.

本発明の切断方法の対象となる窒化アルミニウム焼結体よりなる基板は、特に制限されず、例えば、未加工の状態の窒化アルミニウム焼結体基板、各種ホーニング加工を施したもの、ラップ加工を施したもの、鏡面加工を施したもの等や、半導体素子搭載用基板として基板表面に蒸着法、スパッタリング法、化学気相蒸着(CVD)法等により金属薄膜層を形成した窒化アルミニウム焼結体よりなる基板などが挙げられる。   The substrate made of the aluminum nitride sintered body that is the object of the cutting method of the present invention is not particularly limited. For example, the aluminum nitride sintered body substrate in an unprocessed state, those subjected to various honing processes, and lapping are performed. Or a mirror-finished product, or a sintered body of aluminum nitride in which a metal thin film layer is formed on a substrate surface as a substrate for mounting a semiconductor element by vapor deposition, sputtering, chemical vapor deposition (CVD), etc. Examples include substrates.

図1は、本発明の切断方法の代表的な態様を示す工程図である。図1に示すように、本発明の切断方法は、(a)前記窒化アルミニウム焼結体よりなる基板1を準備し、(b)上記基板1の切断位置において表面から一部の深さ(H)まで回転研削砥石(α)にて研削して溝2を形成し、(c)該溝の幅(B)より研削幅(C)の小さい回転研削砥石(β)によって残部3を研削して基板を切断することをすることが前記目的を達成するために重要である。   FIG. 1 is a process diagram showing a typical embodiment of the cutting method of the present invention. As shown in FIG. 1, in the cutting method of the present invention, (a) a substrate 1 made of the aluminum nitride sintered body is prepared, and (b) a partial depth (H) from the surface at the cutting position of the substrate 1. ) To form a groove 2 by grinding with a rotating grinding wheel (α), and (c) grinding the remaining portion 3 with a rotating grinding wheel (β) having a grinding width (C) smaller than the width (B) of the groove. It is important to achieve the above-mentioned purpose to cut the substrate.

即ち、回転研削砥石(α)による溝を形成せずに、回転研削砥石(β)により窒化アルミニウム焼結体よりなる基板の全層を切断した場合、切断端部に発生する欠けが大きくなるため品質を悪化させ、本発明の目的を達成することができない。また、回転研削砥石(β)のみで全体を切断した場合は、切断に長時間を要すると共に、かかる砥石の摩耗量が大きく、工業的な実施において問題を有する。   That is, if the entire layer of the substrate made of the aluminum nitride sintered body is cut by the rotary grinding wheel (β) without forming the groove by the rotary grinding wheel (α), the chip generated at the cut end portion becomes large. The quality is deteriorated and the object of the present invention cannot be achieved. Moreover, when the whole is cut | disconnected only with a rotational grinding grindstone ((beta)), while a long time is required for a cutting | disconnection, the abrasion loss of this grindstone is large, and has a problem in industrial implementation.

また、本発明者らの研究によれば、前記切断端部におけるカケの発生は、研削時に窒化アルミニウム焼結体の結晶粒が剥離することによるものであり、かかるカケの発生を防止するためには、該結晶粒の剥離が進行しにくい前記粒径、即ち、基板を構成する窒化アルミニウム焼結体の平均結晶粒径に対して3倍未満の平均砥粒径を有する砥粒を持つ回転研削砥石を使用することが有効であることを見出した。
Further, according to the study by the present inventors, the occurrence of chipping at the cut end is due to the separation of crystal grains of the aluminum nitride sintered body during grinding, in order to prevent such chipping from occurring. Rotating grinding having abrasive grains having an average abrasive grain size less than 3 times the grain size at which the separation of the crystal grains is difficult to proceed, that is, the average crystal grain size of the aluminum nitride sintered body constituting the substrate It has been found that it is effective to use a grindstone.

本発明において、回転研削砥石(α)により形成する溝の幅(B)は、後述の回転研削砥石(β)による切断幅(C)より相対的に大きいものであれば特に制限を受けないが、上記溝の幅を大きくし過ぎると切断代が大きくなり、経済性を損ねる場合も生ずるので、回転研削砥石(α)により形成される溝は、一般に400μm以下、好ましくは、150μm以下に設定することが好ましい。   In the present invention, the width (B) of the groove formed by the rotating grinding wheel (α) is not particularly limited as long as it is relatively larger than the cutting width (C) by the rotating grinding wheel (β) described later. If the width of the groove is too large, the cutting allowance increases and the economy may be impaired. Therefore, the groove formed by the rotary grinding wheel (α) is generally set to 400 μm or less, preferably 150 μm or less. It is preferable.

上記の回転研削砥石(α)による溝の深さは、窒化アルミニウム焼結体の平均結晶粒径の2〜10倍であり、且つ窒化アルミニウム焼結体よりなる基板の厚みの50%以下であることが好ましいが、より好ましくは、窒化アルミニウム焼結体の平均結晶粒径(d;μm)の2〜5倍であり、かつ窒化アルミニウム焼結体よりなる基板の厚みの30%以下である。   The depth of the groove by the rotary grinding wheel (α) is 2 to 10 times the average crystal grain size of the aluminum nitride sintered body and 50% or less of the thickness of the substrate made of the aluminum nitride sintered body. The average crystal grain size (d; μm) of the aluminum nitride sintered body is preferably 2 to 5 times, and more preferably 30% or less of the thickness of the substrate made of the aluminum nitride sintered body.

即ち、本発明者らは、窒化アルミニウム焼結体の如き多結晶材料を回転研削砥石により切断する場合、前記回転研削砥石(α)により溝を形成する際の溝の深さは結晶粒子の大きさを基準とし、その平均結晶粒径の2倍以上の深さとすることにより、前記したように、結晶粒子の脱落が起きることなく研削を行なうことができ、しかも、精度に優れた切断端部を形成できる。   That is, when the present inventors cut a polycrystalline material such as an aluminum nitride sintered body with a rotating grinding wheel, the depth of the groove when forming the groove with the rotating grinding wheel (α) is the size of the crystal grains. By setting the depth to be twice or more of the average crystal grain size on the basis of the thickness, as described above, the grinding can be performed without dropping of the crystal grains, and the cutting end portion having excellent accuracy can be obtained. Can be formed.

しかし、上記溝の深さ(B)を前記好ましい範囲を超えて深く形成した場合、窒化アルミニウム焼結体よりなる基板の反りが発生し易くなり、続く回転研削砥石(β)の研削の精度が低下したり、この反った基板を回転研削砥石による切断時に装置に固定すると基板が割れることがある。   However, when the depth (B) of the groove is deeper than the preferred range, the substrate made of the aluminum nitride sintered body is likely to warp, and the subsequent grinding accuracy of the rotating grinding wheel (β) is improved. If the lowered or warped substrate is fixed to the apparatus at the time of cutting with a rotating grinding wheel, the substrate may be broken.

本発明の切断に用いられる回転切削砥石は、公知のものが特に制限無く使用されるが、ダイヤモンド砥粒を使用した研削砥石を使用したものが好適である。上記ダイヤモンド砥粒は、ダイヤモンド砥粒が結合剤を用いて固着された研削砥石である。ダイヤモンド砥粒には天然または合成工業用ダイヤモンド粉末が用いられ、結合剤は、レジンボンド、メタルレジンボンド、メタルボンド、ビトリファイドボンド、電着ボンド、電鋳金属ボンド等のいずれの方法でも良い。また、研削砥石全体が砥粒と結合剤で構成されていても良く、切断にかかわらない部分を金属等の他材料で構成していても良い。   As the rotary cutting grindstone used for the cutting of the present invention, known ones are used without particular limitation, but those using a grinding grindstone using diamond abrasive grains are suitable. The diamond abrasive is a grinding wheel to which diamond abrasive is fixed using a binder. Natural or synthetic industrial diamond powder is used for the diamond abrasive grains, and the binder may be any method such as resin bond, metal resin bond, metal bond, vitrified bond, electrodeposition bond, and electroformed metal bond. Moreover, the whole grinding wheel may be comprised with the abrasive grain and the binder, and the part which does not relate to a cutting | disconnection may be comprised with other materials, such as a metal.

本発明において、回転研削砥石(β)による切断幅(C)は回転研削砥石(α)により形成された溝の幅(B)より相対的に薄く設定されれば特に制限を受けないが、切断溝の蛇行、砥石摩耗量の増大等の悪影響が生じない範囲内においてできる限り薄い方が好ましい。具体的には、回転研削砥石(α)により形成された溝の幅(B)に対して、50〜95%の範囲であることが好ましい。   In the present invention, the cutting width (C) by the rotating grinding wheel (β) is not particularly limited as long as it is set relatively thinner than the width (B) of the groove formed by the rotating grinding wheel (α). It is preferable that the thickness be as thin as possible within a range where no adverse effects such as meandering of the groove and increase in the wear amount of the grindstone occur. Specifically, it is preferably in the range of 50 to 95% with respect to the width (B) of the groove formed by the rotary grinding wheel (α).

また、一般的な研削砥石先端の形状は角型であるが、Rまたはテーパが付いていても良い。また、一般的にマルチブレードダイシングと呼ばれる、同形状の多数枚の砥石を同軸上に平行に並べ回転させ切断し一度に多数の切断を行う方法であれば、経済性が向上するので特に好適である。   Further, the shape of the tip of a general grinding wheel is a square shape, but it may be R or tapered. Further, a method generally called multi-blade dicing, in which a large number of grindstones of the same shape are arranged in parallel on the same axis and rotated to cut a large number of cuts at a time, is particularly preferable because the economy is improved. is there.

上記回転研削砥石を使用する際の研削盤への基板の固定方法も特に制限されず、公知の方法が制限なく使用できる。例えば、真空吸引、粘着シートによる貼付け、固形ワックスによる貼付け、接着剤による貼付け等が適応され、これらを併用しても良い。また、切断を行う研削盤は市販されているものが好適に使用できる。   The method for fixing the substrate to the grinding machine when using the rotary grinding wheel is not particularly limited, and any known method can be used without limitation. For example, vacuum suction, sticking with an adhesive sheet, sticking with a solid wax, sticking with an adhesive, etc. are applicable, and these may be used in combination. Moreover, what is marketed can be used conveniently for the grinding machine which cut | disconnects.

本発明で対象とする回転研削砥石による溝入れ、切断方法は、公知のものが制限なく使用できる。例えば、アップカット、ダウンカット、クリープフィード研削、ハイスピードストローク研削等が挙げられる。   As the grooving and cutting method using the rotary grinding wheel targeted in the present invention, known methods can be used without limitation. For example, up cut, down cut, creep feed grinding, high speed stroke grinding and the like can be mentioned.

また、砥石回転数は、5000rpm以上であれば良いが、好ましくは20000rpm以上であることが好ましい。また回転数の上限は、特に制限されないが、100000rpm、特に、60000rpm程度である。   Moreover, although the grindstone rotation speed should just be 5000 rpm or more, Preferably it is 20000 rpm or more. The upper limit of the rotational speed is not particularly limited, but is about 100,000 rpm, particularly about 60000 rpm.

また、基板の送り速度は、300mm/s以下であれば良いが、30mm/s以下が好ましい。これら以外の加工条件による制限は受けない。   The substrate feed rate may be 300 mm / s or less, but is preferably 30 mm / s or less. There are no restrictions due to other processing conditions.

更に、本発明に用いられる研削砥石の外径は特に制限されず、切断の対象となる基板に応じて適宜決定すればよい。   Furthermore, the outer diameter of the grinding wheel used in the present invention is not particularly limited, and may be appropriately determined according to the substrate to be cut.

本発明の好ましい態様として、粘着シートを使用する態様が挙げられる。即ち、窒化アルミニウム焼結体よりなる基板の切断面よりなる基板に、例えばポリエステル、ポリエチレン、ポリプロピレン、ポリブテン、ポリブタジエン、塩化ビニル、塩化ビニル共重合体、アイオノマー樹脂、エチレン−(メタ)アクリル酸共重合体、エチレン−(メタ)アクリル酸エステル共重合体、ポリスチレン、ポリカーボネートなどの樹脂製基材上にシリコン系粘着剤、アクリル系粘着剤等が塗布された構造を有する公知の粘着シートを貼付し、該粘着シートを残して基板を切断することにより、該基板のチップ化後の取扱い性の向上を図ることも可能である。   As a preferred embodiment of the present invention, an embodiment using an adhesive sheet can be mentioned. That is, for example, polyester, polyethylene, polypropylene, polybutene, polybutadiene, vinyl chloride, vinyl chloride copolymer, ionomer resin, ethylene- (meth) acrylic acid copolymer, A known pressure-sensitive adhesive sheet having a structure in which a silicone pressure-sensitive adhesive, an acrylic pressure-sensitive adhesive, or the like is applied on a resin base material such as coalescence, ethylene- (meth) acrylic acid ester copolymer, polystyrene, polycarbonate, By cutting the substrate while leaving the pressure-sensitive adhesive sheet, it is possible to improve the handleability of the substrate after chip formation.

また、本発明の切断方法の他の態様として、前記回転研削砥石(α)による溝の形成を切断位置における基板の両面から行った後、残部を回転研削砥石(β)で切断する態様をも採用することができる。この場合、溝の深さは、前記範囲が好適に適用される。   Further, as another aspect of the cutting method of the present invention, after the groove is formed by the rotary grinding wheel (α) from both sides of the substrate at the cutting position, the remaining part is cut by the rotary grinding wheel (β). Can be adopted. In this case, the said range is applied suitably for the depth of a groove | channel.

尚、上記態様において粘着シートを使用した切断方法は、基板の一方の面に回転研削砥石(α)による溝を形成した後、該溝を有する面に粘着シートを貼付し、次いで、基板の他方の面に回転研削砥石(α)による溝の形成し、最後に、回転研削砥石(β)による研削により切断を行ない、チップ化することができる。   In the cutting method using the pressure sensitive adhesive sheet in the above embodiment, after forming a groove by a rotating grinding wheel (α) on one surface of the substrate, the pressure sensitive adhesive sheet is pasted on the surface having the groove, and then the other side of the substrate. Grooves are formed on the surface of the rotary grinding wheel (α), and finally, cutting is performed by grinding with the rotary grinding wheel (β) to form chips.

本発明を更に具体的に説明するため以下実施例及び比較例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。   In order to describe the present invention more specifically, examples and comparative examples will be described below, but the present invention is not limited to these examples.

実施例1〜3
平均結晶粒径が6.7μmの鏡面加工(Ra<0.03μm)を施した窒化アルミニウム焼結体基板(50.8mm×50.8mm×0.3mm)に対して、砥粒の平均粒径が12μm(ディスコ社製、B1A803SD1200N50M51、52D×0.12T×40H)、厚みが120μmの回転研削砥石(α)を用いて、切断機(ディスコ社製、DAD522)にて砥石回転数が30000rpm、送り速度が20mm/s、ダウンカットの条件にて溝を1mm間隔で50本形成した。窒化アルミニウム焼結体基板はUVシート(UDV−100A)に貼り付けて多孔質チャックにて真空吸着し切断機に固定した。
Examples 1-3
Average grain size of abrasive grains on aluminum nitride sintered body substrate (50.8 mm × 50.8 mm × 0.3 mm) subjected to mirror finishing (Ra <0.03 μm) with an average crystal grain size of 6.7 μm Is 12 μm (Disco, B1A803SD1200N50M51, 52D × 0.12T × 40H), 120 μm thick rotating grinding wheel (α), with a cutting machine (Disco, DAD522), grinding wheel rotation speed is 30000 rpm 50 grooves were formed at intervals of 1 mm under the conditions of a speed of 20 mm / s and down cut. The aluminum nitride sintered body substrate was attached to a UV sheet (UDV-100A) and vacuum-adsorbed with a porous chuck and fixed to a cutting machine.

その後、溝を形成した窒化アルミニウム焼結体基板に対して、砥粒の平均粒径が25μm(ディスコ社製、B1A803SD600N50M51、52D×0.1T×40H)、厚みが100μmの回転研削砥石(β)を用いて、切断機(ディスコ社製、DAD522)にて砥石回転数が30000rpm、送り速度が20mm/sの条件にて、形成した溝に合わせて、50本の溝全てをダウンカットにて切断した。   Then, the rotating grindstone (β) having an average grain size of 25 μm (B1A803SD600N50M51, 52D × 0.1T × 40H, manufactured by Disco Corporation) and a thickness of 100 μm with respect to the aluminum nitride sintered body substrate having the grooves formed therein. With a cutting machine (Disco 522, manufactured by Disco Corporation), all 50 grooves are cut by down-cutting according to the formed grooves under the conditions of a grinding wheel speed of 30000 rpm and a feed rate of 20 mm / s. did.

窒化アルミニウム焼結体基板はUVシート(UDV−100A)に貼り付けて多孔質チャックにて真空吸着し固定した。基板を完全に切断するため、UVシートに50μm切込む条件とした。また、溝形成および切断の前後での砥石の半径減少量を砥石摩耗量とし、切断機セットアップ機能にて測定した。   The aluminum nitride sintered body substrate was attached to a UV sheet (UDV-100A) and vacuum-adsorbed and fixed with a porous chuck. In order to completely cut the substrate, the UV sheet was cut by 50 μm. Further, the amount of reduction in the radius of the grindstone before and after groove formation and cutting was defined as the amount of wear of the grindstone, and was measured by a cutting machine setup function.

切断後の加工端部を200倍の測定顕微鏡にて観察し、切断1本(50.8mm)内での切断端部の最大カケの幅を測定し、これを全ての切断で行い、平均を切断端部カケ幅とした。上記結果を表2に示すが、かかる結果より明らかなように、本発明の切断方法は、切断端部のカケ幅が小さい上に、切断時間も短く、工業的に有効な切断方法であることが理解される。   Observe the processed end after cutting with a 200x measuring microscope, measure the maximum chip width of the cut end within one cut (50.8 mm), and perform this for all cuts. It was set as the cutting edge chip width. The above results are shown in Table 2. As is clear from these results, the cutting method of the present invention is an industrially effective cutting method with a small cutting width at the cutting end and a short cutting time. Is understood.

また、各実施例において、回転研削砥石(α)による溝の形成後の基板の反りを、表面粗さ形状測定器(東京精密製、サーフコム470A;商品名)により、基板の端と中央での差を反り量とした結果を表2に併せて示す。   Moreover, in each Example, the curvature of the board | substrate after formation of the groove | channel by the rotary grinding wheel ((alpha)) is measured by the surface roughness shape measuring device (The Tokyo Seimitsu make, Surfcom 470A; brand name) in the edge and center of a board | substrate. The results of the difference as the amount of warpage are also shown in Table 2.

比較例1
平均結晶粒径6.7μmの鏡面加工(Ra<0.03μm)を施した窒化アルミニウム焼結体基板(50.8mm×50.8mm×0.3mm)を、比較例1では実施例の溝形成を行わずに切断のみを行った。比較例1では実施例より砥石摩耗量は少ないが、基板の切断端部の欠け幅が大きい。上記切断条件を表1に、また、結果を表2に示す。
Comparative Example 1
The aluminum nitride sintered body substrate (50.8 mm × 50.8 mm × 0.3 mm) subjected to mirror finishing (Ra <0.03 μm) with an average crystal grain size of 6.7 μm is used, and in Comparative Example 1, the groove formation of the example is performed. Only the cutting was performed without performing. In Comparative Example 1, the wear amount of the grindstone is less than that in the example, but the chip width at the cut end of the substrate is large. The cutting conditions are shown in Table 1, and the results are shown in Table 2.

比較例2
平均結晶粒径6.7μmの鏡面加工(Ra<0.03μm)を施した窒化アルミニウム焼結体基板(50.8mm×50.8mm×0.3mm)を、比較例2では実施例1の回転研削砥石(α)のみを使用して切断を行った。
Comparative Example 2
An aluminum nitride sintered body substrate (50.8 mm × 50.8 mm × 0.3 mm) subjected to mirror finishing (Ra <0.03 μm) with an average crystal grain size of 6.7 μm is compared with the rotation of Example 1 in Comparative Example 2. Cutting was performed using only the grinding wheel (α).

上記切断条件を表1に、また、結果を表2に示す。比較例2では実施例より基板の切断端部の欠け幅は小さいが、砥石摩耗量が大きい。   The cutting conditions are shown in Table 1, and the results are shown in Table 2. In Comparative Example 2, the chip width at the cut end of the substrate is smaller than in the example, but the wear amount of the grindstone is large.

比較例3
平均結晶粒径6.7μmの鏡面加工(Ra<0.03μm)を施した窒化アルミニウム焼結体基板(50.8mm×50.8mm×0.3mm)を、比較例3では溝形成時に砥粒の平均粒径が12μm(ディスコ社製、B1A803SD1200N50M51、52D×0.12T×40H)、厚みが100μmの回転研削砥石を用いた。その他は実施例と同方法にて切断を行った。
Comparative Example 3
An aluminum nitride sintered body substrate (50.8 mm × 50.8 mm × 0.3 mm) subjected to mirror finishing (Ra <0.03 μm) with an average crystal grain size of 6.7 μm was used, and in Comparative Example 3, abrasive grains were formed when grooves were formed. A rotating grinding wheel having an average particle size of 12 μm (B1A803SD1200N50M51, 52D × 0.12T × 40H, manufactured by Disco Corporation) and a thickness of 100 μm was used. Others were cut in the same manner as in the examples.

上記切断条件を表1に、また、結果を表2に示す。形成した溝の幅と切断幅を同じにした比較例3では、砥石摩耗量は実施例と同等だが、基板の切断端部の欠け幅は大きい。   The cutting conditions are shown in Table 1, and the results are shown in Table 2. In Comparative Example 3 in which the width of the formed groove and the cutting width are the same, the wear amount of the grindstone is the same as that of the example, but the chip width at the cut end of the substrate is large.

Figure 2005246580
Figure 2005246580

Figure 2005246580
Figure 2005246580

本発明の基板の製造方法の代表的な態様を示す工程図Process drawing which shows the typical aspect of the manufacturing method of the board | substrate of this invention

符号の説明Explanation of symbols

1 基板
2 溝
3 残部
1 Substrate 2 Groove 3 Remainder

Claims (3)

窒化アルミニウム焼結体よりなる基板を切断するに際し、上記基板の切断位置において上記基板の表面から一部の深さまでを該窒化アルミニウム焼結体の平均結晶粒径に対して3倍未満の平均砥粒径の回転研削砥石(α)にて研削して溝を形成し、該溝の幅より研削幅が小さく且つ該窒化アルミニウム焼結体の平均結晶粒径に対して3倍以上の平均砥粒径の回転研削砥石(β)によって残部を研削して切断することを特徴とする基板の切断方法。   When cutting a substrate made of an aluminum nitride sintered body, an average grinding less than 3 times the average crystal grain size of the aluminum nitride sintered body from the surface of the substrate to a partial depth at the cutting position of the substrate. Grooves are formed by grinding with a rotary grindstone (α) having a grain size, the grinding width is smaller than the width of the groove, and the average abrasive grain is 3 times or more the average crystal grain size of the aluminum nitride sintered body A method for cutting a substrate, characterized in that the remaining portion is ground and cut by a rotary grinding wheel (β) having a diameter. 前記切断方法において、回転研削砥石(α)による溝の深さが、該窒化アルミニウム焼結体に対して平均結晶粒径の2〜10倍で且つ該窒化アルミニウム焼結体よりなる基板の厚みの50%未満であることを特徴とする基板の切断方法。   In the cutting method, the depth of the groove formed by the rotating grinding wheel (α) is 2 to 10 times the average crystal grain size of the aluminum nitride sintered body and the thickness of the substrate made of the aluminum nitride sintered body is A method for cutting a substrate, characterized by being less than 50%. 窒化アルミニウム焼結体よりなる基板が、表面に金属層を積層したものである請求項1又は2に記載の基板の切断方法。
The substrate cutting method according to claim 1 or 2, wherein the substrate made of the aluminum nitride sintered body has a metal layer laminated on the surface thereof.
JP2004063613A 2004-03-08 2004-03-08 Method for cutting substrate Pending JP2005246580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004063613A JP2005246580A (en) 2004-03-08 2004-03-08 Method for cutting substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004063613A JP2005246580A (en) 2004-03-08 2004-03-08 Method for cutting substrate

Publications (1)

Publication Number Publication Date
JP2005246580A true JP2005246580A (en) 2005-09-15

Family

ID=35027550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004063613A Pending JP2005246580A (en) 2004-03-08 2004-03-08 Method for cutting substrate

Country Status (1)

Country Link
JP (1) JP2005246580A (en)

Similar Documents

Publication Publication Date Title
JP6282613B2 (en) Dicing blade
CN104364884B (en) Cutter sweep and cutting method
US11781244B2 (en) Seed crystal for single crystal 4H—SiC growth and method for processing the same
WO2015029988A1 (en) Dicing device and dicing method
JP2010234597A (en) Cutting blade, method for manufacturing cutting blade, and cutting apparatus
JP2019059020A (en) Working grindstone
EP1484792A1 (en) Method for grinding rear surface of semiconductor wafer
JP4400677B2 (en) Thin blade whetstone
JP2009105127A (en) Manufacturing method of silicon carbide wafer
JP4371853B2 (en) Substrate cutting method
JP2005246580A (en) Method for cutting substrate
JP2005205543A (en) Wafer grinding method and wafer
US20130149941A1 (en) Method Of Machining Semiconductor Substrate And Apparatus For Machining Semiconductor Substrate
Fujita et al. Ultrafine ductile-mode dicing technology for SiC substrate with metal film using PCD blade
JP2011025347A (en) Method for machining metal plate
JP2010209371A (en) Carbon film coated member, method for forming carbon film, and cmp pad conditioner
JP2008036771A (en) Grinding wheel for hard fragile substrate
JP2008023677A (en) Wheel-shaped rotating grinding wheel for hard and brittle material substrate
JP2004042215A (en) Polishing stone, and apparatus and method for mirror-finishing cut surface
JP2005186211A (en) Method for cutting substrate
JP4154683B2 (en) Manufacturing method of high flatness back surface satin wafer and surface grinding back surface lapping apparatus used in the manufacturing method
JP2010247287A (en) Manufacturing method for silicon carbide single crystal substrate
JP2010269414A (en) Thin-edged blade
JP2005251909A (en) Dressing method
WO2018190160A1 (en) Polishing sheet and method for producing polishing sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080602

A521 Written amendment

Effective date: 20080801

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20090811

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100105

Free format text: JAPANESE INTERMEDIATE CODE: A02